Problem 4.1)
a)

Goldstone theorem states that a broken continuous symmetry in presence of short range interactions results in collective mode of excitations that has no gap, which means the energy dispersion curve remains continuous even at 0 energy.

A typical classical example would be acoustic phonon because continuous rotational symmetry is broken during the formation of crystal.

Solutions to Assignment \#4: Three independent sets of solutions by:

1) Kevin Lee
2) Zach Zeigler
3) Sanjeev Kolli

Problem 4.1)
b)

$$
S(\vec{q})=\frac{1}{N}\left|\sum_{i} e^{i \vec{q} \cdot \vec{R}_{j}}\right|^{2}
$$

where $\quad \vec{q}=\vec{k}_{\text {out }}-\vec{k}_{\text {in }}$
\vec{q} is reciprocal lattice vector. Hence, it satisfies $\vec{q} \cdot \vec{R}_{j}=2 \pi n$.

$$
n=\text { integer. }
$$

Let's assume the lattice vector is a.

$$
\begin{aligned}
& S(\vec{q})=\frac{1}{N}\left|\sum_{n=1}^{N} e^{i q n a}\right|^{2} \\
&=\frac{1}{N}\left|e^{i q a}+e^{2 i q a}+\cdots+e^{N i q a}\right|^{2} \\
&=\frac{1}{N}\left|e^{i q \alpha}\right|^{2}\left|1+e^{i q a}+\cdots+e^{(N-1) i q a}\right|^{2} \\
&=\frac{1}{N}\left|\frac{\left(1-e^{N i q a}\right)}{1}\right|^{2} \\
&=\frac{1}{N}\left(\frac{1-e^{N i q a} e^{i q a}}{1-e^{i q a}}\right)\left(\frac{1-e^{-N i q a}}{1-e^{-i q a}}\right) \\
&=\left(\frac{1}{N}\right)\left(\frac{1-e^{-N i q a}-e^{N i q a}+1}{1-e^{-i q a}-e^{i q a}+1}\right)=\left(\frac{1}{N}\right)\left(\frac{2-2 \cos (N q a)}{2-2 \cos (q a)}\right) \\
&\left(\begin{array}{ll}
N o t e: & 2 \sin ^{2} \alpha=1-\cos 2 \alpha \\
& =\left(\frac{1}{N}\right) \frac{\sin ^{2}\left(\frac{N q a}{2}\right)}{\sin ^{2}\left(\frac{q a}{2}\right)}
\end{array}\right.
\end{aligned}
$$

Problem 4.1)

c) According to the structure factor equation for 1D perfect lattice.

$$
\mathcal{S}(q)=\frac{1}{N} \frac{\sin ^{2}\left(\frac{N a q}{2}\right)}{\sin ^{2}\left(\frac{a q}{2}\right)}
$$

We can plot the structure factor by Mathematica.
This is the plot of $\mathrm{N}=10$ atoms.

If we zoom in, the following figure, we can see there are 10 peaks in between maximum peaks. And the maximum peak value is 10 .

Structural factor

Then I made the plot of $\mathrm{N}=100$.

Structural factor

If we zoon in for $0<q a<2 \pi$, we can see the small satellite peaks in between.
Structural factor

- To prove the structure factor's maximum value, we need to observe the behavior of the sine function.
First, when $\frac{q a}{2}=n \pi, " n$ " is an integer, the function $\sin \left(\frac{a q}{2}\right)$ goes to zero. But the structure is not divergent since $\sin \left(\frac{N a q}{2}\right)$ also has zero value.

To get the value of $\frac{\sin \left(\frac{\mathrm{Naq}}{2}\right)}{\sin \left(\frac{\alpha q}{2}\right)}$, we need L' Hospital's rule.

L' Hospital's Rule

Suppose $f(c)=g(c)=0$, and $g^{\prime}(x) \neq 0$.

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Therefore, we have

$$
\begin{gathered}
\lim _{\frac{d q}{2} 0} \frac{\sin \left(\frac{N a q}{2}\right)}{\sin \left(\frac{a q}{2}\right)}=\lim _{\frac{d q}{2} \rightarrow 0} \frac{N \cos \left(\frac{N a q}{2}\right)}{\cos \left(\frac{a q}{2}\right)}=\mathrm{N} \\
\delta(\mathrm{q}=0)=\frac{1}{N} \times N^{2}=N
\end{gathered}
$$

Hence, we proved that the maximum value is " N " for structure factor.

- Now we prove that there are N peaks in between two maximum peaks.

Effectively, each peak lies in between two consecutive minimum.
Therefore, we can calculate peak number based on the number of minimum points in between 0 and 2π.

When the function has zero values, it means $\sin ^{2}\left(\frac{N q a}{2}\right)=0$.

$$
\begin{gathered}
\frac{N}{2} \times q a=n \pi, \text { where } n=\text { integers } \\
q a=\frac{2 \pi n}{N}
\end{gathered}
$$

It is obvious that $\mathrm{n}=0,1,2,3, \ldots, \mathrm{~N}$, then $\mathrm{qa}=0 \rightarrow 2 \pi$. So the total satellite peaks including the two maximum peaks is exactly " N ".

Or we can argue this problem in another way, looking how many maximum values for qa in between 0 and 2π. Basically, it's the same problem.

Problem 4.1)

d) Now we need to remove three atoms randomly in the 1D lattice. The 1D lattice can be viewed as following.

I chose to remove the site 2,5 and 8 atoms. If we look at the original structure factor equation instead of the calculated form in problem 4.1c. The form is easier to understand. This is the original structure factor without vacancies.

$$
\mathcal{S}(q)=\frac{1}{N}\left|\sum_{n=0}^{N-1} e^{i q n a}\right|^{2}
$$

If we want to add vacancies, we can just plug in the minus lattice site term in the above expression.

$$
\mathcal{S}(q)=\frac{1}{N}\left|-e^{2 i q a}-e^{5 i q a}-e^{8 i q n a}+\sum_{n=0}^{N-1} e^{i q n a}\right|^{2}
$$

So we can make the plot for $\mathrm{N}=10$.
Structure factor

This maximum peaks' intensities are decreased. If we calculated the peaks in between the two maximum peaks, there are still 10 peaks.

For $N=100$, I chose site $2,50,77$ to be vacancies.

$$
\mathcal{S}(q)=\frac{1}{N}\left|-e^{2 i q a}-e^{50 i q a}-e^{77 i q n a}+\sum_{n=0}^{N-1} e^{i q n a}\right|^{2}
$$

Structure factor

I would say that diffraction experiment is a good tool to determine the crystal quality of a semiconductor. From these calculations, we can see that as long as there are vacancies in the crystal, the diffraction peaks' intensity decreased. But I wouldn't say it's good for determining exact number of vacancies in the crystal. It is only suitable to compare two identical crystals' quality. The one with higher diffraction peaks has better crystal quality, which means less vacancies here.

Problem 4.2)
a)

$$
\begin{aligned}
& \vec{R}_{j} \rightarrow \vec{R}_{j}+\vec{u}_{j}(t) \quad \vec{R}_{k} \rightarrow \vec{R}_{k}+\vec{u}_{k}(t) \\
& S(\vec{q}, T)=\frac{1}{N}\left|\sum_{j} e^{i \vec{q} \cdot\left(\vec{R}_{j}+\vec{u}_{j}(t)\right)}\right|^{2} \\
&=\frac{1}{N} \sum_{j} e^{i \vec{q} \cdot\left(\vec{R}_{j}+\vec{u}_{j}\right)} \cdot \sum_{k} e^{i \vec{q} \cdot\left(\vec{R}_{k}+\vec{u}_{k}\right)} \\
&=\frac{1}{N} \sum_{j} \sum_{k} e^{i \vec{q} \cdot\left(\vec{R}_{j}-\vec{k}_{k}\right)} \cdot e^{i \vec{k} \cdot\left(\vec{u}_{j}-\vec{u}_{k}\right)} \\
&=\left(\frac{1}{N}\right)\left[\sum_{j=k}^{N} e^{i \vec{q} \cdot 0} \cdot e^{i \vec{q} \cdot 0}+\sum_{j \neq k}^{N} e^{i \vec{q} \cdot\left(\vec{R}_{j}-\vec{R}_{k}\right)} \cdot e^{i \vec{q} \cdot\left(\vec{u}_{j}-\vec{u}_{k}\right)}\right] \\
&=1+\frac{1}{N} \sum_{j \neq k}^{N} e^{i \vec{g}_{g} \cdot\left(\vec{R}_{j} \cdot \vec{R}_{k}\right)} \cdot e^{i \vec{q} \cdot\left(\vec{u}_{j}-\vec{u}_{k}\right)} \\
&=\left(\frac{1+\frac{1}{N} \sum_{j \neq k}^{N} e^{i \vec{q} \cdot\left(\vec{R}_{j}-\vec{R}_{k}\right)} \cdot e^{i \vec{g} \cdot\left(\vec{u}_{j} \cdot \vec{u}_{k}\right)}}{i \vec{q} \cdot \sum_{j, k}\left(\vec{u}_{j}-\vec{u}_{k}\right)}\right) e^{i \vec{q} \cdot \sum_{j, k}\left(\vec{u}_{j}-\vec{u}_{k}\right)}
\end{aligned}
$$

Note: $\sum_{j, k}\left(\vec{u}_{j}-\vec{u}_{k}\right)=\sum_{j \neq k}\left(\vec{u}_{j}-\vec{u}_{k}\right) \quad \because \sum_{j=k}\left(\vec{u}_{j}-\vec{u}_{k}\right)=0$
\forall Since j, k are independent each other, $\vec{q} \cdot\left(\vec{u}_{j}-\vec{u}_{k}\right)=0$. for time average.

$$
\begin{aligned}
& =e^{i \vec{q} \cdot \sum_{j k}\left(\vec{u}_{j}-\vec{u}_{k}\right)}\left[1+\frac{1}{N} \sum_{j \neq k}^{N} e^{i \vec{q} \cdot\left(\vec{r}_{j} \cdot \vec{k}_{k}\right)}\right] \\
& =S(\vec{q} \cdot T=0) e^{i \vec{q} \cdot \sum_{j \cdot k}\left(\vec{u}_{j}-\vec{u}_{k}\right)}
\end{aligned}
$$

Problem 4. 2)
b) From a), we have $\vec{s}(\vec{q}, T)=\vec{S}(\vec{q}, T=0) e^{i \vec{q} \cdot \sum_{j, k}\left(\vec{u}_{j}(t)-\vec{u}_{k}(t)\right)}$.
(*) $e^{i \vec{q} \cdot \sum_{j, k}\left(\vec{u}_{j}-\vec{u}_{k}\right)}=1+i \vec{q} \cdot \sum\left(\vec{u}_{j}-\vec{u}_{k}\right)-\frac{1}{2}\left(\vec{q} \cdot \sum\left(\vec{u}_{j}-\vec{u}_{k}\right)\right)^{2}+\cdots$

Assume eacklattice point oscillate independently.

$$
\Rightarrow \quad \vec{q} \cdot \sum\left(\vec{u}_{j}-\vec{u}_{k}\right)=0
$$

Assume the angle between \vec{f} and $\vec{u}_{j}-\vec{u}_{k}$ is " θ.

$$
\begin{aligned}
\frac{1}{2}\left(\vec{q} \cdot \sum\left(\vec{u}_{j}-\vec{u}_{k}\right)\right)^{2} & =\frac{1}{2}\left\langle\cos ^{2} \theta\right\rangle q^{2} \sum\left|\vec{u}_{j}-\vec{u}_{k}\right|^{2} \\
& =\frac{1}{2}\left\langle\cos ^{2} \theta\right\rangle q^{2} \sum\left(\left|\vec{u}_{j}\right|^{2}+\left|\vec{u}_{k}\right|^{2}-2 \vec{u}_{j} \cdot \vec{u}_{k}\right)
\end{aligned}
$$

$\sum_{j, k} \vec{u}_{j}(t) \cdot \vec{u}_{k}(t)=0 \quad$ because different lattice points: are independently
oscillating. oscillating.

$$
=\frac{1}{2}\left\langle\cos ^{2} \theta\right\rangle q^{2} \sum_{i} 2\left|\vec{u}_{j}\right|^{2}
$$

$\frac{1}{3}$ geometrical average over a sphere.

$$
=\frac{1}{2} \cdot \frac{1}{3} \cdot 2 \sum_{j}\left|\vec{u}_{j}\right|^{2} q^{2}=\frac{1}{3} \sum_{j}\left|\vec{u}_{j}\right|^{2} q^{2}
$$

$$
\begin{aligned}
(*) & \approx 1-\frac{1}{3} q^{2} \sum_{j}\left|\vec{u}_{j}\right|^{2}+\cdots \\
& \approx e^{-\frac{1}{3} q^{2} \sum_{j}\left|\vec{u}_{j}\right|^{2}}
\end{aligned}
$$

Problem 4.2)
b) Now we need to solve $\sum_{j}\left|\vec{u}_{j}\right|^{2}$.

For a simple harmonic oscillator, energy is the following.

$$
\frac{1}{y} M \omega_{0}^{2} \sum_{j}\left|\vec{u}_{j}\right|^{2}=\underset{\uparrow}{\frac{3}{y} k_{B} T}
$$

3D thermal average energy

$$
\begin{aligned}
& \sum\left|\vec{u}_{j}\right|^{2}=\frac{3 k_{B} T}{M w_{0}^{2}} \\
(*)= & e^{-\frac{1}{户} q^{2} \cdot \frac{\partial k_{B} T}{M w_{0}^{2}}}=e^{-\frac{q^{2} k_{B} T}{M w_{0}^{2}}} \\
\Rightarrow & S(\vec{q}, T) \approx S(\vec{q}, T=0) e^{-\frac{q^{2} k_{B} T}{M w_{0}^{2}}}
\end{aligned}
$$

井
C) For 1D case, we need to modify two things in the previous derivation.

1. Thermal average energy $=\frac{1}{2} k_{B} T$
2. Geometrical average $\left\langle\cos ^{2} \theta\right\rangle=1$

$$
\begin{aligned}
& \Rightarrow(*)=1-\frac{1}{2} \cdot 1 \cdot q^{2} \cdot 2 \sum_{j}\left|\vec{u}_{j}\right|^{2}+\cdots \\
& \begin{aligned}
\left(\sum_{j}\left|\vec{u}_{j}\right|^{2}\right. & =\frac{k_{B} T}{M \omega_{0}^{2}} \\
& =1-q^{2} \frac{k_{B} T}{M \omega_{0}^{2}}+\cdots
\end{aligned} \\
& \approx e^{-\frac{g^{2} \xi_{S} T}{M \omega_{0} \omega_{0}}} \Rightarrow S(\vec{q}, T)=S(\vec{q}, T=0) e^{-\frac{q^{2} k_{0} T}{M \omega_{0}^{2}}}
\end{aligned}
$$

Problem 4.2)
d)

First, we can plot the similar figure with the 1D lattice structure.
Normalized Structure factor

Although the 1D lattice model is not correct for Al, we can capture the main characteristics of the measurement data.

The \mathbf{q} vector is the reciprocal lattice vector. In 3D system, it can be written as following form.

$$
\mathrm{q}=\mathrm{h} b_{1}+\mathrm{k} b_{2}+\mathrm{l} b_{3}
$$

h, k, l are the Miller index. $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$ and \boldsymbol{b}_{3} are the reciprocal lattice vectors.

$$
b_{1}=\frac{2 \pi}{a}
$$

When we change the injection angle of X-Ray, we are observing different planes of the crystal. When the crystal plane's Miller index is larger, the Debye Waller factor will decrease.

$$
\begin{aligned}
& \mathcal{S}(\mathbf{q}, \mathrm{T})=\delta(\mathbf{q}, \mathrm{T}=0) e^{\frac{-k_{B} T q^{2}}{M \omega_{0}^{2}}} \\
& \mathrm{~h} \uparrow, \mathrm{q} \uparrow, e^{\frac{-k_{B} T q^{2}}{M \omega_{0}^{2}}} \downarrow, \delta(\mathbf{q}, \mathrm{~T}) \downarrow
\end{aligned}
$$

This characteristic is shown in the figure. $(10,0,0)$ has the smallest value. As the temperature increases, the exponential factor will decrease further, too. The structure factor will decrease accordingly.

The figure above is calculated by the first maximum peak's intensity. If we make plots of structure factor for different temperature, we can see the peak intensity decreasing as q value increases, which is the same thing for increasing Miller index discussed here.

The blue line is structure factor for zero K. Orange dashed line is structure factor for 100 K . Red line is structure factor for 200 K . The horizontal axis is the q vector.
As we increase Miller index, q vector value increases, which means moving along positive x direction in the plot. We can there is a drop in the peak intensity as q increasing. In addition, the peak intensity decreases as the temperature rises. Both observations are consistent with the provided plot in the problem.

This is a zoom in image of the above diagram. The satellite peaks are also decreasing.

Problem 4.2)
e)

If we want to utilize the temperature dependence of structure factor, the best scenario is that the intensity variation is large when temperature changes.
From Debye Waller factor, we can analyze the problem.

$$
\delta(q, T) \propto e^{\frac{-k_{B} T q^{2}}{M \omega_{0}^{2}}}
$$

In order to have large variations, we can choose materials with smaller mass or smaller resonant frequency.
The other strategy would be using large Miller's index peaks as reference. This is similar to our argument in the previous problem. Large Miller's index corresponds to larger q value, and this makes exponential term more sensitive to temperature.

Problem 4.3)

a)

If we want to generate the fig. 3 , we need to first determine the strain energy dependence on the composition as the fig 2 .
To generate this plot, we need to consider the microscopic strain and bending energies of different configuration. The total microscopic energy can be written according to Chapter 4 of Taso's book. For Type 2 configuration, we can write down as following.

If we want to calculate different configuration, we just change the alpha, beta constants, and the equilibrium bond length. Red box terms correspond "In" atom position. Blue box terms correspond to " Ga " atom position.
To find each configuration's equilibrium energies, we can take derivative of z to the strain energy.

$$
\frac{\partial u}{\partial z}=0
$$

We will find an equilibrium value of z, then substitute this value into total strain energy equation. We have the strain energy of each configuration.

Note that $a_{V C}=(1-x) a_{I n A s}+x a_{G a A s}$, which is the virtual crystal approximation. Now we can make strain energy plot.

"ui" is the total strain energy of configuration " i ". From this diagram, we can see that the strain energy is composition dependent.

For completely random atom distribution, the plot is very easy.

$$
\alpha_{i} x^{4-i}(1-x)^{i}
$$

This is the proportion of " i " configuration.
To get the Fig 3. in the paper, we need to consider the strain energy into free energy and use Lagrange multiplier to get the equilibrium distribution of each configuration. Basically, we have to solve Eq. 12 in the paper.

$$
(1-x) \eta_{0} t^{4}+(3-4 x) \eta_{1} t^{3}+(3-6 x) \eta_{2} t^{2}+(1-4 x) \eta_{3} t^{1}-x \eta_{4}=0
$$

where $\eta_{i}=e^{\frac{-\epsilon_{i}}{k_{B} T}}$ and $t=e^{\frac{-b}{4 k_{B} T}}$. ϵ_{i} " is the strain energy of ith configuration. " b " is a constant to be solved in the equation. For simplicity, I solved " t " in the equation instead of " b " since it's too complicated to solve " b " directly. Since it is a forth order equation, there will be four solutions. But there is only one solution can give us the final result. After solving " t ", we can get the ratio of each configurations as following.

$$
\alpha_{i} q_{i}=\alpha_{i} c \eta_{i} t^{4-i}
$$

" c " is a normalization constant calculated by $c^{-1}=\sum \eta_{i} t^{4-i} \alpha_{i}$. If we solve all the parameters above, we can draw the diagrams in the paper.

Each sub-index in the plot means the ith configuration. So the figure tells us that for type $1,2,3$ when temperature increases, the ratio of each configuration increases. While for type 0 and 4, the trend is opposite.
For the order parameter, I used the equation 14 in the paper.

$$
\beta=1-\frac{q_{1}+2 q_{2}+q_{3}}{x(1-x)}
$$

However, the results of my calculation seems a little bit different from the paper's results.

Order Parameter β

0.10
0.05
$0.00 \xrightarrow{0.2}$ 0.4

Blue line corresponds to $T=500 \mathrm{~K}$. Orange corresponds to $T=1000 \mathrm{~K}$. Green corresponds to $\mathrm{T}=2000 \mathrm{~K}$. At very low x and very high x , order parameters seem to have positive values, indicating the alloy tends to form cluster at these compositions. I will discuss why there is a discrepancy here later.

For Fig 5, I split it into two figures for convenience. These are the results for composition $\mathrm{x}=0.5$, which means for $I n_{0.5} G a_{0.5} A s$. The only difference for these two plots is that it is assumed for fixed composition x .

We can see from the top diagram. When temperature increases, type 2 configuration starts decreasing, while type 1,3 and 0,4 are both increasing. As the temperature reaches very high value, the alloy tends to form cluster instead of having short-range ordering.

Now I discussed about why there is a little discrepancy in the order parameter plot. The primary reason comes from the strain energy. When I am using the equation in Taso's chapter, the total strain energy has already been simplified. The total energy's dependence on position of As in the tetrahedron, which is z, has only considered up to the second order. That's why the strain energy dependence on composition x is not completely resembles paper's results. And this later make an influence on the order parameter plot.

Problem 4.3)

b)

The primary point in this paper is that III-V ternary alloys tend to have short range order instead of clustering. Traditionally, when we are discussing the III-V alloy, we used the virtual crystal approximation or assumed the atom positions are completely random. But experimentally, there are reports saying that there is shortrange order.

The enthalpy of traditional strain energies is based on virtual crystal approximation, which is four times larger than the experimental values. To get a more accurate results, we can use different tetrahedron configurations to calculate the strain energies and then plug into the enthalpy. And we have to take both bondlength deviation and bond angle distortion into strain energy calculations.

Entropy is the primary difference for this configuration method. The strain energy is stored in the bonds between the nearest atom's bond. Writing down the free energy and Lagrange multiplier can give us the equilibrium configuration ratio. From Fig3, we can see that there is an ordering occurs when temperature increases. Take $x=0.5$ for instance. We can see type2 ratio is slightly increased, while type 0 and 4 decreases.

FIG. 3. Fractional values of five tetrahedron cells Broken line: random
arrangement. Sold tare: at $T=1000 \mathrm{~K}$ for $\mathrm{In}_{1} ., \mathrm{Ga}$, As.
From the order parameter plot, we can see that as we increase the temperature, the parameter goes to negative value, which means there is ordering when temperature is increasing.

Alloy tends to order at low temperature since the entropy contribution is very small in the free energy. Enthalpy dominates and tends to have more order to minimize the energy. As temperature increases, the order becomes little. Basically,
for all the alloys between two composite binary compounds, the order parameter is negative, which means they tend to have short range order.

From all these results, they concluded if there compositional fluctuation in the alloy, it will be suppressed in equilibrium state since fluctuation has larger strain energy. And the short range ordering is preferred instead of clustering.
c)

Since tuning these alloy's composition can result in bandgap offset, a lot of research utilized these features to create optical devices. Using these alloys, researcher can create quantum wells in the growing process. Like the discussion in the class before, quantum well structure can enhance the carrier recombination (joint density of states). Either interband or intersubband optical devices had been developed based on these materials.

Here I found on the semiconductor today's example is quantum cascade laser (QCL). The first QCL experiment is conducted by Jerome Faist, Federico Capasso and the well-known co-inventer of MBE Alfred Cho in 1994. The first QCL was based AllnAs/GalnAs QWs on InP substrate. Within 20 years, QCL has been improved from cryogenic temperature to room temperature operation, and can reach power as high as Watt level.

The article is published at Applied Physics Letter, "High power Sb-free quantum cascade laser emitting at $3.3 \mu \mathrm{~m}$ above $350 \mathrm{~K}^{\prime \prime}$, written by A . Bismuto, M. Beck and J. Faist. Their device active region consists of $\operatorname{In} 0.72 G a_{0.28} A s, I n_{0.52} A l_{0.48} A s$ and AlAs quantum well structures. Their uniqueness is that usually QCL's emission wavelength under $3.6 \mu \mathrm{~m}$ needs to incorporate Sb into the structure, but this material is not allowed for commercial users. Their new design can achieve comparable output power with Sb-based QCL. Generally, in order to make high efficiency QCL, researcher needs to design the injection and extraction superlattices in the device, here they used bound to continuum design. Composite binary alloys are suitable for this kind of application. They can achieve low threshold current of $3.6 \mathrm{kA} / \mathrm{cm}^{2}$ and slope efficiency of $600 \mathrm{~mW} / \mathrm{A}$. And the laser can work at room temperature.

Right hand side is their active region design. Left hand side is the Power vs current curve.

Problem 4.4)
1)
i)

㖪
The charge state with the minimum formation energy should be the dominant state in the crystal. And G is a group I atom, which means doping this into II I-V semiconductor should give us p-type crystal. So If should be near the valance band. As we can see from the above figure, G^{-2} state gives us the minimum energy. Therefore, G^{2-} state is the majority.

Problem 4.4)

1) $E_{\text {From }}=E_{\text {form }^{0}}+q E_{f}$
ii)

EN

The minimum formation energy occurs for $V_{B}{ }^{+}$state. Therefore, the majority is $V_{B}{ }^{+}$.

$$
\log \frac{[V]}{\left[V_{]}\right]}
$$

From the argument in Sec. 7.1 .5 , we can draw number of charged states as left hand side. And we know for G atom doping is p-type. Fermi level should be near the valence band. We can that the intersection with Ef is higher for $V_{B}+$ state, which means $V_{B}{ }^{+}$vacancy will dominate.

Problem 4.4)

$$
\begin{aligned}
& \text { charge states } \\
& \left\{\begin{array}{l}
V^{\text {vacancy }} \\
G+V^{+}+e^{-} \\
G G^{-}
\end{array}\right. \\
& \left\{\begin{array}{l}
\text { same process } \\
V+e^{-} \rightarrow V^{-} \\
H \rightarrow H^{+}+e^{-}
\end{array}\right.
\end{aligned}
$$

From the above plot, we case see that it is not possible for G atom to make huge influence on n-type side.
As we can see frow the figure, If is near conduction bard for n-type semiconductor. Even if there are some G atoms in this region, the preferred state is G^{+}state.
Hence, G atoms in n-type region wouldn't be trapped centers.
4) a. So F atom acts as an acceptor in the crystal. The electron negativity of F is higher than C, which means it would grab electrons more strongly than original C atoms in the semiconductor. Hence, F atoors will replace C atoins.
b. To determine whether F will segregate or not, we need to discuss the diffusivity. From E_{q}. (7.10) in Rocketry's book, we have

$$
\begin{aligned}
& D_{F}=D_{q=0}+D_{+1}\left(\frac{P}{n_{i}}\right) \\
& D_{G}=D_{q=0}+D_{+1}\left(\frac{p}{n_{i}}\right)+D_{+2}\left(\frac{P}{n_{i}}\right)^{2}
\end{aligned}
$$

Problem 4.4)
4) b. From the above two equations, we can see that diffusivity
of G has second order dependence on doping concentration.
Therefore, if all the other parameters are the same, G atoms have larger diffusivity. It is more likely for G to segregate. to the surface than F aton.
c. If we want to use an atom as surfactant, the atom should have the ability to passivate dangling bonds at surface. Generally, these materials segregate strongly to the surface. Therefore, it's more likely to choose G atom as surfactant.
5)
a. no G atoms. \Rightarrow only H atoms contributes as donors.

$$
E_{F}-E_{i}=k_{B} T \ln \left(\frac{N_{d}}{n_{i}}\right)
$$

$E_{F} \approx 1.245 \mathrm{CV}$ above valence band.
b.

$$
\text { b. } \begin{array}{ll}
& {\left[G^{-}\right] /\left[G_{0}\right]=e^{\frac{\mathrm{J}^{-}-E_{G}^{-}}{k_{B} T}} \approx 2.51 \times 10^{18}} \\
& E_{f}-E_{G^{-}}=1.89 \mathrm{eV} \\
C & {\left[G^{-2}\right] /\left[G^{-}\right]=e^{\frac{E_{f}-E_{G^{-2}}^{L_{B}} T}{L^{-2}}} \approx 275}
\end{array}
$$

Problem 4.4)
5.)

$$
\begin{aligned}
{\left[G_{\text {total }}\right] } & =\left[G_{0}\right]+\left[G_{.}^{-}\right]+\left[G^{2-}\right]=9.8 \times 10^{16} \\
& =\left[G_{0}\right]\left(1+1.28 \times 10^{18}+1.28 \times 10^{18} \times 140\right)=9.8 \times 10^{16} \\
& {\left[G_{0}\right]=1.4 \times 10^{-4} \mathrm{~cm}^{-3} } \\
& {\left[G^{-}\right]=\left[G_{0}\right] \cdot 1.28 \times 10^{18}=3.52 \times 10^{14} \mathrm{~cm}^{-3} } \\
& {\left[G^{2-}\right]=\left[G^{-}\right] \cdot 140=9.69 \times 10^{16} \mathrm{~cm}^{-3} }
\end{aligned}
$$

e.

$$
\begin{aligned}
E_{F}-E_{i} & =k_{B} T \ln \left(\frac{N_{d}-N_{a}}{n_{i}}\right) \quad N_{a} \approx\left[G^{2-}\right] \\
& \Rightarrow E_{F} \approx 1.1 .558 \mathrm{eV}
\end{aligned}
$$

Error $\Rightarrow 1.245-7.228 \approx 0.089 \mathrm{eV}$
b)

$$
\begin{aligned}
& N=5 \times 10^{22} \mathrm{~cm}^{-3} T=900 \mathrm{~K} \\
& E_{V_{B}}=2 \mathrm{eV}, E_{f}^{+}=1.25 \mathrm{eV} \\
& {\left[V_{B}^{0}\right]=N e^{-\frac{E_{V B}}{k_{B} T}=5 \times 10^{22} \cdot e^{-\frac{2}{k_{B}} T}=3.155 \times 10^{11} \mathrm{~cm}^{-3}}} \\
& {\left[V_{B}^{+}\right]=\left[V_{B}^{0}\right] \cdot e^{-\frac{(E J-E+1)}{k_{B} T}} \approx 1.043 \times 10^{\circ} \mathrm{cm}^{-3}} \\
& {\left[V_{c}^{0}\right]=N e^{-\frac{E_{V C}}{k_{B} T}=7.93 \times 10^{5} \mathrm{~cm}^{-3}}} \\
& {\left[V_{c}^{-}\right]=\left[V_{C}^{0}\right] e^{+\frac{\left.E_{f}-E_{-}\right)}{k_{B} T}}=2.39 \times 10^{10 \mathrm{~cm}^{-3}}}
\end{aligned}
$$

个
majority as expected.

Problem 4.5)
$7)$

$$
\begin{aligned}
& a_{G a I_{n} A_{s}}=0.572 \mathrm{~nm} \quad \quad I=\frac{a_{S}-a_{f}}{a f} \\
& a_{G a A_{s}}=0.565 \mathrm{~nm} \\
& a_{I_{n} P}=0.587 \mathrm{~nm} \\
& I_{G a I_{m} A_{s}} / G_{a A_{s}}=\frac{0.563-0.572}{0.565}=-0.0124 \\
& I_{G a I_{n} A_{s} / I_{n} P}=\frac{0.589-0.572}{0.587}=0.0 .256
\end{aligned}
$$

8)

$$
\begin{aligned}
& \alpha=1 \\
& \nu=0.29
\end{aligned} \quad \theta=\phi=60^{\circ}
$$

From Eq. 7.30 in Racket, we have $\frac{\frac{h_{c}}{b}}{\ln \left(\frac{\alpha h_{c}}{b}\right)}=\frac{1-\nu \cos ^{2} c}{8 \pi f(1+\nu) \cos \phi}$,
To look for solution, l used mathemurtica to get numerical value.

$$
\Rightarrow \quad \frac{h_{c}}{b} \approx 11.13
$$

9) As we increase the film thickness above critical thickness, the strain energy in the film will exceed the formation energy of dislocation, which means film will tend to form dislocation in order to minimize the energy. Introduction of dislocations into the interface can decrease the effective misfit in the film and substrate.

Problem 4.5)
10)
a.

$$
E_{\text {dis }}=\frac{G b^{2}}{4 \pi} \frac{1-\nu \cos ^{2} \theta}{1-\nu} \ln \left(\frac{\alpha h}{b}\right)
$$

Case (1) Perfect edge dislocation $\Rightarrow \theta=0 \Rightarrow \cos ^{2} \theta=1$
Case (2) 60° partial dislocation $\Rightarrow \theta=60^{\circ} \Rightarrow \cos ^{2} \theta=\frac{1}{4}$
Case (3) Perfect screw dislocation $\Rightarrow \theta=90^{\circ} \Rightarrow \cos ^{2} \theta=0$

Elis

To give the maximum strain relief, we need the largest Ids, which is the Case 3. perfect screw dislocation.
b. The most likely to form is the one with the minimum Edis, which is the perfect edge dislocation.
11)

$$
N d=1.1 \times 10^{15} \mathrm{~cm}^{-3}
$$

From $I_{q} 7.26$ in Rockets, we can get an approximation of the radius of dislocation effects on carrier. Assume \vec{b} and dislocation line are perpendicular. $\Rightarrow \alpha=\frac{\pi}{2}$

$$
\begin{aligned}
\pi^{2} R N d=\frac{f \sin \alpha}{a} \Rightarrow R & =\sqrt{\frac{f}{a \pi N d}} \\
& \simeq 7.1 \times 10^{-5} \mathrm{~cm}
\end{aligned}
$$

$f=1$ here.
\#
4.1)
a. In a ID arystul, sone thing like

There will be acoustic phonics, ant the dispersion relation will look lilt:

because there is ore a ore atom basis. Right at $k=0$ there is a zeruranarys mole culled a Goldstone mole that corresponds with the overall translation of the whole system.
More gencelly, this and other Goldstone modes arrive from
a broken continues symmetry. In the cay of phopors, the continues symmetry is translational, i.e. you can move the system in the x direction and every, thing looks exactly the sure. These mule necessarily have 0 energy because the symmetry of space (translational) means that thor is no preferred direction in which the system has higher or lower energy.

In a perfect semicardutor crystal, in 3 dimensions, there call be mure of these moles, ore for each continues symmetry broken. This amounts to "phones" that represent the cull translation of the crystal in any of 3 directions.
b. For the 10 case: there is only I dimension, so $\vec{q}=\left(k_{\text {at }}-k_{i n}\right) \hat{x}$, and

$=\frac{e^{i q a N / 2}}{e^{i q a / 2}} \frac{(2 i)}{(-2 i)} \frac{\sin (\underline{a} N / 2)}{\sin (q a / 2)}$, so, taking the mug:

$$
S(q)=\frac{1}{N} \frac{\sin ^{2}(N a q / 2)}{\sin ^{2}(a q / 2)}=|\cdots|^{2}
$$

C. Aplot of this for $N=10,0 \leq a q \leq 10 \pi$ is attucbed. From conation, there are 8 small peaks between exch maxima, not counting the maxima.
A plot with $N=100$ is also attached, now the maximum peaks have amplitude 100 .
In general, maxima happen when $N a q / 2=n \pi$ and $a q / 2=m \pi$, where $n, m=0, \pm 1, \pm 2, \ldots$ We need both to be satisfied, so: $\frac{a q}{2}=\frac{n}{N} \pi=m \pi$

Under this condition, $n=N m$, so: $S(q)=\frac{1}{N} \frac{\sin ^{2} N m \pi}{\sin ^{2} m \pi}=\lim _{m \rightarrow 0} \frac{1}{N} \frac{\sin ^{2}(N m \pi)}{\sin ^{2}(m \pi)}$

$$
=\frac{1}{\not D} \lim _{m \rightarrow 0} \frac{2 X \pi \cos N m \pi \sin N m \pi}{2 x \cos m \pi \sin m \pi}=\lim _{m \rightarrow 0} \frac{\left(-N \sin ^{2} N m \pi+N \cos ^{2} N m \pi\right) \pi}{\left(-\sin ^{2} m \pi+\cos ^{2} m \pi\right) \pi}=N
$$

So the maximum peak hus amplitude N.
The zeros in between the maxima corves when the numerator is 0 :

$$
\sin \left(\frac{N a q}{2}\right)=0 \Rightarrow \frac{N a q}{2}=n \pi
$$

The lage peaks core when the denomiantes $=0$. like beforel. so $\frac{a q}{2}=m \pi \Rightarrow a_{q}=2 \pi \quad$ is the sepantion of maxima
the separation of minima is $a q=\frac{2 \pi}{N}$
So from ore maximum to the other there ore $\frac{2 \pi}{\frac{2 \pi}{N}}=N$ minima, including the 2 maximum peals themselves, which happen also when the nuncretio $=0$.
So in each period there are minima, but ore corresponds with. the main peak so there are really $n-1$ true minima. Than $N-1$ minima mans $N-2$ maxima, so in total there will be $N-2$ satellite peaks, not including the maxims peaks.
d. Plots of $S(q)$ for $N=10$ and $N=100$ are attached, exch with 3 randomly missing atoms.

For $N=10$, the maximum peak hight is ~ 5, which is much smulkr than the 10 it started with. Also, now the er are 4 smulkr peaks between the main peaks, but they ore poorly defied

For $N=100$, the new peak height is arums 95, As only $3 / 100$ atoms were remold, this did not have such a large effect. The width is hand ti estimate, but it seems to be about $0.05=\Delta(q a)$ which is similar to the cause with no defects.

In yenoal diffraction experiments would not be so useful to get information abut point defuts because the pattern is not 50 sensitive to defuts if they have a fuinlyy low density. (us they normally do). Furthermore, even if they have a high density as in the first case, the diffraction puttirn contain way little information about the location of defeats, although maybe you can extract sure information abut the \# of defuts.

4.1c: Structure factor for a linear crystal with $\mathrm{N}=10$.

4.1c: Structure factor for a linear crystal with $\mathrm{N}=100$.

4.1d: Structure factor for a linear crystal with $\mathrm{N}=10$ but three random sites missing.

4.1d: Structure factor for a linear crystal with $\mathrm{N}=100$ but three random sites missing.
4.2 a. At $T=0$, thar should be no displacement. so $S(\vec{q} T=0)=\frac{1}{N}\left|\sum_{j=1}^{N} e^{i \vec{q} \cdot \vec{R}_{j}}\right|^{2}$

$$
=\frac{1}{N} \sum_{j} e^{i \ddot{q} \cdot \vec{R}_{j}} \sum_{k} e^{-i \vec{q} \cdot \vec{R}_{k}}=\frac{1}{N} \exp \left\{\sum_{j} \sum_{k} i \vec{q} \cdot\left(\vec{R}_{j} \cdot \vec{R}_{k}\right)\right\}
$$

With the mapping $\vec{R}_{i} \rightarrow \vec{R}_{c}+\vec{u}_{i}(t), S(\vec{q}, T)=\frac{1}{N} \sum_{j} e^{i \vec{q} \cdot R_{j}+i \vec{q} \cdot \vec{u}_{j}(t)} \sum_{k} e^{-i \vec{q} \cdot \vec{B}_{k}-i \vec{q}^{\prime} \cdot \vec{u}_{k}(t)}$
Now $u_{i}(t)$ fluctuates, but it fluctuates randomly, so we will be interested in sore kind of average of the second form $\left\langle e^{i \dot{q} \cdot \vec{u}_{j}(+)}\right\rangle$.
This gives $S(\vec{q}, T)=\frac{1}{N} \sum_{j} e^{i \vec{q} \cdot \vec{R}_{j}}\left\langle e^{i \vec{q} \cdot \vec{u}_{j}}\right\rangle \sum_{k} e^{-i \vec{q} \cdot \vec{R}_{k}}\left\langle e^{-i \vec{q} \cdot \vec{u}_{k}}\right\rangle$
These averages are the same for every atom, because the thermal motion is random, so we can take them out of the sums:

This is not quite what the sheet has, but eve, thing works out in the end.
b. We will be exparding $\left\langle e^{i i q} \cdot \vec{u}\right\rangle$ using a Taylor Series:

$$
\begin{aligned}
& \text { b. We will be exparding }\left\langle e^{i}\right. \\
& \left\langle e^{+i \vec{q} \cdot \vec{u}}\right\rangle=\left\langle 1 \pm i \vec{q} \cdot \vec{u}+\frac{(\pm i \vec{q} \cdot \vec{u})^{2}}{2}+\ldots\right\rangle=1 \pm i\langle\vec{q} \cdot \vec{u}\rangle-\frac{\left\langle(\vec{q} \cdot \vec{u})^{2}\right.}{2}+\ldots
\end{aligned}
$$

This is useful because $\vec{q} \cdot \vec{u}$ on average is 0 , there is no preferred direction, This means we can approximate $\left\langle e^{ \pm i \vec{q} \cdot \vec{u}}\right\rangle \approx 1-\frac{\left\langle(\vec{q} \cdot \vec{u})^{2}\right\rangle}{2}$, but in general $e^{x}=1+x$, so now $\left\langle e^{ \pm i \vec{q} \vec{u}}\right\rangle \approx e^{-\left\langle(\vec{q} \cdot \vec{u})^{2}\right\rangle / 2}=e^{-q^{2}\langle | \vec{u} \vec{R} \geqslant 2}$

For atoms vibrating because of thermal noise, they approximately look harmonic, so $E=\frac{1}{2} K_{n}{ }^{2}$, where K is the spring constant. In terms of w, ard M, $K=\omega_{0}^{2} M$, so $E=\frac{1}{2} M \omega_{0}^{2} \dot{u}^{2}$, and $\left.\langle E\rangle=\left.\frac{1}{2} M \omega_{0}^{2}\langle | \vec{u}\right|^{2}\right\rangle$
From thermal, numics, $\langle E\rangle=\frac{1}{2} K_{B} T$, so now $\left.\left.\langle | \vec{u}\right|^{2}\right\rangle=\frac{K_{B} T}{M \omega_{0}^{2}}$ and so $\left\langle e^{ \pm i \dot{q} \cdot \vec{u}}\right\rangle=e^{-q^{2} k_{B} T / 2 m \omega_{0}^{2}}$. Final, plugging this in:

$$
S(\vec{q}, T)=S(\dot{q}, T=0) e^{-q^{2} k_{B} T / 2 m \omega_{0}^{2}} e^{-q^{2} k_{B} T / 2 m \omega_{1}^{2}}=S(\dot{q}, T=0) e^{-q^{2} k_{B} T / m \omega_{0}^{2}}
$$

C. W: th this structure factor, the first term $S(\vec{q}, T=0)$ will be the sarre as before, so

$$
S(\vec{q}, T)=\frac{1}{N} \frac{\sin ^{2}\left(\frac{N a a}{2}\right)}{\sin 2\left(\frac{a q}{2}\right)} e^{-\left(\frac{K_{B} T q^{2}}{M \omega_{0}^{2}}\right)}
$$

Whereas before the higher order peaks all hat the same amplitude, now the spectra fulls off like a gaussian because of the $e^{-k_{B} T a^{2} / m u_{0}{ }^{2}}$ term. This makes sense because hider a corresponds to highs frequency x-rues that fit e more waretenyths between exch atom:

If each aton is displaced a little, the phase of light can change
onvarviann
$R_{j} \hat{R}_{R_{j+u}} d_{\text {drastivall }}$. This means the light will see low ord even if the atoms only, move a soul distance from R_{j}.
At longer wavelengths, the light is less sussepuble to small charges in R_{1}.
So the structure fuctor remains approx. the sure.
\geqslant / n^{0}

d. A plot of the peak intensity of the $(200),(400),(600),(800)$, and $(10,00)$ peaks is attacked. The pururreters used to $g e t$ the peaks an $n=10, M=27 \mathrm{mp}, \omega_{0}=0.34 \times 10^{14} \mathrm{rad} / \mathrm{sec}$, $a=0.4 \mathrm{~nm}$. As expected, and sham in $S(\vec{q}, T)=S(\dot{q}, 0) e\left(\frac{k \tau_{q}{ }^{2}}{M \omega_{0}^{2}}\right)$, for the peaks at hight a the finite temperature has a larger effect. Furthermore, the temperature dependence is exponential which shows up as a lire on the log scale plot. Qunntitaticel, the vales compere docent? well to the experimental date in Fiyue 1, and in particles the relationship is a straight live on the los plot which indientes exponential dependence. The agreement is not as good for low T, as presumably other factors becorre more important.
e. The higher- q peaks show a strong temperature dependence, so in this sense manning their relative umplitules cold effediel, measure the temperation. of course it requires calibrating because it could be harl to get wo y but that would not be too much of an issue. This would work best first of all for semiconductors with faints small w_{0}, or eqcivaleatly small "spring constants" between the atoms, as that would increase the effect T curl have on the intensities. It aloe requires a very pure crystal,
so that the peaks are not reduced so much from defects and the temperature dependence can be seen most dearly. Finally, for the same reason as ω_{0}, this wold cork best for craptuls with small μ.

4.2d: Diffraction peak intensity as a function of temperature, for the (200), (400), (600), (800), and $(10,00)$ peaks. The parameters used for this are $\mathrm{M}=27 * \mathrm{mp}, \mathrm{w} 0=0.34 * 10 \wedge 14 \mathrm{rad} / \mathrm{sec}, \mathrm{a}=0.4 \mathrm{~nm}$.
4.3) a. In genoul there are 5 types of cells in a lattice of a $\mathbb{\Pi}-V$ ternary alloy, such as $I_{n 1-x} G a_{x} A s$. In each the center atom is As, and thar ar $0,1,2,3$ or 4 Ge atoms and 4,3,2,1, and 0 In atoms boded to it. At any given composition there will be a different number of cells of each type. The H. of cells of type i is given by
$N \alpha_{i} q_{i}$, where N is the number of atoms total, α_{i} is the degencran of configuration i, and q_{i} is the probability that cinfigention i appecuss. The deyenerury is needed because while there is only I way to form a type cell then ar 6 unique hus fo form type 2 cells.
we want to find the ratio of cells of type i, su $\frac{N \alpha_{i} q_{i}}{N}=\alpha_{i} q_{i}$, which amounts to finding q_{i}. If the atoms ar distributed N randomly l_{L}, $i+h$ no stecture, then q_{i} depends only 7 on x, as the composition determine the most likely cell types. In this cause, $q_{i}=x^{4-i}(1-x)^{i}$, and this is used to plot $d_{i} q_{i}$ for cub i as a function of composition, in Figure 3 as the dotted live.

The atoms are really not distributed randomly, however, becuse exc crystal cell type feels a different amount of strain at different concentrations due to bond streching and bond bending. This is modelled by assuming that at try x, the atoms lie on the places of a virtual crystal, with lattice constant linearly interpolated from that of Gads to that of InA based on x. Each cell type hus bonds that strech different amounts, so cub cell type hus a different strain encresy at a given x. This stain energy is shown in Figure 2 in the papar, and used for late calculations,
To find the tare cell patios, the strain needs to be taken intr credent by writing a free enagy function that takes into account the strain mixiry enthulpy, and the entropy associated with mixing:

$$
F=N \sum_{i} \alpha_{i} q_{i} \varepsilon_{i}-N K_{B} T\left(J[x \ln x+(1-x) \ln (1-x)]-\sum_{i} \alpha_{i} q_{i} \ln q_{i}\right)
$$

To find the equilibrium q_{i} values, F must be minimized. In the peer they use the method of Lagrange multipliers and obtain $q_{i}=c \eta_{i}+^{4-i}$, when c is the normalization constant $c=\left(\sum_{i} \eta_{i} t^{4-i} \alpha_{i}\right)^{-1}, \eta_{i}$ comes form the stain: $\eta_{i}=e^{-\varepsilon_{i} / k T}$ and t is the positive solution to $(1-x) \eta_{0} x^{4}+(3-4 x) \eta_{1}+^{3}+(3-6 x) \eta_{2} x^{2}+(1-4 x) \eta_{3}+$ $-x \eta_{4}=0$.

This solution cares from a system of equations, 5 of the equations care from. the Larum multipliers form: (for each i)
$\frac{\partial F}{\partial q_{i}}+a q_{i}+b \gamma_{i}=0$, where a and b are the Layrunge multiplies and $\gamma_{0}=1, \gamma_{1}=3, \gamma_{2}=3, \gamma_{4}=1, \gamma_{5}=0$.
The other two equations ar normalization: $\sum_{i} \alpha_{i} q_{i}=1$, and the constraint on the composition $x=q_{0}+3 q_{1}+3 q_{2}+q_{3}$.
The 7 unknowns are $q_{0}, q, q_{-2}, q_{3}, q_{4}$, and a and b. Solving this system gives the solution above.
These q_{i} 's are used to plot the dark solid lire in Figure 3, by ration of cell i $=q_{i} \alpha_{i}$, at each x. Generally these depend on temperature, and in this cause $T=1000 \mathrm{~K}$
A reprodseed Figure 3 is attucted, shoving the ratio of cell, $\alpha_{i} q_{i}$, as a function of x for each cell. The solid line corresponds to q_{i} is derived from the thermodynamics and the dusted line corresponds to a_{i} 's derived form combinatorics and statistics. If shows the amount of each cell in a crustal made up of a given composition,

Next, the short range order parameter β is defined as $\beta=1-P_{a b} / x$, where $P_{a b}$ is the probability that G_{u} is a second newest neighbour with I_{n}. By counting cells, this cores out to be $\beta=1-\frac{q_{1}+2 a_{2}+q_{3}}{x(1-x)}$, and this is plotted in Figure 4 with the q_{i} 's derived from the thermodynumics derivation, as a function of x at $T=2000 \mathrm{~K}, 1000 \mathrm{~K}$, and 500 k ,
The order parameter β effectively measures the tendance for atoms to alternate $\mathfrak{b} a$, then In, in which cue β is negative. Thartore $B<0$ implies sore short range order and $\beta>0$ implies some clustering. I_{1} Figure 4 , that $B<0$ allows indicates that in GaAs there tends to be shontrange order, instead of clustering. Furthermore, as T decreases β decreases, indicating more order. This makes sense as at lower temperatures there should be more order.
A reproduced Figure 4 is attucted.

Finall,, this sarre information is plottal in Figure 5, but now the temperature dependence is emphasized. Alt of the information is for $x=0,5$, so $I_{0.5} G_{90.5} A_{5}$.
First, the order purarretor β is shown as a dashed line, and the values acre shown on the left. As expated, at lover T the crystal becomes more ordered, but it flutters of at $\beta=-1 / 3$,
The ruts of cell is also shown for $x=0.5$ as solid lines, one for each type, and the values aron the right. At low temperature the strain enthalpy dominate and type 2, with the staxin energy at $x=0.5$, dominates. At higher tumporatues entropy becomes important and eventually dominates.
A reproduced Figure 5 is attached.
b. The muir point this paper presents is that through a thermodynamic argument considering the strain enthulps and mixing entropy, III- V compound semiconductios prefer to order instead of cluster over a short range. The clustering argument makes intuitive sense: in general the total strain energy can be minimized if instead of lapin in planes of a virtual crustal, the atoms cluster into like regions where the strain can relax. This is further spponted by the evidence that clustering like this occurs on a macroscopic scale, what the authors show, however, is that this clusting is not chat happens on a microscopic scale. Instal it is energetically preferable overall for there to be some shout range order, instedel of closto ing. This can be understood as microscopically, the energy cost of forming cluster overall is higher than order beaune of the interactions near the edges of the clusters.

$$
\text { good: } \frac{20}{20}
$$

C. This paper discussed III-V ternary alloys in general, but used InGaAs for all of the examples. From 'Semiconductor Today,' examples of recent applications of InGaAs that people are interested in include quantum wells for quantum information processing, high speed photodetectors, and high quality MOSFETs. In each of these InGaAs is the active material, and therefore understanding the microscopic ordering and the effect of strain is important to optimize the material for applications.

At the end of 2015 Bechtold et al (Nature Physics, 11, 1005-1008 (2015)) used InGaAs quantum dots on GaAs to study trapped single electrons, and in particular the mechanisms of loss of quantum information. One of the mechanisms they identified, in fact, was strain that creates electric fields on a microscopic scale. By using a (strong) magnetic field, they were able to reduce the effect of this and other loss mechanisms, and increase the lifetime of quantum information. They present this research as a step towards InGaAs-based quantum computers.

Near the middle of 2015, Semiconductor Today reported that Marktech launched a high speed photodetector using InGaAs. The photodetectors operate from $0.9-1.7 \mu \mathrm{~m}$, which is good for optical communications. They claim that the photodetectors can support high data rates and low dark current, increasing the signal to noise ratio.

Finally, at the beginning of 2015 Kim et al (IEEE Electron Device Letters, (2015))
demonstrated an InGaAs MOSFET with a good sub-threshold swing, transconductance, and on-current. The device was made with InGaAs and InP, with an InGaAs channel. The devices were grown with MBE.

Figure 3: Ratio of cell as a function of composition. The solid line is calculated taking into account strain energy and entropy at 1000 K , the dashed line is calculated assuming the atoms are distributed at random.

Figure 4: Order parameter as a function of composition. From top to bottom, the lines are calculated for $2000 \mathrm{~K}, 1000 \mathrm{~K}$, and 500 K .

Figure 5: Order parameter and ratio of cell as a function of temperature, for $\mathrm{x}=0.5$. The dotted line is the order parameter and the solid lines are the ratio of cell for each type of cell.
4.4) 1. G is an acceptor because it is in group I, so it will pull down the fermi leal to aroul the shallow level for G^{-}.
i Most of the a atoms will be in the -1 state, as the Fermi energy will be slightly 7 above G^{-}so electors will tend to ionize G atoms once. ii. V_{c} vacancies will be neutral as they are too deep ant will therefore not be ionized.
V_{R} vaccuncas will be charged +1 as the Fermi lend is below their energy, so then will not be rentalizad.
2. V_{B} vacancies will be more common when the material is doped with G (acceptors). The uncharged vacancy concentration genasully does not charge too much with Fermi level, but at the save tire

$$
\frac{\left[V_{B}^{+}\right]}{\left[V_{0}\right]}=e^{-\left(E_{f}-E_{+1}\right) / K T}, \frac{\left[V_{c}^{-}\right]}{\left[V_{0}\right]}=e^{\left(E_{f}-E_{-}\right) / K T}
$$

$E_{\&}$ is close to the valence bard, so $\left[V_{B}^{+}\right]$will be very hist while $\left[U_{c}^{-}\right]$ will be very small. While there may not be very mary neutral veceancies, then, there will be murray changed V_{B} vacancies
3. On the n side, doped heavily with H, the Fermi leal will be close to the conduction band, sou any residual G atoms will be in the G^{2-} state. most likely?. These will act as traps, because doubly charged ions are often traps as they can take a minority curlier (hoke), whit still repelling e^{-}because the chase is now -1 ,
4. a. If F is an acceptor, then it must replace the grasp V atom B primarily. In that case there would be 1 less ectoren than before. making it an acceptor.
b. Fcould have a greater tendency to go fo the surface because it hus a larger radius than G, and the lager abm aunts to minimize its stain concert mure, which can happen on the surface.
c. F would be mace likely to work as a surfactant because it hus a larger size, so it wold go to the surface, and also it is ore goop awry from the III-I lattice, which is desirable.
5. a. If there ore no G atoms, $N_{a}=0, N_{d}=2 \times 10^{17} \mathrm{~cm}^{-3}$, so
$E_{f}=E_{i}+k T \ln \left(\frac{N_{d}}{n_{i}}\right)=1.24 \mathrm{eV}$ from valence band
b. $\frac{\left[G^{-}\right]}{\left[G_{0}\right]}=e^{\left(E_{-}-E_{G_{-}}\right) / K T}, E_{G_{-}}=0.15 \mathrm{eV}$ from valence bard, so $\frac{\left[G^{-}\right]}{\left[G_{0}\right]}=2.6 \times 10^{18}$
c. $\frac{\left[G^{-2}\right]}{\left[G^{-1}\right]}=e^{\left(E_{f}-E_{G_{z}}\right) / K T}=232$
d. There will be basically no natal o atoms, to good approximation, so

$$
\begin{aligned}
& {\left[G^{-2}\right]+\left[G^{-1}\right]=9.8 \times 10^{16} \mathrm{~cm}^{-3}, \frac{\left[G^{-2}\right]}{\left[G^{-7}\right]}=232} \\
& \Rightarrow\left[G^{-1}\right](1+232)=9.8 \times 10^{16} \mathrm{~cm}^{-3} \Rightarrow\left[G^{-1}\right]=4.21 \times 10^{14} \mathrm{~cm}^{-3} \\
& {\left[G^{-2}\right]=\left[G^{-1}\right] 232=9.76 \times 10^{16} \mathrm{~cm}^{-3}} \\
& {\left[G_{0}\right]=\frac{\left[G^{-}\right]}{26 \times 10^{14}}=1.62 \times 10^{-4} \mathrm{~cm}^{-3}}
\end{aligned}
$$

e. From cant d, $4.21 \times 10^{14} \mathrm{~cm}^{-3} G$ atoms have accepted $1 e^{-}$, and $9.76 \times 10^{16} \mathrm{~cm}^{-3}$ have accepter $2 e^{-}$, so: $E_{1}=E_{i}+K T \ln \left(N_{0}+2\left[G^{2-}\right]+\left[G^{-}\right]\right)=1.14 \mathrm{eV}$ Or an error of 0.1 cV , which is not so bad. n_{i}

Cu First we reed $\left[V_{0}\right]:\left[V_{0}\right]=N e^{\Delta S_{\text {nib }} / K_{a}} e^{-\Delta E_{m u} / K T}$.
Assuming $\Delta S_{\text {rib }}=1.1 \mathrm{~K}_{B},\left[V_{0}^{B}\right]=9.48 \times 10^{11} \mathrm{~cm}^{-3},\left[V_{0}^{C}\right]=2.38 \times 10^{6} \mathrm{~cm}^{-3}$

$$
\begin{aligned}
& {\left[V^{B^{+}}\right]=\left[V_{0}^{B}\right] e^{-\left(E_{+}-E_{B}^{+}\right) / K T}, E_{B}^{+}=1.3 \mathrm{cV}-0.45 \mathrm{c}^{4} \text {, so }\left[\mathrm{V}^{B+}\right]=5.45 \times 10^{9} \mathrm{~cm}^{-3}} \\
& {\left[V^{C-}\right]=\left[V_{0}^{c}\right] e^{\left(E_{f}-E_{C}-\right) / K T}=7.19 \times 10^{10} \mathrm{~cm}^{-3}} \\
& \text { So }\left[V^{B}\right]=\left[V^{B+}\right]+\left[V_{0}^{B}\right]=9.53 \times 10^{11} \mathrm{~cm}^{-3} \quad\left[V^{c}\right]=\left[V^{C-}\right]+\left[V_{0}^{c}\right]=7.19 \times 10^{10} \mathrm{~cm}^{-3}
\end{aligned}
$$

$4.5)$
7. The misfit $f=\frac{\left|a_{8}-a_{s}\right|}{a_{s}}$. For Gats: $f=0,0124$

Fur Inf: $f=0.0256$
8. For a 60° type mist dislocation $\theta=0=60^{\circ}$, and the critical thickress cur be fund b_{y} solving

$$
\begin{aligned}
& \text { iekress cum be fund hey sours } \\
& h_{1 / b}=\frac{1-v \cos ^{2} \theta}{8 \pi f(1+\nu) \cos \varphi} \ln \left(\frac{\alpha h c}{b}\right) \quad \begin{array}{l}
\text { with } \alpha=1, v=0 \text { ? } \\
\text { numerically as }
\end{array}
\end{aligned}
$$

$$
\frac{h_{c}}{b}=11.11
$$

a. Dislocations would be introduced into the film by sore form of dislocation multiplication if the thickness is much greater than the critical thickness. Genonlly the dislocation multiplication is enabled by threading dijoutions. One example of this is the Fount. Real mechanism. In this case a misfit dislocation is pined by 2 threading segments, and as it grows the misfit dislocation separate out and creates a new dislocation. This happens when there is large stress, which is the case for $t \gg f_{c}$.
10. a. Between these 3, a perfut edge dislocation provides the maximin stain relief for the sarre dislocation lire avery. This can be seen because, equivalently for the sure strain relict E dis $\alpha 1-v \cos ^{2} \theta$, so for an edge $\theta=0^{\circ}$ and Eris is the smullas possible. This mans if the dislocation energy is the sarre, an edge dislocation povidy Hymn
b. A 60° mist dislocation is most likely to fores dislocation are the most energetically for
edgy ours on $\{001\}$ plane hit \mid sh) so the smaller angle

11. The depletion radius foom a singe threaling dislocutior is

$$
B=\sqrt{\frac{f \sin \alpha}{N_{d} a \pi}} \quad \begin{aligned}
& \text { For clye dislocations } \alpha=\pi / 2 \\
& f=1
\end{aligned}
$$

$$
R=7.1 \times 10^{-5} \mathrm{~cm}
$$

$$
f=1, a=0,572 \mathrm{~nm} \text { in this cuse, su }
$$

Sanjeer Kali ECE557OHW4
PROB
a) Goldstone modes are slow long range fluctuations in a given order parameter. They originate from a no barrier transition. ie: there is noenergy cost for the fluctuations. A symmetric phase at high temperature separates into tain as ymmetric phases. Ap example in semiconductors is the existence of Et in waves
b)

$$
\begin{aligned}
& \frac{1}{N} \left\lvert\,\left(\left.\frac{1-e^{i q} a N}{1-e^{i q \cdot a}}\right|^{2}\right.\right. \\
& \text { series } \\
& =\frac{1}{N} \frac{\left(1-e^{i q 9 A N}\right)\left(1-e^{-i g a N}\right)}{\left(1-e^{i q q}\right)\left(1-e^{-i q q}\right)} \\
& =\frac{1}{N} \frac{\left(2-e^{i g a N}-e^{-i g a N}\right)}{\left(2-e^{i q a}-e^{-i q a}\right)} \\
& =\frac{1}{N} \frac{2(1-\cos \phi \alpha N)}{2(1-\cos q a)} \\
& =\frac{1}{N} \frac{\sin ^{2}\left(\frac{q a N}{2}\right)}{\sin ^{2}\left(\frac{a^{a}}{2}\right)}
\end{aligned}
$$

Sanjeerkolli ECES57OHW4 \# 2
PROB 1 cont.
c) $10+1$

Satellite peaks $=8 \quad(N-2)$
$\frac{1051}{\text { Max height }=100}$

$$
\sin ^{2}\left(\frac{q a N}{2}\right)=0 \quad q a \frac{N}{2}=\pi \quad q a=\frac{2 \pi}{N} \text { indicates }
$$ Nays to get

/ N satellite peaks zeros

$$
\begin{aligned}
& S(a)=\frac{1}{N}\left(\frac{\sin \frac{q a N}{2}}{\sin \frac{q a}{2}}\right)^{2} \quad S^{\prime}(q a)=\frac{2}{N}\left(\frac{\sin \frac{a a N}{2}}{\sin \frac{q a}{2}}\right) \frac{\left(\sin \frac{q a}{2} \sin \frac{a l}{2}-\frac{1}{2} \sin q \operatorname{sig} \alpha a\right.}{\sin ^{2} \frac{q a}{2}} \\
& \lim _{q \rightarrow \infty} \frac{1}{N}\left(\frac{\sin q g N_{a}}{\sin \frac{g a}{2}}\right)^{2}=\frac{1}{N}(N)^{2}=N
\end{aligned}
$$

Sanjeer KIIII ELES570HW4
PROB 1 cont
d) Maximum peak strength is ~ 5, still 10 peaks in between Peak height and width for $N=100$ is roughly to same No, when detects are low in concentration they have only minor effects on diffraction experiments.

PROB 2

$$
\begin{aligned}
& \text { - } f(g)=\frac{1}{N} \sum_{j} e^{i q\left(\overrightarrow{r_{j} k}+\vec{u}_{j}(t)\right.} \\
& =\frac{1}{N} \sum_{j} e^{i q \vec{i}}\left\langle e^{i \operatorname{lng}(t)}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{N} \sum_{j} e^{i q_{j}} e^{-\frac{1}{2}\left\langle\left(\sigma^{2} p_{j}\right)^{2}\right\rangle} \\
& \left.S(q)=\frac{1}{N} \right\rvert\, \sum_{j} e^{i q \vec{q}_{j}}, e^{-\left.\frac{1}{2}\left\langle\left(\vec{a} \cdot \overrightarrow{a_{j}}\right)^{2}\right\rangle\right|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =S(q, T=0) \cdot e^{\sum_{k} i q\left(\vec{u}_{j}-\vec{u}_{k}\right)}
\end{aligned}
$$

Sanger to:
PROB 2 cont.

$$
\begin{aligned}
& \text { b) }\left\langle e^{i q \sum_{j k}\left(v_{j}(t)-v_{k}(t)\right)}\right\rangle=e^{\left.\frac{1}{2\left(l q \sum_{j k}\left(u_{j}(t)-u_{k}^{\prime}(t)\right)^{2}\right)}\right\rangle=} \\
& \begin{array}{ll}
-\frac{1}{2} q^{2}\left\langle d x^{2}\right\rangle \quad & \rightarrow \quad\langle U\rangle=k_{B} T
\end{array} \quad \begin{array}{l}
e^{\frac{1}{2} k} d x^{2} \rightarrow\langle U\rangle\left\langle\frac{1}{2} k\left\langle d x^{2}\right\rangle\right. \\
=e^{-\frac{1}{2}\left(\frac{e^{2} k_{B} T}{u_{0}^{2} M}\right) q^{2}} \quad \frac{d k_{B} T}{\omega_{0}^{2} M}-
\end{array} \\
& =e^{\left(-\frac{k_{B} T g^{2}}{\omega_{0}^{2} M}\right)} / \sqrt{\frac{k}{M} \cdot \omega_{0} \cdot k=\omega_{0}^{2} M} \\
& S(q)=\frac{1}{N} \frac{\sin ^{2} N_{a} q}{\sin ^{2} a q} e^{\left(\frac{-k_{B} T q^{2}}{M \omega_{0}^{2}}\right)}
\end{aligned}
$$

The Debye Waller factor decreases the intensity of higher order peaks. Yes this makes intivitive sense hineroider parks are mole aftate? by fluctuation
d) on plots section
e) Yes one cold use this temperature dependence as a thermometer for a crystal. Semiconductors with large masses and high vibrational frequencies would allow for a slow decay for easy observation.

Samiel:! ELES5/OH:W 4
PROB 3
a) $\quad \alpha_{0}=1 \quad \alpha_{1}=4 \quad \alpha_{2}=6 \quad \alpha_{3}=4 \quad \alpha_{4} 1$

$$
q_{0}=(1-x)^{4} \quad q_{1}=x(1-x)^{3} \quad q_{2}=x^{2}(1-x)^{2} \quad q_{3}=x^{3}(1-x) \quad q_{4}=x^{4}
$$

For Random case these quantities by just statistical entropic number of states.
For calculating strain energy of tetrahedra
$U_{a}=U_{\text {str }}+U_{b n d}$ combination of bend/streth
$U_{s t r}^{\prime} \hat{r}=\sum_{i=1}^{4} U_{s+r_{i}} \quad 4$ bonds to consider per tetrahedea
$\cdots U_{b n d}=2 \sum_{i=1}^{4} \sum_{j>1} U_{\text {bndij }} 6$ bending anglesto consider

$$
U_{\text {str, }, i}^{\prime}=\frac{3}{8} \alpha_{i} \frac{\left(d_{i}^{2}-d_{i, 0}^{2}\right)^{2}}{d_{i, 0}^{2}} \quad U_{\text {and }, i=}=\frac{3}{8} \frac{\beta_{i}+\beta_{j}}{2}\left(\frac{\left(\vec{d}_{i} \cdot \vec{j}_{j}-\vec{j}_{i, 0} d_{j, j}^{2},\right.}{d_{i, 0} d_{j, 0}}\right.
$$

U was calculated for each tetratedratype as a function of global composition x.
Then minimizing free energy resulted in finding equilibrium q values it lagrange multipliers.
η_{i} represents boltzmann distribution

$$
(1-x) \eta_{0} t^{4}+(3-4 x) \eta_{1} t^{3}+\left(3-c_{x}\right) \eta_{2} t^{2} \ldots e^{-\epsilon i / k T}
$$

$\ldots+(1-4 x) \eta_{3} t+x \eta_{4}=0$
\ddot{C} is normalization constant So $\sum \int_{1}:=\alpha x$ t represents inter type relationships

PROB 3 cont.
β reperesents order parameter and is calculated $\beta=1-\frac{q_{1}+2 q_{2}+q_{3}}{x(1-x)} \quad \begin{gathered}\text { after corsidering } \\ \text { given tetratedran }\end{gathered}$

Aegative β represents fowising of

$$
\begin{aligned}
& \text { A B bing logither } \\
& A-A \text { or }
\end{aligned}
$$

Withall these queartities Figures $3-5$ could be recrated (Results shown on attached graphs)
b) The deposition of III-V termary alloys shows that ordering is prefterd over clostoring This is
because
Ie Prakedra in the Zsc-Elense structure because tetrahedra in the Zixe-Blense strueture Further frouthe ave age composition have highers train energy. Tha reduction in strain erergy dve to long range ordering of the awcrage composirion ter meda is not as mych of an effect at highertemperatures diveto the prefence of a high entropy system
C) AGa,ts PHEMT based MMIC for communinations InGaAs PHEMT based MMIC for communnications In Gap Top layg for 4t mithilayer solar cells Al gasb Inframed op Pral Devires
G.ass highmobilitypclomneds for CMOS exhanerment

Galsp Red LSSb Solar cells
Ga.fssb $\mathrm{DHBF}>700 \mathrm{GHz}$ powergain afollo
GaPSb HBT/High PowerDevices
In Asp Photodetecfors at long wavelengths
In Psb Mid Infraved Phorodetectors
InAsb High mobing trondistor hanneis

Sanger Kolli ECES570 HW4
PROB 4

1) i) Charge balance $\sin G^{-}=\bar{p}$
' r charge is mostly -.
ii) v_{B} is mist ty 41 because the occupation state is above the Firm level and unoccupied per responds to tl charge, $V C$ is mostly
 $0.12 \uparrow 0.4$ and unoccupied corresponds to neutral charge.
2) V_{B}^{+}is more common because he weativet, charged G atoms seek cora rimed with the vacancies. Bustard of taking fran the valence bard:
3) Traps because recombination centers would require an election hole pair the G atoms would be likely doubly negatively charged acting as an electron sink preventing recomitiontrict.
4) a) B sites
b) Lesser tendency due to lower ionization en energy
c) G due to its multiple change states ivitan the gap

Sanjer Kolli
RROB 4 cont
5)

$$
\text { a) } E_{F}=0.65 \mathrm{eV}+\left(8.617 \times 10^{-5}\right)(300 \mathrm{k})\left(\operatorname{In}\left(1 \times 10^{10}\right)\right)
$$

$=1.245 \mathrm{cV}$ above valence bondedge
b) $\frac{\left[G^{-}\right]}{[G]}=e^{(1.245-.15) /(8.67970-5)(300 \mathrm{k})}$

$$
\begin{aligned}
{\left[G_{0}\right] } & =e \\
& =2.5 \times 10^{18}
\end{aligned}
$$

c) $\begin{aligned} {\left[G^{2-}\right] } & =e^{(1.245-1.10)\left(\sqrt{8} .617 \times 10^{-5}\right)(300 k)} \\ & =273\end{aligned}$

$$
=273
$$

$$
\begin{aligned}
& \text { d) }\left[G_{0}\right]+2.5 \times 10^{18}\left[G_{0}\right]+273\left(2.5 \times 10^{11}\right)\left[G_{0}\right]=9.8 \times 10^{16} \\
& \left.274 / 2.510^{16} 40^{-4}\right] \\
& {\left[\begin{array}{l}
{[G]}
\end{array}\right]=3.58 \times 10^{14} \mathrm{~cm}^{-3}} \\
& {\left[G^{2}\right]=9.76 \times 10^{16} \mathrm{~cm}^{-3}}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \left.E_{F}=0,65 \mathrm{~V}+(8,617 \times 10 \mathrm{arx})(3001 \mathrm{k})\left(\ln \left(2 \times 10^{17}-\left(1.956 \times 10^{17}\right)\right) / 200^{0^{7}}\right)\right) \\
& =0.65+.514 \\
& =1.164 \mathrm{eV} \text { above valence bantefge } \\
& \Delta t_{\text {ferror }}=.081 \mathrm{eV}
\end{aligned}
$$

Sanjer Kolli ECES570rw 4
PROB 4 cont
6)

$$
\begin{aligned}
& {\left[V_{0}^{0}\right]=N e^{\left(\Delta s_{\text {rib }} / k_{B}\right)} e^{-\Delta E_{\mathrm{vac} / k_{B} T}}} \\
& \frac{\left[V_{\dot{E}}^{-1}\right.}{\left[V_{c}^{\sigma}\right]} e^{\left(E_{F}^{-}-E_{V_{\infty}}\right) / k_{B} T} \\
& {\left[v_{B}{ }^{0}\right]=N e^{\left(\Delta S_{v i b} / k_{B}\right)} e^{-\Delta E_{\text {rac }, B} / k B T}} \\
& \frac{\left[v_{B}^{+}\right]}{\left[V_{B}^{D}\right]}=e^{\left(E_{v_{B}}+E_{F}\right) / k_{B}{ }^{\top}}
\end{aligned}
$$

PROBS
7)

$$
\begin{aligned}
& f_{\text {Gats }}=\frac{.572-.565}{.565}=.0124 \\
& f_{I_{n} T}=\frac{-572-.587}{.58}=-.0256
\end{aligned}
$$

8)

$$
\begin{aligned}
& E_{e l}=f E d_{i s} \\
& \frac{2 G(1+\nu)}{(1-\nu)} f^{2} h=f \frac{G b^{2}}{4 \pi} \frac{1-v \cos ^{2}(\theta)}{1-v} \ln \left(\frac{\alpha h}{b}\right) \\
& \frac{h_{c} / b}{\ln \left(\alpha h_{c} / b\right)}=\frac{1-\nu \cos ^{2} \theta}{8 \pi f(1+\nu) \cos \phi} \frac{1-(.29)\left(\cos 6^{2}\right)^{2}}{8 \pi(0124)(1+, 29) \cos \left(60^{\circ}\right)}=4,644 \\
& \frac{h_{c}}{b}=11.109
\end{aligned}
$$

Sanjeurkalli ECES5701HW 4
PROBScont.
9) Threading dislocation segments are the most common way of introducing dislocations past the critical thickness. This happens by extension of existing dislocations to newly forming surfaces.
10) a) The perfect edge dislocation
b) The 60° partial dislocation because if is actually possible to form (Burger's is inglide plans) and it releases more energy thin the screw dislocation.
11) $R=\sqrt{\frac{f}{a \pi N d}}=\sqrt{\left.\frac{1}{(.572)(\pi)(1(1 \times 1015}-\mathrm{m}^{-3}\right)}=711.3 \mathrm{~nm}$

$2 \mid$ ECE5570HW4.nb


```
    {x, 0, 1}, PlotRange }->\mathrm{ All, PlotLegends }->\mathrm{ {"Random"}, AxesLabel }
        {"Fraction of atom B", "Ratio of Cell"}, PlotStyle }->\mathrm{ {{Black, Dashed}}]
    Ratio of Cell
```



```
    Solve[4.614* Log[x]-x== 0, x]
    {{x->1.33576}, {x->11.1097}}
    \alphaGaAs = 41.19;
    \betaGaAs = 8.95;
    \alphaInAs = 35.18;
    \betaInAs = 5.50; aGaAs = 5.6533*^-10;
    aInAs = 6.0584*^-10; dGaAsO = \sqrt{}{3}/4* aGaAs; dInAs0 = \sqrt{}{3}/4* aInAs;
    avC[x_]:= ((x)* aGaAs + (1-x) * aInAs);
    thetar = 2 * Arctan[\sqrt{}{2}];
    dGaAs3[x_] := ((avc[x]/4-z3)^2 + avC[x]^2/8)^0.5;
    dInAs3[x_] := ((avC[x]/4+z3)^2 + aVC[x]^2/8)^0.5;
    cosGaAsGa3[x_] : = (avc[x]^2/2-2 * dGaAs3[x]^2)/(2* dGaAs3[x]^2);
    cosInAsIn3[x_] := (avC[x]^2/2-2* dInAs3[x]^2)/(2*dInAs3[x]^2);
    alttetstrain5050[x_]:=3/4*\alphaGaAs *(dGaAs3[x]^2-dGaAs0^2)^2/dGaAs0^2 +
        3/4*\alphaInAs * (dInAs3[x]^2-dInAsO^2) ^2/dInAsO^2 + 3/4* BGaAs *
        (dGaAs3[x]^2 * cosGaAsGa3 [x]^2 - dGaAsO^2 * Cos[thetaT]^2)^ 2/dGaAsO^ 2 + 3/4*
        \betaInAs * (dInAs3[x] ^2* cosInAsIn3[x]^ 2-dInAsO^ 2* Cos[thetaT] ^2) ^2/dInAsO^2;
m4%!: tetstrain5050solver[x_] :=
    alttetstrain5050[x]/. FindRoot[D[alttetstrain5050[x], z3], {z3, 0}][[1]]
man: tetstrain1000[x_] := 3/2* \alphaGaAs *(3/16*aVC[x]^2 - dGaAsO^2 )^2/dGaAsO^2;
m130% tetstrain0100[x_]:=3/2*\alphaInAs *(3/16*aVC[x]^2-dInAsO^2)^2/dInAsO^2;
```



```
    \(3 / 8 * \alpha G a A s *\left(\operatorname{dGaAs}[x]^{\wedge} 2-\text { dGaAs }^{\wedge}{ }^{\wedge} 2\right)^{\wedge} 2 /\) dGaAsO \(^{\wedge} 2\);
\(\operatorname{dInAs}\left[x_{-}\right]:=\sqrt{(\operatorname{avC}[x] / 2 * \sqrt{2 / 3})^{\wedge} 2+(\operatorname{avC}[x] / 4 / \sqrt{3}+21)^{\wedge} 2}\);
dGaAs \(\left[x_{-}\right]:=\sqrt{3} / 4 * \operatorname{aVC}[x]-21\);
thetaT \(=2 * \operatorname{ArcTan}[\sqrt{2}] ;\)
tetredge \(\left[x_{-}\right]:=\operatorname{avC}[x] / \sqrt{2}\);
ubnd2575[x_] :=9/4* (BGaAs + \(\beta\) InAs) / 2 *
    \(\left(\operatorname{dInAs}[x] * \operatorname{dGaAs}[x] * \operatorname{cosGaAsIn}[x] \wedge 2-\operatorname{dnAs} 0 * d G a A s 0 * \operatorname{Cos}[\text { thetaT] ^2})^{\wedge} 2 / d \operatorname{dnAsO} /\right.\)
        dGaAs0 0 / 4 * \(\operatorname{BInAs*~}\)
    \(\left(\operatorname{dInAs}[x]^{\wedge} 2 * \operatorname{cosInAsIn}[x] \wedge 2-\operatorname{dinAs} 0^{\wedge} 2 * \operatorname{Cos}[\operatorname{thetaT}]^{\wedge} 2\right)^{\wedge} 2 / d \operatorname{lnAs} 0^{\wedge} 2\);
tetstrain2575[x_]:=ustr2575[x] + ubnd2575[x];
cosGaAsIn[x_]:=
    (tetredge [x]^2-dGaAs [x]^2-dInAs [x]^2)/(2*dGaAs [x]*dInAs[x]);
cosinAsIn [x_]: \(=\left(\right.\) tetredge \(\left.[x]^{\wedge} 2-2 * \operatorname{dinAs}[x]^{\wedge} 2\right) /(2 * \operatorname{dinAs}[x] \wedge 2)\);
tetstrain2575solver[x_]:=
    tetstrain2575[x]/. FindRoot[D[tetstrain2575[x], z1], \{z1, 0\}][[1]];
ustr7525[x_]:=3/8* \(\operatorname{CInAs*(d\operatorname {InAs}2[x]\wedge 2-dInAsO^{\wedge }2)\wedge 2/dInAsO\wedge 2+~}\)
    \(9 / 8 * \alpha G a A s *\left(\operatorname{dGaAs} 2[x]^{\wedge} 2-\operatorname{dGaAs} 0^{\wedge} 2\right)^{\wedge} 2 /\) dGaAs \(^{\wedge} 2\);
\(\operatorname{dGaAs} 2\left[x_{-}\right]:=\sqrt{(\operatorname{avc}[x] / 2 * \sqrt{2 / 3}) \wedge 2+(\operatorname{avc}[x] / 4 / \sqrt{3}+22) \wedge 2}\);
dInAs2 \(\left[x_{-}\right]:=\sqrt{3} / 4 * \operatorname{avC}[x]-z 2\);
tetredge \(\left[x_{-}\right]:=\operatorname{avC}[x] / \sqrt{2} ;\)
ubnd7525[x_]:=9/4*( \(\mathbf{x G a A s}+\beta\) InAs \() / 2 *\)
    \(\left(\operatorname{dInAs2}[x] * \operatorname{daAs} 2[x] * \operatorname{cosGaAsIn} 2[x] \wedge 2-\operatorname{dnAsO} * \operatorname{daAsO} * \operatorname{Cos}[\text { thetaT] ^2) })^{\wedge} 2 /\right.\)
        dInAsO/dGaAsO + \(9 / 4 * \beta\) GaAs *
```



```
tetstrain7525[x_]:=ustr7525[x] + ubnd7525[x];
cosGaAsIn2[ \(x_{-}\)] : =
    (tetredge [x]^2-dGaAs2[x]^2-dInAs2[x]^2)/(2*dGaAs2[x]*dInAs2[x]);
cosGaAsGa2 [x_] : = (tetredge [x]^2-2* dGaAs2 [x]^2)/(2*dGaAs2[x]^2);
tetstrain7525solver[x_]:=
    tetstrain7525[x]/. FindRoot [D[tetstrain7525[x], z2], \{z2, 0\}][[1]];
```

misil. pl $=$ Plot $\left[6.02 *^{\wedge} 23 / 4186 *\right.$ tetstrain0100 $[x],\{x, 0,1\}$, PlotRange $\rightarrow\{\{0,1\},\{0,15\}\}$,
AxesLabel \rightarrow \{"Composition $x ", " S t r a i n$ Energy (kcal/mol)"\}];
p2 $=$ Plot [6.02*^23/4186*tetstrain2575solver [x],
$\{x, 0,1\}$, PlotRange $\rightarrow\{\{0,1\},\{0,15\}\}]$;
$\mathrm{p} 3=\mathrm{Plot}[6.02 * \wedge 23 / 4186$ * tetstrain5050solver $[\mathrm{x}]$,
$\{x, 0,1\}$, PlotRange $\rightarrow\{\{0,1\},\{0,15\}\}]$;
$\mathrm{p} 5=\operatorname{Plot}\left[6.02 *^{\wedge} 23 / 4186 *\right.$ tetstrain $\left.1000[x],\{x, 0,1\}, \operatorname{PlotRange} \rightarrow\{\{0,1\},\{0,15\}\}\right]$;
$\mathrm{p} 4=\operatorname{Plot}[6.02 * \wedge 23 / 4186 *$ tetstrain7525solver $[x]$,
$\{x, 0,1\}$, plotRange $\rightarrow\{\{0,1\},\{0,15\}\}] ;$
Show [\{p1, p2, p3, p4, p5\}]
Strain Energy (kcal/mol)

Ond 8.21

Fig R Rrom

(in64:= tsolver[x_, temp_]:=
$t /$. Solve $\left[\left\{(1-x) * E^{\wedge}\left(\right.\right.\right.$-tetstrain $1000[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) * t^{\wedge} 4+$
$(3-4 * x) * E^{\wedge}\left(-\right.$ tetstrain7525solver $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) * t^{\wedge} 3+$
$(3-6 * x) * E^{\wedge}\left(-\right.$ tetstrain5050solver $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp) $* t^{\wedge} 2+$
$(1-4 * x) * E^{\wedge}\left(-t e t s t r a i n 2575 s o l v e r[x] /\left(1.38 *^{\wedge}-23\right) /\right.$ temp $) * t-$
$x * E^{\wedge}(-$ tetstrain0100[x]/(1.38*^-23)/temp $\left.\left.)=0, t>0\right\}, t\right][[1]] ;$
nity. constant [x_{-}, temp_] : $=$
($\mathrm{E}^{\wedge}\left(-\right.$ tetstrain $1000[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) *$ tsolver $[x \text {, temp }]^{\wedge} 4+$
$\mathrm{E}^{\wedge}\left(-\right.$ tetstrain7525solver $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) *$ tsolver $\left[x\right.$, temp] ${ }^{\wedge} 3 * 4+$
$\mathrm{E}^{\wedge}\left(-\right.$ tetstrain5050solver $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) *$ tsolver $[x$, temp $] \wedge 2 * 6+$
$E^{\wedge}\left(-\right.$ tetstrain2575solver $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) *$ tsolver $[x$, temp] * $4+$
$E^{\wedge}(- \text { tetstrain0100[x]/(1.38*^-23)/temp) })^{\wedge}-1$;
n'Al: q0[x_, temp_]:=
constant $[x$, temp $] \star E^{\wedge}\left(-\right.$ tetstrain $1000[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) *$ tsolver [x, temp] ^4; $q 1\left[x_{-}\right.$, temp_] $:=$constant $[x$, temp] *
$\mathrm{E}^{\wedge}\left(-\right.$ tetstrain7525solver $[x] /\left(1.38 \star^{\wedge}-23\right) /$ temp $) *$ tsolver $[x$, temp] 3 ;
$q 2[x$, temp_] $:=$ constant [x, temp] *E^(-tetstrain5050solver[x]/(1.38*^-23)/temp)* tsolver [x, temp] ^2;
$q 3\left[x_{\sim}\right.$, temp_] $:=$ constant [x, temp] * $E^{\wedge}\left(-\operatorname{tetstrain} 2575 s o l v e r[x] /\left(1.38 *^{\wedge}-23\right) /\right.$ temp) * tsolver [x, temp];
$q 4\left[x\right.$, , temp_] $:=$ constant $[x$, temp $] * E^{\wedge}\left(-\operatorname{tetstrain} 0100[x] /\left(1.38 *^{\wedge}-23\right) /\right.$ temp $)$;
nd: constant[x_, temp_]:=
(E^{\wedge} (-tetstrain $1000[x] /\left(1.38 \star^{\wedge}-23\right) /$ temp $) *$ tsolver $[x \text {, temp }]^{\wedge} 4+$
E^{\wedge} (-tetstrain7525solver $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) *$ tsolver $[x$, temp] ^ $3 * 4+$
$E^{\wedge}\left(-\right.$ tetstrain5050solver $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) *$ tsolver [x, temp] ^ $2 * 6+$
E^{\wedge} (-tetstrain2575solver[x]/(1.38*^-23)/temp) *tsolver[x, temp] * 4 +
$\mathrm{E}^{\wedge}\left(-\right.$ tetstrain0100 $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $\left.)\right)^{\wedge}-1 ;$
micol: $\mathbf{q 0}\left[\boldsymbol{x}_{\mathbf{\prime}}\right.$, temp_] :=
constant [x, temp] *E^(-tetstrain1000 [x]/(1.38*^-23)/temp) *tsolver [x, temp] ^4;
q1[x_{-}, temp_] : = constant [x, temp] *
E^{\wedge} (-tetstrain7525solver $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp $) *$ tsolver [x, temp] ^3;
$q 2\left[x_{-}\right.$, temp_] $:=$constant $\left[x\right.$, temp] * $E^{\wedge}\left(-\right.$ tetstrain5050solver $[x] /\left(1.38 *^{\wedge}-23\right) /$ temp) * tsolver [x, temp] ^2;
q3[x_, temp_] : = constant [x, temp] * E^{\wedge} (-tetstrain2575solver[x]/(1.38*^-23)/temp) * tsolver[x, temp];
$q 4\left[x_{-}\right.$, temp_] $:=\operatorname{constant}[x$, temp $] * E^{\wedge}(-$ tetstrain0100 $[x] /(1.38 * \wedge-23) /$ temp $)$;
nes: weightedqs $=$ Plot $[$
$\{q 0[x, 1000], 4 * q 1[x, 1000], 6 * q 2[x, 1000], 4 * q 3[x, 1000], q 4[x, 1000]\},\{x, 0,1\}$, plotStyle \rightarrow \{ $\{$ Black, Thick $\}\}$, PlotLegends \rightarrow \{"In(1-x) $\mathbf{G a}(x)$ As at 1000 K" \}]

mes:- Show [[randomqs, weightedqs \}]

The above graph shows the difference in distribution of tetrahedra types between random arrangement of Type $0-4$ tetrahedra and an actual material, $\mathrm{In}_{1-x} G a_{x}$ As at 1000 K . The real material shows more preference for a given tetrahedra that matches its global composition compared to the random arrangement. This is due to the differences in energies of the tetrahedra due to strain.

```
In]7]: orderParam[x_, temp_] := 1-(q1 [x,temp] + 2*q2[x,temp] + q3 [x, temp])/x/(1-x);
```

fig4 $=$ Plot [$\{$ orderParam $[x, 500]$, orderParam $[x, 1000]$, orderParam $[x, 2000]\}$,
$\{x, 0,1\}$, AxesLabel $\rightarrow\{$ "Composition $x "$, "Order Parameter β " \},
PlotLegends $\rightarrow\{" 500 \mathrm{K"}, " 1000 \mathrm{K"}, " 2000 \mathrm{K"}\}$, PlotRange $\rightarrow\{\{0,1\},\{-0.4,0\}\}]$
Order Parameter β

The above plot shows the difference in order parameter given temperature and composition. A more negative order parameter represents more order in the structure. At lower temperatures, there is a preference for more long range ordering of tetrahedra because at lower temperature enthalpy is more important to lower the free energy. At higher temperatures increasing configurational entropy is more important lower free energy so ordering is not as preferred. As the composition of the InGaAs mixture approaches 50:50 the tetrahedra have more configurational coordination in order to lower the energy.

```
olist \(=\operatorname{Table}\left[\left\{10^{\wedge}(i / 10), \operatorname{ordexParam}\left[0.5,10^{\wedge}(i / 10)\right]\right\},\{i, 10,50\}\right] ;\)
(
```

```
q2list = Table[{10^(i/10), 6 * q2 [0.5, 10^ (i/ 10)]}, {i, 10, 50}];
```

q2list = Table[{10^(i/10), 6 * q2 [0.5, 10^ (i/ 10)]}, {i, 10, 50}];
q1list = Table[{10^(i/10), 4*q1[0.5,10^^(i/10)]}, {i,10, 50}];
q1list = Table[{10^(i/10), 4*q1[0.5,10^^(i/10)]}, {i,10, 50}];
qOlist = Table [{10^(i/10),q0[0.5, 10^(i/ 10)]}, {i, 10, 50}];

```
qOlist = Table [{10^(i/10),q0[0.5, 10^(i/ 10)]}, {i, 10, 50}];
```


figs $=$ Overlay [\{oplot, qsplot\}, Alignment \rightarrow \{TOP, Top\}]

The above plot shows the effect of temperature on order parameter and type of tetrahedra present in an $\mathrm{In}_{0.5} \mathrm{Ga}_{0.5}$ As compound. As seen in the previous figure, increasing temperature results in order parameter approaching 0 due to the favoring of configurational entropy/randomness at high temperatures. At low temperatures the Type 2 tetrahedra ($50: 50$ split) are highly favored because they have the lowest strain energy given the global composition. As temperature is increased, more randomness in the tetrahedra composition can occur and other types of tetrahedra can exist. At very high temperatures, the compound approaches the random approximation seen in the duplication of Figure 3. All tetrahedias begin to occur based solely on configurational statistics rather than considering the strain energy of the each tetrahedra.

