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Important Note: Several figures and text that appear in these 
slides are from the assigned textbook.  The slides are not 
meant to replace the text: please read the book!
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What is a Laser?

• Source of coherent light

• Coherence in space: real space & wavelength space

• Coherence in time: real time and frequency

• Laser wavelength can be made tunable

• Both light and matter are extremely far from equilibrium

• Can generate ultrashort time pulses
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Laser Physics in a Nutshell

Quantum Mechanics needed to get started on Lasers:

Matter

Light

E1 � E2 = h⌫
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“Light-Matter” Interaction

• Absorption and emission spectra of atoms was the first hint that electron energies are quantized.
• Lead to the development of quantum mechanics, and finds a wide range of applications today.

Wikipedia
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Decoherence in spontaneous emission
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Resonator + Gain =) Oscillator
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Tool against decoherence: GAIN

physics.stackexchange
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How can one amplify photons?
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Stimulated Emission = Light Amplification
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How can one amplify photons?
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The basic structure of a Laser
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Laser Physics in a Nutshell
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690 nm ⇡ 430 THz
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Types of Lasers

From Wikipedia
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Light Emerges from Maxwell’s Equations

20

Electrostatics

Maxwell Wave equations: Predict the 
existence of Light!

Electrodynamics

A: Magnetic vector potential Classical energy density in an electromagnetic wave

Lorentz force
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Light Emerges from Maxwell’s Equations
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Poynting Vector

Monochromatic lightwave
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Review of Maxwell’s equations for Light 

22

Time-dependent 
Maxwell Equations

The Polarization 
Vector
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The Polarization 
Vector
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Review of Maxwell’s equations for Light 
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Light propagation 
in free space
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Review of Maxwell’s equations for Light 
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Poynting Vector, Power delivered by light

Wave equation for light propagation in material media
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Gaussian Beams of Light
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“Uncertainty” has a 
PRECISE meaning!
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Uncertainty Relations for all Waves
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Gaussian Beam Spreading
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Beam spreading angle
~ wavelength/Diameter 
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Wave Propagation in Anisotropic Media
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Boundary Conditions in Optics
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Coherent Electromagnetic Radiation
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Longitudinal Phase Coherence
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Coherent Electromagnetic Radiation
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Transverse Phase Coherence
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Ray Tracing for Coherent Beams: Optical Cavity Design

34

The “ABCD” Matrix

height
slope
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Ray Tracing for Coherent Beams: Optical Cavity Design
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Ray Tracing for Coherent Beams: Optical Cavity Design
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Ray Tracing: Optical Cavity Design
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Stability Criteria for Laser Optical Cavities
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Higher order modes: Hermite-Gaussian Laser Beams
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Higher order modes: Hermite-Gaussian Laser Beams
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Higher order modes: Hermite-Gaussian Laser Beams
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Mode Volume
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Mode Volume: Example
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Resonant Cavity with Gain
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Blackbody Radiation
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Blackbody Radiation

Mode Density
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Blackbody Radiation: Planck’s Derivation

The Blackbody
Spectrum
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Blackbody Radiation: Einstein’s Derivation
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Blackbody Radiation: Einstein’s Derivation
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Blackbody Radiation: Einstein’s Derivation
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Blackbody Radiation: Einstein’s Derivation
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Line Shape

Optical transitions of an atom are “dressed” by the electromagnetic surrounding.
This dressing changes the optical transition of the atom and gives it a Line Shape. 
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Line Shape
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Line Shape: Effect on Radiative Transition Rate



Debdeep Jena (djena@cornell.edu), Cornell University 62

Amplification by an Atomic System
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Amplification by an Atomic System
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Amplification by an Atomic System



Debdeep Jena (djena@cornell.edu), Cornell University 65

Broadening of Spectral Lines
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Homogeneous Broadening of Spectral Lines
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Homogeneous Broadening of Spectral Lines
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Homogeneous Broadening of Spectral Lines
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Homogeneous Broadening of Spectral Lines
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Inhomogeneous Broadening of Spectral Lines
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Broadening of Spectral Lines
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Laser Oscillation and Amplification
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Laser Oscillation and Amplification
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Stimulated vs Spontaneous Emission
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Optical Gain Saturation
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Amplified Spontaneous Emission
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Amplified Spontaneous Emission
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Laser Oscillation Physics in One Slide
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Steady State Linewidth: depends on power & inversion
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Laser “Wall-Plug” Efficiency
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Quantum Efficiency
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Pumping Efficiency

83

Small-Signal Gain

2

0
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Intensity Profile in a Continuous-Wave (CW) Laser
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Q-Switching in Lasers
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Method to obtain a large photon Intensity 
in short pulses.

But control of pulse shape and repetition 
rate by Q-switching is limited.



Debdeep Jena (djena@cornell.edu), Cornell University

Mode Locked Lasers
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Mode Locked Lasers
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Mode Locked Lasers
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Active Mode Locking
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Should be equal!
Gain Medium 
Transfer Function

Amplitude 
Modulation
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Mode Locked Lasers
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Saturable Amplifier and Saturable Absorber
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Saturable Amplifier and Saturable Absorber
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Mode-Locked Laser
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Colliding Pulse Mode-Locked (CPM) Laser
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Colliding Pulse Mode-Locked (CPM) Laser
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Additive-Pulse Mode-Locked Laser
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Course Outline
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Broadband Optical Gain
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Tunable Lasers I: Dye Lasers
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Tunable Lasers II: Tunable Solid-State (Ti:Sapphire)
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Nd: YAG Laser for Q-Switching
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Gas Discharge Lasers: CO2 Laser
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Gas Discharge Lasers: CO2 Laser
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Excimer Lasers
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Free Electron Lasers
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Free Electron Lasers
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Semiconductor Diode Lasers

108



Debdeep Jena (djena@cornell.edu), Cornell University

Semiconductor Optical Gain and Population Inversion
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Gain spectrum of atomic systems

Gain spectrum of a semiconductor

Compare
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Direct and Indirect Bandgap Semiconductors
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Semiconductor Optical Gain and Population Inversion
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Optical Joint Density of States for a 3D 
Semiconductor
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Electron wave modes and Density of States
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Optical Absorption Coefficient of a Semiconductor
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Semiconductor Optical Gain and Population Inversion
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Spontaneous Emission Spectrum
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Spontaneous Emission Rate and Spectrum
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Carrier Injection to Modulate Quasi Fermi Levels
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Homojunction Diode Laser
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Rate equation for electrons and holes

Recombination rate Generation rateRate of change of electrons

T-dependence 
of carrier density 

T-dependence 
of Laser threshold 
current density

Estimation of required threshold injection current density
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Heterojunction Diode Laser
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Heterojunction Diode Laser
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Refractive Index of Semiconductors Decreases with Increase in the Bandgap
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Double Heterostructure Laser
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Alferov: 2000 Physics Nobel Lecture

Quantum Dot
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Heterojunction Diode Laser
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Quantum Well Laser
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Quantum Well Laser
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Measured Gain Profiles in Quantum Wells
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Low Injection Condition

High Injection Condition
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Quantum Well Laser
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Mode Confinement
Factor for Gain
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Quantum Wells: Grown by Epitaxy
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Quantum Well Light-Emitting Diodes (LEDs)
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240 nm deep UV LED

AlN (4 monolayers)

GaN (2 monolayers)

Nanofabrication MBE growth with atomic level 
design and control Photonic and electronic devices

A Molecular Beam Epitaxy System
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Quantum Wells to Wires to Dots for Gain
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Alferov: 2000 Physics Nobel Lecture

Quantum Dot
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Vertical Cavity Surface-Emitting Laser (VCSEL)
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Light output characteristics of a Laser

130

From: Coldren/Corzine/Masanovic

P0 = ⌘d
h⌫

e
(I � Ith) + Psp
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Modulating the Laser Output: Dynamics
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Rate equation for electrons (=holes)

Rate equation for photons

Net laser Pout vs Injected Current Density

oscillatory injection current oscillatory Pout
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Modulating the Laser Output: Dynamics
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“How fast can I modulate a semiconductor laser?”

The frequency response is limited by the photon 
lifetime and the spontaneous emission lifetime.

Today: 10s of GHz

resonance

decay
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Design of Waveguides, Mirrors, and Laser Arrays
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From: Coldren/Corzine/Masanovic
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Course Outline
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Design of Waveguides, Mirrors, and Laser Arrays
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Design of Waveguides, Mirrors, and Laser Arrays
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Design of Waveguides, Mirrors, and Laser Arrays
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From: Coldren/Corzine/Masanovic
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Design of Waveguides, Mirrors, and Laser Arrays
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From: Coldren/Corzine/Masanovic

Tunable lasers by actively changing 
the mirror transmit wavelength window
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Design of Waveguides, Mirrors, and Laser Arrays
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From: Coldren/Corzine/Masanovic

Photonic Integrated Circuits (PICs): 
Multi-channel Transmitters and Receivers
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Design of Waveguides, Mirrors, and Laser Arrays
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Laser Arrays for More Output Power
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Course Outline
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Classical theory of the Einstein A-Coefficient
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Classical Einstein A-Coefficient Quantum Einstein A-Coefficient =
4X(Classical Value)

Power radiated by a 
classical Hertzian 
Dipole Antenna

equate

Classical Antenna Model

Einstein Rate Equation

compare
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Classical theory of the Einstein A-Coefficient
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Dipole length in response to an oscillating electric field 
from a light beam

Atomic polarization in response to an oscillating electric 
field from a light beam
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Classical theory of the Einstein A-Coefficient
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Real part of the 
wavevector

Imaginary part of the 
wavevector
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Classical theory of the Einstein A-Coefficient
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Real part of the 
susceptibility

Imaginary part of 
the susceptibility

!21

Absorption 
coefficient (need 
to switch sign to 
become gain)
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Classical theory of the Einstein A-Coefficient
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Another approach to obtain the 
classical Einstein A-coefficient 
without invoking Antenna theory
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Course Outline

147



Debdeep Jena (djena@cornell.edu), Cornell University

Quantum theory of the Einstein A & B Coefficients
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Simplest case: A 2-level system with step perturbation

Perturbation:
W(r,t) W(r)

time
t=0

What is the occupation of 
states at time t?

Example: Electrons in an atom with 
electric field perturbation. W=eFx, 
W12=eF<1|x|2>=eFx12~eFr, r is ~ 
the size of the atom.  For F~1 
MV/cm, r~0.1 nm, W12~10 meV
(small energy, sharp resonance).
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Quantum theory of the Einstein A & B Coefficients
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A 2-level atomic system interacting with an 
oscillating electric field
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Quantum theory of the Einstein A & B Coefficients
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Quantum Einstein B-coefficient

Quantum Einstein A-coefficient
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Field-Quantization: Quantum Electrodynamics
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The electromagnetic field is 
quantized in the same way 
as the harmonic oscillator
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Field-Quantization: Quantum Electrodynamics
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Orthogonal modes, 
polarization, and 

density of states of 
photon fields
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Field-Quantization: Quantum Electrodynamics
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Light-Matter combined Hamiltonian.  
Both matter and the electromagnetic field are 
now quantized.

If the interaction term is treated as a perturbation, we can identify the 
absorption and emission terms.  Note the annihilation and creation operators 
make this very clear.

Transition rates from Fermi’s golden rule
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Einstein A & B Coefficients from QED
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Characteristic time scale of transitions.  
Depends on the (photon wavelength)3

and on (dipole length)2.  Typical ~ns.

absorption spontaneous emission stimulated emission

Summing over isotropic 3D 
photon polarizations for a fixed 
dipole orientation
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Extra Slides
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