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Assignment 6 

 
Solution: 

Assumptions - Momentum is conserved, light holes are ignored. 

Diagram: 

a) Using Eq. 11.4.5a Verdeyen, 

ΔEc = 𝐸2 − 𝐸𝑐 =
𝑚ℎ

𝑚𝑒 + 𝑚ℎ
(ℎ𝜈 − 𝐸𝑔) =

0.55 𝑚𝑜

0.55 𝑚0 + 0.067𝑚0

(0.05) = 0.0446 𝑒𝑉 

Using Eq. 11.4.5b Verdeyen, 

ΔEv = 𝐸𝑣 − 𝐸1 =
𝑚𝑒

𝑚𝑒 + 𝑚ℎ
(ℎ𝜈 − 𝐸𝑔) =

0.067𝑚0

0.55 𝑚0 + 0.067𝑚0

(0.05) = 0.00543 𝑒𝑉 

b) Using Eq 11.2.9 Verdeyen,  

𝑁 =
1

3𝜋2
[
2𝑚Δ𝐸𝑐

ℏ2
]

3
2

= 7.4 × 1023𝑚−3 = 7.4 × 1017𝑐𝑚−3 

This is the minimum number of electron-hole pairs required to achieve optical gain.  
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Solution: 

(a) 

Using  

𝐸 = ℎ𝜈 =
ℎ𝑐

𝜆
⇒ 𝜆 =

ℎ𝑐

𝐸
=

ℎ𝑐

1.476𝑒𝑉
= 0.84𝜇𝑚 

(b)  

From the diagram given in the problem,  

𝐸′ = ℎ𝛥𝑣 ⇒ 𝛥𝜈𝐹𝑊𝐻𝑀 =
ℎ

𝐸′
=

ℎ

2 × 12 𝑚𝑒𝑉
= 5.1 × 1012𝐻𝑧 = 169 𝑐𝑚−1

 

(c)  

We know that ∫ 𝑔(𝜈)
∞

0
𝑑𝑣 = 1,  
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From part (a), 𝑐 = 𝜆𝜈 ⇒ 𝜈0 = 3.57 × 1014𝐻𝑧 

𝛥𝜈𝐵𝑎𝑠𝑒 = 10.2 × 1012𝐻𝑧 

𝛾0 = 𝜎𝑁𝑔(𝜈0) 

𝑔(𝜈0) =
2

𝛥𝜈𝐵𝑎𝑠𝑒
= 2 × 10−13𝑠 

Condition for threshold:  

𝑅1𝑅2 exp[(𝛾0 − 𝛼)2𝑙𝑔] = 1 ⇒ 𝛾0 = 𝛼 +
1

2𝑙𝑔
ln

1

𝑅1𝑅2
=

3.6

680𝜇𝑚
+

1

2 × 680𝜇𝑚
ln

1

(0.3)(0.3)

= 27.7 𝑐𝑚−1 

𝛾0 =
𝜆0

2

2𝜋𝑛2
(

𝑛𝑒

𝜏
) 𝑔(𝜈0) =

(0.84𝜇𝑚)2

2𝜋(3.6)2
(

𝑛𝑒

1 𝑛𝑠
) 2 × 10−13 = 27.7 𝑐𝑚−1 

Inverted carrier density,  

𝑛𝑒 =
27.7 𝑐𝑚−1

4.26 × 10−15𝑐𝑚2
= 6.5 × 1015𝑐𝑚−3 

(d) 

𝑃 = [(𝛽𝑛𝑒
2 +

𝑛

𝜏
) (ℎ𝜈0)] ∙ 𝑉𝑜𝑙𝑢𝑚𝑒

= [(𝛽(1016)2 +
1016

1𝑛𝑠
) (ℎ(0.84 𝜇𝑚))] ∙ (680 × 230 × 1)𝜇𝑚3 = 369 𝑚𝑊 

 

 

Solution: 
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Assumption: the given diagram is drawn to scale.  

Total energy gap,  

𝐸 = 𝐸𝑔 + (𝐹𝑛 − 𝐸𝑐) + (𝐸𝑣 − 𝐹𝑝) = 1.43 𝑒𝑉 + (0.052)𝑒𝑉 

Using the plot given above, we can read the loss coefficient off it which corresponds to an 

energy of 0.052 𝑒𝑉 from 𝐸𝑔.  

𝛼 ≈ 235 𝑐𝑚−1 

Photon energy,  

𝐸 = ℎ𝜈 = 1.43 + 0.052 = 1.482 𝑒𝑉 

 

 

 

Solution: 

(a) 
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For the given cavity, 

𝜏𝑝 =
(

2𝑛𝑑
𝑐 )

1 − exp(−2𝛼𝑑𝑅1𝑅2)
=

(
2 × 3.6 × 400𝜇𝑚

𝑐 )

1 − exp(−2 × 2𝑐𝑚−1 × 400𝜇𝑚 × (0.98 × 0.312))

= 1.35 × 10−11𝑠 

(b) 

FSR for the given cavity,  

𝐹𝑆𝑅 =
𝑐

2𝑛𝑑
= 104.2 × 1012𝐺𝐻𝑧 

𝛥𝜆

𝜆
=

𝛥𝜈

𝜈
→ 𝛥𝜆 =

𝛥𝜈

𝜈
∙ 𝜆 = 104.2 × 1012𝐺𝐻𝑧 × 850𝑛𝑚 = 2.51 𝐴0 

(c) 

Condition for threshold:  

𝑅1𝑅2 exp[(𝛾𝑡ℎ − 𝛼𝑠) ∙ 2𝑑] = 1 

𝛾𝑡ℎ = 𝛼𝑠 +
1

2𝑑
ln (

1

𝑅1𝑅2
) = 2 +

1

2 ∙ (400𝜇𝑚)
ln (

1

0.98 × 0.312 
) = 16.54 𝑐𝑚−1 

(d), (e) 

Using Eq. 11.4.15c Verdeyen, For gain, we need, 

𝐸𝑔 < [ℎ𝜈 = 𝐸2 − 𝐸1] < 𝐹𝑛 − 𝐹𝑝 

For quantum well lasers, the density of states in the energy interval 𝑑𝐸 is (Eq. 11.6.6) 

𝜌(𝐸)𝑑𝐸 =
1

2𝜋2
(

2𝑚∗

ℏ2
) (

2𝑥1𝑒

𝑙𝑧
) 𝑑𝐸 

When T=0,  

𝑛 = ∫ 𝜌(𝐸)𝑑𝐸

𝐹𝑛

𝐸1

= ∫
1

2𝜋2
(

2(0.067𝑚0)

ℏ2
) (

2(1.13)

100𝐴0
) 𝑑𝐸

𝐹𝑛

𝐸1

=
1

2𝜋2
(

2(0.067𝑚0)

ℏ2
) (

2(1.13)

100𝐴0
) [𝐹𝑛 − 𝐸1] = 1018𝑐𝑚−3 

𝐹𝑛 − 𝐸1 =
1018𝑐𝑚−3

1
2𝜋2 (

2(0.067𝑚0)
ℏ2 ) (

2(1.13)
100𝐴0 )

= 0.050 𝑒𝑉 = 50𝑚𝑒𝑉 

(f) 

Recombination dominates when we have 𝑛 = 𝑝 = 2 × 1018 
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Given, 𝜆 = 514.5 𝑛𝑚 and 𝛽 = 2 × 10−10𝑐𝑚3/𝑠 

𝑃 = [(𝛽𝑛𝑒
2 +

𝑛

𝜏
) (ℎ𝜈0)] → 𝑝 =

𝑃

ℎ𝜈0
= [(𝛽𝑛𝑒

2 +
𝑛

𝜏
)] = 385 ×

106𝑊

𝑐𝑚2
 

 

 

 

Solution: 

(a)  

When there is no pumping, as it is given that the populations in (1,0) are related by the 

Boltzmann factor, we have,  
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𝑁1 = (
exp −

𝛥𝐸𝑣

𝑘𝑇

1 + exp −
𝛥𝐸𝑣

𝑘𝑇

) × 1020𝑐𝑚−3 = 1.77 × 1018𝑐𝑚−3 

(b) Given that absorption coeff. in the absence of pumping is 20 𝑐𝑚−1.  

20 = 𝑁1𝜎𝑎𝑏𝑠 → 𝜎𝑎𝑏𝑠 =
20 𝑐𝑚−1

1.77 × 1018𝑐𝑚−3
= 1.17 × 10−17𝑐𝑚−2 

(c) 

We are given that thermal processes keep populations in (3,2) related by Boltzmann factor, 

therefore,  

𝑁3

𝑁2
= exp −𝛥𝐸𝑐/𝑘𝑇 = (exp −

0.312

𝑘𝑇
) = 5.87 × 10−6 

(d) 

Using principle of conservation of Atoms,  

𝑁 = 𝑁0 + 𝑁1 + 𝑁2 + 𝑁3 

But, we know that 𝑁3 ≪ 𝑁1 & 𝑁2 and can be ignored. 

And we also know that 𝑁1 + 𝑁2 < 𝑁0 & 𝑁.   

Thus, 𝑁1 ≈ 𝑁2 = 1.77 × 1018𝑐𝑚−3 when we have optical transparency.  

(e)  

𝑃 = 𝑉 (
𝑛2

𝜏21
) (ℎ𝜈3,0) →

𝑃

𝑉
=

(2 × 1018)

10−9
× (ℎ𝜈3,0) = 471 × 106𝑊/𝑐𝑚2 

 

 

 



Problem 6.2 

(a) 

Spontaneous emission rate can be written as following. 

𝑅𝑠𝑝 = 𝐴 × 𝜌𝑗𝑛𝑡(𝑣)𝑓𝐶(𝐸2)[1 − 𝑓𝑉(𝐸1)] 

𝑅𝑠𝑝 = 𝐴
1

2𝜋2
(
2𝑚𝑟

∗

ℏ2
)3/2√ℎ𝑣 − 𝐸𝑔

1

1 + 𝑒
𝐸2−𝐹𝑛
𝑘𝑇

𝑒
𝐸1−𝐹𝑝
𝑘𝑇

1 + 𝑒
𝐸1−𝐹𝑝
𝑘𝑇

 

We want to express everything in terms of photon energy. From (11.4.5ab), we have 

𝐸2 − 𝐸𝐶 =
𝑚ℎ

∗

𝑚𝑒
∗ +𝑚ℎ

∗ (ℎ𝑣 − 𝐸𝑔) =
𝑚𝑟

∗

𝑚𝑒
∗
(ℎ𝑣 − 𝐸𝑔) 

𝐸𝑉 − 𝐸1 =
𝑚𝑒

∗

𝑚𝑒
∗ +𝑚ℎ

∗ (ℎ𝑣 − 𝐸𝑔) =
𝑚𝑟

∗

𝑚ℎ
∗ (ℎ𝑣 − 𝐸𝑔) 

𝑚𝑟
∗ =

𝑚𝑒
∗𝑚ℎ

∗

𝑚𝑒
∗ +𝑚ℎ

∗  

Let’s assume the energy reference point is the valence band maximum point, 

meaning 𝐸𝑉 = 0, 𝐸𝐶 = 𝐸𝑔. 

𝐸2 =
𝑚𝑟

∗

𝑚𝑒
∗
(ℎ𝑣 − 𝐸𝑔) + 𝐸𝑔 

−𝐸1 =
𝑚𝑟

∗

𝑚ℎ
∗ (ℎ𝑣 − 𝐸𝑔) 

Substitute these two into the first equation, then we can plot it.

 
Blue curve corresponds to T=77K. Orange corresponds to T=300K. 

 First, high temperature has higher peak intensity in the plot. This can be 

understood easily. Because the spontaneous emission results from the carrier 

recombination. For higher temperature, it means that the carrier distribution 

tail will go to higher energy in conduction, while hole will go lower into valence 

band. So we have more carriers to recombine and higher intensity. 

 Higher temperature’s peak intensity is at higher energy. This is similar behavior. 

Because higher temperature moves electron distribution upward in band 

1.45 1.50 1.55 1.60
hv eV

2.0 1051

4.0 1051

6.0 1051

8.0 1051

1.0 1052

1.2 1052

1.4 1052
Spontaneous emission rate

Rsp hv, 77, 1.4, 0

Rsp hv, 300, 1.4, 0

Solution by Kevin Lee 



diagram, while hole distribution moves downward. Therefore, the maximum 

emission has higher energy. 

 

(b) 

To plot the gain spectrum, we can use the formula in the class. 

𝛾0(ℎ𝑣) = 𝐴
𝜆2

8𝜋𝑛2
[ℎ × 𝜌𝑗𝑛𝑡(ℎ𝑣)][𝑓𝑐(𝐸2) − 𝑓𝑣(𝐸1)] 

The same strategy can be used here to replace 𝐸1 and 𝐸2. 

𝜌𝑗𝑛𝑡(ℎ𝑣) =
1

2𝜋2
(
2𝑚𝑟

∗

ℏ2
)3/2√ℎ𝑣 − 𝐸𝑔 

 

1) First case is the blue curve. This case means that the both quasi-electron 

and hole Fermi levels are in the middle of the band gap. Therefore, there is 

no population inversion, we have negative gain, which means absorption. 

2) Second case is the orange curve. Here the quasi-Fermi levels of electron 

and hole are at the band edge. This is the threshold point that the system 

is going to have gain. 

3) Third case is green curve. Now quasi-Fermi level of electron is above 

conduction band minimum, which means excess electrons in the 

conduction band. Quasi-Fermi of hole is also below the valence band 

maximum, meaning excess hole exists. Therefore, we have population 

inversion created in the semiconductor. There is gain in the material. 

 

(c) 

Now I am going to plot the quantum well laser gain spectrum. The only difference 

from the previous problem is that the density of states is different for quantum well 

1.2 1.4 1.6 1.8 2.0
hv eV

400000

300000

200000

100000

100000

200000

Gain coefficent m 1
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0 hv, 300, 1.4, 0

0 hv, 300, 1.5, 0.05



system. 

Let’s first observe what the density of states. 

Its analytical form is the following. 

𝜌𝑗𝑛𝑡
2𝐷 =

𝑚𝑟
∗

𝜋ℏ2𝐿𝑧
Θ[ℎ𝑣 − (𝐸𝑔 + 𝐸𝑛 + 𝐸𝑝)] 

𝐸𝑛 =
ℏ2

2𝑚𝑒
∗
(
𝜋𝑛𝑧
𝐿𝑧

)2, 𝑛𝑧 = 1,2,3… 

𝐸𝑝 =
ℏ2

2𝑚ℎ
∗ (
𝜋𝑛𝑧
𝐿𝑧

)2, 𝑛𝑧 = 1,2,3… 

 

 

𝑓𝑐(ℎ𝑣) =
1

1 + 𝑒

𝑚𝑟
∗

𝑚𝑒
∗(ℎ𝑣−𝐸𝑔)−𝐸𝑛−𝐹𝑛

𝑘𝑇

 

𝑓𝑣(ℎ𝑣) =
1

1 + 𝑒

−
𝑚𝑟
∗

𝑚𝑒
∗(ℎ𝑣−𝐸𝑔+𝐹𝑝)−𝐸𝑝

𝑘𝑇

 

  



There are two cases I can plot this problem for the inversion. Let’s say the electron 

and hole quasi-Fermi levels are both sitting where they were, not shifted. 

 
So you can see that the peak gain is actually decreased. This is expected. Because the 

quantum confinement shifts the conduction and valence band edges. If the quasi-

Fermi levels stay where they were, effectively, we are having less carrier in the 

bands. 

Let’s assume that quasi-Fermi levels’ differences are away from the new band edges 

due to the quantum confinement. 

 

So now I shift all the cases in problem (b) with respect to the quantized energies of 

first hole and electron states. We can see that the maximum gain is actually higher 

than the bulk case. 

(d) 

For 1D quantum wire, the density of states should be modified as following. 

𝜌𝑗𝑛𝑡
1𝐷 =

2

𝜋𝐿𝑥𝐿𝑦
√
2𝑚𝑟

∗

ℏ2
Θ[ℎ𝑣 − (𝐸𝑔 + 𝐸𝑛 + 𝐸𝑝)] 

If I plot it out, it should look something like the following. 



 

So if I redo the two plots I had in the previous problem. 

 

 

So we don’t have any gain for quasi-Fermi levels are the same with respect to the 

original band edges. This is also expected. Because quantum confinement is too 

large, that the quasi-Fermi levels are less than the 1 bound states’ energies. 

For example, the 1st electron bound state energy is 0.624eV and 1st hole bound state 

energy is 0.1eV. They’re both larger than the original quasi-Fermi levels. 
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