
MSE 5460/ECE 5570, Spring Semester 2016
Compound Semiconductors Materials Science

Debdeep Jena (djena@cornell.edu), Depts. of ECE and MSE, Cornell University

Assignment 1

Policy on assignments: Please turn them in by 5pm, Thursday, February 18th, 2016.

General notes: Present your solutions neatly. Do not turn in rough unreadable worksheets - learn to take

pride in your presentation. Show the relevant steps, so that partial points can be awarded. BOX
your final answers where applicable. Draw figures wherever necessary. Please print out this question sheet
and staple to the top of your homework. Write your name and email address on the cover.

Problem 1.1) Warmup: Silicon and Compound Semiconductors

MSS (Rockett) Problems 2.6.1 and 2.6.3.

Problem 1.2) Warmup: Optical Absorption Coefficients

Sketch and explain the microscopic physics behind the optical absorption coefficient spectra of typical a)
atoms, b) amorphous solids, c) semiconductors, and d) metals. State the typical quantitative absorption
coefficients.

Problem 1.3) Energy Bandstructure of 2D Graphene and BN

In this problem, we will quantitatively calculate the electronic bandstructure for 2D graphene and 2D Boron
Nitride as our first ‘elemental’ and ‘compound’ semiconductors respectively.

a) Show that if the energies allowed for the electron in individual atoms A and B are EA and EB , and the
lowering of energy because of hopping of the electron between the atoms between the atoms is U , the ener-

gies allowed for the electron after the formation of a chemical bond are E± = EA+EB

2 ±
√

(EA−EB

2 )2 + U2.

Because each allowed electron state can hold two electrons of opposite spins, what is the lowering of energy
due to the formation of the bond?

b) Now consider 2D Boron Nitride (or graphene), whose atomic basis has two atoms: B & N for BN
(and C & C for graphene). We saw in class that the whole 2D crystal may be generated by repeating this

two-atom basis, by translating by the two primitive lattice vectors a1 = a( 3
2 ,
√
3
2 ) and a2 = a( 3

2 ,−
√
3
2 ), where

a is the distance between the A and B atoms. Sketch the basis, the lattice, and these vectors, and show
that the three vectors from any atom to the three nearest neighbors are n1 = a

2 (1,
√

3), n2 = a
2 (1,−

√
3),

and n3 = −a(1, 0). We will look at only the pz orbital bands. For on-site orbital energies EA and EB and
a hopping energy t, show that the off-diagonal (hopping) term is h(k) = −t(eik·n1 + eik·n2 + eik·n3), and

the resulting bandstructure is E± = A±

√
B2 + t2[1 + 4 cos(

3

2
kxa) cos(

√
3

2
kya) + 4 cos2(

√
3

2
kya)] , where

A = EA+EB

2 and B = EA−EB

2 .

c) Using the following parameters, make 2D plots of the bandstructures of BN and graphene similar to
shown in class. For BN: EA = +2.9 eV, EB = −2.9 eV, t = −2.9 eV, and a = 0.15 nm. For graphene,
EA = EB = 0 eV, t = 3.0 eV, a = 0.15 nm. Describe the differences and similarities between them. Specif-
ically, find the band-edge effective masses and bandgap for BN, and the Fermi velocity characterizing the
slope of the E − k Dirac cone of Graphene. Relate these analytically to the known parameters.
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Problem 1.4) Energy Bandstructure of Silicon and GaAs

In this problem we extend the ideas of problem 1.3 to calculate the tight-binding bandstructure of Silicon
and GaAs, which are 3D semiconductors. The procedure is the same, just the matrices are larger. Do not
be turned off by the forbidding looking matrix below-it is simpler than you think, and understanding it will
put you in a select league! Because for graphene and BN we looked at a single |pz〉 orbital and a 2-atom
basis, the matrix was 2×2. For Silicon and GaAs, the basis has two atoms too, but attached to each atom
will be 4 orbitals: |s〉, |px〉, |py〉, |pz〉, and the chemical bonding is sp3. Thus, to get the energy bandstructure
we have to solve a 8x8 matrix numerically.

a) Sketch the crystal structure, the atomic basis, and the nearest neighbor vectors n1 = a
4 (1, 1, 1), n2 =

a
4 (−1,−1, 1), n3 = a

4 (−1, 1,−1), n4 = a
4 (1,−1,−1), where a is the lattice constant (6= nearest neighbor

distance!). Sketch the orbitals centered at each site and identify the overlaps, and the angles between them.

b) Because of various orbital overlaps ss, spσ, ppσ and ppπ, there are multiple hopping terms. Examine the
matrix carefully and explain its structure. Specifically, explain all the diagonal terms, and the zeroes. Then
explain the non-zero off-diagonal terms by invoking symmetries, geometries, and orbital overlaps.



|sA〉 |pAx 〉 |pAy 〉 |pAz 〉 |sB〉 |pBx 〉 |pBy 〉 |pBz 〉
〈sA| EAs 0 0 0 −V0g0(k) V1g1(k) V1g2(k) V1g3(k)
〈pAx | 0 EAp 0 0 −V1g1(k) V2g0(k) V3g3(k) V3g2(k)

〈pAy | 0 0 EAp 0 −V1g2(k) V3g3(k) V2g0(k) V3g1(k)

〈pAz | 0 0 0 EAp −V1g3(k) V3g2(k) V3g1(k) V2g0(k)

〈sB | c.c. c.c. c.c. c.c. EBs 0 0 0
〈pBx | c.c. c.c. c.c. c.c. 0 EBp 0 0

〈pBy | c.c. c.c. c.c. c.c. 0 0 EBp 0

〈pBz | c.c. c.c. c.c. c.c. 0 0 0 EBp


, (1)

where c.c. stands for the complex conjugate (e.g. H51 = H?
15). The constants in this matrix are

V0 = Vssσ,
V1 = 1√

3
Vspσ,

V2 = 1
3Vppσ −

2
3Vppπ, and

V3 = 1
3Vppσ + 1

3Vppπ,

and the nearest neighbor ‘hopping’ phases are

g0(k) = eik·n1 + eik·n2 + eik·n3 + eik·n4 ,
g1(k) = eik·n1 − eik·n2 − eik·n3 + eik·n4 ,
g2(k) = eik·n1 − eik·n2 + eik·n3 − eik·n4 , and
g3(k) = eik·n1 + eik·n2 − eik·n3 − eik·n4

for the 4 nearest neighbors. The eigenvalue spectrum of the 8 × 8 matrix above yields the bandstructure
E(k) of Silicon, GaAs, and all 3D semiconductors of the diamond-cubic or zinc-blende families. The electron
wavevector k = (kx, ky, kz) is three dimensional: the electron energy depends on the direction it moves.

c) Set up the matrix above in Mathematica, Matlab, Python (or any tool you love!) to plot the energy band-
structure E(k) for k from L↔ Γ↔ X↔ K↔ Γ. For Silicon, EAs = EBs = −13.55 eV, EAp = EBp = −6.52
eV, Vssσ = +2.03 eV, Vspσ = +2.55 eV, Vppσ = +4.55 eV, Vppπ = +1.09 eV, and a = 0.543 nm.

d) Repeat the bandstructure plot for our first 3D compound semiconductor: GaAs! Use EGas = −11.37 eV,
EAss = −17.33 eV, EGap = −4.9 eV, EAsp = −7.91 eV, Vssσ = +1.70 eV, Vspσ = +2.15 eV, Vppσ = +3.44 eV,
Vppπ = +0.89 eV, and a = 0.565 nm. If you have worked your way to this stage, congratulations, your early
hard work will pay off handsomely in the course.
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