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Instructions:

• There are FOUR problems in this exam

• Every problem must be done in the booklet provided

• Always solve analytically first before finding numerical values

• Only work done on exam booklets will be graded. Do not attach your own sheets to the exam booklets
under any circumstances

• To get partial credit you must show all the relevant work

• Correct answers with wrong reasoning will not get points

• All questions do not carry equal points

• All questions do not have the same level of difficulty, use your time judiciously

• Physical Constants: [Planck’s constant: h = 6.63 × 10−34 J·s and h̄ = h/(2π)], [Electron charge: q =
1.6×10−19 Coulomb], [Free electron mass: me = 9.1×10−31 kg], [Speed of light in vacuum: c = 3×108

m/s], [Permittivity of vacuum: ε0 = 8.85 × 10−12 F/m], [Impedance of vacuum:
√
µ0/ε0 ≈ 377 Ω],

[Boltzmann constant: kb = 1.38× 10−23 J/K], [Room temperature kbT ∼ 1/40 eV ∼ 26 meV].

1 Miscellaneous [25 points]

Give very short answers to the following questions. All symbols have their usual meanings.

a) If the electron bandstructure near the conduction band minimum and the valence band maximum of a
semiconductor of bulk bandgap Eg is parabolic with effective masses m?

c & m?
v, sketch the band edge

density of states for 3D, 2D, 1D, and 0D structures made of this material side by side. Cover an energy
range that shows both conduction and valence bands.

b) For the same crystal structure, why do semiconductors with larger lattice constants (e.g. InAs, InN)
and larger inter-atomic hopping energies have smaller effective masses and smaller bandgaps (e.g.
compared to GaAs, GaN)?

c) The classical Newton’s law of motion F = dp
dt changes to F = d(h̄k)

dt for electrons in a crystal. Here F is
the net external force on the electron. How does then the effect of the periodic potential of atoms enter
the dynamics of the electron, and does h̄k have the same meaning as p = mv of classical mechanics?

d) By using the tools of semiconductor DOS and Fermi levels, explain the reason why for any field-effect

transistor, the off-state drain current has a gate voltage dependence Ioffd ∼ e
qVgs
kbT , whereas in the

on-state the dependence switches to Iond ∼ (Vgs − VT )α, where α is a constant.

e) Estimate the number of acoustic phonons of energy h̄ω ∼ 5 meV seen by an electron in a hot Silicon
nanowire at T = 400 K. Estimate the ratio of the emission to absorption rates of these acoustic phonons
by the electron at this temperature at equilibrium. Which is higher, and why?



Figure 1: A quantum well with rough interfaces.

2 Electron Mobility in Ultrathin Quantum Wells [25 points]

Consider a 2D electron gas located in the ground state of the conduction band of a heterostructure quantum
well of area A as sketched in Figure 1. Assume for this problem that the band offset is infinite. The electron
is free to move in the x− y plane, and its motion is quantized in the z−direction.

(a) Write the total wavefunction in the effective mass approximation of the electron in the lowest (or
ground-state) subband as a function of the lateral wavevector k = (kx, ky), the lateral real-space coordinate
r = (x, y) and area A, the quantum well width Lw and the z−coordinate, and the quantum well lattice-
periodic function uc(r). Identify the envelope function and retain it for the rest of the sections of this problem.

(b) Write the effective mass equation for the quantum well of width Lw and show that the energy eigen-

values are given by E = h̄2

2m?
c
(k2
x+k2

y)+E1(Lw) where E1(Lw) is the ground state energy of the quantum well.

(c) Show that the ground state energy of the quantum well depends on the quantum well width as

E1(Lw) = h2

8m?
cL

2
w

.

(d) Due to fluctuations in the epitaxial growth of the quantum well, the well width was not exactly Lw
everywhere in the (x, y) plane, but fluctuated by a thickness ∆(x, y) such that the fluctuation is much smaller
than the well width ∆(x, y) << Lw and the net fluctuation is zero 〈∆(x, y)〉 = 0 as shown in gray lines in

Figure 1. Show then that the ground state energy fluctuates by ∆E1(x, y) = − h2

4m?
cL

3
w

∆(x, y).

(e) Show using the effective mass equation that this fluctuation in the ground state energy due to well-
width variations can be treated as a perturbation ∆E1(x, y) = W (x, y) = W (r) in the motion of the electron
in the x− y plane.

(f) The scattering rate for the 2DEG electrons 1
τ(k→k′) = 2π

h̄ |〈k
′|W (r)|k〉|2δ(Ek − Ek′) due to these

fluctuations from Fermi’s Golden rule depends on the square of the matrix element 〈k′|W (r)|k〉. Show that

|〈k′|W (r)|k〉|2 = h4

16(m?
c)2L6

w
· |
∫
d2r
A ei(k−k

′)·r∆(x, y)|2. There is no need to evaluate the integral.

(g) Because the electron mobility µ = q〈τ〉
m?

c
, show that the mobility limited by this quantum well interface

roughness (IR) scattering decreases as the sixth power of the quantum well width according to µIR ∝ qm?
cL

6
w

h3 .
Show this proportionality, there is no need to evaluate integrals. This is a severe scattering mechanism that
is a hurdle to achieving high electron mobilities for 2DEGs in very thin quantum wells, because µIR ↓ asLw ↓
as the sixth power.

Contd...



3 A 2DEG as a parallel array of 1D conductors [25 points]

Electrons of sheet carrier density ns sit in the conduction band of a 2D electron system of energy bandstruc-

ture E(kx, ky) = h̄2

2m?
c
(k2
x + k2

y) with the k−space occupation of carriers shown in Figure 2. Assume a spin

degeneracy of gs = 2 and a valley degeneracy of gv = 1. The width of the 2D system is W , the length L, and
ohmic source and drain contacts are made to connect to the electrons to flow a current in the x−direction.
Solve this problem entirely at T = 0 K. The allowed discrete points in the k−space (kx, ky) = (2π

L nx,
2π
W ny)

where (nx, ny) are integers are considered individual modes of the 2DEG as indicated in Figure 2. The col-
lection of modes with the same ny is considered a 1D mode of the 2DEG.

Figure 2: Lateral Modes of a 2D Electron System.

(a) When the applied voltage across the source/drain contacts is Vds = 0, find the Fermi wavevector k0

as shown in the left of Figure 2.

(b) Show that the number of 1D modes with current flow in the x-direction because of the finite width
of the 2D conductor is M0 = k0W

π . Use part (a) to write this in terms of the 2DEG density.

(c) Now a voltage Vds is applied across the drain and the source such that the net sheet carrier density

of the 2DEG does not change. Assume ballistic transport and show that in Figure 2, kR =
√
k2

0 +
m?

c

h̄2 (qVds)

and kL =
√
k2

0 −
m?

c

h̄2 (qVds).

(d) Show that the voltage Vds reduces the total number of left going modes ML and increases the total
number of right going modes MR. Find expressions for ML and MR.

(e) Find the voltage Vds at which carriers in all modes move to the right and no carriers move to the left.

(f) Find how many right-going 1D modes are present in the above situation when all carriers move to
the right.

(g) Because each 1D mode in the ballistic limit can provide the maximum conductance of a quantum of

conductance G = gsgvq
2

h , find the ‘saturation’ current Id when the critical Vds of part (e) is reached.

Contd...



4 Photonic Processes in Semiconductor Solar Cells [25 points]

For red photons of energy h̄ω ∼ 1.8 eV, the equilibrium optical absorption coefficient of Si with Eg = 1.1 eV
is α0(h̄ω) ∼ 3× 103/cm whereas that of GaAs with Eg = 1.4 eV is α0(h̄ω) ∼ 2× 104/cm.

(a) Explain why it is so much higher for GaAs with representative sketches.

(b) How thick should a Si or GaAs layer be to absorb (1− e−3) ∼ 1− 1
20 = 85% of the photons that enter

the semiconductor?

(c) The absorption of a photon creates an electron in the conduction band, and a hole in the valence
band. Sketch this process using the bandstructure E(k) first for GaAs and then for Si.

(d) In GaAs and Si, the extra electron in the conduction band and hole in the valence band must lose
their excess energies and relax to the edges of the respective bands. What process enables this energy loss?

(e) Once they have reached the band edges, what process will get rid of the extra electron and hole? How
is this process fundamentally different between GaAs and Si, and which is much faster? Why?

(f) In a solar cell, a p-n junction is used to separate the electrons and holes spatially and generate an
open-circuit voltage well before they meet their undesired fates of part (e). Argue why the voltage generated
will be close to the bandgap of the semiconductor.

End.


