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About ECE 4300: Lasers and Optoelectronics

Instructors:
Prof. Debdeep Jena (djena@cornell.edu), ECE and MSE, Cornell University
Prof. CIif Pollock, ECE, Cornell University.

Course Website:
https://djena.engineering.cornell.edu/2016_ece4300.htm
Homework assignments and postings will appear on this website. Please bookmark it.

Class Hours:

MWF 10:10 - 11:00 am.
Location: Bard Hall 140.
Office hours: TBD.

Prerequisites:
ECE 3030 or permission of instructor.
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About ECE 4300: Lasers and Optoelectronics

Course contents:

Introduction to the operation, physics, and application of lasers. The course covers diffraction-
limited optics, Gaussian beams, optical resonators, the interaction of radiation with matter,
stimulated emission, rate equations, and laser design. Examples of coherent radiation to
nonlinear optics, communication, and leading-edge research are frequently used. Course
concludes with a lab where students design and then build a laser.

Textbook.: ‘ . LASER
The following text is required for the course: ELECTRONICS

Laser Electronics by Joseph T. Verdeyen, 3rd Edition.

‘‘‘‘‘‘‘‘‘‘

Important Note: Several figures and text that appear in these :
slides are from the assigned textbook. The slides are not Joseph T. Verdeyen
meant to replace the text: please read the book!
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About ECE 4300: Lasers and Optoelectronics

Outcomes:

e Be able to analytically design and physically construct a functional laser with simple
optics.

e Understand the general operating principles of laser systems, and be knowledgeable of
specific systems (e.g. tunable, ultrafast, high power, fiber and semiconductor lasers).

e Understand how to design and the physics behind continuous wave operation, mode lock-
ing, Q-switching, and harmonic generation.

e Be able to design a laser optic system using mirrors, lenses and gain media based on
Gaussian beam analysis.
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About ECE 4300: Lasers and Optoelectronics
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Homeworks:

Homework assignments are an integral part of learning in this course. Approximately one
problem set will be assigned every two weeks.

You are allowed to work with other students in the class on your homeworks. The name(s)
of the student(s) you worked with must be included in your homework. But what you
turn in must be in your own writing, and have your own plots and figures. Turning in
plots/figures/text that are exact replicas of others is considered cheating (see below).

Assignments must be turned in before class on the due date. The time the assignment
is turned in should be written. There will be a 10% penalty each day of delay, and
assignments will not be accepted beyond 3 days after the due date. There will be no
exceptions to this rule.

Present your solutions neatly. Do not turn in rough unreadable worksheets - learn to take
pride in your presentation. Show the relevant steps, so that partial points can be
awarded. | BOX | your final answers where applicable. Draw figures wherever necessary.
Please print out the question sheet(s) and staple to the top of your homework. Write your
name, email address, and date/time the assignment is turned in on the cover.

Grading of the ECE 4300 assignments will be done by a course grader, with support from
the instructors.




About ECE 4300: Lasers and Optoelectronics

Cheating Policy:

Collaboration in homework assignments is allowed, but you must adhere to the requirements
described in the homeworks section above. Collaboration in exams is considered cheating.
Please read Cornell’s policy on cheating here: http://cuinfo.cornell.edu/aic.cfm. Now
there is no escaping the fact that lasers are just plain cool. So let’s not spoil that by cheat-
ing! No matter how familiar we are with lasers, or how deeply we understand them, they
remain an endless source of wonder and amazement - that such a thing actually exists. So
let’s approach the course in that spirit & enjoy discovering the secrets of this beautiful device!

Exams and Grades:
Other than the assignments, there will be two written prelim exams, and a written final
exam. Here is the approximate breakup of scores that will go towards your final grade:

35% Assignments
15% Prelim 1 [Friday September 30th, 2016]
20% Prelim 2 [Monday, October 31st, 2016]
30% Final [TBD]

Demonstrations and Laboratories:
A few demonstrations will be performed in the course. In one of the assignments students
will design and build a laser.
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What is a Laser?

* Source of coherent light

e Coherence in space: real space & wavelength space

e Coherence in time: real time and frequency

e [ aser wavelength can be made tunable

e Both light and matter are extremely far from equilibrium

e Can generate ultrashort time pulses
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Laser Physics in a Nutshell

Quantum Mechanics needed to get started on Lasers:

E = hw = hv ~
o Q Fo
A hv N
1240
= eV
A(nm) S

Bomw O
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“Light-Matter” Interaction

Cloud of gas Lyman

series
Source of

continuous
spectrum

Balmer -~

— ‘II series
(b)
Continuous spectrum with dark lines
n'=%
n=2 N Paschen
series 7
c
o | "~ \
‘ Ji=d Brackett
\ series .
Continuous spectrum Bright line spectrum =5

Pfund series

» Absorption and emission spectra of atoms was the first hint that electron energies are qu
* Lead to the development of quantum mechanics, and finds a wide range of applications c
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Decoherence in spontaneous emission

E(r) \ ~~< \\/ —_—2
/\ v ;

E(r)

FIGURE 7.8. Classical picture of the
effect of (b) elastic collisions on the
emission radiation shown in (a).
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Tool against decoherence: GAIN

Resonator + Gain — Oscillator

i

physics.stackexchange
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How can one amplify photons?

Before After
—_—— — 2 ———————
()

(28]

(a) Spontaneous emission

1

. ——— - — ——

(b) Absorption

(8]

:

(¢) Stimulated emission

FIGURE 7.5. Effect of radiation on an atom.
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Stimulated Emission = Light Amplification

/’YO(V)s l.s

I =1,(z=0) ="\
Input

z=10 Output lz

ta
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x

FIGURE 8.7. An optical amplifier.
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How can one amplify photons?

2 2 3 - 3 T
' \ » A
Lase
Pump \ Lase Lase
1 — Y
/ { 7 1
1 0 /4 1 | 4
(a) (b) (c) (d)

FIGURE 9.1. Possible arrangement of the energy levels of a laser: (a) represents a two
level system, (b) and (c) are three level lasers, and (d) is a four-level laser. All double-headed
arrows represent the pumping route, the dashed single-headed arrows represent relaxation
by any cause, and the solid arrows between 2 and 1 represent stimulated emission by the
laser radiation.

I

(©)

FIGURE 8.3. Evolution of laser oscillation from spontaneous emission: () initial;
(b) intermediate; and (c) final.
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The basic structure of a Laser

()

FIGURE 8.3. Evolution of laser oscillation from spontaneous emission: () initial;
(b) intermediate; and (c) final.
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Laser Physics in a Nutshell

G 1s the small signal power gain per pass
S = the fraction of the power surviving each pass

1 — § = L, the fraction of the power lost per pass

the net round trip gain > 1 G*S* > 1 or G>1/8

/ //jL ‘‘‘‘‘
R /]
. Z

7 */b"“—-
L, 7
R,

FIGURE 0.1. Schematic of a simple laser.

G(l —L)R(1 —L2)G(1 — Ly)R(—-Ly) =1
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Types of Lasers
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Light Emerges from Maxwell’'s Equations

F =¢(E+ v x B).
— ’
V-D = P Gauss’s law Lorentz force
V-B = 0, Gauss’s law
2
VxE = —%—?, Faraday’s law } (V2 — C%W)E =
. oD ’ 2 1 92 _
VxH = J+ %, Ampere’s law. (Ve—352)B =
Meaxuiel o . Wave equations: Predict the
V-J = —0p/0t, Continuity Equation existence of Light!
/\ f )
(/\ +
+
M - : E H N~
- 2mc C >
V-E>0 V-E<O0 VxH=J g\%wo H)\ZW—OH
— Far Field
Fi1cuRE 20.1: Electrostatic Fields.
FIGURE 20.2: Antenna producing an electromagnetic wave.
Electrostatics } Electrodynamics
1 2 1 2 1 2 1 2 42
- ot
A: Magnetic vector potential Classical energy density in an electromagnetic wave
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Light Emerges from Maxwell’'s Equations

V-D = p,
V-B = 0,
VxE = -9B

-5,
— oD
VxH = J—f—ﬁ

» Monochromatic lightwave

k-E = 0,
k-B = 0,
kxE = wB,
kxB = —%

20.4 Maxwell’s equations in (k,w) space

Consider an electromagnetic wave of a fixed frequency w. Since E,B o K=t  we

make two observations. Time derivatives of Faraday and Ampere’s laws give %e‘iwt =
—jwe~ ™ which means we can replace % — —iw, g? — (—iw)?, and so on. Similarly,

ik-r ik-r ik-r

the vector operators div and curl act on the €™ part only, giving V-(e"“7) = ik-(e"™*"7)
and V x (e%T9) = ik x (e®7#). These relations may be verified by straightforward
substitution. Thus, we can replace V — ik. With these observations, Maxwell equations

in free AL

E — plane

S — E_gGZi(kzz—wt)Zc
Y n

B — plane

1
2

S = (S(r,t)) = ~Re[E x H*] =

F1GURE 20.3: Electromagnetic wave.

Poynting Vector
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Review of Maxwell’s equations for Light

oe d _
VXh=j+¢ 5 -+ B_[t) Time-dependent D =¢E+P
oh Maxwell Equations = ¢o(1 + x)E
VXe=—u -(,; = €p€E = eoan
e(r,t) = Re -E(r)e’:“" h(r,t) = Re -H(r)ej“” +00 .
- ] - ] F(w) = f(e ' dt
j(r,t) = Re J(r)ej“”] p(r,t) = Re P(r)ej“”] %
. . . ) d%e
VXH=J+ jowegE + joP =J + joD vaxe:“‘)a(vxmz_“oeogfz
VXE= -'j(z)/,L()H , 1 aze
D = ¢E + P Ve aae =0
The Polarization
P = eoxE Vector c* = 1/uo€o
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Review of Maxwell’s equations for Light

E .
o o o l p"'o 'o ‘o
o o (&) 'o ‘o lo
—
The Polarization
P = eox.E Vector
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Review of Maxwell’s equations for Light

2 : =1
G2, L 2% _ Vosk ko X E = +owuoH
e- 555 =0 V. > ik
c- ot : . ]
Light propagation . ko X H= —weE
1 5%h in free space VX — —jkx
V’h— - — = \
c? 9t?
any function of the form f(t —a, -r/c) is a solution. E

e(r,t) = Re{[E(a), ko)] exp[ja) (t — 3nc' l )]}

e(r, 1) = Re{[E(, ko)] exp (joor) (— jko - )}

w 2m H
kol = = =

c

\j

r
]
olE

1/2
no = ( Ho ) = wave impedance of free space
€0

el |[E . Kk
lh] = [H]eXP(Jwt)eXP(—J 0-T)

E 1/2

ko T = (kedy + kyay + ko) - (ra + yay +2ap) || = s [l (@) = 3779
H| k| e €0

= kex + kyy + k2
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Review of Maxwell’s equations for Light

1 1 E)* k
S=‘EXH*=—EX(kOX ) zlEE*——O
2 2 W 2 WL

Poynting Vector, Power delivered by light

de p; Pa , 0€  0Pqg
VXh=e¢— + — = eon® —
0% T T Ty T
dh
VXe=—u—
ﬂoat
n' ¥ 02 32
v2e — (" 2%~ Pz
(c) 12 at?

Wave equation for light propagation in material media
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Gaussian Beams of Light

: X
E(y)=Eoexp[—(1)] |
Wy AN
EN
+00 “ . 2 : - \ w
— V2 EX(Wd Uncertainty” has a : g - k~g
(Ay)? = /—oo O OBy PRECISE meaning! | __,,‘\
- +o0 | —q 2
| B 7t e
—o0 : // 2wy
(s
|
|
1/2 kywo 2
E(ky) =7 ono exp | — 2 EG) E(k,)
) pe=2
s ’
+00 22 0 y 0 k,
f (ky — 0) E“(ky)dk, @ (b) }
(Aky)? = =2
E*(k,)dk
| B, Ay - Ak, = 1/2.
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Uncertainty Relations for all Waves

Conjugate

Item Physical variable Relation
W Angular frequency t (time) AwAt > 3

ki Propagation along x X AksAx > 3

ky Propagation along y y AkyAy > 3

k, Propagation along z 2 Ak, Az > %

E hw = energy t AEAt > h/4n
Dx Momentum along x X Ap.Ax > h/4n
Py Momentum along y y Ap,Ay > h/4n
p: Momentum along z Z Ap;Az > h/4m
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Gaussian Beam Spreading

—— e  T— e I |
2 kz Tl'w() : \\
\
2)\‘ (' ~>‘\\ J
O = Beam spreading angle i RN .
T Wy ~ wavelength/Diameter | y
J— hE
N L
| —7//1 °"p[‘(%0) J
o
./ 2wy
o/
|
|
E®y) E(k,)
2
Ve Wy Ak = —W_o
e—l e 1
0 y 0 k,
(a) (b)
It is instructive to consider some numbers here. Let A = 694.3 nm and 2w = 0.1 cm;
then 6y is 8.8 x 10™* rad. To achieve the same beam spread at 10-cm wavelength would
require an antenna aperture 2wy of 144 m. Such a small divergence of an optical beam
justifies the simple ray-tracing approach of Chapter 2.
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Wave Propagation in Anisotropic Media

k x h=—-wD
. =0=- . x i .2
k-(kxH)y=0 wk - D 1 cos 0 sin 0
E,D 2 2 2
2 2 Ui ni n;
k® = w”o€p€)
/ zy
2 ittt ’/.
k6 1 1 . k (ordinary)
= = — == . k Ordinary wave
()
. /' 0
kK = k(cosf a, + sinf a,) :
D = D(—-cos6 a, + sinf a;) oy
D / Extraordinary
E, = —[—cos 6] ‘ e ave
60 € > k (extraordinary)
D \
E. = —[sin 6] Y H © FIGURE 1.6.  The index ellipsoid for a
6() € uniaxial crystal.

FIGURE 1.5. Orientation of k, E, and D for a uniaxial crystal. (a) The general problem.
(b) The ordinary wave. (¢) The extraordinary wave.
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Boundary Conditions in Optics

a, X (Ey —E) =0
a, - (D) — Dy) = pe Hg
a, x (Hy — Hy) = Jp
a, - B, -B)=0

(a) T™ or “p” polarized

Transmitted

Incident

: T
6 6, = —
1 + 0> >

¢ = (w/c)ny sin 6,
n, sin 0y = n, sin 6,

(Snell ’S laW) (b) TE or “s” polarized

ni sin 61 = ny sin(mw/2 — 64) = ns cos 6,

n2 . k
tan @) = — (Brewster’s angle) %
n

(c) Dipole radiation

(w/c) ny sin 6,

(w/c) ny sin 6,

n sin 91 = n sin 92
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FIGURE 1.8. Brewster’s angle windows.
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Coherent Electromagnetic Radiation

Longitudinal Phase Coherence

.-
-~ -
-~
-~

Reflector

Generator

J
¥ out

FIGURE 1.10. Measurements of the
VSWR. (NOTE: Most detectors produce an
output [i.e., voltage] proportional to the
power sampled by the antenna.
Consequently, the quantity Viax/ Vimin would
correspond to the power standing-wave

vmin

- . Ag(t)
e Vou & E7 = 4E} sin® | kz +
Detector  V,,, ox Ef 2
Y ' 22 2x3
FIGURE 1.9. Simple interference experiment. At = — = —= 20ns
¢ 3 x 108
d¢ —4 +9 -9 o
Ap = 2| A =107 x 27 x 10*° x 20 x 107 = 0.0047 = 0.72

ET = Egexp (—jkz)

E Eqexp (+jkz)

Vo & ErE} = 4E sin” kz

Z

E* = Eoexp |~ [kz + Ap(]]

FIGURE 1.11. “Jittering” of the minimum

ratio.)
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position owing to the random jumps in phase

—>| |<—AL of the later portion of the wave.
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Coherent Electromagnetic Radiation

Transverse Phase Coherence

A X . "! aé,
\ —
- // \\ [}
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\\ |
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~ T —
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- S ]
—tie—" )
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— L/’ |
\
~

(@) (b)

FIGURE 1.17. Two beams of the same size but with radically different variations of
phase in the transverse direction.

(a) (b)
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Ray Tracing for Coherent Beams: Optical Cavity Design

The “ABCD” Matrix

Debdeep Jena (djena@cornell.edu), Cornell University

FIGURE 2.1. Ray in a homogeneous
dielectric of length 4.
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Ray Tracing for Coherent Beams: Optical Cavity Design

\H

>

vA\_
R

P — —

FIGURE 2.4. Paper experiment with a “thin” lens.
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Ray Tracing for Coherent Beams: Optical Cavity Design

______|.._-_I—>—-

FIGURE 2.5. Combination of a lens plus
‘>< f free space.

3<=2 2 <=1
1 0]y 47 1 d
T = 1 , = 1 | d
B R I f
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Ray Tracing: Optical Cavity Design

fi

/
’

L J L

FIGURE 2.7. (a) Optical cavity showing a ray bouncing back and forth between the
mirrors; (b) lens-waveguide equivalent to the mirror system shown in (a).

d
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Stability Criteria for Laser Optical Cavities

NN

Two plane mirrors

Unstable

+]

+1

p

¥ z<////////// R
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R
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Confocal

=
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AN NN

7
4
4
2

FIGURE 2.9. Stability diagram for the cavity of Fig. 2.7.
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Higher order modes: Hermite-Gaussian Laser Beams

E(X, Y, Z) _ wo i r2 . . s E(x .z 21/2x 21/2v
——Eo = w(0) exp | — ;—2—(2—)} amplitude factor (x,y,2) ~H, H,, 3
- Epp w(z) w(z)
x exp { —j | kz — tan™" (i )] longitudinal phase % wo exp | - x? 4+ y?

i 20 » (@) 2(2)

X exp|—J kr? radial phase ' .
J2R(z) P } xexp{—J [kz—(1+m+p)tan"<zi)j”
L 0
2 2 r
Aoz Z kr?
w ( ) w() [ + (n‘nw(z) wo Zo X exp J 2R(z)

where

2 dme—u

Hn(W) = (1" ——
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Higher order modes: Hermite-Gaussian Laser Beams

Window Hole-coupled
% Lmt ,
FIGURE 34. Simple laser.
E 1/2 1/2 m_u? dme "
* 53 _ g 2/%x H 27y H,(u) = (—1)"e —
E, p "1 w(z2) P w(z) du
W —xz + y?
w(z) w?(z)
( - Hy(u) =1 =1
. (2
xexp<—1[kz—(1+m+p)tan (—):'
L R H(u) =2u) = u
i : 2 2
x exp|—J 2’;’(@] Hz(u) = (2u — 1)2 = 2u° —1
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Higher order modes: Hermite-Gaussian Laser Beams

Window Hole-coupled

FIGURE 34. Simple laser.

m=0,p=0
L~ TEMo,o
m=1,p=0 y
EZ
E
TEMy, o
y The answer is that @/l Hermite-Gaussian beams have exactly the same divergence (or
’ ) far-field angle), given by
=z \ 1R ;T X 9 - (3-7.1)
H / RN N Tnwy
TEM2,0

where wy is the minimum spot size for the TEMy o mode.
FIGURE 3.5. The field E, intensity E2, and “dot” pattern of various modes.
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Mode Volume

d +00 400
E;V =f f f E(x,y, 2)E*(x, y, 2) dx dy dz
0 ) —00

d 2 +00 +00 1/2
w 2
E2V,, , = E2 f o / f g2 [ 22 ) o
0 wz(Z) —00 J-00 w

21/2
x H? ( y)e_zyz/““2 dy dx dz

4 w

This equation can be rearranged and put in a more conventional form by the substitution

21/2x 21/2y
u = or
w w
d w2 +00 ) +00 )
Vimp = f 2 dy H2u)e™ du H(uye™ du (5.4.3)
o 2 -00 -0

Now

+00 )
f e ™ H?(u)du = 2"m!x'/?

o0

Hence, the mode volume is given by

ud w(% m+p
Vm,p = Td(m!p!2 ) (Note : 0! = 1) (5.4.4)
The first factor in (5.4.4) has the satisfying interpretation: ~ area(rrwg /2) x length(d),
whereas the last is the modification of this basic volume for the higher-order modes.
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Mode Volume: Example

If we take the example considered previously and restrict our attention to the TEMg
mode, the mode volume is quite small:

= 0.94 mm Ry, =20m . . . . . o
wo 2 With this number we can quickly estimate the number of atoms that can possibly interact

d=1m Ry = with the mode and thus contribute to the laser output power. For instance, suppose that we
Theref had a pressure of 0.1 torr for neon for this example, with each atom being excited (on the
eretore average) of 10 times per second (by the gas discharge) and thus producing a photon at 632.8
Voo = 1.38 cm? nm. What is the maximum power that we could expect from this laser?
h
Energy per photon = hv = — = 3.14 x 1079 J = 1.96 eV
0
X
Number of neon atoms = 0.1(3.54 x 10'%)V,, = 4.88 x 103
X

Average excitation per atom
I = 10 sec”!
Average emission per atom

I
Power =153 mW

This is typical for a laser. There are only a couple ways to increase this power. We could
increase the length d to make the mode volume large. But there is a practical limit: A 10-m-
long laser would be most unwieldy. If we could excite the atoms at a faster rate, the power
would be higher. But as we will see later, the 10(second)™! rate is already optimistic. Thus
we are left with changing the mode volume.

We could go to the higher-order modes, and for some applications this is a viable
method of extracting more power. But as was pointed out in Sec. 3.6, we are still limited
by the divergence of the fundamental mode. Unstable resonators have a much larger mode
volume and can be used with high gain lasers. These are covered in Chapter 12.
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Resonant Cavity with Gain

T©) Lans (1~ R)(1 — Ry)
Iinc (1 — VR1R2)2 -+ 4\/ R1R2 Sil‘l29
=
! r_ Go(l1 — Ry) - (1 — Ry)
) (1 — Goo/R1Ry)? + 4GoA/R R, sin” @
| [ — GovRiR
| FWHM = 2A6; = — >
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Blackbody Radiation

Amax = 0.58 ym

(b)

| p 8hv’ dv I
o WAV = e
A

Relative
photoptic
vision

S|
e, N
; /<.7X pm
I / 4000 K
-
: \
b
[ T - — A and,
0.5 1 1.5 2

Wavelength in ym
FIGURE 7.2. (a) The cavity used to measure the blackbody spectrum; (b) 7 (X)d). from

experiment. (NOTE: A, 7 = 2.898 x 107 A-°K.) The bell-shaped curve in (b) illustrates
the response of the cye.
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Blackbody Radiation

v) dv

l—o-——— a —*——I FIGURE 7.3. The mode diagram for cubic cavity.
1 dN 8wn’n 8 n3
vdy = — —dv = g v2dy = v2dy
pv) V dv c3 c3
Mode Density

_ N dn N dn

N, = n V— = n — A—

d dv di

Debdeep Jena (djena@cornell.edu), Cornell University 53



Blackbody Radiation: Planck’s Derivation

l--———‘ a —T—I FIGURE 7.3. The mode diagram for cubic cavity.

€, = nhv (the quantum hypothesis) §

The Blackbody M [ 8mn’ngv? " 1 8rn’ngv?  hv
Spectrum pv) = o3 - (hy) -

Debdeep Jena (djena@cornell.edu), Cornell University 54



Blackbody Radiation: Einstein’s Derivation

Before After

()

(a) Spontaneous emission

I
------- 2 : 2 —
I
!
|
1 I ] mmmmna=
(
(b) Absorption
I
——— 2 ’ 2 -------
I
W-. |
|
|
------- 1 | ]
!

(¢) Stimulated emission

FIGURE 7.5. Effect of radiation on an atom.

A very important point to remember from Fig. 7.5 is that stimulated emission adds
photon

1. At the same frequency of the stimulating wave

2. In the same polarization of the stimulating wave

3. In the same direction of travel of the stimulating wave
4. In the same phase of the stimulating wave
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Blackbody Radiation: Einstein’s Derivation

(a) ()
(b) hv
' FIGURE 7.4. Radiative processes in a
two-level system.

dN; dN dN
— = — AN, — = +BNip(v) = — —

dt spontaneous dt dt

emission absorption absorption

d N> dN
—-2 = — By Nyp(v) = — ——

dt stimulated dt stimulated

€missiof emission
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Blackbody Radiation: Einstein’s Derivation

dt spontaneous
(a) © emission
® i dN
_Ez_ =|+BpNip(v)
v absorption
dN;
— = —ByN2p(v)
dt stimulated
€missiofn
v
dN, dN,
o = —A) Ny + B;aNip(v) — By Nap(v)|= — I (7.3.4)
radiative radiative

At equilibrium, the time rate of change must be zero.
N> . Blzp(v)
N Az + Baip(v)

Einstein invoked classic Boltzmann statistics to provide another equation for the ratio
of the two populations in states 2 and 1 and set that value equal to (7.3.5):

(7.3.5)

EZ_ _ 52_6_;,1,/1(7 . Bpap(v)

(7.3.6)

N, 21 Az + Bayp(v)
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Blackbody Radiation: Einstein’s Derivation

Ay I
By Bugi nyir |

B> &2
2 4 =1 or 828 = g1Bp

(@) c
©/ 1 !
! Ay 87rn2nghv3
le - ¢
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Line Shape

%)

(@) (b) (c)

FIGURE 7.6. The evolution of the energy level diagram in (a) emitting a zero width line
to broadened levels in (b) yielding the spectral line shape shown in (¢).

Optical transitions of an atom are “dressed” by the electromagnetic surrounding.
This dressing changes the optical transition of the atom and gives it a Line Shape.
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Line Shape

dN;

7 = —A21N2 + BioNip(v) — Ba1Nap(v)

radiative

(@) (b) (©

FIGURE 7.6. The evolution of the energy level diagram in (a) emitting a zero width line
to broadened levels in (b) yielding the spectral line shape shown in (c).

dN, > ’ ’ > ’ / ’
DTS = —AyNo[| g()dv = 1]+ B;pN, p(V)g(v)dv
4 radiative 0 0
o0
- 321N2/ p(V)g(V') dv'
0
p(V) =~ p,d(v' — v) (i.e., only one frequency) (ffnu;se) - Idwm;féfiﬁiﬁ: :mxrl —
dN, 1,
E— = _A2]N2 - BZIszUg(v) + Bl2Nlpvg(V) v = group velocity = ¢/n, (clementary EM theory)
radiative
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Line Shape: Effect on Radiative Transition Rate

/ / g(v’)dv’: 1
0

p(W) =~ p,d(V — v) (i.e., only one frequency)
0 dNZ
@ ® @ . = —A3 Ny — By Napyg(v) + Bl2Nlpvg(v)
dt radiative

FIGURE 7.6. The evolution of the energy level diagram in (a) emitting a zero width line

to broadened levels in (b) yielding the spectral line shape shown in (c). /

dN, o(w)I 2
- = —Ay N> — W)L NZ"g"Nl
dt - hv 81
radiative
2
stimulated emission cross section = o (v) = Ay g(v)
8 n?
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Amplification by an Atomic System

Polarizer

L ks < /f“x~ss~’

A
Bandpass filter v + —2\-,

FIGURE 7.7. Measurement of the gain of an atomic system.
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Amplification by an Atomic System

Thus the output consists of the input intensity plus that added by the following processes:

1. Stimulated emission: the amount of radiation stimulated by the incoming wave. Since
this is stimulated emission, the frequency, phase, and direction of the added signal
are the same as the incoming wave (this is indicated by process 1 on the energy-level
diagram)

minus:

dN, — _ AN o)1, 82
2. Absorption: the amount of radiation absorbed by the atoms in state 1 dr = —AulN2 = — N> — — N,
plus:

radiative

3. Spontaneous emission: the amount of radiation emitted spontaneously by the atoms in
state 2 in the direction of the input wave and in the same frequency within bandwidth
Av of our detector (this is indicated by the wavy line going from state 2 to state 1).

1

Al, +hy X

Il

2
1,

! (C/ng)

B Ly
12 (/ny)

AQIAV

—hv

+hy X

Further manipulation yields

Al, dl,

3

g(v)

g(v)

gw)

hy

_)
Az dz

|

(c/ny)

X

X

X

4
1

—

N | -

5

X 1

X 1

a2
x —
4

1 d<2
+ = [thZ,Ngg(v)Av ——]
2 4n

X NQAZ

X

X

(BN, — Blle)g(V):l I,

NlAZ

N2AZ
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Amplification by an Atomic System

81

g(v)} N, — &M} Iv] Syl

s [dl,/dz] = net power emitted per unit of volume

N, > 8N,
81

for gain

I, = power per unit of area traversing that volume

1
L,

.,,v{

oW,
~ hv

(stim—abs)

o (V) [Nz - &Nl]
81
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Broadening of Spectral Lines

All transitions have a finite width if, for no other reason, to ensure compliance with
the uncertainty principle. There are two generic classifications of processes that contribute
to the width of a spectral line. They are

1. Homogeneous broadening: a mechanism that applies to all atoms.
2, Inhomogeneous broadening: one that is caused by some identifiable difference
between groups of atoms.

_ (AEz))
27 [(E — E21)? + (AEy1/2)?]
for band 1: E=x+E and a=AE/2
_—2 for band 2: E=x+E +hv and b= AE/2
and define 8§ =hv —(E, — E))
Then
T [ AE, AE, 1
o= [ 5 mral | 5 e ) @
——— ]
W) Av
gV) =
0 27 [(vo — v)? + (Av/2)?]
Va
(a) (b) (©) 1 1 1
FIGURE 7.6. The evolution of the energy level diagram in (a) emitting a zero width line A p = —— — + —
to broadened levels in (b) yielding the spectral line shape shown in (c). 271, .L.l
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Homogeneous Broadening of Spectral Lines

_ (AE,))
P, (E) = -
Y 27 [(E — E21)? + (AEy,1/2)]
(AE ) - (t12) = 1
W) Av
-_— gv) =
‘ 27 [(v — V)2 + (Av/2)?]
A 1 { 1 N 1
0 v _— —— — —
@ ® I 2 | &2 Ty
FIGURE 7.6. The evolution of the energy level diagram in (a) emitting a zero width line
to broadened levels in (b) yielding the spectral line shape shown in (c).
dN, s Ny
= = Azj | Ny —kaNy = = =
a7 l:; 2,:| 2 2V o
1
=Y A,
Trad ; g
rate of decay from states 2 to 1 A 1
_ y _ 21 Av, = — {A2+A1}
sum of all decay rates from state 2~ D~ Ay; + k2 2
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Homogeneous Broadening of Spectral Lines

(@)

Veol

FIGURE 7.6. The evolution of the energy level diagram in (a) emitting a zero width line
to broadened levels in (b) yielding the spectral line shape shown in (c).

1
= o [(A2 + k2) + (A} + k1) + 20l

1/2

E(t)

E(1)

Collision broadening (also known as pressure broadening in
a gas). Probably the most important homogeneous broadening mechanism is that
described by the following reaction equation:

[N21] + [M] — [Noi] + [M] (7.6.10)

Yes, it does appear that nothing is happening since the left-hand side is the same as the
right, and, no, it is not a misprint! Equation (7.6.10) describes an “elastic” collision of
the atomic states (2,1) with something whose density or concentration is [M] . During the
“collision,” the energy levels E, | can be considered as functions of time with some of the
potential energy being converted to a kinetic variety due to the attractive or repulsive forces
between the states and {M]. But since it is an elastic collision, the atom emerges with a
final energy equal to initial value. Now the time scale for this collision is extremely short,
roughly (diameter of the atoms) ~ 1.0A= [thermal velocity of the atoms ~ 3 x 10* cm/sec)
~ 3 x 10713 sec—which is much shorter than the radiative lifetime. This will be discussed

1
e in greater detail in Chapter 14. But for now, a simple picture is that such collisions interrupt

W
[ Wiwnme—
vgvuv_"

Elastic collisions

FIGURE 7.8. Classical picture of the
effect of (b) elastic collisions on the
emission radiation shown in (a).
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Homogeneous Broadening of Spectral Lines

va
(a) (b) ©

FIGURE 7.6. The evolution of the energy level diagram in (a) emitting a zero width line
to broadened levels in (b) yielding the spectral line shape shown in (c).

1
Ay = 2—71 [(Az + ko) + (A + k) + 21)001]

12
N 8kT 1 n 1
col = VO
Veol T M, M,

Absorption coefficient (cm™) at 273 K

10 I T I

AVpogpler = D Veotision at 5.2 torr
where v, =5.33 x 10" s

107

Combined Dopper and
collision contour for
00=15.7 x 107" cm?
7,=47s

10*

107

| ] |

0.1 1.0 10 100
Gas pressure (torr)

1000

FIGURE 7.9. Absorption coefficient in CO, at 10.6 um as a function of CO, pressure.

(After E. T. Gerry and D. A. Leonard, Appl. Phys. Lett. 8, 227, 1966.)
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Homogeneous Broadening of Spectral Lines

In all the cases studied, the line shape g(v) has the same functional form: the

’ 3= Lorentzian.
) i (7.6.6)
V) = 0.
& 27 [(vo — )2 + (Ava/2)?]
where
1
1 Avy, = - [(A2 + k2) + (A} + kD) + 20l (7.6.11)

In most practical cases, the last term of (7.6.11) dominates, and the width of the
homogeneously broadened line becomes

(@) (b) © A 1
Ve,
FIGURE 7.6. The evolution of the energy level diagram in (a) emitting a zero width line A Vi ~ col
to broadened levels in (b) yielding the spectral line shape shown in (c). 1 —
b4 nT,

(7.6.12)

where T; is the mean time between phase interrupting collisions. If we can distinguish
between different groups of atoms under special circumstances, a different functional form

of the line shape results.

2 [(A2 + k2) + (A} + k1) + 2vcol]

1/2

8kT ( |
Vool = Npo
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Inhomogeneous Broadening of Spectral Lines

o 7.6.2 Inhomogeneous Broadening

’ Uz
vy = W |+?

Thus the homogeneous line width radiated by that particular group identified by their
velocity is

Al);,

g(vz, v) = (7.6.13)
- 0 2 [(v — vy — W, /c)? + (Avh/z)z]
FIGURE 7.6. The evolution of the energy level diagram in (a) emitting a zero width line
to broadened levels in (b) yielding the spectral line shape shown in (c).
T T T T T T T T T T LN B T T T
- I ' -
_ | l <
L | | -
- Composite : | .
41n2 1/2 1 v — 1 2 lineshape =< | —
gw) = — —— exp|{—4In2 i | Ne? .
T Avp Avp L : i
- | 1 .
1/2 i ! ]
8kT In2\" : Ly —— ‘
(vy —v-) = Avp = 5 Vo [ } g i
MC I~ / | ] 9
- | | B
: / el | ]
\ N |
! ) i i
i ! | ]
I |

- ~aat il : PP i

1120) 122)
FIGURE7.10. Inhomogeneous broadening in neon owing to the isotope effect. Eachcom-

ponent line is symmetrically broadened owing to the Doppler effect and other homogeneous
causes, but the composite line shape is slightly asymmetrical.
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Broadening of Spectral Lines

Local

I |
|

7 electric 31
o i field 200
132

0

FIGURE 7.11.  The Stark splitting of the */;; level of neodymium in YAG (After Kamin-
ski [17]). The numerical values refer to the energies of the levels in cm '. More detail will
be discussed in Chapter 10.

Ava~2cm™

7.6.3 General Comments on the Line Shape

The reader should be cautioned against assuming a direct relationship between the amount
of mathematics expended here on a broadening mechanism and its relative importance.
Although Doppler and pressure-broadening mechanisms are important, they do not over-
whelm all other types (indeed, they do not even apply in a solid). In fact, only the central
portion of some transitions in a gas is adequately described by the theory presented here.

However, the idea of a line shape is most important, quite general, and independent
of the maze of mathematics surrounding its development. The line-shape function, g (v) dv,
is the relative probability that

1. A photon emitted by a spontaneous transition will appear between v and v + dv.
2. Radiation in the frequency interval v to v + dv can be absorbed by atoms in state 1.

3. Radiationin this interval will stimulate atoms in state 2 to give up their internal energy.

Obviously, the first applies to spontaneous emission, the second to absorption, and
the third to stimulated emission. However, the same line-shape function applies to all three
Processes.

Many of the real-life line-shape functions are asymmetric and mathematically in-
tractable. However, the atoms have no knowledge of and no trouble with our arithmetic.
In response, we must be prepared to tolerate and use a real-life line-shape function about
which we have imperfect information.
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Laser Oscillation and Amplification
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Laser Oscillation and Amplification
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Stimulated emission can always be neglected for threshold calculations.

Stimulated emission can never be neglected in the dynamics of the laser.

(©)

FIGURE 8.3. Evolution of laser oscillation from spontaneous emission: (a) initial;
(b) intermediate; and (c) final.
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Stimulated vs Spontaneous Emission
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FIGURE 8.6. Variation of the spontaneous emission from the side of a semiconductor z=0 z=l, Output I,
diode as the pumping current is increased. Once the diode starts lasing, stimulated emission
uses the carriers as fast as they are injected into the junction. Hence the inversion is clamped FIGURE 8.7. An optical amplifier.
at threshold. (Data from T, Paoli. IEEE J. Quant. Electr. QE-9, 267, 1973.)
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Amplified Spontaneous Emission
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FIGURE 8.17. Optical amplifier generating broad-band incoherent radiation.
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Amplified Spontaneous Emission
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FIGURE 8.17. Optical amplifier generating broad-band incoherent radiation.

Case A: An Optically “Thin” Amplifier or Attenuator. If Gy(v) is very close to'1, the
amplifier (or attenuator) is said to be optically thin, and thus yo(v)!, is small. Therefore the 12
Taylor series expansion of exp(yl,) — 1 yields y(v)l,, and we obtain a most logical result:

1749
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70(V0)1p =25

This states that the power from N/, atoms radiating into d€2 /4 as g(v) add their radiation, e

a result that would be guessed from the start. In other words, each element dz along z 8 -
contributes an equal amount to the power.

6
Case B: A Thermal Population. If the atomic populations are such that N, <
(g2/81)N,, the amplifier is an attenuator and Gy < 1. Furthermore, if N;/N; can be
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Laser “Wall-Plug” Efficiency

N = Nge * Ncpl * Npump (9.1.1)

Nge: - Quantum efficiency. This depends solely on the position of the energy levels of
the laser and cannot be “designed.” It is the upper limit for the performance of any
laser.

nept: : Coupling efficiency. This is an electromagnetic or cavity problem affected by the
stimulated emission issue. Optical components are not perfect, and thus we must
choose the arrangement of cavity components to maximize the stimulated emission
and the output (in a desired direction) while minimizing the useless conversion of
photons into heat.

Npump: - Pumping efficiency. This is the fraction of the total pump power that is useful in
creating the population inversion and thus contributes to the output. It is the most
complicated of all topics but is the most essential part of any laser.
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Quantum Efficiency
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1 Lase
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1 - Y
/ 7 1
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FIGURE 9.1. Possible arrangement of the energy levels of a laser: (a) represents a two
level system, (b) and (c) are three level lasers, and (d) is a four-level laser. All double-headed
arrows represent the pumping route, the dashed single-headed arrows represent relaxation
by any cause, and the solid arrows between 2 and 1 represent stimulated emission by the
laser radiation.
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Pumping Efficiency
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Intensity Profile in a Continuous-Wave (CW) Laser
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- d, " ,4— d, —4
(b)

FIGURE9.2. Unidirectional traveling wave laser. (a) The geometry. (b) A self-consistent
variation of the intensity inside the laser cavity.

Debdeep Jena (djena@cornell.edu), Cornell University

84




Q-Switching in Lasers
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Mode Locked Lasers
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Mode Locked Lasers
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Mode Locked Lasers
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FIGURE9.16. Phasor addition of the fields of a mode-locked laser. The mode amplitudes

were chosen according to a proportional relation: 1 : 0.5 : 0.25 : 0.125.
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Active Mode Locking
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Mode Locked Lasers
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FIGURE 9.18. Mode locking of a laser. (a) Geometry showing the external modulator
and the fields inside the laser cavity. (b) The transmission coefficient of the modulator.
(c) The intensities arriving at the modulator.
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Saturable Amplifier and Saturable Absorber
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Saturable Amplifier and Saturable Absorber
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Mode-Locked Laser

The pulse after it has
propagated through the
saturable gain medium.

The pulse after it has
propagated through
the saturable absorber.

0
|

T

Local time ——e=

FIGURE 9.23. The transmission of a pulse through a saturable absorber or amplifying
medium. The larger pulse should be considered as the input to the absorber whose output
is the smaller pulse which, in tumn, is the input to the amplifier.
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Coalliding Pulse Mode-Locked (CPM) Laser

Absorber

vl

Absorber
(a) (b)
FIGURE 9.21. (a) A typical geometry of a CPM laser. (b) The circular schematic of the

optical path showing the timing of the collision of the two circulating pulses in the absorber.
(Adaptation of Fig. 1 of [21] and Fig. 3 of [22].
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Coalliding Pulse Mode-Locked (CPM) Laser

ﬂ CCW pulse CW pulse ﬁ
(a)
) ' k time ———————f— J ' k
E ______ - 10 8o E
& ¥ —E' ] N ':
T E gain recovery :
(b) E g E
- Trrl2 —
FIGURE 9.22. The interaction of the counter-propagating pulses with the gain medium.
While the gain recovers between interrogations, it does not recover to the small signal value.
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Additive-Pulse Mode-Locked Laser

Ao =nalg
( _ A7) —> | +——B(7)
gain
Phase
offset
ll"jt] - IB —  |e—
Cavity A Cavity B

FIGURE9.25. The geometry used by Wang [34] for the analysis of passive additive-pulse
mode locking. The element common to both cavities is characterized by a field reflection
coefficient I' and a field transmission coefficient jr such that |I'|? + |¢]* = 1.
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Broadband Optical Gain
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Tunable Lasers I: Dye Lasers

Dye Structure Solvent Wavelength
— LD 700
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Na-fluorescein 7 COON T{‘Zg{ 5332‘;‘;;‘"'" Wavelength (nm)
a J
O FIGURE 10.18. Performance of various dyes when pumped with an argon-ion or Krypton-ion laser
(Data from Spectra-Physics and advertised in Exuton, Inc. catalog, p.4 [61].)
HO O 0 o
2,7-Dichloro- - . Green 4 T T T T T
. (¢] F ~
fluorescein C()()Ig ! FoH 530-560 nm ES‘; r(l/;:c:( s:;)l': c(::i";z:lion
O , 3 b / coefficient N
7-Hydroxy- 040 OH H.0 Blue ' S’
coumarin T;;@V (pH~9) 450-470 nm |
S ' 7, = E(\) x 107 (cm™)
040 OH ' g 2 F Fluorescence emission -
4-Methylem- H,O Blue ' ‘g
belliferone S (pH~9) 450-470 nm Singlet : =2
! =
CH, absorption : R .
OO Y OH : .
S, — T,conversion
Ecculin 0N H0 Blue AR ' "
s (pH ~ 9) 450-470 nm Singlet —_ . et 0 \ )
HOHH H N VG I e T
| 1 > e 50 500 550 600 650
HC—('.’-(:‘—(,:—C—CHon emission ' ! 4
1
I OH }(i) OH ' ! L=’ Wavelength (nm)
-
- -1 “
FIGURE 10.17.  Molecular structure, laser wavelength, and solvent. for some laser dyes. FPa '
(Data from Snavely [8].) ., [P |
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Tunable Lasers II: Tunable Solid-State (Ti:Sapphire)

Energy
- Ep
. C
b\'
Evy 3000 cm’! 160 cm™’
14,380 cm™'
2K p
— 16,216.1 cm™'
Ep
220cm’’
Eyp G ——t—

FIGURE 10.22. (a) The octahedral site for the titanium ion (solid) surrounded by the
six oxygen atoms in sapphire. (b) Term splitting by the crystalline fields. (¢) Simplified
schematic of the potential energy curves for the 2T, and the >E, states of Ti** in sapphire.
(Same as Fig. 1 of Byvik and Buoncristiani [79]. Numerical values for (c) from Fig. 3 of
Gichter and Koningstein [85].)

Etalon (tilt)

Tuning
mirror M,

Prisms

Ry

Grating G

Pivot point

(b) Littman Configuration

FIGURE 10.27. Various methods of wning a laser.
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FIGURE 10.23. The polarized absorption cross section for the *T,, — 2E transition in
Ti:Al,O5 (Data from Fig. 1 of Moulton [73].)
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FIGURE 10.24. The polarized fluorescence spectra and relative gain cross section for
Ti:Al, O3 (Data from Fig. 2 of Eggleston et al., [66].)
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Nd: YAG Laser for Q-Switching

10.25. The YAG laser shown below is pumped to three times threshold before the electro-

Shutter
Area A % * P“;"p * optic shutter is opened for Q switching. Assume (1) the characteristics of the YAG
@ ' Laser medium I rod are those specified in Tables 10.2 and 10.3 but ignore the scattering loss, (2) the
/ $on transmission at all air-device interfaces is 0.99, (3) the index of refraction of the
| ! - 2 — | 12819 electro-optic switch is 2.3, (4) lasing at 1.0615 pm (where there is no significant
— 3 . .. . .
I _I :%25'7 overlap with any other transition), (5) the populations in the 4F3 /2 states are always
R) | d - R, R s distributed according to the Boltzmann relation with kT = 208 cm™', even within
:;_—_— ;535} the Q-switched pulse.
L "2 11507 (11512)
T 2 N 11423 (11417),
S o R, =095 R, =08;T,=02
Loss R,R,e %4 T .,,” 17 -—5cm—»> <+—— |[0cm———» 2]
- n y
- Pumping cycle ! 4 Fi N
" 106415 ym ( E { . YAG
n X
41 ] 1 10% A=065cm? 0em 2
. Optical power il 10% 1.0644 um : ‘
§ 3} 40%
2 r = £ 4500 (a) Evaluatethe following parameters to be used in the calculation: photon lifetime
2| (Population ° JL 0% - 4055 of passive cavity in ns, A, coefficient for the transition in sec™’, stimulated
inversion) < [ — emission cross section in cm?, initial density of atoms in “F3,; manifold in
g i 3, and final density of atoms in 7 ifold in cm™3
14t N, g + - cm -, and fina enslty of atoms In 32 maniiold incm .
= (b) Compute the peak power in watts, the energy in joules, and determine the
0 . il Y50 pulse width using the theory of Sec. 9.4.
(High loss) =0 Low loss ’ e 2514 g(z);: (¢) The theory of Sec. ?.4 is not quite apphcaple to this problem since the lifetime
. o hond 44 L 2148147 of the lower state is only 30 ns and the time scale for the establishment of a
ny 1 v === 210013 Boltzmann factor among the levels of the 4/}, 2 manifold is even shorter. Redo
) ) ] 2002 00 the calculations of (a) assuming that N; = 0, which is a bit different from the
FIGURE 9.11. Guess at the sequence of events during a Q switch. r analysis of Sec. 9.4.
10 4}, Yoo, ) 2 808.7 nm
L 1
n n—ny . +— 830
L I - 0oL T \
T‘ . - 1.0 0.0 .
=5 1.1 0.176 g 31
" - 125 0.371 I 200
< 15 0.583 ~+— 132
g - 175 0713 o =gl
5 - @ (b) 300K ©7K
2 20 0.797
o - 25 0.893 FIGURE 10.5. Energy level for neodymium in YAG. (a) Structure of YAG showing the
é 3.0 0.941 pumping routes with the percentages referring to a pump with a broad spectral output. (b
g - 3s 0.966 Details of the manifold at 300 K showing the dominant transitions, the semiconductor laser
& : 0'980 pumping route i also shown. (c) Energy levels at 77 K. [Data from Kaminski [25). See also
4.0 . Koechner [24].]
r 45 0.988
5.0 0.993
o I 1 L n; n; — nf
1.0 20 30 40 50 _— = eXp ( )
Inversion ratio, & n nt h
Ny

FIGURE 9.13. The energy Vexlraclion efficiency for a Q switched pulse.
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Gas Discharge Lasers: CO2 Laser
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FIGURE 10.31. Energy-level diagram of the CO,-N,-He laser.
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Gas Discharge Lasers: CO2 Laser

1. The electrical power is transferred to the electrons (as is the case in all discharges)
by the electric field.

2. The electrons transfer this power by collisions to the neutral gas atoms. This power
is apportioned to the gas in three different categories:

a. Gas heating: This is caused by the “elastic” collisions of the very light electrons
with the more massive neutral atoms. Although these collisions are mostly
elastic, there are many such collisions, and some energy is expended in raising
the kinetic temperature of the gas.

b. Vibration excitation: This is an inelastic collision process represented by the
following chemical equations:

1. For the upper state:

e+ Ny(v=0) — Nao(v=n <8) + (¢ — KE) (10.7.12)

followed by
Nz (v = n) 4+ CO2(000)
(10.7.13)
—> Nao(v =n — 1) + CO,(001)
or
e + CO,(000) —> CO,(001) + (¢ — KE) (10.7.14)

2. For the lower state:
e + CO,(000) — CO,(010)
or CO,(020) (10.7.15)
or CO,(100) + (e — KE)
¢. Electronic excitation and ionization: Although ionization is essential to main-

tain an active discharge, the fraction of the electrical power used to do so is
usually insignificant in discharges in molecular gases.

3. Theory and experiment show that 60% of the electrical power can be funneled into
pumping the upper laser level (see Chapter 17).
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Excimer Lasers

TABLE 10.9 Data on Rare Gas-Halide Laser Systems

VV//////I///%/M/%/////MM{/// Excimer r(A) @, (cm™) o (107 cm?) 7 (ns) A (nm)

15.755 eV Ar*+F+e
XeBr 3.1 120 2.2 12-17.5 282
XeCl 29 194 4.5 11 308
12.305 eV (Ar*+F) J XeF 24 309 53 12-18.8 351
—— KrCl1 2.8 210 — - 222
KrF 23 310 25 6.7-9 249
ArCl 2.7 (280) — — 175
ArF 2.2 (430) 29 4.2 193
N
S r., minimum of the lowest ionically bound excimer state; w,, vibration constant repre-
(Ar*+ F) sentative; o, stimulated emission cross section; z, radiative lifetime; A, dominant laser
wavelength. These lasers hold a commanding lead as far as efficiency in the production
of UV and near-UV power. Values in parentheses are estimates. Data from Brau [31].
| TABLE 10.8 Rare Gas-Halide Wavelengths (nm)
|
: Ar+F Rare Gas
i n—— Lo =f L ! 1 L | L L L Halogen EA Neon Argon Krypton Xenon
¥ evin 5 10A
r — » IP (eV) 21.56 15.755 13.996 12.127
M (eV) 16.6 11.55 9.92 8.31
FIGURE 10.33. Energy-level diagram associated with the formation of the (Ar*F) nm nm nm nm
B Fluorine  (3.45) 108 193 249 351
Chlorine (3.61) — 175 222 308
Bromine (3.36) 161 206 282
Iodine (3.06) 185 253

* F +1—\ %
Ar —s (Ar*F)* +F
+ 2 + IP, ionization potential; M, metastable level; EA, electron affinity. Wavelengths in boldface
type refer to the peak of the laser; those in lightface type refer to the fluorescence assignable
to an excimer (see text) and have not yet lased.

Data from Brau [31].
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Free Electron Lasers

O+

w(joules/volume) = / Eopt * [15 = Npeam (—€) Vbeam ] d?
s SR
I
-
/

o

7/45/\////\/
7 o

FIGURE 10.35. The radiation by an accelerated electron. (a) The pattern when the
electron velocity v, < ¢, (b) v, ~ ¢, and (c) the electron trajectory in a wiggler.
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Free Electron Lasers

)
g
Y

Optical electric field }
______________________ C— b - ol - ————— - ——— - ——

FIGURE 10.36. The accumulated interaction of the wiggled beam and the optical field.
(Adaptation of Fig. 13.1 of Yario [17b].)

dp _ dlymov]
dt  dt

w(joules/volume) = / Eopt - (1 = Nbeam (—€)Vieam ] d1 = (—€)[Eopt + v x B]

Ag = Aoy _ AP
c — v, 1 -8,
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Semiconductor Diode Lasers
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Semiconductor Optical Gain and Population Inversion
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Direct and Indirect Bandgap Semiconductors
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Semiconductor Optical Gain and Population Inversion
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Electron wave modes and Density of States

fc(e) =

Ju(€) =

expl(e — F,)/kT] + 1

I
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FIGURE 11.4. Density of states in a semiconductor with m;, = 4 - m} and m;, = m].
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Optical Absorption Coefficient of a Semiconductor
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Semiconductor Optical Gain and Population Inversion
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Spontaneous Emission Spectrum

Absorption coefficient

Relative intensity

T=297K
10° po=12x 10¥cm™

10°

Experiment «

10
a(cm™)

1 | |
1.35 1.40 1.45 1.50 1.55

10'

Energy E (eV)
(a)

| | |
T=297K
08Fpo=12x 10%cm™ |

135 1.40 [.45 1.50 .55

Energy E (eV)
(b)

Spontaneous Emission Rate and Spectrum

R(v) = Aulfa(l = fD)1pjnc(v)

FIGURE 11.9. (a) Measured absorption
coefficient in GaAs doped with an acceptor
concentration of 1.2 x 10'® cm’. (b)
Spontaneous emission profile calculated
from the absorption. (Data from Casey and
Stern [19].)
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Carrier Injection to Modulate Quasi Fermi Levels

_ L [ampr 4 EC—F,,) /00 x'72 dx
"o | TR P kT o e+ 1/b

- 3/2 ,

1 2mpkT F, — E, * x12dx
p= |exp— | T—— —_—
27?2 #? kT 0o e+ 1/a

a = exp {[Fp — Ev]/kT} b = exp {[EC — F,,]/kT}

TABLE 11.2 Carrier Densities in an Intrinsic Semiconductor as a
Function of the Position of the Quasi-Fermi Levels

(E. — F))/kT n P

(a, b) (F, — E,)/kT A (cm™?) (cm™) Comment

10° 6.91 1.000 4.36' 1.02'6

102 4.61 0.996 4.34" 1.02"7

50 391 0.993 8.66" 2.04"7

20 3.00 0.983 2.14'¢ 5.04"7

10 2.30 0.967 4.2216 9.92"7

7.75 2.05 0957  5.40'¢ 1.27'% Fermi
5 1.61 0.936 8.16'° 1.92'% levels
2 0.69 0.860 1.87"7 441" in gap 1t
1 0.00 0.765 3.34"7 7.84'8 -
0.5 —0.69 0.641 5.59"7 1.31" Fermi |
0.2 —-1.61 0.457  9.96"7 2.34" levels
0.129 -2.05 0.373 1.27'8 2.99" within
0.1 —2.30 0.329 1.43'8 3379 bands
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Homojunction Diode Laser

Rate equation for electrons and holes

dn
=—B-n-p+G

dt

Rate of change of electrons Recombination rate  Generation rate

E 7 \
L 22— Estimation of required threshold injection current density
G=B-n-p=2x101.127 x 10"®.1.27 x 10"

!
Pl

303 x (O £ pairs

cm? — sec
Ep,
E, y @ ’l_ |_dn
fesigon | 1 J:ed-u— = 1.6 x 10777 .1 x 107*.3.23 x 10%
E, L oy = I {recomb
P iz //‘///% A

= 5.17 kA/cm”

‘s T —Ty
77 exp—[AE/kT] S = Joexp| ——
@ T-dependence T-dependence
oui e kg it g [ e o Mg e ol of carrier density of Laser threshold
and with injected current; (d) illustrates the electromagnetic mode experiencing gain and Current density

loss.
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Heterojunction Diode Laser

Ga,_As
Al Ga,_ As GaAs Al,Ga,_As

P
VL N
E,(AlGaAs) E, (GaAs) %;U (a)

4 7
T 0777

b
refraction ®)

Index of 1

©

Distance across a heterojunction ————»

FIGURE 11.13. (a) The band diagram for a forward-biased heterostructure, (b) the
refractive index, and (c) a sketch of the light intensity in the vicinity of the active region.
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Heterojunction Diode Laser
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Double Heterostructure Laser
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Alferov: 2000 Physics Nobel Lecture
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Heterojunction Diode Laser

p-type AlGaAs multilayer r
structure (mirror) Y 4 Properties:
% The Nobel Prize in Physics 2000 oxidiizad Aiks - Surface emitting
AN . current aperture and
Zhores I. Alferov, Herbert Kroemer, Jack S. Kilby f,m.ca| waE/egulde) : Array integration (1D and 2D)
multiple GaAs/AlGaAs = —

quantum wells + On wafer testing (low cost)

Share this: n E ‘ n E 15 A + Device size =10x 10 ym

n-type AlGaAs multilayer
structure (mirror)

The Nobel Prize in Physics o st
2000

« Threshold current = 1 mA

Output power = few mW's
Power efficiency = 50%
Modulation bandwidth ~ 20 GHz

Low divergence circular beam
(simplifies coupling to optical fibers)

"High performance laser to the cost of an LED"

Heterostructure containing about 200 epitaxial layers of different composition, thickness, and doping
Layer thicknesses in the range 60-900 A
Requirements in layer thickness precision = + 0.5 %

Zhores |. Alferov Herbert Kroemer Jack S. Kilby
Prize share: 1/4 Prize share: 1/4 Prize share: 1/2

The Nobel Prize in Physics 2000 was awarded "for basic work on
information and communication technology" with one half jointly
to Zhores I. Alferov and Herbert Kroemer "for developing
semiconductor heterostructures used in high-speed- and opto-
electronics” and the other half to Jack S. Kilby "for his part in the
invention of the integrated circuit".

Photos: Copyright © The Nobel Foundation
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Quantum Well Laser
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FIGURE 11.14, Allowed momentum vectors in a “thin" (i.e., L, < 200 A) semiconduc-
- tor. The solid dots represent allowed states.
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Quantum Well Laser
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FIGURE 11.15. Density of states in a quantum well of thickness L.. The lighter dashed
curve is the normal density of states given by (11.2.8). The sketch indicates dependence of
the wave function along z for the two subbands shown.
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Measured Gain Profiles in Quantum Wells
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Quantum Well Laser
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IGURE 11.20. The distribution of electrons in the first bound state of a quantum well.
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FIGURE 11.21. Typical dimension of a planar quantum well laser.
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Quantum Wells: Grown by Epitaxy
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Quantum Well Light-Emitting Diodes (LEDs)
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Quantum Wells to Wires to Dots for Gain
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Fi6. 114. Schematics of quantum box structure and gain curves 3D, 2D, 1D, 0D lasers,
with optimized optical confinement in each case. (Adapted from M. Asada, Y. Miyamoto,
and Y. Suematsu, IEEE J. Quantum Electron. QE-22, 1915, © 1986 1EEE.)
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Vertical Cavity Surface-Emitting Laser (VCSEL)
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FIGURE 11.22. A possible arrangement of vertical cavity surface emitting lasers (VCSELs). A
typical dimension of D might be 5 to 50 pm. The number of wells might be anywhere from 1 (see
[33]) to 20 (see [24)).
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Light output characteristics of a Laser
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Modulating the Laser Output: Dynamics

Rate equation for electrons (=holes)
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Modulating the Laser Output: Dynamics
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FIGURE 11.24. Modulation characteristics of a short-cavity (120 um), buried-hetero-

structure laser as a function of bias levels: (a) 1 mW, (b) 2 mW, (¢) 2.7 mW, and (d) S mW.
(Data from Lau and Yariv [4].)
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Design of Wavegquides, Mirrors, and Laser Arrays
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Design of Wavegquides, Mirrors, and Laser Arrays
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FIGURE 12.1. (a) The geometry of a stripe laser. (b) The asymmetric slab waveguide
representative of many semiconductor lasers, (¢) A sketch of the mode in the slab.
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Design of Wavegquides, Mirrors, and Laser Arrays
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FIGURE 12.5. The assumed variation of the diclectric constant and gain in a heterostruc-

ture laser. The dielectric constant is assumed to be uniform with y. The cross-hatch region

is to indicate an etched region back filled with SiO, to obtain a real index guided laser (see
Sec. 12.4).
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FIGURE 12,6. (a) The variation of the gain along the plane of the junction. (b) The
resulting electric field of the mode. (c) The equiphase surface for a gain-guided laser.
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Design of Wavegquides, Mirrors, and Laser Arrays
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Design of Wavegquides, Mirrors, and Laser Arrays
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Design of Wavegquides, Mirrors, and Laser Arrays
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FIGURE 8.21: A 40-channel transmitter PIC, consisting of an array of 40 Gbps DFB-EAM
EMLs, which are combined using an AWG multiplexer. The LIV curves and eye diagrams
at 40 Gbps for each channel are shown. (© IEE 2006, [21].)
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FIGURE 8.22: (a) A 40-channel receiver PIC, consisting of a preamplifier SOA, an arrayed

. : waveguide grating demultiplexer and high-speed photodiodes operating at 40 Gbps. (b) Nor-
From: Coldren/Corzine/Masanovic malized spectral response for all 40 channels. (Reprinted by permission from OSA, [22].)
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Design of Wavegquides, Mirrors, and Laser Arrays
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Classical theory of the Einstein A-Coefficient
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Classical theory of the Einstein A-Coefficient
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Classical theory of the Einstein A-Coefficient

FIGURE 13.1. The mechanical model of an atom.
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Classical theory of the Einstein A-Coefficient
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Classical theory of the Einstein A-Coefficient
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Quantum theory of the Einstein A & B Coefficients
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Quantum theory of the Einstein A & B Coefficients
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A 2-level atomic system interacting with an
oscillating electric field
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Quantum theory of the Einstein A & B Coefficients
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Quantum Einstein A-coefficient
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Field-Quantization: Quantum Electrodynamics
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The electromagnetic field is
quantized in the same way
as the harmonic oscillator
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Field-Quantization: Quantum Electrodynamics
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Field-Quantization: Quantum Electrodynamics

A (b+e A)z 1_| Light-Matter combined Hamiltonian.
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absorption emission

If the interaction term is treated as a perturbation, we can identify the
absorption and emission terms. Note the annihilation and creation operators

make this very clear.
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Transition rates from Fermi’s golden rule
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Einstein A & B Coefficients from QED
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Extra Slides
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