ECE 4300: Lasers and Optoelectronics
Fall 2016, Debdeep Jena and Clif Pollock
Solutions to Assignment 3: By Kevin Lee

Problem 3.1 (Verdeyen 5.13)

First, | calculate the ABCD matrix for beam traveling through the lens and space
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According to ABCD law, we can have the following relation for beam waist
Aq, + B
1= Cq. +D

q2(z) =z + jzp,
q1(2) =z + jzp,
Since it requires mode-matching, the two minimum beam waists should satisfy the
ABCD law. So we have
Aq1(0)+B AX]ZOl‘l‘B
2(0) = = JZo2
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Substitute the above ABCD into the equations.
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Problem 3.2 (Verdeyen 6.1)
d= 3 R
= 1R
I'Z =0.99
I'? =0.97
(a)
From (6.5.3), we have the resonant frequency.

c 1+m+p
Vmpq = nd [q +

d
101 _ 1/2
- cos™ (1 Rz) ]

c 1+m+p
YVmpq = %[CI +T]

Now we’re considering TEMo o.

c 1
Vo,0,q9 = nd [q + §]

(b)
(1) FSR
Rz = Zm
= 3
A = 5000A = 500nm
c 3x10%m/s _
FSR=2 d= =1x 108! = 100MHz
n 2 X Em
c
Light frequency = 7= 6 x 10*Hz
FSR M 1x108
Light frequency 1 6 x 1014
AL = 50004 x ———0_ 10° 8.33 x 107*A
= X = O. X
6 x 1014
(2) Cavity Q

From (6.3.5), we have

= dmnd ( ! ) = 9.496 x 108
A \1—-R4R,
(3) Photon lifetime
From (6.4.2b), we have
2nd/c _
T, = 1——RlR2 = 2.5189 x 10™’s = 251.89nsec

(4) Finess



From (6.3.8), we have
21

F=—o
1_R1R2

= 158.267



Problem 3.3 (Verdeyen 6.5 — 6.10)

6.5
Vo =5 X 10Hz
Ao = VC—O = 600nm
6.6
c
FSR = 125MHz = od
d=12m
6.7
P FSR _ 125MHz _
Avy;,  2.5MHz
6.8
0= Vo =5><1014HZ=2><108
Avy ), 2.5MHz
6.9
From (6.4.4), we have photon lifetime.
T, = < = 2x10° = 63.662nsec
P 2mvy, 2mX5X10MHz '
6.10

From p.154, the requirement of a laser to oscillate is its lifetime is negative, meaning
photons are growing in the cavity.

From (6.3.8), we can calculate the RyR,.

21
F - 1 _RlRZ
21
1 _Rle :?

21
Rle = 1 - F S 0.8743

_ 2nd/c
P 1-—GR,GR,
1 - GRlGRz < 0

1
JRiR;

T <0

G > = 1.06947




Problem 3.4 (Verdeyen 6.19)
(a)

(206 6 96 P2 )

3 3
A+D+2 3
<——=-<1
4 4
It’s a stable cavity.
(b)
c 1+m+p d
Vimpa = 5 [q + - cos71(1 _R_Z)l/z]
d 0.75
R, 3
c 1+m+p
mp.q =%[q + —— % 0.5236]

For TEMo,0,q, its frequency is
c 1
Vo,0,g = % [q + ; %X 0.5236]
For TEM1,0,4, its frequency is

c 2
V1,049 = % [q + ; X 05236]

c 1
Vl,O,q - VO,O,q = % X ; X 05236 = 33.3MHz

(c)

From (6.6.2a), the TEMo,0,q transmission is
T=1-e 2

Less than 0.1% loss, which means T = 99.9% = 0.999

a

2
T=1-¢2%a) =0999

a
— = 1.85846
W

The beam waist is largest at the spherical mirror.

From (5.3.9), we have the beam waist.



w = 0.498mm
a = 0.9256mm

Diameter = 2a = 1.85mm

(d)
From (8.1.2), we have the condition to overcome the loss and induce oscillation in
the cavity.
Yo(v) 2 iln( )
2l "R4R,

L, ( - ) L (—1 ) 0.0512933m"! = 5.13 x 10~*cm™?
N = —_— = . = . X
n 05 "\1x0095 m cm



Problem 3.5 (Verdeyen 6.25)
(a)

From (3.5.1), we know the phase shift of a mode inside the cavity.

d
kd — (1+m+p)tan™?! (Z—) =qn
0

But this equation is for one flat mirror and a curved mirror cavity. Here we have two
flat mirrors and a lens in between. We need to modify the equation for phase

matching.

d d
kd; — (1 + m+ p)tan™? (—1) + kd, — (1+m+p)tan~?! (—2> =qn

Zp1
2T 2nn  2mvn

k=/1/n=c/v_ c

(q + (1 +m+p)(tan~?! (Zd—l) + tan™! (2))>

01

c
v 2(dy + dy)
(b)
From (6.4.2b), we have photon lifetime.

_ 2n(dy +dy)/c

= = 28.18
Tp 1= TR.TR, nsec

(c)
Ao = 51454
From (6.3.5), we have the quality factor.
4nn(d, + dy)
Q = A
0

1
= 1.032 x 108
<1 - TRlTR2>

(d)
2n(d, +dy)/c
= = —-99.4
' T 1 _GTR,GTR, nsec
From (6.4.5), linewidth can be obtained.

1
Al/l/z = E = 5.648MHz



Problem 3.6 (Verdeyen 7.14)
(a)

g1 = 92
n=1
(7.3.4)
At equilibrium, the time rate of change should be zero.
& _ BlZP(V) — e—hv/kT

Ni — Ay; + Byip(v)
Neglect the stimulated emission process, which means B,; = 0.
B12.0(V) — e—hv/kT
Az
Az
p(v) =—=—e
By,

According to Einstein’s theory, we can get the coefficient.

—hv/kT

Ay Ay 8mnPnghv®
By B By, - c3

8mn’nghv3
p(v) = 3

e—hv/kT

This is the low temperature approximation for the original blackbody radiation.

1

hv
ekT — 1

—hv/kT

~e

hv
when ekt > 1, it means T is small.

- . . h . .
(b) Similar to the argument in the previous problem. If # > 1, then it automatically

hv
satisfies that ekt > 1. And it leads to

1
hv
ekT — 1
We have the energy density in the previous problem.

A21

p(v) =—=—e
BlZ

—hv/kT

~e

—hv/kT

In order to match the results, we require
Az _ 8mn’nghv? _ 8mwhv3

Bi, c3 c3

with n=1 and ng~n.



(c)

From the above derivation, we have the Wein’s distribution.

From (7.2.5), we have Rayleigh-Jeans distribution.

8mv?
pRayleigh—]eans(V) = 3 kT
And Planck’s distribution is the following.
8mhvd 1
pPlanck(V) = 3 v
exT — 1

By observations, the Wein and Rayleigh-Jeans are both approximations under

extreme conditions.

. e o h
For Wein’s distribution, we have shown that it is an extreme case when é > 1.

For Rayleigh-Jeans distribution, it is the other condition é « 1.

8mv2kT hv/kT
pPlanck(V) = 3 v
ekT — 1

x
eX—1

Note that 1irr(1) = 1. Then we have the Rayleigh-Jeans distribution
xX—

. 8mv?
hl;m pPlanck(V) = o3 kT.
ﬁ<<1




Problem 3.7 (Verdeyen 7.4)
(a)
First we need to write down the energy (here we’re using frequency because
frequency is proportional to energy) distribution function of each group of atoms. As
described in the problem, we should use Lorentzian function. The lineshape function
can be written down in the following equation.
*© Av
90) = | PO e gy

| ignore the Planck constants here because we only concern about the shape, not the

exact number.

From the figure of p(f), we can modify the above lineshape function.
Vo+Avg/2

Avh
g(v) = f —df
Vo—Avg/2 AVS 2”[(f - V)z + (Avh/z)z]
AVh fV0+AVS/2 df
208V gy [(F = V)2 + (BVp/2)7]
let x=f—v
Avg
Avy, [(Yot="tV dx
g =3 f > >
AV VO_%W [x% + (Avy/2)?]
Note:
1 1 x
Ay =_tan-1(Z
fxz +a2dx atan (a) +C
Avy, 2 2 Avg 2 Avg
= X — [tan™1 _< _) —tan~l(— )
g) 2V, AVh[an (Avh Vo + v+ > ) an (AVh(v0+v 5 N]
(b)
Without loss of generality, | am going to assume the following parameters for the
plot.
Avi =1andvy =0
9()/)
0.8}
06 — 2h_0,01
AVS )
04} Avh_g 4
02} Avs
/) N 205
v AVS )
-2 -1 1 2




Problem 3.8 (Verdeyen 7.10)
(a)

dN, N,
—_<f_p ——=
dt 2,
dN; N N

dt T, T

(b)

Solve the differential equation by Mathematica.
_t
Ny(t) = P,75(1 —e %2)
dN. _t\ N
dt (2]
t T t

(2] _t _t
N,(t) = P,7t,(1 — e 1+ e T2
(O =P e

(c)

We have the lifetime of each state and the pumping strength.

T, = 2US
T, = 1lus
P, =10%cm™3s71
Carrier concentration (cm™S)
20x10™ |
15%10™ |
1.0x 101 |
50x 1013 |
— N(?)
‘ ‘ ‘ — (s
5.x 10~6 0.00001 0.000015 0.00002> N2(f)

Inversion happens when N2 state has more carriers, which means N, > N;. | used
Mathematica to get a numerical solution.
o0t = 2.1972ps

(d)

Steady state means t — oo,

tlim N;(t) = Pty = 2 x 10M¢em™3

tlim Ny(t) = P,7, =1 x10%cm™3



