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Homework 1

Problem 1.1 (A gualitative overview of a laser.)

Describe succinctly (in < 1 page!) in your own words & illustrations

a) how is laser light different from light from an incandescent bulb, and
b) what ingredients must be present to make a laser work.

Solution: a) LASER light is spectrally pure, — single wavelength, and they are coherent, i.e. all
the photons are in phase. As a result, the beam of a laser light tends to stay as beam, and not
diverge due to scattering. It works on the principle of stimulated transitions between the electron
energy levels and is also highly amplified.

Incandescent bulb works by black body radiation. A tiny filament is heated up to extremely high
temperatures and as heated elements radiate light, the bulb glows. The light emitted in this
process has a whole range of energies (and wavelengths) and has no preferential direction of
travel or polarization or phase. This light is not amplified. The differences can be summarized as
follows:

Property LASER Incandescent Bulb

Nature of emission | Stimulated emission Spontaneous Emission

Coherence Coherent Incoherent

Directionality Highly directional (focused to a very | Divergent (cannot be focused to a
small point) small point)
Monochromatic Polychromatic
Amplified Not amplified

b) The following ingredients must e"sm{“ai}@
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be present to make a laser to work:
(i) Lasing / Active / Gain medium
(ii) Optical Cavity

(iii) Resonator

(iv) External energy source

(Pump) ¥ R e A

—Lasing medium is excited by the OPHCOJ Covity quee i Basic
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external energy source (pump) to

produce population inversion. Spontaneous and stimulated emission of photons takes place,
leading to the phenomenon of optical gain (amplification). Common medium include Ruby, He-
Ne, YAG, etc.

—Pump provides energy required for the population inversion and stimulated emission to the
entire system. Either electrical discharge or optical discharge can be used as pumping sources.
—Resonator guides the light about the simulated emission process induced by high-speed
photons. There is also a fully reflective and a partially reflective mirror. Both are set up on
optical axis, parallel to each other. The gain medium is located in the optical cavity between the
two mirrors. This setup makes sure that only those photons which came along the axis, pass and
others are reflected by the mirrors back into the medium, where it may be amplified by
stimulated emission.
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Problem 1.2 (Real-life problem you can solve as a Lasers expert!)
Verdeven Problem # 1.4. Make a sketch to illustrate the problem.

Suppose that we are using an optical beam of diameter D to monitor the particle
content of a column of gas, For many applications we would prefer to sample as
small a volume as possible, and consequently we would first choose a very small
beam. But if the path length is long, a very small beam would diverge quickly and
thus sample a larger cross-sectional area of the gas column. Use the uncertainty
relations to derive an expression for the beam diameter to minimize the volume of
gas sampled. Assume a helium/neon probing laser (A = 632.8 nm) and a simple cone
describing the convergence and divergence of the beam envelope so as to evaluate
for a gas column 10 m long.

Solution:

Sketch —

R

From the sketch, D is the diameter of the optical beam; L and R is the length and the radius of
the resultant cone, respectively. g is the angle of divergence of the beam.

R—D+ —D+Lt o D+L9 (1) 1l angles - t =
=5tx=5 ang ~ o+ (small angles - tan x = x)
From Uncertainty relationships and spread of the
Gaussian beam, we know that: BTD
Aky= 2
6 Ak, A 22 ’
2T w® w @
z =
2 k.~ % =§[
From (2), (1) becomes,
_ D 2LA
2 nD
VVolume of the resultant cone becomes,
v=toren = 2a [(2) 4 () 4w -—-
BN M AV 2
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Function to be minimized is V (g) Putting value of R in (3) and differentiating gives,

-2 s
L 31lnL
0
2

/A

DYt 412477 14 (2 x 10m x 633nm)? _
D 3{ } =2.16 x1073m

24
=—=1.8x10"*rad
D

Resultant cone diameter = 2R = 2 (g + ?) =5.89x 103m

- - - - - 4
Answer: Minimum beam diameter — Expression is D = \/3

valuesis D = 2.16 X 103m

2
2 {ZX;X)‘} and the value for the given

Problem 1.3 (The Uncertainty Relations and Beam Spreading.)
Verdeven Problem # 1.5

The TEM;y 4 Gaussian beam has the smallest value of the product AxAk, = 1/2
allowed by the uncertainty relationship. (The meaning of the terminology TEM, 4
will be covered in Chapter 3.) The quantities Ax and Ak, are to be interpreted as

Ax? = f x| E(x) %dx/ f |E(x)Pdx

Ak? = f k2VE (k) dky f |E (ke )Pdx
with E(x) and £ (k),) being related by the Fourier transform,
(a) What are the values for Ax and Ak, for E(x) = Epexp[—(x/wg)?] (ie.,

TEM;0)?
(b) What is the uncertainty product for a field given by

Ejo = (v2x/w) exp[—x? + y*)/wi]

(c) Sketch the intensity Eyq - E?,/2ng as a function of x.

Solution:
(a) From the equations above,
Ay? = JPIEC)IPdx %
JIE@0)|? dx
pez = RGP dlex o)
o JIE(e)|? dky
For TEM, , case,
x 2
E(x) = Eyexp l— (W—0> l -——“
R
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Putting this is in equation (1), and integrating by method of substitution, we get,

2 (Byexp [~ (2)])

Ax? = 2 il )|
(e
Lett = ‘% = % = Wﬁz Then (3) becomes,
2x 2 V2
A2 f_ [ ; ] ( x> wi/@ WTg(ffooo t* exp(—t?) dt)
X< =

Evaluating the above expression on Wolfram Alpha, we get,

2
Z_EG) _Wo
Axc = > 2 = Ax = >

Expression for E(x) - (4) above in k-space can be written as,

E(ky) = E, f°° exp [_ <%> ]eXP(—jkxx) dx = \mwoEo exp <_ (kaWO) )

0
Putting this expression in Eq (2), we get,

2
[ k2 \jnWOEO exp (— (%) > dk,

Ak = 7 -—==0)
1l \/EWOEO exp <— (kx2W0>2) dk,

Woky d(ke) _ wo

Let k; = 5 > e, ﬁ.Then (5) becomes,
2 21,2 3
wok wik wok 3., 3 -
e _{_2 o Jexp— "5 a (21) @Dwi 2 ((J7, K exp(—k?) dky)
T Wik w7 exp(—kd) dk,

_ X Wka
S exp - [“5] d (He22) v2/wo
Evaluating the above expression on Wolfram Alpha, we get,

, 21 T
Akx:W—g<§>=>Akx:—2

(b) The given field is,
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This can be written in k-space as,
® \2x x 12 ,
Eio(ky) = E f_wW_OeXp <_ [W_o] )exp(—]kxx) dx
=X kW | V2X oy kW
Lett ==+ j=2 - =2t —j =
kaO ? ® .kaO ®
E o(k,) = woexp — [ ] f exp(—t2)V2tdt — j— f exp(—t?) dt
2 — 00 \/E — 00
kaO _(kxwo)2
=7 e 2 \/E — — ——(7
=7 (7)
Putting (6) in (1), and integrating by substitution, we get,
2
W, [o's)
S thexp(=t)dt  wg 3 V3w,
Ax? = = =—<—>:>Ax=
J_ t2exp(—t?)dt 2 \2 2
Putting (7) in (2), and integrating by substitution, we get,
2 oo
W_()Zf_oo k? exp(—kf) dkt 2 /3 \/§
k2 =20 == (5) = Bk ==
T[S kEexp(—kP)dk,  ws\2) T w
Uncertainty product is given by,
3 3 3
AxAk, = V3w V3 _3
2 wy, 2
(c) Sketch of intensity vs x:
l(."/‘)?")

TEM o

= ()’ — wome dnpdans
Ff@ | Sec. 2-4 \Jerclﬁgb"]
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Problem 1.4 (Brush up your EMag skills.)
Verdeven Problem # 1.3.
The algebraic forms for Maxwell’s equations for a linear homogeneous anisotropic
medium are

kxH=-wD

k x E=wB
where B 15 related to H and D to E by

B = jusH+M)

D=¢gE+P

For many materials, the polarization vector P is not collinear with E; hence, D is
not collinear with E either. The same comments apply to B, M, and H. Assume a
dielectric medium with M = 0 but with no restrictions placed on D and E.
(a) Show thatk - D = 0.
(b) Show that the wave vector k always points in the direction of I x B.
{(¢) Show that the amplitude of the wave vector k is given by
K2 , D-D
—YHETD
(d) Show that the Poynting vector, § = E x H"/2, can point in a direction other
than that of the wave vector k.

Solution:
(a) We are giventhat k x H = —wD — — — (1)
Taking a dot product of that with k, we have,

k-(kxH)=0———(2)

This is because cross product of 2 vectors is normal to both the vectors. Now, putting (2) in (1),
we get,

k- (—wD) =0 - | kD = 0] as required. ---(3)
This is because, w # 0.

(b) We are given that k x H = —wD :Dz—(%)(ka)———(4)

kxE=wB=>B=(%>(kxE)———(5)

Using the following property of cross products,
(AXB)x(€CxD)=C[A-(BxD)]—D[A- (B x C)]
From (4) & (5), we have

1
DxB = —<F>{k[k-(H><E)]—E[k-(ka)]}———(6)
From (2), the second term goesto 0 and k - (H X E) # 0 and is a scalar Therefore, 6 becomes:
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DxB=—(%)[k-(HxE)](k)———U)

scalar

equation (7) shows that wave vector, k and D X B are in the same direction.

(©)

kx(kxE)=kxX (wB) = w(k X (uOH)) = wuy(k X H) = wuy(—wD)
= —w?eD — — - (8)
k x (kX E) = [k(k.E) — k*E] = —w?uoD — —(9)
Taking dot product of both sides of (9) with D, we get

D:[k(k.E) — k*E] = —w?u,D.D
D -k(k.E) —D-k*E = —w?u,D.D — —(10)
D.k=0 (froma)

=lk? = ouz,uo2
D.E

(d) In anisotropic medium, Poynting vector, § = (%) E X H*
kX E =wB = wugH

1 —EXxk
S=(—)E><

2 WHo
Let us take the case of a linear anisotropic medium.
D= 80[&_]]; D is no longer parallel to E
k.D=0, k.B=0 ->D and B are still orthogonal to k D, E and k are
kxH =-wD -> D and H are orthogonal i;,::z’same
kxE=wB -> E and B are orthogonal orthogonal to B

From the attached sketch it can be seen that
D=-—Lkx(kxE)=-[E~(u E)ul

How? Ho

2

D is the projection of E in the plane orthogonal to u
(to within a mult. factor)

Therefore the Poynting vector (direction of « light
ray») is no longer parallel to the wave vector
(direction of propagation of the phase).
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Problem 1.5 (on Ray Tracing.)
Verdeven Problem # 2.4
Combine the results of problems 2.1 and 2.2 to derive the ray matrix for the negative
lens. (Assume that R & d.)

Solution:

Problem 2.1 gives us the following:

1 0

= (1_2)1 ny
M2 R na

Problem 2.2 gives us the following:

| |7
 n 10
M* 7 Ans.: T = ny

! 0

Combining the two for the negative lens, we will have the following steps of propagation (from
the sketch):

n,

(i) Propagation from medium of

Psume n, refractive index at spherical
[L<n, 1 o )

29: Sl dielectric interface to a medium
purgoses of index n, (Result from problem

(8ur AgD s M&o\)

2.1) — Ray part 1

Ogke axis i) p i i
'S Do ihnnd o (|_|) ropagation in a
Shratahk Nine. ay dielectric(same medium) of
R37d g R>>d refractive index n,for a distance

'd’" - Ray part 2

R
8
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(iii) Propagation from medium of n, refractive index at plane dielectric interface to a medium of
index n; ((Result from problem 2.2) — Ray part 3

Thus the ABCD matrix of the entire system can be written as:

1 0 1 0 1 d 1 0

A B = ny|. 1 d . nq 1 n| = n;|. nq 1 nq
8l 2 B leme b le-me
n ray part 2 ny,/ \R/ n, ny ny,/ \R/ n,

ray part 3 ray part 1
[1+<i)(1_ﬂ) dny [H(E)(l_E) ﬂ]
— l R n, n, } — R n, n,

wil Ut H(E-1) 1
— 1 —-— 1 —(—-1 1
n R n, R \n,

Verification: det(ABCD) = 1
The resultant ABCD matrix for the entire system is as follows:

[H(i) (1_E) dm]

n;

Problem 1.6 (Stability criteria for a Ring-Laser cavity.)
Verdeyven Problem # 2.7.

Consider the ring laser cavity shown in the accompanying diagram.
(a) Show an equivalent-lens waveguide for this cavity and identify a unit cell
starting just after the lens and proceeding counterclockwise around the triangle.
(b) What is the transmission matrix for this unit cell? (Demonstrate that you have
the component matrices in proper order.)
(c) What are the values of 4/ f that make this a stable cavity?

Pt

! 3
\ % /
\Nstde/
Solution:

(a) For a plane mirror, the ABCD matrix is
[A B] _ [1 0

¢ pl 1o 1

e
9



ECE 4300 — Lasers and Optoelectronics Name: Athith Krishna
Net-id: ak857

We can see that this is similar to that of a spherical mirror with R — co. The plane mirrors can be
considered just as directors of the optical axis and can be ignored in a unit cell for propagation as
their ray matrix is just an identity matrix.

The resultant equivalent lens arrangement is:

0 ) d/,
l' \ :
; M
b = d
| uat cel) Bl }. o\ > dentity
il —_? =0 ok 1%

(b) To obtain the ABCD matrix for the system,

G-( )0 2@ 96 90 D=2 1)6 06

f

Il
I
—_
=
—_
I
w
/-
\,\|wg~
QU
N———
v
Vo
e
~_

[A BY _ 11 3d3d]
C D ~F 1—<7)

(c) Values of % that make the cavity stable: Stable if -

A+D
2

-1< <1

2-F 3d 3d 4 d d
1< <12 -2<2-2 <22 4< - <0 = -2 <-2<0=0< <

f f 3 f f 3

Values of % that make the cavity stable are —| % € (0, g)

10



