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Homework 1 

 

Solution: a) LASER light is spectrally pure, → single wavelength, and they are coherent, i.e. all 

the photons are in phase. As a result, the beam of a laser light tends to stay as beam, and not 

diverge due to scattering. It works on the principle of stimulated transitions between the electron 

energy levels and is also highly amplified.  

Incandescent bulb works by black body radiation. A tiny filament is heated up to extremely high 

temperatures and as heated elements radiate light, the bulb glows. The light emitted in this 

process has a whole range of energies (and wavelengths) and has no preferential direction of 

travel or polarization or phase. This light is not amplified. The differences can be summarized as 

follows:  

Property LASER Incandescent Bulb 

Nature of emission Stimulated emission Spontaneous Emission 

Coherence  Coherent  Incoherent 

Directionality Highly directional (focused to a very 

small point) 

Divergent (cannot be focused to a 

small point) 

 Monochromatic Polychromatic 

 Amplified Not amplified 

 

b) The following ingredients must 

be present to make a laser to work: 

(i) Lasing / Active / Gain medium 

(ii) Optical Cavity 

(iii) Resonator  

(iv) External energy source 

(Pump) 

→Lasing medium is excited by the 

external energy source (pump) to 

produce population inversion. Spontaneous and stimulated emission of photons takes place, 

leading to the phenomenon of optical gain (amplification). Common medium include Ruby, He-

Ne, YAG, etc.  

→Pump provides energy required for the population inversion and stimulated emission to the 

entire system. Either electrical discharge or optical discharge can be used as pumping sources. 

→Resonator guides the light about the simulated emission process induced by high-speed 

photons.  There is also a fully reflective and a partially reflective mirror. Both are set up on 

optical axis, parallel to each other. The gain medium is located in the optical cavity between the 

two mirrors. This setup makes sure that only those photons which came along the axis, pass and 

others are reflected by the mirrors back into the medium, where it may be amplified by 

stimulated emission. 
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Solution: 

Sketch → 

 

From the sketch, 𝐷 is the diameter of the optical beam; 𝐿 and 𝑅 is the length and the radius of 

the resultant cone, respectively. 
𝜃

2
 is the angle of divergence of the beam.  

𝑅 =
𝐷

2
+ 𝑥 =

𝐷

2
+ 𝐿 tan

𝜃

2
≈
𝐷

2
+
𝐿𝜃

2
    − −(1) (small angles ∴ tan 𝑥 = 𝑥) 

From Uncertainty relationships and spread of the 

Gaussian beam, we know that:  

𝜃

2
=
∆𝑘𝑦

𝑘𝑧
=

𝜆

𝜋(
𝐷

2
)
=

2𝜆

𝜋𝐷
−−− (2)  

From (2), (1) becomes,  

𝑅 =
𝐷

2
+
2𝐿𝜆

𝜋𝐷
 

Volume of the resultant cone becomes,  

𝑉 =
1

3
𝜋𝑅2𝐿 =

1

3
𝜋𝐿 [(

𝐷

2
)
2

+ (
𝑅𝐷

2
)
2

+ 𝑅2] − − − (3) 
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Function to be minimized is 𝑉 (
𝐷

𝐿
). Putting value of 𝑅 in (3) and differentiating gives,  

[
𝐷

𝐿
]
4

=
4

3
[
2𝜆

𝜋𝐿
]
2

⇒ 𝐷 = √
4

3
{
2 × 10𝑚 × 633𝑛𝑚

𝜋
}
24

= 2.16 × 10−3𝑚 

𝜃

2
=
2𝜆

𝜋𝐷
= 1.8 × 10−4rad 

Resultant cone diameter = 2𝑅 = 2 (
𝐷

2
+
𝐿𝜃

2
) = 5.89 × 10−3𝑚 

Answer: Minimum beam diameter →  Expression is 𝐷 = √4
3
{
2×𝐿×𝜆

𝜋
}
24

 and the value for the given 

values is 𝐷 = 2.16 × 10−3𝑚 

 

 

 

Solution:  

(a) From the equations above,  

∆𝑥2 =
∫𝑥2|𝐸(𝑥)|2 𝑑𝑥

∫|𝐸(𝑥)|2 𝑑𝑥
  − − − (1) 

∆𝑘𝑥
2 =

∫𝑘𝑥
2|𝐸(𝑘𝑥)|

2 𝑑𝑘𝑥

∫|𝐸(𝑘𝑥)|2 𝑑𝑘𝑥
− −− (2) 

For TEM0,0 case,  

𝐸(𝑥) = 𝐸0 exp [−(
𝑥

𝑤0
)
2

] − − − (4) 
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Putting this is in equation (1), and integrating by method of substitution, we get,  

∆𝑥2 =
∫𝑥2 (𝐸0 exp [−(

𝑥
𝑤0
)
2

])
2

𝑑𝑥

∫ (𝐸0 exp [−(
𝑥
𝑤0
)
2

])
2

𝑑𝑥

  − − − (3) 

Let 𝑡 =
√2𝑥

𝑤0
 ⇒

𝑑𝑡

𝑑𝑥
=

√2

𝑤0
. Then (3) becomes,  

∆𝑥2 =

∫
2𝑥2

𝑤0
2 exp [−

2𝑥2

𝑤0
2 ] 𝑑 (

√2𝑥
𝑤0
)𝑤0

3/(2
3
2) 

∫ exp [−
2𝑥2

𝑤0
2 ] 𝑑 (

√2𝑥
𝑤0
)𝑤0/√2 

=

𝑤0
2

2 (∫ 𝑡2 exp(−𝑡2) 𝑑𝑡
∞

−∞
)

∫ exp(−𝑡2) 𝑑𝑡
∞

−∞

 

Evaluating the above expression on Wolfram Alpha, we get,  

∆𝑥2 =
𝑤0
2

2
(
1

2
) ⇒ ∆𝑥 =

𝑤0
2

 

Expression for 𝐸(𝑥) - (4) above in k-space can be written as,  

𝐸(𝑘𝑥) = 𝐸0∫ exp [−(
𝑥

𝑤0
2)

2

]
∞

−∞

exp(−𝑗𝑘𝑥𝑥) 𝑑𝑥 = √𝜋𝑤0𝐸0 exp(− (
𝑘𝑥𝑤0
2
)
2

) 

Putting this expression in Eq (2), we get,  

∆𝑘𝑥
2 =

∫𝑘𝑥
2 [√𝜋𝑤0𝐸0 exp (−(

𝑘𝑥𝑤0
2 )

2

)]

2

𝑑𝑘𝑥

∫ [√𝜋𝑤0𝐸0 exp (−(
𝑘𝑥𝑤0
2 )

2

)]

2

𝑑𝑘𝑥

   − − − −(5) 

Let 𝑘𝑡 =
𝑤0𝑘𝑥

√2
 ⇒

𝑑(𝑘𝑡)

𝑑𝑘𝑥
=
𝑤0

√2
 . Then (5) becomes, 

∆𝑘𝑥
2 =

{
𝑤0𝑘𝑥
2 }

2

∫ exp− [
𝑤0
2𝑘𝑥

2

2 ] 𝑑 (
𝑤0𝑘𝑥
√2

) (2
3
2)/𝑤0

3 

∫ exp− [
𝑤0
2𝑘𝑥2

2 ] 𝑑 (
𝑤0𝑘𝑥
√2

)√2/𝑤0 

=
2

𝑤0
2 {
(∫ 𝑘𝑡

2 exp(−𝑘𝑡
2) 𝑑𝑘𝑡

∞

−∞
)

∫ exp(−𝑘𝑡
2) 𝑑𝑘𝑡

∞

−∞

} 

Evaluating the above expression on Wolfram Alpha, we get, 

∆𝑘𝑥
2 =

2

𝑤0
2 (
1

2
) ⇒ ∆𝑘𝑥 =

1

𝑤0
2 

 

 

(b) The given field is, 

𝐸10 = (
√2𝑥

𝑤0
) exp [−

𝑥2 + 𝑦2

𝑤0
2 ] − − − −(6) 
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This can be written in k-space as,  

𝐸10(𝑘𝑥) = 𝐸0∫
√2𝑥

𝑤0
exp (− [

𝑥

𝑤0
]
2

) exp(−𝑗𝑘𝑥𝑥) 𝑑𝑥
∞

−∞

 

Let 𝑡 =
𝑥

𝑤0
+ 𝑗

𝑘𝑥𝑤0

𝑧
 →

√2𝑥

𝑤0
= √2𝑡 − 𝑗

𝑘𝑥𝑤0

√2
 

𝐸10(𝑘𝑥) = 𝑤0𝑒𝑥𝑝 − [
𝑘𝑥𝑤0
2
]
2

(∫ exp(−𝑡2) √2
∞

−∞

𝑡 𝑑𝑡 − 𝑗
𝑘𝑥𝑤0

√2
 ∫ exp(−𝑡2)

∞

−∞

 𝑑𝑡)

=  𝑗
𝑘𝑥𝑤0

√2
 𝑒−(

𝑘𝑥𝑤𝑜
2

)
2

√𝜋 − − − −(7) 

Putting (6) in (1), and integrating by substitution, we get,  

∆𝑥2 =

𝑤0
2

2 ∫ 𝑡4 exp(−𝑡2) 𝑑𝑡
∞

−∞

∫ 𝑡2 exp(−𝑡2) 𝑑𝑡
∞

−∞

=
𝑤0
2

2
(
3

2
) ⇒ ∆𝑥 =

√3𝑤0
2

 

Putting (7) in (2), and integrating by substitution, we get,  

∆𝑘𝑥
2 =

2
𝑤0
2 ∫ 𝑘𝑡

4 exp(−𝑘𝑡
2) 𝑑𝑘𝑡

∞

−∞

∫ 𝑘𝑡
2 exp(−𝑘𝑡

2) 𝑑𝑘𝑡
∞

−∞

=
2

𝑤0
2 (
3

2
) ⇒ ∆𝑘𝑥 =

√3

𝑤0
 

Uncertainty product is given by,  

∆𝑥∆𝑘𝑥 =
√3𝑤0
2

√3

𝑤0
=
3

2
 

(c) Sketch of intensity vs x: 
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Solution:  

(a) We are given that 𝒌 × 𝑯 = −𝜔𝑫−−− (1) 

Taking a dot product of that with 𝒌, we have,  

𝒌 ∙ (𝒌 × 𝑯) = 0 − − − (2) 

This is because cross product of 2 vectors is normal to both the vectors. Now, putting (2) in (1), 

we get, 

𝒌 ∙ (−𝜔𝑫) = 0 →     𝒌 ∙ 𝑫 = 𝟎   as required. ---(3) 
This is because, 𝜔 ≠ 0. 

(b) We are given that 𝒌 ×𝑯 = −𝜔𝑫 ⇒ 𝑫 = −(
1

𝜔
) (𝒌 × 𝑯) − − − (4) 

𝒌 × 𝑬 = 𝜔𝑩 ⇒ 𝑩 = (
1

𝜔
) (𝒌 × 𝑬) − − − (5) 

Using the following property of cross products,  

(𝑨 × 𝑩) × (𝑪 × 𝑫) = 𝑪[𝑨 ∙ (𝑩 × 𝑫)] − 𝑫[𝑨 ∙ (𝑩 × 𝑪)] 
From (4) & (5), we have 

𝑫 × 𝑩 = −(
1

𝜔2
) {𝒌[𝒌 ∙ (𝑯 × 𝑬)] − 𝑬[𝒌 ∙ (𝑯 × 𝒌)]} − − − (6) 

From (2), the second term goes to 0 and 𝒌 ∙ (𝑯 × 𝑬) ≠ 𝟎 and is a scalar Therefore, 6 becomes:  
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𝑫 × 𝑩 = −(
1

𝜔2
) [𝒌 ∙ (𝑯 × 𝑬)]

⏟            
𝒔𝒄𝒂𝒍𝒂𝒓

(𝒌) − − − (7) 

equation (7) shows that wave vector, 𝒌 and 𝑫 ×𝑩 are in the same direction.  

(c)  

𝒌 × (𝒌 × 𝑬) = 𝒌 × (𝜔𝑩) = 𝜔(𝒌 × (𝜇0𝑯)) = 𝜔𝜇0(𝒌 × 𝑯) = 𝜔𝜇0(−𝜔𝑫)

= −𝜔2𝜇0𝑫−−− (8) 

𝒌 × (𝒌 × 𝑬) = [𝒌(𝒌. 𝑬) − 𝑘2𝑬] = −𝜔2𝜇0𝑫− −(9) 

Taking dot product of both sides of (9) with 𝑫, we get 

 

𝑫 ∙ [𝒌(𝒌. 𝑬) − 𝑘2𝑬] = −𝜔2𝜇0𝑫.𝑫 
𝑫 ∙ 𝒌(𝒌. 𝑬)⏟      
𝑫.𝒌=𝟎 (𝑓𝑟𝑜𝑚 𝑎)

−𝑫 ∙ 𝑘2𝑬 = −𝜔2𝜇0𝑫.𝑫 −−(10) 

 

⟹ 𝑘2 = 𝜔2𝜇0
𝑫.𝑫

𝑫. 𝑬
 

(d) In anisotropic medium, Poynting vector, 𝑺 = (
𝟏

𝟐
)𝑬 × 𝑯∗ 

𝒌 × 𝑬 = 𝜔𝑩 = 𝜔𝜇0𝑯 

𝑺 = (
𝟏

𝟐
)𝑬 ×

−𝑬 × 𝒌

𝜔𝜇0
 

Let us take the case of a linear anisotropic medium.  

𝑫  is no longer parallel to 𝑬 

 

From the attached sketch it can be seen that 

 𝑫 = −
1

𝜇0𝜔2
𝒌 × (𝒌 × 𝑬) =

𝑘2

𝜇0𝜔2
[𝑬 − (𝒖 ∙ 𝑬)𝒖]    

𝑫 is the projection of 𝑬 in the plane orthogonal to 𝒖 

(to within a mult. factor) 

Therefore the Poynting vector (direction of « light 

ray») is no longer parallel to the wave vector 

(direction of propagation of the phase).  
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Solution:  

Problem 2.1 gives us the following:  

 

Problem 2.2 gives us the following: 

 

Combining the two for the negative lens, we will have the following steps of propagation (from 

the sketch):  

(i) Propagation from medium of 

𝑛1 refractive index at spherical 

dielectric interface to a medium 

of index 𝑛2 (Result from problem 

2.1) – Ray part 1 

(ii) Propagation in a 

dielectric(same medium) of 

refractive index 𝑛2for a distance 

′𝑑′ - Ray part 2 
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(iii) Propagation from medium of 𝑛2 refractive index at plane dielectric interface to a medium of 

index 𝑛1 ((Result from problem 2.2) – Ray part 3 

Thus the ABCD matrix of the entire system can be written as:  

[
𝐴 𝐵
𝐶 𝐷

] = [
1 0

0
𝑛2
𝑛1

]
⏟    
𝑟𝑎𝑦 𝑝𝑎𝑟𝑡 3

∙ [
1 𝑑
0 1

]
⏟    
𝑟𝑎𝑦 𝑝𝑎𝑟𝑡 2

∙ [

1 0

(1 −
𝑛1
𝑛2
) (
1

𝑅
)

𝑛1
𝑛2

]

⏟            
𝑟𝑎𝑦 𝑝𝑎𝑟𝑡 1

= [
1 𝑑

0
𝑛2
𝑛1

] ∙ [

1 0

(1 −
𝑛1
𝑛2
) (
1

𝑅
)

𝑛1
𝑛2

]

=

[
 
 
 1 + (

𝑑

𝑅
)(1 −

𝑛1
𝑛2
)

𝑑𝑛1
𝑛2

𝑛2
𝑛1𝑅

(1 −
𝑛1
𝑛2
) 1

]
 
 
 

=  

[
 
 
 1 + (

𝑑

𝑅
) (1 −

𝑛1
𝑛2
)

𝑑𝑛1
𝑛2

1

𝑅
(
𝑛2
𝑛1
− 1) 1

]
 
 
 

 

Verification: det(𝐴𝐵𝐶𝐷) = 1 

The resultant ABCD matrix for the entire system is as follows:  

[
𝐴 𝐵
𝐶 𝐷

] =

[
 
 
 1 + (

𝑑

𝑅
) (1 −

𝑛1
𝑛2
)

𝑑𝑛1
𝑛2

1

𝑅
(
𝑛2
𝑛1
− 1) 1

]
 
 
 

 

 

_________________________________________________________________________ 

 

 

Solution:  

(a) For a plane mirror, the ABCD matrix is  

[
𝐴 𝐵
𝐶 𝐷

] = [
1 0
0 1

] 
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We can see that this is similar to that of a spherical mirror with 𝑅 → ∞. The plane mirrors can be 

considered just as directors of the optical axis and can be ignored in a unit cell for propagation as 

their ray matrix is just an identity matrix.  

The resultant equivalent lens arrangement is: 

(b) To obtain the ABCD matrix for the system,  

(
𝑟2
𝑟2′
) = (

1 0

−
1

𝑓
1)(

1
𝑑

2
0 1

) (
1 𝑑
0 1

) (
1 𝑑
0 1

)(1
𝑑

2
0 1

) (
𝑟1
𝑟1′
) = (

1 0

−
1

𝑓
1)(

1 3𝑑
0 1

) (
𝑟1
𝑟1′
)

= (

1 3𝑑

−
1

𝑓
1 − (

3𝑑

𝑓
)
) (
𝑟1
𝑟1′
) 

 

[
𝐴 𝐵
𝐶 𝐷

] = [

1 3𝑑

−
1

𝑓
1 − (

3𝑑

𝑓
)
] 

 

(c)  Values of 
𝑑

𝑓
 that make the cavity stable:  Stable if -  

−1 <
𝐴 + 𝐷

2
< 1 

−1 <
2 −

3𝑑
𝑓

2
< 1 ⟹ −2 < 2 −

3𝑑

𝑓
< 2 ⟹ −4 < −

3𝑑

𝑓
< 0 ⟹ −

4

3
< −

𝑑

𝑓
< 0 ⟹ 0 <

𝑑

𝑓
<
4

3
 

 

Values of 
𝑑

𝑓
 that make the cavity stable are → 

𝑑

𝑓
∈ (0,

4

3
)        

 

 


