
Problem 4.1 (Verdeyen Problem #8.7) 

(a) 

From (7.4.7), simulated emission cross section is defined as following. 

𝜎𝜎(𝜈𝜈) = 𝐴𝐴21
𝜆𝜆2

8𝜋𝜋𝑛𝑛2 𝑔𝑔(𝜈𝜈) 

𝐴𝐴21 = 6 × 10
6𝑠𝑠𝑠𝑠𝑠𝑠−1 

From the figure, the emission is state 2 to state 1, which has a transition energy of 

5.5eV – 3.2eV = 2.3eV. 

λ =
1.24𝑠𝑠𝑒𝑒
𝐸𝐸𝑔𝑔(𝑠𝑠𝑒𝑒)

=
12.4

2.3
= 0.539𝜇𝜇𝜇𝜇 = 539𝑛𝑛𝜇𝜇 

𝑔𝑔(𝜈𝜈) 𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑠𝑠 𝑙𝑙𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓𝑛𝑛𝑠𝑠𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛,𝑤𝑤ℎ𝑖𝑖𝑠𝑠ℎ 𝑖𝑖𝑠𝑠 𝐿𝐿𝑓𝑓𝐿𝐿𝑠𝑠𝑛𝑛𝑡𝑡𝐿𝐿𝑖𝑖𝑎𝑎𝑛𝑛 ℎ𝑠𝑠𝐿𝐿𝑠𝑠. 

𝑔𝑔(𝜈𝜈) =
Δ𝜈𝜈

2𝜋𝜋((𝜈𝜈 − 𝜈𝜈0)2 + (Δ𝜈𝜈/2)2)
 

Δν = 10GHz 

𝜎𝜎(𝜈𝜈0) = 6 × 10
6𝑠𝑠𝑠𝑠𝑠𝑠−1 ×

(539𝑛𝑛𝜇𝜇)
2

8𝜋𝜋 ×
2

𝜋𝜋 × 10𝐺𝐺𝐺𝐺𝐿𝐿 = 4.415 × 10
−14𝑠𝑠𝜇𝜇2 

(b) 

From (7.5.2), we have the laser gain equation. 

𝛾𝛾0(𝜈𝜈) = 𝜎𝜎(𝜈𝜈)(𝑁𝑁2 −
𝑔𝑔2
𝑔𝑔1
𝑁𝑁1) 

Here we assume 

𝑁𝑁1 ≈ 0 

The small signal gain coefficient is  

𝛾𝛾0(𝜈𝜈0) = 𝜎𝜎(𝜈𝜈0) × 𝑁𝑁2 = 0.01𝑠𝑠𝜇𝜇−1 

𝑁𝑁2 = 2.265 × 10
11𝑠𝑠𝜇𝜇−3 

Under steady state condition, the state 2’s rate equation is following. 

𝑑𝑑𝑁𝑁2
𝑑𝑑𝑡𝑡 = 0 = 𝑅𝑅2 − 𝑁𝑁2(

1

𝜏𝜏21
+

1

𝜏𝜏20
) 

𝑅𝑅2 = 𝑁𝑁2 × (
1

𝜏𝜏21
+

1

𝜏𝜏20
) = 3.4 × 10

18𝑠𝑠−1𝑠𝑠𝜇𝜇−3 

(c) 

From (8.3.7), saturation intensity is defined as 

𝐼𝐼𝑠𝑠 =
ℎ𝜈𝜈
𝜎𝜎𝜏𝜏2

 

To find the lifetime at state 2, the system is at equilibrium. 
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1

𝜏𝜏2
=

1

𝜏𝜏21
+

1

𝜏𝜏20
=

1

100𝑛𝑛𝑠𝑠 +
1

200𝑛𝑛𝑠𝑠 = 6.67 × 10
−8𝑠𝑠 

𝐼𝐼𝑠𝑠 =
2.3𝑠𝑠𝑒𝑒

4.415 × 10−14𝑠𝑠𝜇𝜇2 × 6.67 × 10−8𝑠𝑠 = 125.017 𝑊𝑊𝑠𝑠𝜇𝜇−2 

 

(d) 

To achieve the desired carrier concentration at state 2, we need pumping transition 

of 5.5eV. 

𝑃𝑃𝑓𝑓𝜇𝜇𝑎𝑎 𝑎𝑎𝑓𝑓𝑤𝑤𝑠𝑠𝐿𝐿 = 5.5eV × 𝑅𝑅2 = 2.99𝑊𝑊𝑠𝑠𝜇𝜇−3 

(e) 

The Q-factor of this system should not change between units. So we have the 

following relation. 

∆𝜆𝜆
𝜆𝜆 =

Δ𝜈𝜈
𝜈𝜈  

𝜈𝜈 =
𝑠𝑠
𝜆𝜆 = 5.57 × 10

12𝐺𝐺𝐿𝐿 

∆𝜆𝜆 =
10𝐺𝐺𝐺𝐺𝐿𝐿

5.57 × 1014𝐺𝐺𝐿𝐿 ∗ 5390Å = 0.0968Å 

Wavenumber is defined as the inverse of wavelength. 

�̅�𝜈 =
1

𝜆𝜆 = 18552.9𝑠𝑠𝜇𝜇−1 

∆�̅�𝜈 =
10𝐺𝐺𝐺𝐺𝐿𝐿

5.57 × 1014𝐺𝐺𝐿𝐿 ∗ 18552.9𝑠𝑠𝜇𝜇−1
= 0.333𝑠𝑠𝜇𝜇−1 

 

  



Problem 4.2 (Verdeyen Problem #8.11) 

(a) 

We can apply the procedure in section 8.3 to solve this problem. But in this problem, 

there is no transition specified from state 2 to state 0. I will assume the time constant 

is infinitely large, which means there is no transition from state 2 to 0. 

Assume the pumping rate is a step function and there is no stimulated emission. 

Hence, (8.3.2a) and (8.3.2b) can be expressed as following. 

𝑑𝑑𝑁𝑁2
𝑑𝑑𝑡𝑡 = 𝑅𝑅2(𝑡𝑡) −𝑁𝑁2

𝜏𝜏2
 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑡𝑡 = 𝑅𝑅1(𝑡𝑡) +

𝑁𝑁2
𝜏𝜏21

 

Solve these two differential equations, we get 

𝑁𝑁2(𝑡𝑡) = 𝑅𝑅20𝜏𝜏2(1 − 𝑠𝑠
−𝑡𝑡
𝜏𝜏2 ) 

𝑁𝑁1(𝑡𝑡) =
e
−𝑡𝑡/𝜏𝜏1

𝜏𝜏21
� 𝑁𝑁2(𝑡𝑡′)𝑠𝑠

𝑡𝑡′
𝜏𝜏1𝑑𝑑𝑡𝑡′

𝑡𝑡

0
 

For t ≥ 𝜏𝜏1, we have (8.3.4c). 

𝑁𝑁1(𝑡𝑡) = 𝜙𝜙21𝑅𝑅20𝜏𝜏1{1 +

𝜏𝜏1
𝜏𝜏2

1 − 𝜏𝜏1
𝜏𝜏2
𝑠𝑠−

𝑡𝑡
𝜏𝜏1 − 1

1 − 𝜏𝜏1
𝜏𝜏2
𝑠𝑠−

𝑡𝑡
𝜏𝜏2} 

For equilibrium populations, meaning t → ∞, 𝑁𝑁2(𝑡𝑡) → 𝑅𝑅20𝜏𝜏2 = 2 × 10
12𝑠𝑠𝜇𝜇−3 and 

𝑁𝑁1(𝑡𝑡) → 𝑅𝑅20𝜏𝜏1 = 1 × 10
14𝑠𝑠𝜇𝜇−3. 

(b) 

It’s obvious that this system is not suitable system for a CW laser. For a laser 

operation, we need population inversion, which means 𝑁𝑁2 > 𝑁𝑁1. For pulsed laser, 

we can tolerate that the system only has certain limited time of population inversion. 

However, CW laser requires the system to be always in population inversion as the 

laser is turned on. Continuous wave operation means the system is always lasing, 

which is always in population inversion. 

  



(c) 

Plot above two functions in Mathematica in Log Log scale. 

 

  
As we can see from the above figure, only when t < 2 × 10

−7𝑠𝑠, there is population 

inversion 𝑁𝑁2 > 𝑁𝑁1. For a CW operation laser, we want the system to be always in 

the population inversion state, which is not the case here. 

 

To plot the small gain coefficient, we can use (7.5.2).  

𝛾𝛾0 = 𝜎𝜎 × (𝑁𝑁2 −
𝑔𝑔2
𝑔𝑔1
𝑁𝑁1) 

𝜎𝜎 = 10
12𝑠𝑠𝜇𝜇−2 

From the figure for this problem, the degeneracy of each energy level are 𝑔𝑔1 =

2𝐽𝐽1 + 1 = 5 and 𝑔𝑔2 = 2𝐽𝐽2 + 1 = 3. 
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Problem 4.3 (Verdeyen Problem #8.12) 

(a) 

First, I started from (8.3.2a). It has been specified that we have negligible population 

in state 1. Hence, the rate equation is the following. 

𝑑𝑑𝑁𝑁2
𝑑𝑑𝑡𝑡 = 𝑅𝑅2(𝑡𝑡) − 𝑁𝑁2

𝜏𝜏2
− 𝜎𝜎(𝜈𝜈)𝐼𝐼𝜈𝜈

ℎ𝜈𝜈 𝑁𝑁2 

Assume we’re in equilibrium state of the system. 𝑑𝑑𝑁𝑁2𝑑𝑑𝑡𝑡 = 0 

𝑁𝑁2(𝑡𝑡) =
𝑅𝑅2(𝑡𝑡)

(
1

𝜏𝜏2 +
𝜎𝜎(𝜈𝜈)𝐼𝐼𝜈𝜈
ℎ𝜈𝜈 )

=
𝑅𝑅2(𝑡𝑡)𝜏𝜏2

(1 +
𝜎𝜎(𝜈𝜈)𝐼𝐼𝜈𝜈
ℎ𝜈𝜈 𝜏𝜏2)

=
𝑅𝑅2(𝑡𝑡)𝜏𝜏2
(1 +

𝐼𝐼𝜈𝜈
𝐼𝐼𝑠𝑠)

 

The spontaneous emission from the side should be always proportional to the 

population at state 2, meaning 𝑃𝑃 ∝ 𝑁𝑁2. Assume the system is at constant pumping 

rate. 

𝑃𝑃 =
𝑅𝑅2(𝑡𝑡)𝜏𝜏2
(1 +

𝐼𝐼
𝐼𝐼𝑠𝑠)

 

Because the one of the mirror is blocked, there is no cavity to confine the photons to 

generate stimulated emission, meaning 𝐼𝐼𝜈𝜈 = 0. 

𝑃𝑃0 =
𝑅𝑅2(𝑡𝑡)𝜏𝜏2

(1 +
𝐼𝐼 = 0

𝐼𝐼𝑠𝑠 )

= 𝑅𝑅2(𝑡𝑡)𝜏𝜏2 

𝑃𝑃 =
𝑃𝑃0

(1 +
𝐼𝐼
𝐼𝐼𝑠𝑠)

 

(b) 

𝐼𝐼 = 100𝑊𝑊/𝑠𝑠𝜇𝜇2 

𝑃𝑃
𝑃𝑃0

= 0.5 

1 +
𝐼𝐼
𝐼𝐼𝑠𝑠
＝2 

𝐼𝐼
𝐼𝐼𝑠𝑠

= 1 

𝐼𝐼𝑠𝑠 = 100𝑊𝑊/𝑠𝑠𝜇𝜇2 

  











Problem 4.5 (Verdeyen Problem #8.20) 

From (8.7.3a), we have output intensity of ASE. 

𝐼𝐼+�𝜈𝜈, 𝑙𝑙𝑔𝑔� =
8𝜋𝜋𝑛𝑛2ℎ𝜈𝜈3

𝑠𝑠2
𝑁𝑁2

𝑁𝑁2 − 𝑔𝑔2
𝑔𝑔1 𝑁𝑁1

[𝐺𝐺0(𝜈𝜈) − 1]
𝑑𝑑Ω
4𝜋𝜋  

To determine the FWHM, first we focus on the [𝐺𝐺0(𝜈𝜈) − 1] term. The reason I 

ignore 8𝜋𝜋𝑛𝑛
2ℎ𝜈𝜈3
𝑐𝑐2  is because it’s a monotonically increasing term with frequency. 

𝐺𝐺0(𝜈𝜈) = 𝑠𝑠𝛾𝛾0(𝜈𝜈)𝑙𝑙𝑔𝑔  

𝐺𝐺0(𝜈𝜈0) = 𝑠𝑠𝛾𝛾0(𝜈𝜈0)𝑙𝑙𝑔𝑔  

𝛾𝛾0(𝜈𝜈)𝑙𝑙𝑔𝑔 = 𝛾𝛾0(𝜈𝜈0)
(∆𝜈𝜈ℎ/2)

2

(𝜈𝜈 − 𝜈𝜈0)2 + (∆𝜈𝜈ℎ/2)2
× 𝑙𝑙𝑔𝑔 

FWHM is defined as the intensity drops to half of the maximum value. 

[𝐺𝐺0(𝜈𝜈) − 1] = 1/2 × [𝐺𝐺0(𝜈𝜈0) − 1] 

Change variable for the above equations. 

Let 

∆𝜈𝜈𝐻𝐻 =
𝜈𝜈 − 𝜈𝜈0
∆𝜈𝜈ℎ/2

 

𝛾𝛾0(𝜈𝜈)𝑙𝑙𝑔𝑔 = 𝛾𝛾0(𝜈𝜈0)
1

(∆𝜈𝜈𝐻𝐻)2 + 1
× 𝑙𝑙𝑔𝑔 

𝑠𝑠
𝛾𝛾0(𝜈𝜈0)×𝑙𝑙𝑔𝑔
(∆𝜈𝜈𝐻𝐻)2+1 − 1 = 1/2 × [𝐺𝐺0(𝜈𝜈0) − 1] 

𝑠𝑠
𝛾𝛾0(𝜈𝜈0)×𝑙𝑙𝑔𝑔
(∆𝜈𝜈𝐻𝐻)2+1 − 1 = 0.5(𝑠𝑠𝛾𝛾0(𝜈𝜈0)𝑙𝑙𝑔𝑔 − 1) 

𝑠𝑠
𝛾𝛾0(𝜈𝜈0)×𝑙𝑙𝑔𝑔
(∆𝜈𝜈𝐻𝐻)2+1 − 1 = 0.5(𝐺𝐺0(𝜈𝜈0) − 1) 

𝑠𝑠
𝛾𝛾0(𝜈𝜈0)×𝑙𝑙𝑔𝑔
(∆𝜈𝜈𝐻𝐻)2+1 = 0.5(𝐺𝐺0(𝜈𝜈0) + 1) 

ln (𝐺𝐺0(𝜈𝜈0))

(∆𝜈𝜈𝐻𝐻)2 + 1
= ln (0.5(𝐺𝐺0(𝜈𝜈0) + 1)) 

(∆𝜈𝜈𝐻𝐻)
2

=
ln (𝐺𝐺0(𝜈𝜈0))

ln (0.5(𝐺𝐺0(𝜈𝜈0) + 1))
− 1 

To switch gain to dB unit, we need to change the gain variable. 

Let’s assume a new variable in dB unit, “t”. 

𝑡𝑡(𝑑𝑑𝑑𝑑) = 10 × 𝐿𝐿𝑓𝑓𝑔𝑔(𝐺𝐺0(𝜈𝜈0)) 



0.1𝑡𝑡 = 𝐿𝐿𝑓𝑓𝑔𝑔(𝐺𝐺0(𝜈𝜈0)) 

10
0.1𝑡𝑡

= 𝐺𝐺0(𝜈𝜈0) 

So we substitute this new variable into the equation. 

∆𝜈𝜈𝐻𝐻 = � ln (100.1𝑡𝑡)
ln (0.5(100.1𝑡𝑡 + 1))

− 1 

Plot this function with Mathematica. 

 

  



Problem 4.6 (Verdeyen Problem #21) 

(a) 

From (6.4.2b), we have the photon lifetime in passive cavity. 

𝜏𝜏𝑝𝑝 =
2𝑛𝑛𝑑𝑑/𝑠𝑠

1 − 𝑅𝑅1𝑅𝑅2
 

Here we need to add the additional loss from lens and gain medium. 

𝜏𝜏𝑝𝑝 =
3𝑑𝑑/𝑠𝑠

1 − 0.98 × 0.98 × 0.9 × (0.98)2 × (0.97)2
= 22.838𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 

(b) 

From (6.4.4), we can calculate the quality factor. 

𝑄𝑄 = 𝜔𝜔0𝜏𝜏𝑝𝑝 

𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0 =
2𝜋𝜋𝑠𝑠
𝜆𝜆0

= 2.356 × 10
15

 𝐿𝐿𝑎𝑎𝑑𝑑/𝑠𝑠 

𝑄𝑄 = 5.381 × 10
7 

(c) 

𝐹𝐹𝐹𝐹𝑅𝑅 =
𝑠𝑠

3𝑛𝑛𝑑𝑑 = 2 × 10
8𝐺𝐺𝐿𝐿 

(d) 

Minimum gain has to at least overcome the loss in the cavity. 

𝑠𝑠𝛾𝛾0(𝜈𝜈0)×𝑙𝑙𝑔𝑔 × 𝑅𝑅1𝑅𝑅2𝑅𝑅3𝑇𝑇1𝑇𝑇2(0.97)
2

> 1 

𝛾𝛾0(𝜈𝜈0) >
−ln (𝑅𝑅1𝑅𝑅2𝑅𝑅3𝑇𝑇1𝑇𝑇2(0.97)

2
)

𝑙𝑙𝑔𝑔
 

𝛾𝛾0(𝜈𝜈0) > 0.0082𝑠𝑠𝜇𝜇−1 

(e) 

We have the FSR and optical frequency from above calculations. Now I plot the cavity 

mode, gain spectrum, and loss level. We can see how many modes are above the 

loss. There are 9 modes can overcome the loss, which are above threshold. 

 



(f) 

From (7.4.7), simulated emission cross section is defined as following. 

𝜎𝜎(𝜈𝜈0) = 𝐴𝐴21
𝜆𝜆2

8𝜋𝜋𝑛𝑛2 𝑔𝑔(𝜈𝜈0) 

𝜎𝜎(𝜈𝜈0)＝1.08 × 10
−14𝑠𝑠𝜇𝜇2 

(g) 

From (7.5.4), we have the absorption cross section definition. 

𝜎𝜎𝑎𝑎𝑎𝑎𝑠𝑠(𝜈𝜈) = (𝑔𝑔2/𝑔𝑔1)𝜎𝜎𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖(𝜈𝜈) 

𝜎𝜎𝑎𝑎𝑎𝑎𝑠𝑠(𝜈𝜈0) =
3

5
𝜎𝜎𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖(𝜈𝜈0) = 6.48 × 10

−15𝑠𝑠𝜇𝜇2 

(h) 

(1) This problem is very similar to Problem 5.1 in Verdeyen. Let’s draw the equivalent 

lens waveguide. 

 
By symmetry, the minimum beam waist, z=0, should appear in the middle of the two 

lenses, which is exactly the position of the top mirror. 

(2) 

Similar to (3.5.1), we need to find the phase match condition for this cavity. 

𝑘𝑘 × 3𝑑𝑑/2 − (1 + 𝜇𝜇 + 𝑎𝑎)𝑡𝑡𝑎𝑎𝑛𝑛−1 �3𝑑𝑑
2𝐿𝐿0

� = 𝑞𝑞𝜋𝜋 

𝑘𝑘 =
2𝜋𝜋
𝜆𝜆 =

2𝜋𝜋𝜈𝜈
𝑠𝑠  

2𝜋𝜋𝜈𝜈
𝑠𝑠 × 3𝑑𝑑 − 2(1 + 𝜇𝜇 + 𝑎𝑎)𝑡𝑡𝑎𝑎𝑛𝑛−1 �3𝑑𝑑

2𝐿𝐿0
� = 2𝑞𝑞𝜋𝜋 



𝜈𝜈𝑖𝑖,𝑝𝑝,𝑞𝑞 =
𝑠𝑠

6𝜋𝜋𝑑𝑑 (2𝑞𝑞𝜋𝜋 + 2(1 + 𝜇𝜇 + 𝑎𝑎)𝑡𝑡𝑎𝑎𝑛𝑛−1 �3𝑑𝑑
2𝐿𝐿0

�) 

(3) 

𝐿𝐿0 = 0.58𝜇𝜇 

𝜈𝜈1,0,𝑞𝑞 − 𝜈𝜈0,0,𝑞𝑞 =
𝑠𝑠

6𝜋𝜋𝑑𝑑 2𝑡𝑡𝑎𝑎𝑛𝑛−1 �3𝑑𝑑
2𝐿𝐿0

� = 58𝑀𝑀𝐺𝐺𝐿𝐿 

  



Problem 4.7 (Verdeyen Problem #8.35) 

(a) 

𝑁𝑁2𝑒𝑒
𝑁𝑁0𝑒𝑒

=
1

8
 

𝑁𝑁1𝑒𝑒
𝑁𝑁0𝑒𝑒

=
1

4
 

𝑁𝑁0𝑒𝑒 + 𝑁𝑁1𝑒𝑒 + 𝑁𝑁2𝑒𝑒 = 𝑁𝑁 = 2.2 × 10
20𝑠𝑠𝜇𝜇−3 

11

8
𝑁𝑁0𝑒𝑒 = 2.2 × 10

20𝑠𝑠𝜇𝜇−3 

𝑁𝑁0𝑒𝑒 = 1.6 × 10
20𝑠𝑠𝜇𝜇−3 

𝑁𝑁1𝑒𝑒 = 4 × 10
19𝑠𝑠𝜇𝜇−3 

𝑁𝑁2𝑒𝑒 = 2 × 10
19𝑠𝑠𝜇𝜇−3 

(b) Skip because there is no absorption cross section. 

(c) 

(1) 

We can modify (8.3.2ab) to get the rate equations. 

There is no pumping to state 1, so 𝑅𝑅1 = 0. Neglect the stimulated emission. 

𝑑𝑑𝑁𝑁2
𝑑𝑑𝑡𝑡 = 𝑅𝑅2 −

𝑁𝑁2 − 𝑁𝑁2𝑒𝑒
𝜏𝜏2

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑡𝑡 =

𝑁𝑁2 − 𝑁𝑁2𝑒𝑒
𝜏𝜏2

− 𝑁𝑁1 − 𝑁𝑁1𝑒𝑒
𝜏𝜏1

 

(2) 

Assume the system is in steady state, meaning all derivatives should be equal to zero. 

𝑁𝑁2 − 𝑁𝑁2𝑒𝑒
𝜏𝜏2

= 𝑅𝑅2 

𝑁𝑁2 − 𝑁𝑁2𝑒𝑒
𝜏𝜏2

=
𝑁𝑁1 − 𝑁𝑁1𝑒𝑒

𝜏𝜏1
 

For optical transparency, it means the populations in both state 1 and 2 should be 

equal. So there is no absorption. 

𝑁𝑁1 − 𝑁𝑁1𝑒𝑒 = 𝑅𝑅2𝜏𝜏1 

𝑁𝑁2 − 𝑁𝑁2𝑒𝑒 = 𝑅𝑅2𝜏𝜏2 

𝑁𝑁2 = 𝑁𝑁1 

𝑁𝑁2 = 𝑅𝑅2𝜏𝜏2 + 𝑁𝑁2𝑒𝑒  

𝑅𝑅2𝜏𝜏2 + 𝑁𝑁2𝑒𝑒 − 𝑁𝑁1𝑒𝑒 = 𝑅𝑅2𝜏𝜏1 



𝑅𝑅2 =
𝑁𝑁2𝑒𝑒 − 𝑁𝑁1𝑒𝑒
𝜏𝜏1 − 𝜏𝜏2

 

(3) 

𝑅𝑅2 =
1

𝜏𝜏1
𝑁𝑁2𝑒𝑒 − 𝑁𝑁1𝑒𝑒
1 − 𝜏𝜏2/𝜏𝜏1

 

From (a), we know the difference between equilibrium concentrations of state 2 and 

1 are less than zero. 

𝑁𝑁2𝑒𝑒 − 𝑁𝑁1𝑒𝑒 < 0 

It’s obvious that we need 𝜏𝜏2/𝜏𝜏1 > 1 to have a positive pumping rate for optical 

transparency. Absorption coefficient should be proportional to 𝑁𝑁1 − 𝑁𝑁2. Because it 

need more populations in the lower state in order to have absorption. 

𝛼𝛼 = 𝜎𝜎(𝑁𝑁1 − 𝑁𝑁2) 

𝛼𝛼 = 𝜎𝜎(𝑁𝑁1𝑒𝑒 − 𝑁𝑁2𝑒𝑒 + 𝑅𝑅2(𝜏𝜏1 − 𝜏𝜏2)) 

For simplicity, I am using following parameters for the plot. 

𝑁𝑁1𝑒𝑒 = 4 

𝑁𝑁2𝑒𝑒 = 2 

 
  



Problem 4.8 (Verdeyen Problem #9.1) 

(a) 

From (7.6.17), we have the Doppler broadening linewidth. 

∆𝜈𝜈𝐷𝐷 = �8𝑘𝑘𝑇𝑇𝑙𝑙𝑛𝑛2

𝑀𝑀𝑠𝑠2 𝜈𝜈0 

𝑇𝑇 = 273 + 300 = 573𝐾𝐾 

𝑀𝑀 = 20𝑎𝑎𝜇𝜇𝑓𝑓 

𝜈𝜈0 =
𝑠𝑠

6328Å = 4.74 × 10
14𝐺𝐺𝐿𝐿 

∆𝜈𝜈𝐷𝐷 = 1.81𝐺𝐺𝐺𝐺𝐿𝐿 

(b) 

From (7.2.4b), we have the number of modes per unit volume in blackbody radiation. 

𝑎𝑎(𝑣𝑣)𝑑𝑑𝑣𝑣 =
8𝜋𝜋𝑛𝑛3𝑣𝑣2
𝑠𝑠3 𝑑𝑑𝑣𝑣 

𝑁𝑁 =
8𝜋𝜋𝑛𝑛3𝑣𝑣2∆𝜈𝜈𝐷𝐷

𝑠𝑠3 𝑒𝑒 = 3.799 × 10
8 

(c) 

𝐹𝐹𝐹𝐹𝑅𝑅 =
𝑠𝑠

2𝑛𝑛𝑑𝑑 = 150𝑀𝑀𝐺𝐺𝐿𝐿 

∆𝜈𝜈𝐷𝐷
2

= 905𝑀𝑀𝐺𝐺𝐿𝐿 

There are 13 modes within ±
∆𝜈𝜈𝐷𝐷
2 . 

(d) 

Combine the two previous results. We can calculate the probability. 

𝑎𝑎 =
13

3.799 × 108
= 3.42 × 10

−8 

(e) and (f) 

𝑇𝑇𝐿𝐿𝑎𝑎𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛 𝑠𝑠𝑛𝑛𝑠𝑠𝐿𝐿𝑔𝑔𝑒𝑒 =
1.24

0.6328
= 1.95954𝑠𝑠𝑒𝑒 

𝑈𝑈𝑎𝑎𝑎𝑎𝑠𝑠𝐿𝐿 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑠𝑠 𝑠𝑠𝑛𝑛𝑠𝑠𝐿𝐿𝑔𝑔𝑒𝑒 = 20.6657𝑠𝑠𝑒𝑒 

𝜂𝜂 =
1.95

20.66
= 9.44% 

  

E2 

E1 

E0 

20.66eV 

1.95eV 

18.71eV 



(g) 

𝜎𝜎(𝜈𝜈0) = 𝐴𝐴21
𝜆𝜆2
8𝜋𝜋𝑛𝑛2 𝑔𝑔(𝜈𝜈0) = 3.676 × 10

−13𝑠𝑠𝜇𝜇2 

𝑔𝑔(𝜈𝜈0) = �4𝑙𝑙𝑛𝑛2𝜋𝜋
1

∆𝜈𝜈𝐷𝐷
= 5.19 × 10

−10 

𝜎𝜎(𝜈𝜈0) = 5.42 × 10
−13𝑠𝑠𝜇𝜇2 

(h) 

𝛾𝛾0 = 𝜎𝜎(𝜈𝜈0) �𝑁𝑁2 −
𝑔𝑔2
𝑔𝑔1
𝑁𝑁1� = 0.05𝜇𝜇−1 

𝑔𝑔2 = 2𝐽𝐽2 + 1 = 3 

𝑔𝑔1 = 2𝐽𝐽1 + 1 = 5 

𝑁𝑁1 = 10
10𝑠𝑠𝜇𝜇−3 

𝑁𝑁2 = 6.92 × 10
9𝑠𝑠𝜇𝜇−3 
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