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Outline

• Part I: Review of fundamentals
1.1: Review of classical and quantum mechanics
1.2: Current flow in quantum mechanics, classical and quantum continuity equations
1.3: Drift, diffusion, recombination, and space-charge currents
1.4: Quantum statistics and thermodynamics, quest for equilibrium as the driver for transport

• Part II: Single-particle transport
2.1: Ballistic transport: Quantized conductance, Ballistic MOSFETs
2.2: Transmission and tunneling, Tunneling FETs and resonant tunneling diodes
2.3. Closed vs. open systems, the Non-Equilibrium Green’s Function approach to transport
2.4. Diffusive transport, Boltzmann transport equation, scattering
2.5. Fermi’s golden rule, Electron-phonon interactions, mobility and velocity saturation
2.6. High-field effects, Gunn diodes and oscillators for high-frequency power
2.7. Feynman path integrals, the Aharonov Bohm effect and Weak Localization

• Part III: Geometrical and topological quantum mechanics, unification with relativity
3.1: Spin, transport in a magnetic field
3.2: Berry phase in quantum mechanics, Quantum Hall effect, Anomalous Hall Effect 
3.3: Chern numbers, Edge/Topological states, Topological insulators and Majorana Fermions

• Part IV: Many-particle correlated transport
4.1: Fock-space way of thinking transport, second quantization, conductance anomalies
4.2: BCS theory of superconductivity, Josephson junctions
4.3. Landau/Ginzburg superconductivity theories of phase transitions due to broken symmetry
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Time-evolution of a classical ‘charged’ object

Newton

F = �rV (r) =
dp

dt

Path is deterministic

Lorentz

Path is deterministic
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Maxwell’s equations: Classical EMag
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Maxwell’s equations: Classical EMag
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Maxwell’s equations: Birth of Light
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Maxwell’s equations: Response of solids
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Experiment: Light is a wave… or a particle?
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Experiment: Light is a wave… or a particle?

Planck’s hypothesis for photons to explain expts:

Einstein: look downstairs! • The only way an object of mass m=0 can have momentum 
is if its speed v=c, or the speed of light.

• A photon is exactly such an object.  No mass, all energy, 
and a finite momentum!
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An electron is a particle… or a wave?
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An electron is a particle… or a wave?

Electron beam incident 
on a crystal (RHEED)

Atomic structure of 
a crystal (grating!)

Electron diffraction 
pattern on a screen

Guowang Li (Results from our lab!)

de Broglie:

For both waves, 
and particles!
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Wave and particle à need for a wavefunction

• The state of the free quantum particle cannot be 
represented by independent ‘numbers’ (x, px).

• We need a function whose amplitude oscillates in 
space, yet its magnitude never goes to zero.

• The complex exponential eikx satisfies these 
requirements, and respects the uncertainty relation.

Quantum states (electrons, photons) behave as waves AND particles.  How do we describe them quantitatively?
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Constructing wavefunctions: superposition

• Drawing on Fourier series, we realize that we can create any wavefunction shape to capture the 
correct physics of the problem.  Note the corresponding reciprocal space weight distribution.

By linear superposition of complex exponentials, we can create ‘particle’ like or ‘wave’ like states as desired for the problem.
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Math preliminaries before the physics…
Wavefunction ties x and p together.
Must respect the uncertainty principle.

Obervables are mathematical operators.
They act on the wavefunction to extract info.

The states of definite value of an operator are 
called the eigenstates of that operator.

Unlike classical mechanics, some operators 
fail to commute!

Non-commuting actions…
Ref: Gamow, Thirty years that shook physics.
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Definite momentum, and definite location states

x x0(x) = x0 x0(x) =)  x0(x) = �(x� x0)

A state of definite location x0:
Must be an eigenstate of operator x, with eigenvalue x0:

A state of definite momentum p:
Must be an eigenstate of operator –ih(d/dx), with eigenvalue p:

Definite in momentum à spread out in real space

Definite in real space à spread out in momentum

p̂x p(x) = px p(x) =) �i~ d

dx
 p(x) = px p(x)

 p(x) = Aei
pxx
~ = Aeikxx

States of definite location and definite momentum are unique in quantum mechanics.
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States of definite energy: Schrodinger equation
States of definite energy are not unique, because they depend on the ‘potential’ V(x)

The Schrodinger equation gives us the prescription 
to find the states of definite energy.

[
p̂2

2m
+ V (r)

| {z }
Ĥ

]| i = E| iSchrodinger

In classical mechanics, the energy of a particle is: Ecl =
p2

2m
+ V (r)

In quantum mechanics, r & p cannot be simultaneously determined because [x,p]=ih.  
Thus, we must solve an equation to obtain the energy.
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The Postulates of Quantum Mechanics
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The free electron

Not a momentum eigenstate

momentum eigenstate

Energy spectrum is continuous

Allowed momenta are continuous

V(x) = 0
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Restrict particle in space à Quantization

• The set of states {...|-1>,|0>,|+1>,…} is an orthogonal basis for constructing the wavefunction.
• One can draw an analogy to vector spaces, and use the tools of linear algebra on states.

If we restrict the ‘particle’ in one space, it quantizes the allowed ‘vectors’ in the reciprocal space. 
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The particle on a ring

Energy spectrum is discrete,
Zero energy is allowed

Momentum is quantized

Angular momentum is quantized
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The particle in a box

Energy spectrum is discrete, 
zero energy NOT allowed!
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The harmonic oscillator

Energy levels equally spaced
Zero energy NOT allowed!

Can solve the 
problem using 
raising and lowering 
operators
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The harmonic oscillator

The creation/annihilation operator 
formalism will be key in the ‘second 
quantization’ methods to be 
developed later in the course!

n̂ = a†a Ĥ = ~!(a†a+
1

2
)

Annihilation operator

Creation operator
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The hydrogen atom
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Time-evolution of states: Time-dep. Schr. Eqn.

Newton Schrodinger

F = �rV (r) =
dp

dt

Path is deterministic Path respects uncertainty relation
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States of definite energy are stationary states

• The energy eigenvalues of the time-independent Schrodinger equation are states of definite 
energy.

• Their probability density does not change with time à they are called stationary states.
• This is analogous to the 1st law of classical mechanics: quantum states of definite energy will 

continue to remain in those states unless perturbed by a potential.

Try set of solutions that allow 
the separation of x and t.

This means that the amplitude of states 
of definite energy oscillate with time with 
frequency E/h

But observables relate to the probability, 
which is time independent à this is why 
they care called stationary states.

Ehrenfrest’s theorem for the 
time evolution of an operator.
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The classical Drude model

Paul Drude 
(1900)

dc conductivity

ac conductivity

Oscillating field:

dc field:

Electrons move and scatter every tau seconds
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Quantum mechanical current
Probability density in space and time

Change in probability density with time

Use time-dependent 
Schrodinger equation

Continuity equation

In the form of a continuity 
equation à read off the 
current density!

Quantum mechanical probability 
current density

Satisfies the conservation of number of particles
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Electric current of quantum states

For most semiconductors we know the bandstructure, but not the Bloch 
functions.  Go through the derivation to recast the current in terms of the 
bandstructure, or the group-velocity (see notes).

General expression for charge current density in d-dimensions

• Group velocity of electron in state |k>

VERY useful result: current 
in d-dimensions!
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Quantum states are vectors in the Hilbert space
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By projecting states, get various representations

• We can think of the states as vectors.  
• The ‘inner product’ is a complex number generated by projection to the appropriate space.
• This number is the wavefunction – it can be found in real space, momentum space, etc…
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Identity crisis: Indistinguishable particles

This is OK for distinguishable particles such as a proton and an electron.
But NOT OK for indistinguishable particles such as two electrons!
For example, |psi|2 should not change on swapping x1ßà x2.
How must we then write the wavefunction for two identical particles?
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• Note: Why not                                           ? Majorana particles à later…

Resolution of identity crisis: Bosons & Fermions

This is necessary for indistinguishable particles.

The Pauli exclusion principle!

The Fermi-Dirac distribution!
Particles are called Fermions.
Examples: Electrons, Protons

The Bose-Einstein distribution!
Particles are called Bosons.
Examples: Photons, Phonons FermiBose



39/xxDebdeep Jena (djena@cornell.edu), Cornell University

Quantum Statistical Mechanics in 1 slide

• Boltzmann equilibrium allows energy exchange without particles between reservoir and system
• Gibb’s equilibrium allows energy and particle exchange between the reservoir and the system
• The chemical potential is a measure of the number of particles

Partition function
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Fermi-Dirac and Bose-Einstein Distributions

• Both the Fermi-Dirac and Bose-Einstein distributions are for non-interacting particles
• In the limit of high energies, they merge to the classical Boltzmann limit

e��(Ei�µ)
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Fermi-Difference function and its integrals

• The Fermi difference function will dominate our treatment of electron transport.
• The Fermi difference function looks like a box function with edges smeared with temperature.
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Fermi-Dirac Integrals

• The Fermi-Dirac Integrals (are moments) appear when we sum over states to calculate current
• The “order” of the integral is dependent on the dimensionality of the problem
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Equilibrium at contacts

• Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in 
equilibrium with them by particle (or energy) transfer

• States in equilibrium share the same chemical potential, and their f(k) is thus known
• Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves; 

the net current flows if there is an imbalance in current carrying states



44/xxDebdeep Jena (djena@cornell.edu), Cornell University

Equilibrium at multicarrier junctions

• Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in 
equilibrium with them by particle (or energy) transfer

• States in equilibrium share the same chemical potential, and their f(k) is thus known
• Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves; 

the net current flows if there is an imbalance in current carrying states
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Equilibrium in Transistors

• Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in 
equilibrium with them by particle (or energy) transfer

• States in equilibrium share the same chemical potential, and their f(k) is thus known
• Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves; 

the net current flows if there is an imbalance in current carrying states
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Perfect Crystal:�Bloch�single electron transport
Umklapp process

Can easily transform to real space.

v =
dr

dt

A static periodic potential causes no scattering.

‘One’ electron: Bloch oscillations
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Electron in a periodic potential (no analytic soln!)

We know the bandstructure, or 
E(k) eigenvalues of the electron in 
the crystal.  
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Effective Mass Approximation
• Effective Mass Approximation MAPS the complicated problem of 
•Electrons in a complicated crystal + heterostructure potential … to … 
the simplest of all quantum mech problems: The particle in a box

• Developed by Luttinger & Kohn and refined since then…
• Real power of the EMA is exercised in understanding the electronic 
properties of Quantum Heterostructures.
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Effective Mass Approximation

Example: Shallow donor states

Central Result of Effective 
Mass Approximation

�Particle-in-a-box� problem with: 
Real mass -> Effective mass,
Real wavefunction -> Envelope function
Crystal potential -> Band-edge potential + Impurity potentials, etc
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Density of States

kx

ky

2�/Lx2�/Ly

E E

g(E)

DOS: g(E) = gs ·
�

k �[E � E(k)]
Valid for electrons, photons, phonons...

Important result:
�

k(...)⇥
⇥

ddk
(2�)d (...)

If we know the energy dispersion
E(k), we can find the DOS using this prescription.

Free Electron: E(k) = �2|k|2
2m0

Free electron in 3D: g(E) = gs · 1
(2�)2 ( 2m0

�2 ) 3
2
⇤

E
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Effective Mass Approximation
• 3D (Bulk)Application: Bulk Semiconductors

�
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Effective Mass Approximation
• 2D (Quantum Wells)

�nz (z) =
r

2
W

sin
⇡nzz

W
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Effective Mass Approximation
• 1D (Quantum Wires)
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Effective Mass Approximation
• 0D (Quantum Dots)
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Effective Mass Approximation @ Heterojunctions

Proof presented in:
Burt, APL 65 717 (1994)

• Effective Mass Theory works even at sharp 
heterojunctions, and it works amazingly well!  Quantum 
cascade lasers are designed using this theory.
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Example: Exciton in an InN Nanowire

Nano Letters (2014)



57/xxDebdeep Jena (djena@cornell.edu), Cornell University

�Ballistic� Transport & Quantized Conductance
Most general expression for

‘Current Density’ in ‘d’ dimensions:

Jd = q � gsgv

Ld

�
k vg(k)f(k), where

gs = spin degeneracy

gv = valley degeneracy

vg = 1
�⇥E(k) is the group velocity

f(k) is the Fermi-Dirac function

Example: 1D current flow at T = 0 K :
J1 = I = I⇥ � I�

I⇥ = 2q
h EF1

I� = 2q
h EF2

⇥ I = I⇥ � I� = 2q2

h VD

Quantum of
conductance

F = �dk/dtMany electrons:
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�Ballistic� Transport & Quantized Conductance
Experiments:
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From Ballistic conductance to Ohm’s Law
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Contact resistances are at the quantum limit!

• MBE grown ohmic contacts are a key enabler of high RF performance
• Various groups (e.g. HRL) have adopted AlN/GaN MBE HEMT technology
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Ballistic Field-Effect Transistor

• The physics of a Ballistic FET can be understood by inspecting the carrier distribution in k-space 
at the source-injection Point.

On-state approximation
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Ballistic FET
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Ballistic Field-Effect Transistor
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Ballistic Field-Effect Transistor
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Ballistic Field-Effect Transistor

2D electron gas density at the 
injection point of a FET as a 
function of the gate voltage
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Ballistic Field-Effect Transistor

• 2DEG electron density dependence on Vds & Vg

• Ballistic FET current!

• Ballistic FETs are much simpler to understand than 
long-channel devices based on drift/diffusion.
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Ballistic Field-Effect Transistor
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Ballistic Field-Effect Transistor

Id
W

⇠ J0(
Vgs � VT

Vth
)

3
2

Id
W

⇠ J0e
Vgs�VT

Vth

Subthreshold (off) On-state
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Silicon Ballistic Field-Effect Transistor

• Note the on-off ratio, and the sharper switching at low temperatures.  The subthreshold slope is ~(kT/q)ln(10).
• This calculation neglects the contact resistance incurred in injecting carriers from 3D source to 2D channel.

Id
W

⇠ J0(
Vgs � VT

Vth
)

3
2

Id
W

⇠ J0e
Vgs�VT

Vth

Subthreshold (off)

On-state
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Silicon Ballistic Field-Effect Transistor

• injection velocity
(ensemble averaged)



71/xxDebdeep Jena (djena@cornell.edu), Cornell University

Ballistic FET vs Vacuum Tube Transport
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A 2D Crystal Channel Ballistic FET

• Note the on-off ratio, and the sharper switching at low temperatures.  The subthreshold slope is ~(kT/q)ln(10).
• This calculation neglects the contact resistance incurred in injecting carriers from 3D source to 2D channel.

60 mV/decade

ns ⇡ (
CqVth

q
) · e

Vgs�VT
Vth

Vgs � VT

Vth
<< �1

Vgs � VT

Vth
>> +1

ns ⇡
1

q

CbCq

Cb + Cq
(Vgs � VT )

subthreshold On-state
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Ballistic FET limits
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How good can GaN TFETs be?

2015

Preferred 
Corner

• Tunnel-FETs have the potential to beat the 60 mV/decade limit in switching
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How can one go below the 60 mV/decade limit?
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How can go below the 60 mV/decade limit?
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Equilibrium at contacts

• Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in 
equilibrium with them by particle (or energy) transfer

• States in equilibrium share the same chemical potential, and their f(k) is thus known
• Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves; 

the net current flows if there is an imbalance in current carrying states
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Equilibrium at multicarrier junctions

• Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in 
equilibrium with them by particle (or energy) transfer

• States in equilibrium share the same chemical potential, and their f(k) is thus known
• Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves; 

the net current flows if there is an imbalance in current carrying states
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Equilibrium in Transistors

• Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in 
equilibrium with them by particle (or energy) transfer

• States in equilibrium share the same chemical potential, and their f(k) is thus known
• Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves; 

the net current flows if there is an imbalance in current carrying states
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Outline
• Part I: Review of fundamentals

1: Review of classical and quantum mechanics

2: Current flow in quantum mechanics

3: Quantum statistics, quest for equilibrium as the driver for transport

• Part II: Single-particle transport
4: Ballistic transport: Quantized conductance, Ballistic MOSFETs

5: Transmission and tunneling, Tunneling FETs

6. Closed vs. open systems, the Non-Equilibrium Green’s Function approach to transport

7. Diffusive transport: Boltzmann transport equation, scattering, electron-phonon interactions

8. High-field effects, Gunn diodes and oscillators for high-frequency power

9. Feynman path integrals, Aharonov-Bohm effect, Weak Localization

• Part III: Geometrical and topological quantum mechanics, unification with relativity
10: Spin, transport in a magnetic field, Quantum Hall effect, Berry phase in quantum mechanics

11: Chern numbers, Edge/Topological states, Topological insulators and Majorana Fermions

• Part IV: Many-particle correlated transport
12: Fock-space way of thinking transport, second quantization, conductance anomalies

13: BCS theory of superconductivity, Josephson junctions, Phase transitions and broken symmetries
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Example: Exactly solvable 2-state problem

|1�

|2�

E1

E2

|1�

|2�

E1

E2

?

Simplest case: A 2-level system with step perturbation

Perturbation:
W(r,t) W(r)

time
t=0

What is the occupation of 
states at time t?

Example: Electrons in an atom with 
electric field perturbation. W=eFx, 
W12=eF<1|x|2>=eFx12~eFr, r is ~ 
the size of the atom.  For F~1 
MV/cm, r~0.1 nm, W12~10 meV 
(small energy, sharp resonance).
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The idea behind “Scattering”

Continuous, all weights

Discrete, specific frequencies “Bands” and “Gaps”

States mixed; extended states may not be 
allowed à localization, but gaps still possible
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Time-dependent perturbation theory

Unperturbed problem Time-dependent perturbation

Perturbation

transformation

Time-dependent evolution in the Interaction picture

If W=0, the state vector does 
not rotate in time in the 
interaction picture.

Starting point for time-dependent perturbation theory
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Time-dependent perturbation theory

Starting point for time-dependent perturbation theory

Approximation: retain terms to 1st order in perturbation W

Assume that the perturbation is turned on ‘slowly’

Probability that the system is in state n at time t
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Time-dependent perturbation theory

Fermi’s golden rule for 
time-varying potentials

Fermi’s golden rule for 
oscillating potentials

✓(!) =

Z 1

0
dtei!t = lim

⌘!0+

Z 1

0
dte�⌘tei!t

= lim
⌘!0+

i

! + i⌘
=

i

!+

1

!+
= P [

1

!
]� i⇡�(!) !

Z +1

�1
d!

f(!)

!+
= P [

Z +1

�1
d!

f(!)

!
]� i⇡f(0)

✓(!) =

Z 1

0
dtei!t = lim

⌘!0+

Z 1

0
dte�⌘tei!t

= lim
⌘!0+

i

! + i⌘
=

i

!+

1

!+
= P [

1

!
]� i⇡�(!) !

Z +1

�1
d!

f(!)

!+
= P [

Z +1

�1
d!

f(!)

!
]� i⇡f(0)

Two useful results to be used extensively later!

Here P[…] is the “principal part” of a function

⌘ #
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Higher order perturbation theory
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Scattering events in semiconductors

Scattering by each type of impurity affects the net electron mobility.

• Mobility in a ultra-clean (defect-free) semiconductor is limited by phonon (optical+acoustic) scattering.
• If the scattering rate of defects/impurities exceed that of phonons, then they determine the mobility.
• Method: find the scattering rate due to each type of defect.  The total scattering rate is the sum of all.  
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Scattering of Bloch Electron States
1

⇤kk�
=

2⇥

� |V (q)|2�[Ek� � (Ek ± �⌅)]

q = k� k�

V (q) = ⇤k⇥|W (r)|k⌅

=
⌅

V
[
e�ik�·r
⇧

V
u�
K(r)]�W (r)� [

e+ik·r
⇧

V
uK(r)]d3r

=
⌅

V
[
ei(k�k�)·r

V
]W (r)� [u�

K(r)uK(r)]d3r

⇥
� ⌅

V
eiq·rW (r)

d3r
V⌥ ⌃⇧ �

crystal

⇥
�

� ⌅

�
u�
K(r)uK(r)

d3r
�⌥ ⌃⇧ �

=1

⇥

V (q) ⇥
⇤

V eiq·rW (r)d3r
V

Fermi�s Golden Rule tells us that the 
scattering potential is the SUM of 
ALL the scatterers in the 
macroscopic crystal.

How do multiple scattering centers 
add up and contribute to the total 
scattering rate?

Fourier Transform of real-space scattering potential!
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Wtotal(r) = W (r) +W (r�R1) +W (r�R2) + ...| {z }
‘N 0

impimpurities

V0(q) ⇤
Z

V
eiq·rW (r)

d3r

V

Vtotal(q) = V0(q) +

Z

V
eiq·rW (r�R1)

d3r

V
+ ...

Vtotal(q) = V0(q) + V0(q)e
iq·R1 + V0(q)e

iq·R2 ...

Vtotal(q) = V0(q)[1 + eiq·R1 + eiq·R2 ...| {z }
‘N 0terms

]

|Vtotal(q)|2 = |V0(q)|2[(1 + eiq·R1 + eiq·R2 ...| {z }
‘N 0

impterms

)⇥ (1 + e�iq·R1 + e�iq·R2 ...| {z }
‘N 0

impterms

)]

|Vtotal(q)|2 = |V0(q)|2[Nimp + (eiq·(R1�R2) + eiq·(R1�R3)...| {z }
⇥0(RPA)

)]

|Vtotal(q)|2 = Nimp|V0(q)|2

1

⇤kk0(total)
=

2⇥

~ Nimp ⇥ |V0(q)|2�[Ek0 � (Ek ± ~⌅)]

Scattering by many impurities

�
eiqxf(x)dx⇥ F (q)

�
eiqxf(x + a)dx⇥ F (q)� eiqa

Impurity locations are R1, R2, …
They are �uncorrelated�

Fourier Transform property:

Effect of multiple scattering

Scattering rate is linearly proportional to impurity density in the dilute uncorrelated limit!
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Scattering rate due to point scatterers
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The Boltzmann Transport Equation
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The Boltzmann Transport Equation
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The Boltzmann Transport Equation
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The Boltzmann Transport Equation
Microscopic nature of 
the collision term
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Absorption, Spontaneous and Stimulated Emission
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The Collision Integral

Inelastic Scattering Elastic Scattering
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Quantum and Momentum Scattering Rates

quantum scattering rate (dephasing)

momentum scattering rate (mobility, conductivity)
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Fermi level and temperature at equilibrium
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The Boltzmann Transport Equation
equilibrium perturbation

Boltzmann Transport Equation

Particle number conserved

equilibrium scattering

bandstructure applied forces conc. gradients

Relaxation time approximation

The Boltzmann transport equation gives a full-
blown treatment of transport properties, and 
can be solved in several levels of 
approximation.
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Many electrons: Model by Distribution Function

Distribution function: Solution of 
Boltzmann Transport Equation

Fermi�s Golden Rule

Basic ideas:
• If we know the distribution function and the 
bandstructure, then the current can be 
calculated.  
• The distribution function changes from the 
equilibrium Fermi-Dirac form in response to 
perturbation.
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The Boltzmann Transport Equation

Fermi�s Golden Rule 
gives: Scattering rate from 
state k à k� by 
perturbation DEc

Most general expression for
‘Current Density’ in ‘d’ dimensions:

Jd = q � gsgv

Ld

�
k vg(k)f(k), where

gs = spin degeneracy

gv = valley degeneracy

vg = 1
�⇥E(k) is the group velocity

f(k) is the Fermi-Dirac function

charge current density (general case)

qvg may be replaced by other physical quantities:

qvgà charge current density (electrical cond.)
1 à carrier density
E (k) à heat current density (thermal cond.)
…
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Scattering events in semiconductors

A static periodic potential causes no scattering à every other potential causes scattering!

Periodic �non-static� potentials: Phonons.
Static non-periodic potentials: Defects & Impurities.
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Scattering events in semiconductors

Scattering by each type of impurity affects the net electron mobility.

• Mobility in a ultra-clean (defect-free) semiconductor is limited by phonon (optical+acoustic) scattering.
• If the scattering rate of defects/impurities exceed that of phonons, then they determine the mobility.
• Method: find the scattering rate due to each type of defect.  The total scattering rate is the sum of all.  
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Calculating the mobility/conductivity
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Formalism for diffusive charge transport
• Find the perturbation potential due to the defect.
• Use Fermi�s Golden rule to evaluate the single-particle scattering rate
• Add up for all allowed states
• Use the solution of Boltzmann equation to find the mobility/conductivity.

1
⇤kk�

=
2⇥

� |V (q)|2�[Ek� � (Ek ± �⌅)]Fermi�s golden rule

Distribution function: Solution of 
Boltzmann Transport Equation

Current density: Sum over all 
group velocities `v� in k-space

V (q) = ⇤k⇥|W (r)|k⌅

=
⌅

V
[
e�ik�·r
⇧

V
u�
K(r)]�W (r)� [

e+ik·r
⇧

V
uK(r)]d3r

=
⌅

V
[
ei(k�k�)·r

V
]W (r)� [u�

K(r)uK(r)]d3r

⇥
� ⌅

V
eiq·rW (r)

d3r
V⌥ ⌃⇧ �

crystal

⇥
�

� ⌅

�
u�
K(r)uK(r)

d3r
�⌥ ⌃⇧ �

=1

⇥

V (q) ⇥
⇤

V eiq·rW (r)d3r
V

Ec

Ev

Ec(r) = E0
c + W (r)
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General Nature of Scattering Rates

From Lundstrom: Fundamentals of Carrier Transport

Scattering rates are typically proportional to the density of states
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Scattering by a neutral impurity

1
⇤kk�

=
2⇥

� |V (q)|2�[Ek� � (Ek ± �⌅)]

V (q) = ⇤k⇥|W (r)|k⌅

=
⌅

V
[
e�ik�·r
⇧

V
u�
K(r)]�W (r)� [

e+ik·r
⇧

V
uK(r)]d3r

=
⌅

V
[
ei(k�k�)·r

V
]W (r)� [u�

K(r)uK(r)]d3r

⇥
� ⌅

V
eiq·rW (r)

d3r
V⌥ ⌃⇧ �

crystal

⇥
�

� ⌅

�
u�
K(r)uK(r)

d3r
�⌥ ⌃⇧ �

=1

⇥

V (q) ⇥
⇤

V eiq·rW (r)d3r
V

Ec(r) = E0
c + W (r) W (r) = W0�(r � r0)

This & next few slides: material from 
- Wolfe/Holonyak/Stillman
- Seeger

From Seeger: Derive your own expression!
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Scattering by charged impurities

Screened coulomb scattering potential

Brooks-Herring dimensionless factor
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Phonons in Semiconductors

Newton’s law for mass-spring chain

Vibrations form a wave

Acoustic phonon dispersion
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Phonons in Semiconductors

Acoustic and optical phonon dispersion
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Phonons in Semiconductors

Typical phonon spectra of semiconductors

Difference in energies of 
longitudinal and optical 
acoustic phonons
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Electron-Def. Pot. Acoustic Phonon interaction
Deformation Potential Acoustic Phonon 
Scattering Potential



113/xxDebdeep Jena (djena@cornell.edu), Cornell University

Electron-Piezoelectric Acoustic Phonon interaction

Piezoelectric Acoustic Phonon Scattering Potential

Piezo charge
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Electron-Def. Pot. Optical Phonon interaction

Optical Deformation Potential 
scattering potential D~108 eV/cm

Typical phonon spectra of semiconductors
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Electron-Polar Optical Phonon interaction

Polar optical 
phonon scattering 
potential

Optical phonon absorption 
and emission processes

Frohlich interaction
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Amplitude of Phonon Vibrations

Typical phonon spectra of 
semiconductors

Vibration amplitude as a function of the 
temperature: Quantum-Classical 
connection of the phonon harmonic 
oscillator

us(x, t) = u0e
i(�x�!t) + u0e

�i(�x�!t)

|us|2 = 4u2
0 cos(�x� !t)

KE =
1

2
M(

dus

dt
)2 = 2M!2u2

0 sin
2(�x� !t)

PE =
1

2
Ku2

s = 2Ku2
0 cos

2(�x� !t)

but. . .!2 =
K

M
!

KE + PE = 2M!2u2
0 = N! · ~! !
since...M = ⇢V,

u2
0 =

~
2!⇢V

·N!

N!(T ) =
1

e
~!
kT � 1
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Electron-Phonon Scattering Rates
S(k ! k0) =

2⇡

~ |W (qs)|2
~

2⇢⌦!qs

[N(!qs) +
1

2
⌥ 1

2
]�[± cos(✓) +

qs
2k

⌥ !qs

vqs
]

Momentum conservation

Energy conservation

Energy conservation

Allowed angles for acoustic 
phonon scattering events

Allowed angles for optical 
phonon scattering events
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Electron-Acoustic Phonon interaction: Mobility

Ec

Ev

Acoustic phonon scattering

Deformation potential Piezoelectric

Coupling K ~10-3

SHO: |amplitude|2 ~ number of phonons

absorption~emission

2M�2u2
0 ⇡ Nph ⇥ ~�

cl = �v2s
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Electron-Optical Phonon Scattering Rates, Mobility

Deformation potential Optical Phonon Polar Optical Phonon Scattering
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All Scattering Matrix Elements
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All Momentum Relaxation Times
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Material Properties relevant for Transport

Note relative
Strengths!
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Scattering events in semiconductors

Scattering by each type of impurity affects the net electron mobility.

• Mobility in a ultra-clean (defect-free) semiconductor is limited by phonon (optical+acoustic) scattering.
• If the scattering rate of defects/impurities exceed that of phonons, then they determine the mobility.
• Method: find the scattering rate due to each type of defect.  The total scattering rate is the sum of all.  
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envelope fn.

Handling Diffusive Transport in Low-Dimensions
Example: Transport in 2DEGs 2DEG electron wavefunction (note: k, r are in the 2D plane!)

dq

Screening in 2D

Thomas-Fermi wavevector

Screened 2D potential

2D screening function

In general, scattering can lead to intersubband transitions…

Within the same subband: �Electric quantum limit�
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Handling Diffusive Transport in Low-Dimensions

�(r, z) = �(z) = ens|⇥(z)|2

⇥nz (z) =

r
2

Lz
sin (

nz�

Lz
z) �Infinitely� deep square QW

�perfect� 2D: Graphene, BN

Quasi-2D: MOSFETs/HEMTs

Triangular QW:
Variational Wavefunction
(Fang-Howard)
Can handle multiple 
subband occupation…

Form factor

Screening form factor

Screened scattering potential
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Handling Diffusive Transport in Low-Dimensions

�⇤f0(E)

⇤E
⇡ �(E � EF ) ! µ2DEG ⇡ q⇥m(kF )

m�

Example: Remote Impurity Scattering (2DEG)

Screened remote Coulomb potential

Scattering rate (note dependence on kF)

Averaging over distribution: No averaging necessary for degenerate 
2DEGs because transport occurs by electrons at the Fermi energy!
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Transport in 3D vs 2D

3D (Doped GaAs) Modulation Doped GaAs
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High Field Transport: Current/velocity Saturation
Hot-electron
temperature

Energy 
balance eqn.

Hot-electron temperature: 
models non-equilibrium

Ensemble saturation 
velocity ~ (Eop/m*)1/2

However(!): Unanswered questions -
• Story not complete yet…
• Is saturation velocity independent of carrier concentrations? Not clear…
• Monte-Carlo simulations necessary for accurate high-field transport modeling.

Momentum 
balance eqn.

Steady state
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Superconductivity

Kammerligh Onnes
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Superconductivity
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Superconductivity

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap



132/xxDebdeep Jena (djena@cornell.edu), Cornell University

Superconductivity

Kammerligh Onnes

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap
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Superconductivity

From Wikipedia

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap
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Superconductivity

Meissner

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap
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Superconductivity

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap

From Wikipedia

Free energy of a superconductor:

Minimization of the free energy

Type-I and Type II Superconductors
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Superconductivity

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap

From Hyperphysics
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Superconductivity

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap

From Wikipedia
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Superconductivity: Reason for Cooper Pairing

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap

Simplified pairing potential

Total energy of two interacting 
electrons is lower than their single 
particle “Fermi” equilibrium value 
2EF --> Reason they pair.

Pairing energy
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Superconductivity: The BCS “condensate”

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap

The BCS many-body wavefunction

Occupation probability of state k

Energy expectation value

minimize

Superconducting gap

Cooper pair 
occupation 
probability

Single-particle 
Fermi-Dirac 
occupation 
probability

The BCS Hamiltonian

Pair creation operator
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Superconductivity: 2nd quantization in pictures

From: van Duzer and Turner

The BCS many-body wavefunction

Pair creation operator



141/xxDebdeep Jena (djena@cornell.edu), Cornell University

4th power in c’s creation/annihilation operators

Superconductivity: The Bogoliubov approach

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap

Cooper pair 
occupation 
probability

Single-particle 
Fermi-Dirac 
occupation 
probability

The BCS Hamiltonian

Convert to bilinear form, 
or 2nd power in c’s

Write energies with respect to the Fermi surface

”Expectation value” of pair occupation or un-occupation

The bilinear form can now be diagonalized with linear transformation of c-
operators using a general Bogoliubov-Valatin technique



142/xxDebdeep Jena (djena@cornell.edu), Cornell University

Superconductivity: Gap in excitation spectrum

From: van Duzer and Turner
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Superconductivity

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap
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Superconductivity

1911: Liquefaction of Helium

1912: Discovery of Superconductivity

1933: Discovery of Meissner Effect

1913: Discovery of Persistent Supercurrents

1950: Landau Ginzburg Theory of Superconductivity

1951: Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1987: High-temperature superconductivity in cuprates

200x: Topological superconductivity

1920: Electronic Specific Heat of Superconductivity

1935: London theory of Meissner Effect

1962: Josephson Tunneling Effect

1960: Giaever Measurement of Superconductor gap
Cu

rre
nt

 (I)

Voltage (V)

From Wikipedia
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Superconductivity
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Superconductivity



147/xxDebdeep Jena (djena@cornell.edu), Cornell University

Superconductivity
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envelope fn.

Handling Diffusive Transport in Low-Dimensions
Example: Transport in 2DEGs 2DEG electron wavefunction (note: k, r are in the 2D plane!)

dq

Screening in 2D

Thomas-Fermi wavevector

Screened 2D potential

2D screening function

In general, scattering can lead to intersubband transitions…

Within the same subband: �Electric quantum limit�
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Handling Diffusive Transport in Low-Dimensions

�(r, z) = �(z) = ens|⇥(z)|2

⇥nz (z) =

r
2

Lz
sin (

nz�

Lz
z) �Infinitely� deep square QW

�perfect� 2D: Graphene, BN

Quasi-2D: MOSFETs/HEMTs

Triangular QW:
Variational Wavefunction
(Fang-Howard)
Can handle multiple 
subband occupation…

Form factor

Screening form factor

Screened scattering potential
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Handling Diffusive Transport in Low-Dimensions

�⇤f0(E)

⇤E
⇡ �(E � EF ) ! µ2DEG ⇡ q⇥m(kF )

m�

Example: Remote Impurity Scattering (2DEG)

Screened remote Coulomb potential

Scattering rate (note dependence on kF)

Averaging over distribution: No averaging necessary for degenerate 
2DEGs because transport occurs by electrons at the Fermi energy!
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Transport in 3D vs 2D

3D (Doped GaAs) Modulation Doped GaAs
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Shubnikov de Haas Oscillations

Experimentally measured Shubnikov de-Haas oscillations

Energy eigenvalues with a B-field

At large B, the density of states collapses into bunches of energies called 
Landau levels.  Conductivity is expected to oscillate à SdH oscillations.
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The Quantum Hall Effect

Quantization of Hall 
conductance is precise to 

~1 part in a billion!

From: John Davies

Why is it so precise?

TKNN invariant:
Chern number, an integer!
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The Quantum Hall Effect

Rxx=0: Superconductor? 

edge states are 
conducting
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The Quantum Hall Effect

Rxx=0: Superconductor? Metal?

bulk states 
are insulating

edge states are 
conducting
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The Quantum Hall Effect

Rxx=0: Superconductor? Metal?
Neither, actually an insulator!!

conductivity 
tensor

bulk states 
are insulating

edge states are 
conducting
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The Quantum Hall Effect
From a Landau-level picture, it is easy to see that:
• Landau level separation increases with B.
• If 2D electron gas density is constant, the DOS at 

the Fermi level EF goes into gaps and inside 
Landau levels successively.

• When the EF is inside a Landau level, the system 
behaves in the classical Hall effect, Rxy=B/n2de, 
and Rxx is a scattering-limited magnetoresistance.

• But when the EF is in the gap of DOS between 
Landau levels, Rxx->0, and Rxy=h/(e2.integer)to a 
very high degree of precision. 

• Rxx->0 is justified because of low conductivity and 
insulating bulk states, but the very precise 
quantization of Rxy is a big surprise!
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Quantum Hall Insulator & Topological Insulator

Compare

Parts per billion precision

Low precisionLow precision

Compare

IQHE

Ballistic 
conductor

Topological 
insulator
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Electron spin is a consequence of relativity

1922 Stern-Gerlach experiment shows evidence of spin

1925 Uhlenbeck and Goudsmit propose spin as an intrinsic angular momentum of electrons

1927 Pauli introduces spin matrices and spin into the Schrodinger equation in an ad-hoc manner

1927 Dirac unifies special relativity and quantum mechanics and finds spin as a byproduct

Extra terms because of spin Extra terms because of spinSpin-less
Energy
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Crash course on special relativity

Lorentz

Lorentz Transformation

“Galilean” relativity theory of how coordinates
transform from one reference frame to
another.

Main idea: Constant velocity is NOT
ABSOLUTE, but depends on the speed of
the observer

Maxwell’s Equations: Speed of light 
emerges with no indication of observer.  
Experiments by Michelson/Morley show that 
the measured speed of light DOES NOT 
depend on the speed of the observer!

Einstein’s two postulates to explain 
the strange behavior of light
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Crash course on special relativity

The Minkowski Norm is invariant for intertial observers!

wikipedia
The Minkowski dot 

product for 4-vectors

Space-time 4-vectors
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Crash course on special relativity

Einstein

Since time is relative, the only time all observers agree on is
the “proper” time, or the time measured on the clock carried
by the particle whose motion is being studied.

The 4-velocity. Note the time derivative is w.r.t. the proper time, not the time in the observer’s frame!

The 4-momentum. Because space and time are
tangled, the ‘momentum’ is strangely not a 3D vector,
but a 4-D vector, with a strange connection between
the mass of the particle and the speed of light!
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Crash course on special relativity

Einstein

Minkowski Norm of 4-momentum is invariant for intertial observers!

Einstein dissects the 4-momentum.

Similar to classical momentum, but extra terms…

Very different from classical momentum, but strangely connected to kinetic energy!

Rest energy Kinetic energy

Total energy of a particle

Total energy of a 
massless particle



164/xxDebdeep Jena (djena@cornell.edu), Cornell University

Making the Schrodinger equation relativisitic
Schrodinger equation does not
have the correct relativistic
energy: there is no ‘c’!

Correct 
relativistic 

energy

The Klein-
Gordon 
equation

The Klein-Gordon equation appears a likely candidate for the relativistic quantum mechanics
of electrons. However, the probability density of the particles it represents does not remain
positive definite. It can represent spinless particles, but NOT ELECTRONS!

Fails this 
requirement
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The Dirac Equation

Dirac

The Dirac Equation for the electron

Dirac’s major realization, 
introduction of 4x4 matrices

The Dirac equation predicts electron spin, and the existence of antimatter: positrons!

rewrite Pauli spin 
matrices

Take the 
square root of 
the operator!
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Electron spin is a consequence of relativity

1922 Stern-Gerlach experiment shows evidence of spin

1925 Uhlenbeck and Goudsmit propose spin as an intrinsic angular momentum of electrons

1927 Pauli introduces spin matrices and spin into the Schrodinger equation in an ad-hoc manner

1927 Dirac unifies special relativity and quantum mechanics and finds spin as a byproduct

Extra terms because of spin Extra terms because of spinSpin-less
Energy



167/xxDebdeep Jena (djena@cornell.edu), Cornell University

Asymmetry between x and p…
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Asymmetry between x and p…

??
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Anomalous velocity terms in Bands
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The discrete Berry Phase and Berry Flux

Asboth/Oroszlany/Palyi
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The Chern Number

Asboth/Oroszlany/Palyi
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Gauge Invariance ßà Physical Observable

Quantum Berry Phase
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Precision <<->> Topology
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Berry Phase in Electron Bands

Berry curvature

Give me the bandstructure and 
eigenstates, and I can calculate the 

Berry Curvature
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Electron Transport in 3D vs 2D

Berry curvature

Chern Number

Reason for the fantastic precision of IQHE
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The Euler Characteristic of Polyhedra

Convex Polygons (Cube, Tetrahedron, …)

The Euler Characteristic

EulerImages from Fukimoto Lab

g=number of holes, or ‘handles’

Topologically equivalent tosphere donut double donut
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The Gauss-Bonnet Theorem

Gauss

Local curvatures

g=number of holes, or ‘handles’

Hessian Matrix

The 
Gauss-Bonnet 

Theorem

Equation of the surface

Taylor expansionsphere

football

donut

total curvature

Chern number, 
an integer!
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The Pancharatnam-Berry Phase

Pancharatnam-Berry Phase

solid angle cone angle

Optical fiber

light
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The Pancharatnam-Berry Phase: Experiment

Experimental measurement of the Berry phase in optical fibers
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Electron spin is a consequence of relativity

1922 Stern-Gerlach experiment shows evidence of spin

1925 Uhlenbeck and Goudsmit propose spin as an intrinsic angular momentum of electrons

1927 Pauli introduces spin matrices and spin into the Schrodinger equation in an ad-hoc manner

1927 Dirac unifies special relativity and quantum mechanics and finds spin as a byproduct

Extra terms because of spin Extra terms because of spinSpin-less
Energy
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Berry Phase of ANY 2-Band System
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Berry Phase of ANY 2-Band System

Asboth/Oroszlany/Palyi
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Anomalous velocity term due to Berry Phase

Berry curvature 
velocity term

Perturbation in eigenfunction
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Example: Graphene

x

y

sigma-orbital
pi-orbital

Real-space picture

Hopping energy:

• Sigma-orbitals hold the atoms together.
(3 electrons/carbon atom, one left over)

• Pi-orbitals are responsible for conduction.
(1 electron/carbon atom)

sp2 hybridization
Orbital figs from Pulfrey

�0 � 3 eV
acc=1.24 Angstrom

a =
�

3acc = 2.15 Angstrom (lattice constant)
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Graphene Bandstructure

�vF [ 0 kx�iky

kx+iky 0 ][ FA(r)
FB(r) ] = E(kx, ky)[ FA(r)

FB(r) ]

�vF (� · k)F(r) = E(kx, ky)F(r)

�r|k⇥ =
1⇤
2
eik·r( 1

±e�i�k )

�k = tan�1(
ky

kx
)

vF = 3
2acc

�0
� � 108 cm

s

pseudo-spin

Hamiltonian of pi-electrons with 1st nearest neighbor interaction

Eigenvectors:

E(kx, ky) = EF ± �0

�

1 + 4 cos(
�

3kxa

2
) cos(

kya

2
) + 4 cos2(

kya

2
)

Bandstructure

Some features:E(0, 0) = EF ± 3�0 � ( 3�0⇥+9eV :antibonding
�3�0⇥�9eV :bonding )

E(0, 4�
3a ) = EF ± 0� No gap (Dirac point), wavelength: � = 3a

2

��point

K�point
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Graphene Bandstructure

E(kx, ky) ⇥ �vF

�
k2

x + k2
y

vF � 108cm/s
gspin = 2

gvalley = 2

• Reviews of Modern Physics, 79 677 (2007).

E(kx, ky) = EF ± �0

�

1 + 4 cos(
�

3kxa

2
) cos(

kya

2
) + 4 cos2(

kya

2
)

• Expand around
the Dirac point

�0 � 3 eV

Conical!
Linear dispersion
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Graphene with a gap: the Valley Hall Effect

Berry curvature 
in “Gapped” Graphene

Gapped graphene Hamiltonian
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The SSH Model of a Topological Insulator

Asboth/Oroszlany/Palyi

A representative Hamiltonian of finite 4 unit cell SSH chain

The SSH ”bulk” Hamiltonian for a long (or periodic) 1D chain
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The SSH Model of a Topological Insulator

Asboth/Oroszlany/Palyi

The SSH ”bulk” Hamiltonian for 
a long (or periodic) 1D chain
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The SSH Model of a Topological Insulator

Asboth/Oroszlany/Palyi

The SSH ”bulk” Hamiltonian for 
a long (or periodic) 1D chain

What’s different?
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The SSH Model of a Topological Insulator

Asboth/Oroszlany/Palyi

Normal Insulator

Topological Insulator

Winding number

Bulk-Boundary 
correspondence
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The SSH Model of a 1D Topological Insulator

Asboth/Oroszlany/Palyi

Normal Insulator

Topological Insulator

Winding number
Topological 
phases of the 
SSH chain, and 
of any crystal can 
be classified in 
this manner
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2D Topological Insulators: 1D Edge States

Topological 
insulator

Living on the edge!

Note: B=0!



194/xxDebdeep Jena (djena@cornell.edu), Cornell University

Weyl Semimetals: Dirac cone bulk + Fermi Arc Surface
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End


