3.1) a_{1}

1. If both sides of the junction are intrinsic the Fermi teal will be appose in the mululle of the gap on exch side. So:
before
E_{c} \qquad
\qquad

when they come in contact, the bands will bend just slightly, but the main features will be the offsets:
after

$\sqrt{\text { AE g }}$
2. Now they are both p doped, so:
before
\qquad
\qquad
$1 \Delta E_{v}$

3, before:
\qquad
\qquad
\qquad
\qquad
\qquad
4. \qquad

Now there will be some band bending, but it will be small:
after
\qquad
$\cdots \mathcal{I}_{D E_{V}}$
after:

The but in potential is just determined for $E_{F N} E_{F P}$. which can easily be seen graphically

Using the values from the paper, $\Delta E_{c}=0.23 \mathrm{cV}$ $\Delta E_{V}=0.15 \mathrm{eV}$
$E_{G 1}=1.8 \mathrm{eV}$

$$
E_{G_{2}}=1.42 \mathrm{cV}
$$

4. (continued) Just from the diayrum, then, $q V_{B I}=E_{F N N^{\prime}}-E_{F P}=-\delta_{N}+\Delta E_{c}+E_{G z}-\delta_{P}$ δ_{N} ant δ_{p} core for the doping:

$$
\delta_{N}=k T \ln \left(\frac{N_{c}}{N_{D}}\right), \quad \delta_{p}=k T \ln \left(\frac{N_{v}}{N_{A}}\right)
$$

$$
\text { For } \begin{aligned}
& \mathrm{Al}_{0.6} G a r o, n A_{s}, N_{c}=6.52 \times 10^{17} \mathrm{~cm}^{-3} \\
& \text { Gats, } N_{v}=9 \times 10^{18} \mathrm{~cm}^{-3}
\end{aligned}
$$

So with these $H_{s}, \delta_{8}=30.4 \mathrm{meV}, \quad \delta_{p}=-2.7 \mathrm{meV}$
So $V_{B I}=\frac{\Delta E_{2}+E_{G 2}-\delta_{N} \delta_{0}}{q}=1.62 \mathrm{~V}$ in magnitude
5. The system looks like: Using the depletion approx, p looks like:

$$
\text { Gauss's Law } \frac{\partial E}{\partial x}=\frac{p}{k \varepsilon_{0}}
$$

Intending to get $E: E(x)=\left\{\begin{array}{l}\frac{q^{N_{p}}}{k_{n} \varepsilon_{0}}\left(x+x_{n}\right),-x_{n}<x<0 \\ \frac{-q^{N} N_{A}}{K_{p}^{\varepsilon_{0}}}\left(x-x_{p}\right), Q<x<x_{p}\end{array}\right.$

Integrating again to gd V; with $V\left(x L-x_{n}\right)=0 ; V(x)=-\int E d x^{\prime}$ and $V\left(x_{p}\right)=V_{B I}$
 $\left(\frac{q^{N}}{2 K_{p} \varepsilon_{0}}\left(x-x_{p}\right)^{2}-V_{B I I} \circ<x \angle x_{p}\right.$. These must be $=$ at $x=0$, so.
(1)

$$
\frac{-q N_{B}}{2 k_{N} \varepsilon_{0}} x_{n}^{2}=\frac{q^{N_{A}}}{2 K_{p} K_{p}} x_{p}^{2}-V_{B I} \quad \text { Finally, charge conservation raqias } N_{p} x_{n}=N_{A} x_{p}^{(2)}
$$

Solving (1) and (2) for x_{n} and x_{p} gives:

$$
\begin{aligned}
& \text { oking (1) and (2) for } x_{n} \text { and } x_{p} \text { gives: } \\
& x_{n}=\sqrt{\frac{2 K_{p} k_{n} \varepsilon_{0} N_{A} V_{B I}}{q N_{p}\left(N_{A} K_{p}+N_{p} k_{N}\right)}} \quad x_{p}=\sqrt{\frac{2 K_{p} K_{N} \varepsilon_{0} N_{0} V_{B I_{0}}}{q N_{A}\left(N_{A} K_{p}+N_{0} k_{N}\right)}} \rightarrow x_{n}=97.4 \mathrm{~nm}, x_{p}=1.95 \mathrm{~nm} \\
& 217 \times 10^{7} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Ploughing in to get $E\left(0^{-}\right), E\left(0^{+}\right): E\left(0^{-}\right)=\frac{q^{N_{0}}}{K_{n} \varepsilon_{0}} X_{n}=3.27 \times 10^{7} \mathrm{~V} / \mathrm{m}$

$$
E\left(0^{+}\right)=\frac{q^{N_{A}}}{K_{p} \varepsilon_{0}} \times p=2.92 \times 10^{7} \mathrm{~V} / \mathrm{m}
$$

Finally, $V_{J N}=-V(0)=\frac{+q N_{D} x_{n}^{2}}{2 K_{D} \varepsilon_{0}}=1.59 \mathrm{~V}$ drop from $x=-\infty \quad V_{J p}=V(0)+V_{B D}=\frac{q_{A} N_{A} x_{p}^{2}}{2 K_{p} \varepsilon_{p}}$ $=28.4 \mathrm{meV}$ dop
6. If the 2 parts are uniforming n-doped, then $\delta_{1} \approx \delta_{2}$, so when the graded structure is pot together the fermi leads will equalize and the conduction band will be flat whit the valence band hus a linear slope.
This will look like.

b. 9. The band diagrams, after creating the junction, will look like,

In all causes, $V(x)$ will he the same:

But we cunget rid of the spile by grading if the diagram of $x(x)$ looks like:

then the row band diagram we become.

The spile will be smoothed, and if the grading is quadratic it will become abruptly flat,
and most of V will dap on the n side.
Then to gat the band diangums we add $-x(x)$ to $-v(x)$ (to get $E_{L}(x)$). To exactly cancel oft the spike, then $X(x)$ at the junction should change in the sarre but opposite nan to how $V(x)$ is changing. AS $N_{A x} \gg N_{D}$, we can apporvimate $V(x)=V_{B E}\left(1-\left(1+\frac{x}{x_{n}}\right)^{2}\right)$ on the n side, $X(x)=X_{\text {crass }}-\Delta X(x)$, generally, so exactly, canceling means $\Delta X(x)=q V(x)=q V_{B D}\left(1-\left(1+\frac{x}{x_{A}}\right)^{2}\right)$)
Finally, we are restricted to $x\left(x_{g}\right)=x_{\text {floats }} \Rightarrow \Delta x\left(x_{y}\right)=\Delta E_{c}$, so at the end of the grading $\Delta E_{c}=q V_{O I}\left(1-\left(1+\frac{x_{y}}{x_{n}}\right)\right) \Rightarrow x_{y}=x_{n}\left(1-1-\frac{\Delta E_{c}}{q V_{B I}}\right)=7.18 \mathrm{~nm}$
The band diancum in equelibrion is above when a forward bias is applied, the builtin effectively be lover, so the grading width will no longer he enough to compensate, and the spile will reappear. The size of the spike will be smalls, throes, because it is partially compensated.
Asimulatal band diagram with 7.2 nm quadratic grading is attached, and inded the spike is all but full_{7} remold.
8. Now, with a linear grading, the compensation will not be as perfect, but we can still fix it sorrenhat.
This time, the criteria is that the electric field created by the linear grading should be equal to the electric field crentul by the depletion region.
The field create be the depletion region is at must $-\left.\frac{d V}{d x}\right|_{x=0^{-}}=E\left(0^{-}\right)$, and the field created by the grading has magnitude $\frac{\Delta E_{c} / q}{x_{y}}$, so $\frac{\Delta E_{c}}{q^{x_{z}}}=E\left(0^{-}\right)$ $\Rightarrow x_{y}=\frac{\Delta E_{c}}{q E\left(0^{-}\right)}=7.04 \mathrm{~nm}$
Now $x(x)$ looks like. So the band diayrum will look like,

where there shale be a sharper corner becuse we overcompensated due to the crony form.
with a furcuard bins of 1.2 V , the effectic $V_{B I}$ will be smaller
so $E\left(0^{-}\right)$will be smaller and x_{y} will no longer be big enough to remove the spike. This will look like:

This time the spike may be slightly muse pronounced beanie the linear grading is imperfect.
A simulated band structure is ayain attracted. It is very similar to the quadratic grading case, except the spike is a little more prononced.

Figure 1: Band diagram corresponding to problem 9, using quadratic grading to remove the spike. The band diagram is shown for no gate bias and 1.2 V forward bias.

Figure 2: Band diagram corresponding to problem 8, using a linear grading to remove the spike. The band diagram is shown for no gate bias and 1.2 V forward bias.
3.2) a. To fine the QW sheet density, we will sturt with the approximate band diaymu:

From this, we can see that the charges put into the system get distributed into the quantum well, the metal /AIGaAs interface, and sore stay at the doping site, so: en charge

Field

$V(x)$ who band offset
To solve this, we approximate $n_{p}=0$, then assert (1) charge conservation
$\frac{-\partial V}{\partial x}=E$

(2) ency conservation
(1) $N_{D}{ }^{+}=n_{m}+n_{S}$
(2) (follaing the band strutur) $\phi_{s}-V_{1}+V_{2}-\Delta E_{c} / e+V_{d i}=0 \rightarrow$ this meirdress cancel the local the ed res cancel of at $V_{1}=\frac{e-n_{m}}{\varepsilon}\left(t_{2}-t_{3}\right), V_{2}=\frac{e n_{5}}{\varepsilon}\left(t_{3}\right)$, by intryrution the field.
$V_{d i}=\frac{\pi \hbar^{2}}{m^{4}} n_{s}=$ voltage drop across the quantan well. $\Delta d=\frac{\varepsilon \pi \hbar^{2}}{e m^{*}}$, so $V_{d i}=\Delta d \frac{e}{\varepsilon} n_{s}$
so: $\phi_{5}-\frac{e n_{m}}{\varepsilon}\left(t_{2}-t_{3}\right)+\frac{e n_{s}}{\varepsilon} t_{3}-\frac{\Delta E_{c}}{e}+\frac{\Delta d e n_{s}=0}{\varepsilon}=$
Two virubles $\left(n_{s}, n_{m}\right)$, two equations $\rightarrow n_{s}=\frac{C N_{0}^{+}\left(t_{2}-t_{3}\right)+\varepsilon\left(-\phi_{s}+\Delta E_{c} / e\right)}{e\left(t_{2}+\Delta d\right)}$
Technically, ε chuneses from Gats to AlGuAs, but they are both $\sim 12.5 \varepsilon_{0}$, So that is the value I will use.
Plugging in the \#s: $n_{s}=7.65 \times 10^{11} \mathrm{~cm}^{-2}$ The value used for Ad care from $\{$ the charge density in the simulutal solution, specifically? I chose it to correspond to the maximum in charge density. While this required the use of the simulation, there is no cay to guess analytically. The vale ans 4.5 nm . one can guess Δd based on quartan capacitance,

Using these sure values, the self.consistant simulation gave $n_{s}=5.36 \times 10^{11} \mathrm{~cm}^{-2}$ which is pretty close, but not perfut. The error probably comes farm the inability to get tree δ-doping. To ged this, I put the $1 \mathrm{~nm} \delta$-doping region half on the left and hals on the right.

The simulation also gives 3 confined states, with energies 2.38 mev below E_{F}

160 mev above E_{F}
$16 y \mathrm{mer}$ abort E_{F}
The plot of the simulated bund structure is attucted.
Note: When doing all of this, I hud to include a 300 nm thick Al o.3 Goro.7 As region behind the Gads, to at as the semi-inslatig AlGuAs.
b. Near the SID regions, the band stature will look like
\qquad Lbetor creation
after creation

Again there will be doping chugged, and free sheet charge at the metal interfuse and in the quantum well:

Almost all the same electrostatics applies:

$$
\frac{\partial E}{\partial x}=\frac{\rho}{\varepsilon}, \quad-\frac{\partial v}{\partial x}=E
$$

Now when we all $-V(x)$ to $-x(x)$, we an see what $E(x)$ will actually look like:

So in rulity, the bund diagram is a' little different from whit was initially thought, but this should be more accurate.

Qumatitutidy, ever, thing is the save as before, except that (2) becomes

$$
\begin{aligned}
& \phi_{s}-V_{0}+\frac{\Delta E}{e}-V_{1}+V_{2}-\frac{\Delta E_{2}}{e}+V_{d i}=0, \quad V_{d i}=\Delta d n_{s} \frac{e}{\varepsilon} \\
& V_{0}+V_{1}=\frac{+e n_{m}}{\varepsilon}\left(t_{1}+t_{\text {cup }}-t_{3}\right), V_{2}=\frac{e^{n} s t_{3}}{\varepsilon}, \text { so: } \\
& \phi_{s}-\frac{e\left(N_{0}^{+}-n_{s}\right)}{\varepsilon}\left(t_{1}+t_{\text {cap }}+t_{3}\right)+\frac{e n_{s} t_{3}}{\varepsilon}+\Delta d n_{s} \frac{e}{\varepsilon}=0 \\
& \Rightarrow n_{s}=\frac{\left(\frac{e N_{0}^{+}}{\varepsilon}\left(t_{1}+t_{\text {cap }} t_{3}\right)-\phi_{s}\right) \frac{\varepsilon}{e}}{s d}=\frac{e N_{0}^{+}\left(t_{1}+t_{\text {cup }}+t_{3}\right)-\varepsilon \phi_{s}}{e\left(t_{1}+t_{\text {cap }}+\Delta d\right)}
\end{aligned}
$$

Putting in the \#s, again using $\varepsilon=12.5 \varepsilon_{0}, I \mathrm{gd} \sqrt[n_{5}=1.34 \times 10^{12} \mathrm{~cm}^{-2}]{ }$
The simulation gives $n_{5}=1.07 \times 10^{12} \mathrm{~cm}^{-2}$, which is faint dose Aduall, it is within the enow is \mathcal{E}. so at this point that is probably the largestarmen Again I use 4.5 nom for sd, which cores from the simulations. A plot of the simdutal band structure is attuned.
This time, the Fermi led is a little higher in the well, so the eigenstrates are at:
31.4 mev below $E_{F} 183 \mathrm{mer}$ above E_{F}
67.7 med above $E_{F} 187$ med about E_{F}

Still only I subbuad is filled

137 med about EF 144 mev above EF
a. To first order, this georedy is a capacitor: the gate is coupled cupacatauley to the 2DEG without being able to diredty flow current. The capacitance is just that of a puralhl plate capacitor:

$$
\begin{aligned}
& \text { just that ort a purar }=\frac{\varepsilon}{d i s t}=\frac{\varepsilon}{t_{2}+\Delta d} \\
& C_{g}=\text { Cupanitune pu e ara }
\end{aligned}
$$

$$
C_{g}=5.14 \times 10^{-3} \mathrm{~F} / \mathrm{m}^{2}=515 \mathrm{nF} / \mathrm{cm}^{2}
$$

A plot of C_{g} vs. V_{y} as culculatal b_{y} the program is attached. At $V_{y}=O N$, $C_{y}=430 n \mathrm{~F} / \mathrm{cm}^{2}$, which is close, but lover than the anulytion value. As $\left|V_{g}\right|$ increases, C_{y} decreases, which is not cuptrad at all in the simple analytical apposimution that the setup acts like a parallel plate capacitor.
d. The threshold voltage, $V_{T N}$, is the value when $n_{S}=0$.

Including $V_{G}, n_{s}=\frac{e N_{0}^{+}\left(t_{2}-t_{3}\right)+\varepsilon\left(v_{G}-\Phi_{s}+\Delta E_{c} / e\right)}{e\left(t_{2}+\Delta d\right)}$, so solving $n_{s}=0$

$$
\Rightarrow V_{G}=\frac{-e N_{d}^{+}\left(t_{2} t_{3}\right)}{\varepsilon}+\phi_{S}-\Delta E_{L} / e=V_{T H}=-0.238 \mathrm{~V}
$$

To verify this with the simdation, I ran the simulation with v_{0} values from OV to -0.4 V , at -0.02 V interouls.
plots of n_{s} vs. V_{G} in both liner scale and log scale are attached. In the linear sauk plot, it's aparent that for small V_{v}, n_{s} is linear in V_{v}, jest st as our mad el predicts. At larger V_{G}, hoverer, as the gate pushes the ow away form En, n_{s} becomes exponential in V_{G}, which is what would be expected just from $n=N_{c} e^{-\left(E_{C}-E_{P}\right) / k T}$. We can confirm the decay is exactly exponential in the lug scale plot, where for $V_{G}<-0.24$ the line appears straight.
Finally, to calculate $V_{T H}$, the linear region hus bees extrapolated to when it ward intersect 0 sheet charge. This gives $V_{\text {Tat }} \approx 0.22 \mathrm{~V}$, which is fairly close to the analytical calculation.

Figure 1: Band diagram of the AlGaAs/GaAs HEMT along the B-B' line.

Figure 2: Band diagram of the GaAs capped AlGaAs HEMT along the A-A' line.

Figure 3: Gate capacitance vs. applied gate voltage for the HEMT.

Figure 4: Sheet charge in the quantum well vs. applied gate voltage, in both linear and log scale.

In the $\left.A\right|_{x} G a_{1-x} N$ there is polarization
 from both spantenious polarization, and from strain.
In the GaN, there is only spontunious polarization.

For GaN: $P_{S_{p}}=-0.034 \frac{\mathrm{c}}{\mathrm{m}^{2}}=Q_{\pi N}$ (Gats)

$$
\text { For } \left.\begin{array}{rl}
\left.A\right|_{x} G_{1 x} N: P_{S p} & =-0.034-0.035 x-0.021 x^{2} \frac{c}{m^{2}} \\
P_{P z} & =-0.0243 x-0.0252 x^{2} \frac{c}{m^{2}}
\end{array}\right\} Q_{\pi}\left(A\left(G_{a} A s\right)\right.
$$

So this is like

So right at the junction
thee or both ne se nest

b. At a junction like this, what really happens is
churrs

These core from surerino charges near the substrate, that cancel at the Q_{i} from our these

These come from deep donar stats at the surface. and purtalls reduce the effect of the band bending in AlgiN
This is the mable sheet carne r density at the quantion well junction. $V(x)$
fuel

This creates a band structure: (f lip $V(x)$, add $x(a))$
In this we technically? have 2 unknowns, n_{s} and

$\phi_{s}-V_{1}-\frac{\Delta E_{c}}{e}+V_{\bar{d}}=0$, where $V_{d i}=v_{0}$ oltaie drop in quentin well $=\frac{\pi \hbar^{2}}{m^{\phi}} n_{s}=\frac{\Delta d e^{e}}{\varepsilon} n_{s}$
also $V_{1}=\frac{\left[N_{D D}^{\prime}-\frac{\left.Q_{\pi}(A l G a N)\right]}{\varepsilon} \text { to }\right.}{}$, but by (2) Charge consecution:
so $V_{1}=\frac{\left(Q_{n}(\text { net })-c n_{s}\right) t_{b}}{\varepsilon}$

$$
e^{N_{D D}^{+}-Q_{11}(A l o a N)}+\underbrace{Q_{i}(\text { call })-Q_{s e s}}_{\text {exact, cancel }}=\underbrace{Q_{n}(\text { net }) \text {-ens }}_{\begin{array}{c}
\text { junction total } \\
\text { change }
\end{array}}
$$

plugging this in gives $\varphi_{s}-\frac{a_{\pi}(n d t) t_{b}}{\varepsilon}+\frac{e n_{s} t_{b}}{\varepsilon}-\frac{\Delta E_{c}}{e}+\frac{\Delta d e_{n}}{\varepsilon} n_{s}=0$

$$
\begin{aligned}
& \left.\Rightarrow n_{s}=\frac{\varepsilon}{e}\left(\frac{Q_{\pi}(n c t) t_{b}}{\varepsilon}-\phi_{s}+\Delta E_{c} / e\right) \frac{1}{\left(t_{b}+\Delta d\right)}=\frac{Q_{\pi}\left(n d t_{b}+\varepsilon\left(-\psi_{s}+\Delta E_{c} / e\right)\right.}{e D}, D=t_{b}+\Delta d\right) \\
& \quad \text { touched, as a function of } t_{b}
\end{aligned}
$$

A plot of this is attuched, as a function of t_{b}.
c. Just like before, the band diagram will look like:
at 0 gate bais. When thar is a gate vote applied, the only difference is Q_{s} will become $\mathbb{U}_{5}-V_{G}$, so

$$
n_{s}=\frac{Q_{\| 1}\left(n_{d}\right) t_{b}+\varepsilon\left(V_{G}-\left(\psi_{s}-\Delta E_{c} / e\right)\right)}{e D}
$$

eD \quad Pinch off happens when $n_{s} \Rightarrow 0 \Rightarrow V_{G}=-\frac{Q_{\pi}(\text { net }) t_{b}}{\varepsilon}+D_{S}-\frac{\Delta E}{e}$
GaN height $=-7.33 \mathrm{~V}$ will push of the burris high
AlGuAs:GaN
At pinch off, the gate will pish is the burrier height $=-7.33 \mathrm{~V}$ until thar is no more quation well to confine elackns:

Note: I used a 400 nm Gull substrate in simulations.

The simdution gives slightly different results: plots of the band diagrams at $V_{y}=0$ and $V_{g}=-70 \mathrm{~V}$ ar attacked. When $V_{y}=0$, everything looks the sure, but when $V_{y}=-7 V$, we can see that instal of continuing forever, a neutralizing dipole is not real quaker formed once V_{y} bends the bands enowh. This prevents the bands form continuing to bead, and dies not lift the QWabor E_{F}. This way, the VTH condition $n_{s}=0$ is never rechlad. To get an estimate for what it well be, a plot of n_{s} VS. V_{b} is attached, showing a linear extrapdation from the linus region to Set Ep It intersects 0 at $\sim-8.5 \mathrm{~V}$, which is close but not exactly the analytical value. manually
d. This geometry is very similar to the ore without the cup, except there is another sd of polarization charge.

it's hard to know for sure what $N_{00}^{+}-G_{\text {H }}$ (GaN) will be, but it turns of to be positive. At the other interfaces, we know for sure that Q_{π} (AlGaN) - Q_{π} (GaN) $=Q_{\pi}($ net), which is the same as before. To get $E: \frac{\partial E}{\partial x}=\frac{e}{\varepsilon}$:

This will create a charge profile like:

This creates a band struetwe like: $(-V(x)-x(x))$

we need to find V_{+H}, so we need to solve for n, again:
(1) Charge conservation:

$$
e N_{D D}^{+}-Q_{N}(G U N)=e N_{S}
$$

(1) Energy conservation:

$$
\begin{aligned}
& -V_{g}+\phi_{s}+V_{1}+\Delta E_{\text {che }}-V_{2}-\Delta E_{\text {le }}+V_{d i}^{L}=0 \text {, with } V_{d i}=\frac{\Delta d e}{\varepsilon} n_{s} \\
& \left.V_{1}=\frac{\left(e N_{D D}^{+}-Q_{\pi}(G N N)\right)}{\varepsilon}+\text { cap, } V_{2}=\frac{-\left(n_{s}-Q_{\pi}(\text { net })\right.}{\varepsilon}\right) t_{b} \text {, so: (using (D) into (B)) } \\
& -V_{G}+\varphi_{s}+\frac{e n_{s}}{\varepsilon}+\cos +\frac{e n_{s} t_{0}}{\varepsilon}-\frac{Q_{c}\left(n_{c}\right) t_{b}}{\varepsilon}+\frac{s d e n_{s}}{\varepsilon}=0 \\
& \Rightarrow n_{S}=\frac{Q_{\pi}\left(n_{e}\right) t_{b}+\varepsilon\left(V_{G}-\varphi_{S}\right.}{e\left(t_{C_{P}}+t_{b}+\Delta d\right)} \quad V_{T H}=V_{G}\left(n_{s}=0\right)=\frac{-Q_{H}(n e t) t_{b}}{\varepsilon}+\phi_{s}=-7.46 \mathrm{~V}
\end{aligned}
$$

At pinch off, the bard dianerm should look like: (not the sure sunk)

The results of the simulation are similar to last time: in reality a ncutulizing dipole forms and so n_{s} is never really 0 . The plot of the bund structure of $V_{\sigma}=0$, and $V_{\sigma}=-4 \mathrm{~V}$ is attuned.

At $V_{v}=0$, the effective Schottky barrier height is $e \|_{s}+e V_{1}+\Delta E_{e}$, because that is the potential an electro in the metal needs to ourcore to make it into the 2DEG.
This value is $e \varphi_{s}+\Delta E_{c}+\frac{e^{2} n_{s} t c a p}{\varepsilon}=2.52 \mathrm{eV}$
At pinch off, because of the neutralizing dipole that forms in reality (see plot at $V_{F}-H V$) the band diagram near the rectal looks like:
so in this cause the effective schuttly barrier is just the rel
 schottly burrier. 0.9 eV
For comparison, those effective schottty burrier without the cap is 1.7 eV . As a highs burrier means less gate leakage, this means that the GaN-cupped geometry should have less gate leakrye, at least for relatively small V_{σ} where the rectulizing dipole has not formed yet.

Figure 1: Quantum well sheet charge vs AlGaN thickness.

Figure 2: AlGaN/GaN band diagram for 0 gate voltage and near pinch off. Instead of reducing the sheet charge density as in the calculation, the formation of a neutralizing dipole mitigated the effect of the gate bias.

Figure 3: GaN/AlGaN/GaN band diagram for zero gate bias and approaching pinch off. Pinch off was calculated to occur near -7.5 V , but the same neutralizing dipole effect occurs so the band diagram was plotted at -4 V instead, near where the gate bias begins to be unable to modulate the sheet charge density.
3.4) a. In general, $\alpha_{0}(\hbar \omega)=C_{0}\left|\hat{e} \cdot \vec{p}_{c r}\right|^{2} p_{r}\left(\hbar \omega-E_{g}\right)$, whir
$C_{0}=\frac{\pi e^{2}}{n_{r} \varepsilon_{0} m_{0}^{2} \omega}\left|\hat{e} \cdot \vec{p}_{c 1}\right|^{2}$ is the momentum matrix eknont, and p_{r} is the joint density of states.

$$
\begin{aligned}
& \text { For all the following calculations I used: } \\
& \left\{\begin{array}{l}
n_{r}=\text { index er reflection of } G a N=2.3 \\
E_{y}=3.4 \mathrm{cV} \\
m_{e}^{*}=0.2 m_{0} \\
m_{k}^{*}=1.4 m_{0}
\end{array}\right\} \begin{array}{l}
\text { Ass } \\
\text { th } \\
\text { This }
\end{array} \\
& \text { Also I assumed s wu small, so } \\
& \text { that }\left|\hat{e} \cdot \vec{P}_{c u}\right|^{2}=\left(\frac{m_{0}}{m_{e}^{*}}-1\right) \frac{m_{0} E_{y}}{6} \\
& \text { This seems to be a dement approximation, } \\
& \text { althagh it mum be } \sim 10 \% \text { of } \\
& \text { Finally } p_{r}\left(\hbar \omega-E_{y}\right)=J D O S=\frac{g_{s} g_{r}}{(2 \pi)^{2}}\left(\frac{2 m_{r}^{+2}}{\hbar^{2}}\right)^{3 / 2} \sqrt{\hbar \omega-E y} \text {, where } m_{r}^{n}=\left[\frac{1}{m_{n}^{*}}+\frac{1}{m_{r}^{n}}\right]^{-1}
\end{aligned}
$$

I also used $y_{v}=1, y_{s}=2$.
This leads to the plot of $\alpha_{0}(\hbar \omega)$ attached. Qualitatively it looks correct, with the coefficient being o for $\hbar \omega L E_{y,}$ and $\alpha_{0} \alpha \frac{\sqrt{\hbar \omega-E_{y}}}{\hbar \omega}$ for $\hbar \omega>E_{y}$, of carse. Qumlitatich it looks plausible, as $\alpha_{0} \sim 10000 \mathrm{~cm}^{-1}$.
b. To get the tore, non-equilibrium absorbtion coefficient, we need to included the occupation functions $f_{c}(\vec{k})$ and $f_{s}(\vec{k})$:

$$
f_{c}(\vec{k})=\frac{1}{1+e^{\left(E_{c}(\vec{k})-F_{c}\right) / k T}} \quad f_{v}(\vec{k})=\frac{1}{1+e^{\left(E_{v}(\vec{k})-F_{v}\right) / \mathbb{R T}}}
$$

where F_{c} and F_{v} are defined as the quasi-Formi encesics for the conduction
 bund and the valence band.
with this, then, I have plotted $f_{5}\left(k_{0}\right)-f_{c}\left(k_{0}\right)$ (see attached) where $k_{0}=\sqrt{\frac{2 m_{i}^{*}}{\hbar^{2}}\left(\hbar \omega-E_{y}\right)}$. The shape can be explairal as follows:
For the right at E_{y} (or less), $f_{e} \sim 1$ and $f_{u} \sim 0$, so emittion at how is likely $\Rightarrow f_{r}-f_{c}=-1$. As f_{c} gets sulk and f_{0} get lunger with larger tow, eventually $f_{0}-1$ and $f_{c} \sim 0$, so population inversion is no longer the cause and normal absorption ocars $\Rightarrow f_{r} f_{c}=1$.
c. The ret absorption coefficient $\alpha(\hbar \omega)$ is attached. It aus culculutul as $\alpha(\hbar \omega)=\alpha_{0}(\hbar \omega)\left[f_{v}\left(k_{0}\right)-f_{c}\left(k_{0}\right)\right]$. It shows a small region of gain right after $h \omega=E_{v}$, followed by a return to a bsorbume.
d. The gain spectrum is also attached. This is just $-\alpha(\hbar \omega)$, for ties near $E_{v}=3.4 \mathrm{eV}$.

From this plot, the maximum gain ours at 3.47 eV , with a value of $6500 \mathrm{~cm}^{-1}$

First, I found in "Optical Coin of Strunal Wurtzite GaN Qunntum-Well Lasers" L. Chung. IEEE J. Quantum electronics, the result of more sophisticated culculutions. This gives $\sim 7000 \mathrm{~cm}^{-1}$ at 3.62 eV for $L_{w}=26 \mathrm{~nm}$ and $4100 \mathrm{~cm}^{-1}$ at 354 eV for $L_{w}=5 \mathrm{~nm}$.

So it seems like as the QW is squecead, the effective band gap increases because of quantization of the energies. At the same tire, a narrow well allures for the population in version $F_{C}-F_{V}-F_{c}=0.2 \mathrm{cV}$, so the wider the well the smaller the gain.

Secord, in "Large optical guin AlGuN-deltu-GalN quantum wells laser active regions in mid-ant deep-ultruviulet spectral regimes", Zhary et al., APL 2011, I fount some experimental results. They mainly cure about vas narrow wells, ant report $g=4500 \mathrm{~cm}^{-1}$ at 4.9 eV with a $3 A$ well. So the gain is close to my simple culalation, but because the well is so narrow the energy? is posted up quite a bit. Than also show reacts fur wo wells, giving $g=500 \mathrm{~cm}^{-1}$ at 3.5 cV for a 2.7 nm well. Now with the wides well population inversion is harder, and the gain is smaller thun my culcalutions.

Figure 1: Equilibrium absorption coefficient as a function of photon energy.

Figure 2: Combined occupation function $\mathrm{fv}(\mathrm{k} 0)-\mathrm{fc}(\mathrm{k} 0)$ as a function of photon energy.

Figure 3: Total out-of-equilibrium absorption coefficient as a function of photon energy.

Figure 4: Calculated gain spectrum of GaN , for the range of photon energies where gain is positive.

