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Our goals in this course
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Our goals in this course
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About the class

Course Title: ECE 5390/MSE 5472: Quantum Transport in Electron Devices and Novel Materials
Author: Prof. Debdeep Jena, ECE and MSE
Authorship or Revision Date: 8/10/2017
Credit Hours: 4 hours
Catalog Description:
Charge, heat, and spin transport in semiconductors, 2D crystals, and correlated oxides. Electronic
gain and speed and its link to transport. Rigorous quantum transport in semiconductors, ballistic
transport, quantized conductance, non-equilibrium Green’s functions. Boltzmann transport
equation, scattering, Fermi’s golden rule, and electron-phonon interactions. Transport coefficients,
thermoelectric properties. Mobility, high-field saturation and impact ionization. Gunn and IMPATT
devices. ultrafast (THz) semiconductor electronics. Tunneling transport, backward diodes, negative
differential resistance. Magnetotransport/Quantum Hall effect, Berry phase, Chern numbers. Edge-
state/surface transport phenomena in emerging chiral semiconductors such as TMDs, topological
insulators, and correlated transport in BCS superconductivity in semiconductors such as diamond
and 2D Crystals.
Course Frequency:
Offered every 2" spring
Prerequisites:
ECE 4070/MSE 6050 or equivalent Solid-State Physics, ECE 4060/MSE 5715 or equivalent Quantum
Mechanics, or permission of the instructor
Corequisites:
ECE 4570 strongly recommended
Student Preparation Summary:
Math: Students enrolling in this class must be comfortable with the basics of algebra, linear algebra
and matrices, and differential equations.
Physics: Students should be familiar with the basics of classical electromagnetism and fields and
waves, charge and current, resistance and capacitance, and Ohm’s Law. Prior familiarity with
quantum mechanical concepts such as the wave/particle duality and the Heisenberg uncertainty
principle, the Schrodinger wave equation, and eigenvalues and eigenfunctions will help in the initial
portions of the course. Basic notions of statistical mechanics such as Maxwell-Boltzmann, Fermi-
Dirac, and Bose-Einstein distributions should be familiar to those who enroll in the class.
Programming: Students should be comfortable in using the computer to solve equations
symbolically (e.g. using Mathematica) and numerically (e.g. using Mathematica, MATLAB or Python)
and to produce graphical plots.
Textbook(s) and/or Other Required Materials:
e Course notes distributed via the class website
e Selected reading materials distributed via class website
e Etc
ECE Open CourseWare Link [if available]:
Class and Laboratory Schedule:
Lectures: Two 75 min lectures per week
Recitations: None required.
Labs: None
Assignments, Exams and Projects:
Homework: Biweekly assignments. Total of ~5 homework assignments per semester. Collaboration
with students is encouraged.
Exams: One take-home written exam at the middle of the semester.

Design Projects: One research project through the last half of the semester for which there will be 2
in-class presentations, and 2 reports. The research project will integrate, refine, and advance the
materials learnt in the class.
Course Grading Scheme: 70% Homeworks, 10% Prelim, 20% Research Project
Detailed List of Topics Covered:
Part I: Review of fundamentals
1.1: Review of classical and quantum mechanics
1.2: Current flow in quantum mechanics, classical and quantum continuity equations
1.3: Drift, diffusion, recombination, and space-charge currents
1.4: Quantum statistics and thermodynamics, quest for equilibrium as the driver for transport
Part ll: Single-particle transport
2.1: Ballistic transport: Quantized conductance, Ballistic MOSFETs
2.2: Transmission and tunneling, Tunneling FETs and resonant tunneling diodes
2.3. Closed vs. open systems, the Non-Equilibrium Green’s Function approach to transport
2.4. Diffusive transport, Boltzmann transport equation, scattering
2.5. Fermi’s golden rule, Electron-phonon interactions, mobility and velocity saturation
2.6. High-field effects, Gunn diodes and oscillators for high-frequency power
2.7. Feynman path integrals, the Aharonov Bohm effect and Weak Localization
Part lll: Geometrical and topological quantum mechanics, unification with relativity
3.1: Spin, transport in a magnetic field
3.2: Berry phase in quantum mechanics, Quantum Hall effect, Anomalous Hall Effect
3.3: Chern numbers, Edge/Topological states, Topological insulators and Majorana Fermions
Part IV: Many-particle correlated transport
4.1: Fock-space way of thinking transport, second quantization, conductance anomalies
4.2: BCS theory of superconductivity, Josephson junctions
4.3. Landau/Ginzburg superconductivity theories of phase transitions due to broken symmetry
Student Outcomes [ABET]:

1. Demonstrate fundamental in-depth quantum mechanical understanding of electron transport in
electron devices such as diodes, transistors, and LEDs and Lasers.

2. Demonstrate understanding of single and multi-particle transport properties by showing ability
to develop and explain experimental data using theoretical models, and make predictions.

3. Demonstrate an understanding of electronic transport phenomena across materials families of
insulators, amorphous solids, 3D 2D 1D and 0D semiconductors, topological insulators, metals,
and superconductors.

4. Demonstrate an ability to apply the knowledge to design electronic materials and device
structures that perform specific actions such as high-speed switching, negative differential
resistance, electronic gain, high magnetoresistance, control of spin currents, protected quantum
states robust to scattering and decoherence.

Academic Integrity:
Students expected to abide by the Cornell University Code of Academic Integrity with work
submitted for credit representing the student’s own work. Discussion and collaboration on
homework and laboratory assignments is permitted and encouraged, but final work should
represent the student’s own understanding. Specific examples of this policy implementation will be
distributed in class. Course materials posted on Blackboard are intellectual property belonging to
the author. Students are not permitted to buy or sell any course materials without the express
permission of the instructor. Such unauthorized behavior will constitute academic misconduct.
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»  Part I: Review of fundamentals

Review of classical and quantum mechanics

Current flow in quantum mechanics, classical and quantum continuity equations

Drift, diffusion, recombination, and space-charge currents

Quantum statistics and thermodynamics, quest for equilibrium as the driver for transport

 Part ll: Single-particle transport

Ballistic transport: Quantized conductance, Ballistic MOSFETs

Transmission and tunneling, Tunneling FETs and resonant tunneling diodes

Closed vs. open systems, the Non-Equilibrium Green’s Function approach to transport
Diffusive transport, Boltzmann transport equation, scattering

Fermi’s golden rule, Electron-phonon interactions, mobility and velocity saturation
High-field effects, Gunn diodes and oscillators for high-frequency power

Feynman path integrals, the Aharonov Bohm effect and Weak Localization

Geometrical and topological quantum mechanics, unification with relativity

Spin, transport in a magnetic field

Berry phase in quantum mechanics, Quantum Hall effect, Anomalous Hall Effect

Chern numbers, Edge/Topological states, Topological insulators and Majorana Fermions

Many-particle correlated transport

Fock-space way of thinking transport, second quantization, conductance anomalies

BCS theory of superconductivity, Josephson junctions

Landau/Ginzburg superconductivity theories of phase transitions due to broken symmetry
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Time-evolution of a classical ‘charged’ object

FV eu'Se—!J

Lorentz

F= _VV(r)=2 F =¢(E+v x B)

Path is deterministic Path is deterministic

Debdeep Jena (diena@cornell.edu), Cornell University




Maxwell’s equations: Classical EMag

V-D = p, Gauss’s law
vV-B = 0, Gauss’s law
VXE = —%—?, Faraday’s law
VxH = J+ %—?, Ampere’s law.
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Maxwell’s equations: Classical EMag

(V2 - LI2O)E = 0, Wave Equations
(V2-L 2B = 0.
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F1GURE 20.2: Antenna producing an electromagnetic wave.
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Maxwell’s equations: Birth of Light

AL (VQ—C%(B)—;)E = 0, Wave Equations
A H?2
(V2—%525)B = 0.

E? .
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FIGURE 20.3: Electromagnetic wave.
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Maxwell’s equations: Response of solids

M = Xm,H
B = po(H+ xmH) = po(1 + xm)H = pH
— e’

Her
FIGURE 20.4: Dielectric and Magnetic materials. Orientation of electric and magnetic
dipoles by external fields, leading to electric and magnetic susceptibilities.
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Experiment: Light is a wave... or a particle?
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Experiment: Light is a wave... or a particle?

\! 11 Scveen btk am Planck’s hypothesis for photons to explain expts:
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Einstein: look downstairs! « The only way an object of mass m=0 can have momentum
. — 2 is if its speed v=c, or the speed of light.
p = m’U/ \/1 (’U/ c) e A photon is exactly such an object. No mass, all energy,

and a finite momentum!
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An electron is a particle... or a wave?
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An electron is a particle... or a wave?
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Figure 2.7: RHEED patterns of (a) smooth surface and (b) crystalline but
rough of GaN surface.
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Wave and particle 2 need for a wavefunction

Quantum states (electrons, photons) behave as waves AND particles. How do we describe them quantitatively?

ﬁ)«d,A,);u
Fixed, Ap=0 . |/X
v N 2 1 XX
Y ;/Aw(&’-‘)*w‘“”‘“ telp) $=Ae £
AT x
| A
—> ) /\A\ = lovatand |

“ALAAA. A —al
1\ — AX_—:DI(.——-——>7)(

Cmrthfc'hd 'Pafd'\'(l:.' -

here ==>Ax-¢b’,(L\PAX?r§) The, comsplex expoventicl ¢ E =
(,;,,(C,u [ | oscillafes pathc X, Yt | 4)'= Longtand

The state of the free quantum particle cannot be %\7 0°4 Candidale 74‘/ a "3‘4*6( )

represented by independent ‘numbers’ (x, p,). “M:r reo l,e d- ¢ DX APZ-‘E .
We need a function whose amplitude oscillates in &
space, yet its magnitude never goes to zero.

The complex exponential e** satisfies these
requirements, and respects the uncertainty relation.

PX
&
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Constructing wavefunctions: superposition

By linear superposition of complex exponentials, we can create ‘particle’ like or ‘wave’ like states as desired for the problem.

V‘n\
Mp,\sl ‘ L i S

P AN P
A‘> —>

&

The best we o do +o locde a
“)aqub."e,s & lLoave b«ckd

’\.lz (x) = 2 A c"f" \IS wv\d/owca(
- “U@efmaho\p .

o\ g

» Drawing on Fourier series, we realize that we can create any wavefunction shape to capture the
correct physics of the problem. Note the corresponding reciprocal space weight distribution.
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Math preliminaries before the physics...

Wavefunction ties x and p together.

wp (:L') = Ae'P z/h " Must respect the uncertainty principle.

A 19 /6 X Obervables are mathematical operators.

p = —1 / L They act on the wavefunction to extract info.
~ The states of definite value of an operator are
p% (:L' ) — (hk)% (:C ) " called the eigenstates of that operator.

~ ~ ~ ) Unlike classical mechanics, some operators
LP — PL = [xap] = th. " fail to commute!

)

VA f\
3

Non-commuting actions...
Ref: Gamow, Thirty years that shook physics.

AR [re g
)
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Definite momentum, and definite location states

A state of definite location x,:
Must be an eigenstate of operator x, with eigenvalue X,:

; N
Py () = Doty (1) — [rg(@) = 0@ —a0)| 187 [&

N
| = X
Definite in real space - spread out in momentum Xo
Y P 2
s ¥V >
7P
A state of definite momentum p: b qRelhw) Ao
Must be an eigenstate of operator —ih(d/dx), with eigenvalue p: N /N /\ =
o
d x) =Pe” EE' (Je,{—fm{'e )
N . ™ms L,
Datbp(®) = Pathp(x) = —ih—thp(x) = petp(z) 4y | st
prax . = p/
Yp(x) = Ae' " = Ae'F=" P

Definite in momentum > spread out in real space

States of definite location and definite momentum are unique in quantum mechanics.
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States of definite energy: Schrodinger equation

States of definite energy are not unique, because they depend on the ‘potential’ V(x)

p2

In classical mechanics, the energy of a particle is:  |E . = % + V(r)

In quantum mechanics, r & p cannot be simultaneously determined because [x,p]=ih.
Thus, we must solve an equation to obtain the energy.

h2 O?
" 9m Ox2

| +V(2)|lYe(r) = EYp(z).

The Schrodinger equation gives us the prescription
to find the states of definite energy.

b s
Schrodinger [g_m ‘|‘ V(TZ] ’¢> — EW>
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The Postulates of Quantum Mechanics

The five basic postulates of quantum mechanics are:

(1) The state of any physical system at a given time ¢ is completely represented by a
state vector |¥) = |¥(r,t)).

(2) For an observervable quantity A there is an operator A. The eigenvalues of A are
the possible results of the measurements of A, that is, denoting the eigenvalues of
A by a,

Ala) = a|a), (2.23)

and the probability of a measurement of A yielding the value a at time t is
|{(a|¥(t))|2. The a’s, which are the results of possible measurements, must be

real. This implies that A must be a linear hermitian operator.

(3) A measurement of |¥) that leads to an eigenvalue a; leads the quantum mechanical
system to collapse into the eigenstate |¥;), which is the eigenstate corresponding

to the eigenvalue a;. So a measurement affects the state of the quantum system.

(4) There exists a hermitian operator H such that

LTO0)

o = H|U(r,t)). (2.24)

(5) Two classical dynamical variables a,b, which are conjugate in the Hamiltonian

sense, are represented by Schrodinger operators A,ﬁ, which obey

A;B; — BjA,; = ihd;;. (2.25)
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The free electron

R d? V(x) =0
~ 5 @1#(33) = Ev(x) )
€
¢ A >
E Y ) )
T ,w(x) — Aezk::c +Be—zk:cc
Viz)=0
k=1 / 2me b — 2 Allowed momenta are continuous
Free Electron h? A
21.2
E = W'k Energy spectrum is continuous
2Me

pe(z) = —z‘h%zp(x) = —ih(ikAe"*® —ikBe ") = hk(Ae™™® — Be~"*) # py(z)
Not a momentum eigenstate

but... for ¥_ (z) = Aet*=,

Dz (z) = —ih%qp_, (z) = —ih(ikAe™*®) = Rky_, (z) = pip_, (z) momentum eigenstate
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Restrict particle in space - Quantization

If we restrict the ‘particle’ in one space, it quantizes the allowed ‘vectors’in the reciprocal space.

Yp(z + L) = ¢p(z) > letRl =1 = ™" and k, =n x (27/L). Here n = 0,41, £2, ...

‘ ) Pl :le}khx k>2Cn n=0,*t)t2 ---.
Pordicle on . RiNG & L
- Ca/l this Stck weeby' [0S
m&i’aﬁ-fmdﬂw frrm a'sel’
' [z v oo ’\.la (x) L2 (x) 1{,()9 ILD(X)’\[, (x), 'q,w(x)_“
Note: S”’*(") b(xdx = §,, " ’>;5:Lwd~om Gne DT HD 6 DNAL )
(o

h\w> = Shnn & Vedvil ane “porpendic ey ‘!

The set of wave functions [...¢0_o(z),¥_1(x),%o(x), ¥ ( ) Pa(x),...] = [Yn(x)] are spe-
cial. We note that fOL dzp}, (2)Yn(x) = Opm, i.e., the functions are orthogonal. Any

general wavefunction representing the particle ¥(z) can be expressed as a linear com-
bination of this set. This is the principle of superposition, and a basic mathematical
result from Fourier theory. Thus the quantum mechanical state of a particle may be
represented as ¢ (z) = > Aptn(z). Clearly, A, = [dzyp}(z)i(x). Every wavefunc-

tion constructed in this fashion represents a permitted state of the particle, as long as

» The set of states {...|-1>,|0>,|+1>,...} is an orthogonal basis for constructing the wavefunction.
» One can draw an analogy to vector spaces, and use the tools of linear algebra on states.
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The particle on a ring

3.4 Not so free: particle in a ring

(x4 L) = (z) — k@) = gkz _y gkl — 1 5 kI, — ongr

Momentum is quantized

2
knz—ﬂ-n

In=0+1,+2 ..

¥(n, ) = Aetkn®,
Particle on a ring

L
/ dz|p(n,z)|? =1 |A*xL=1—- A=
0

|| Y(n,z) = %e

iknx

Sl-

Note that n = 0 is allowed as a result of the periodic boundary condition.

Energy spectrum is discrete,

Zero energy is allowed En

=N

N 2me

2mL? - 2m, L2

Angular momentum is quantized |L =pxr=hk, X o— =
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The particle in a box

V(z)=0, 0<z<L

V(i) =00, 2<0,z>1L

' ' The major change is that ¢ (z) = 0 in regions where V(z) = oc.

V(z) =0 Viz) =00
/\ w(m) — Aeikw + Be—ik:l: — ,lp(o) —0= A+B,'I/)(L) — AeikL + Be—ikL —0
0 AR
V(z)=0

A .
B —e kL — 1 5 2kL = 2nw ||k, = n— | n = +1,£2, 43, ...

Particle in a box

Note that n = 0 is not allowed, because then 1 (z) = 0 and there is no particle

wavefunction after normalization over the length L is

b(n,z) = \/% sin(n%x) = \/% sin(knz)

2 (Wh)2 .2 h?
En=mn 2m.L?

Energy spectrum is discrete,
zero energy NOT allowed!
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The harmonic osclllator

\

Harmonic Oscillator

2
o - H,

oo (z) = 1 mw
L‘-‘n(l = m . ( T

V(z) = Emewza:2

mw

| —x = 2,....
(V > 1). n=~01,2,

The functions Hj,, are the Hermite polynomials,

L, w2 dt
H,(z) = (-1)"¢"

dx™ ‘

The corresponding energy levels are

1
E, = hw (n. - 5)

Energy levels equally spaced
Zero energy NOT allowed!

Debdeep Jena (diena@cornell.edu), Cornell University

a=1/5p @+ ——p)
ot =/ (e - L
r= QZw(aJ‘—i—a)
p =iy 2 (af ~ )

Can solve the
problem using
raising and lowering
operators




The harmonic oscillator

The creation/annihilation operator
formalism will be key in the ‘second
quantization’ methods to be
developed later in the course!

En—(n+§)hx,u
_ %("_*_L“)
¢= 2h v mwp
f_ fmwo. G
¢ 271(3C mwp)

h=a'a

[a,aT] =1

Annihilation operator

aln) = v/n|n — 1)

Creation operator

a'ln) =vVn+1jn+1)

A 1
H = hw(aTa + 5)
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The hydrogen atom

Energy levels [ edit source | edit beta]

The energy levels of hydrogen, including fine structure, are given by the Sommerfeld expression:
2, —1/2

E;n = —m? 1+ A -1

MeC oy o’ n 3
S o R ety 1
2n n“\j+sz; 4

where a is the fine-structure constant and j is the "total angular momentum" quantum number, which is equal to | Z + 1/2| depending on the
direction of the electron spin. The factor in square brackets in the last expression is nearly one; the extra term arises from relativistic effects
(for details, see #Features going beyond the Schrédinger solution).

Wavefunction [ edit source | edit beta ]
The value

mec’a?  0.51 MeV

The normalized position wavefunctions, given in spherical coordinates are:

= — =13.6eV | 2 \}n—-¢-1! __ . , .,
2 2- 13’72 "'I--'n i\ T v, ) = ( ) “._P"I‘Z fL‘2l+'1 ym 19. n
where:
A V(r) 2r
-— E!

(g is the Bohr radius,

26+1 i i i _ /-
Ln.—l"—l (P) is a generalized Laguerre polynomial of degree n— #Z - 1, and

};’"(1) HJ) is a spherical harmonic function of degree £ and order m. Note that the

generalized Laguerre polynomials are defined differently by different authors. The usage here
is consistent with the definitions used by Messiah,[B] and Mathematica.®! In other places, the
Laguerre polynomial includes a factor of (n, -+ f) !,[101 or the generalized Laguerre

polynomial appearing in the hydrogen wave function is Lgf;:"ll ( /J) instead. [1]
n

The quantum numbers can take the following values:

n=1.223....
Hydrogen Atom (=0, 1{. 2., ; n—1
m=—{ ... 1
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Time-evolution of states: Time-dep. Schr. Eqn.

AxzAp > h/2

F\/ ecr'Se—!J

Schrodinger

0|y) P2
_— — 4 h — t
F=-VV(r) th— = =[5~ + V(I ][¥)
Path is deterministic Path respects uncertainty relation
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States of definite energy are stationary states

L 0¥ (x,t) h? 02
— - U(z, 1),
ih 5 [\ 5 ax2—|—V(a}Z] (z,t)
v H

‘If(a:, t) = X(t)¢(ay) Try set of solutions that allow

the separation of x and t.

X0 _ HY@) _

x(t) ()

v

A4

Vp(z,t) = ZPE(iU)@_i%t VEg(z,t)]* = [Ye(z))?

This means that the amplitude of states But observables relate to the probability,
of definite energy oscillate with time with which is time independent = this is why
frequency E/h they care called stationary states.

energy.

continue to remain in those states unless perturbed by a potential.

Ehrenfrest’s theorem for the
time evolution of an operator.

The energy eigenvalues of the time-independent Schrodinger equation are states of definite

Their probability density does not change with time - they are called stationary states.
This is analogous to the 15t law of classical mechanics: quantum states of definite energy will

Debdeep Jena (diena@comell.edu), Comell University




The classical Drude model

L) : oS e
e ® " ." Electrons move and scatter every tau seconds
@ o._ @
e 2ol
e o2
dc field: : =
T dv mu U
| mo = qF — — steady state: %£(...) — 0 v=LF= ukE
Paul Drude m
(1900) 2 2
nqg-T nqg-T
J = qnv = d E=cF —|og= d
m m
dc conductivity
Oscillating field:
o dv it MU o
E(t) = Ee ma = qbe™ — — U(t) — ’U(O)G 1.0 =
T \ Re(o)
0.8 \ Am(o)
0.6 "g
olw)=—2 - % __; “7%0 o>
l+iwr 1+ (wr)?2 14+ (wr)?| ™ 0.2
Re(o(w)) Im (o (w)) b S W R

ac conductivity
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Quantum mechanical current

‘\IJ ( X, t) ‘2 — U*J Probability density in space and time

oW (z, )2 oV U
B A
ot ot T ot

|

O (1) L (5/2m + V)W

\y  Change in probability density with time

L (ﬁ2/ 2m + V)\I’* Use time-dependent

\ll ot — ih _ih Schrodinger equation
(xR
O\ (x,t)|? 1 #
’ ( )| — . (\If*ﬁ2\11 L \11252\:[!*) ) W(@.\@d 3“.60‘:
ot 2mih F fcheo V.3, chorge
owk
. ) . 2 In the form of a continuity
Since p = —thV, (9|\I/(x, t>’ = -V, - [L(\y*ﬁ\l} — \Ilﬁ\ll*)] equation = read off the
ot $ 2m current density!
Continuity equation 0p/0t = —V, - 1 \. . 1 . .
/0/ r-J j = %(\P*qu - \I!p\I/*)l

d / d37a‘\p’2) — / d3rv - j=— ]{ j-dS =0 / Quantum mechanical probability
space space

dt ( current density

Satisfies the conservation of number of particles
Debdeep Jena (diena@comell.edu), Comell University




Electric current of quantum states

J = UpU — UpU*
2me( pY”)

For most semiconductors we know the bandstructure, but not the Bloch
functions. Go through the derivation to recast the current in terms of the
bandstructure, or the group-velocity (see notes).

[vo(%) = VB 0/

» Group velocity of electron in state |k>

v

d — ﬁ Z Vg (k)‘f (k) VERY useful result: current
ll k in d-dimensions!

= Y v, ()T M) f2(K) — fr(k)

k

l General expression for charge current density in d-dimensions

Ja= (i [ A x Vo (T (0)Lfu (k) ~ )]

Debdeep Jena (diena@cornell.edu), Cornell University




Quantum states are vectors in the Hilbert space

by Damefuncrion (Yo = Z A k0 \ s om allowed (e
—= Xz AR R
Vec;;t?&km“—'? r\'xD = Z A, \\r\Z)

= é’ A N2

i-. 22 0,000, 135, 1D
5 “beais I
Lrwuoow S
X
m_‘,l‘o‘jm‘!{(x.} = (5-’3\ = 3‘; 0 - GY"LoJM: ((\t;ﬁ:\(lh? — .2:-D
) . o) = .
33— di mermosional Wj‘&g > Wi VA L b Im/ IR0, ===y

I"D-i:S e chstiack Stade Vector . 1 1S o 89— dimeug i) ety QM @,
it lwes in He HilLest SP&C{ Srov & Wh“:.m"’ Sta(.e\_—l\

?29)3/3}
(o lhe "“besig”

\
|
|
|
\

It is useful here to draw an analogy to the decomposition of a vector into specific co-

ordinates. The ‘hybrid’ state function (z) is pictured as a vector |¢) in an abstract | ’w) . E A | o
=2nAnn)  (m|n) = dmn

space. The definite momentum wavefunctions 1, (x) are pictured as the ‘coordinate’

vectors |n) in that space of vectors. This set of vectors is called the basis. Since there A _ < ,nl ¢>
n —

are an infinite set of integers n = 0, £1,+£2, ..., the vector space is infinite dimensional.

It is called the Hilbert space. One may then consider the coefficients A, as the length
A J— — q /
of the projections of the state on the basis states. The abstract picture allows great ‘d)> - Zn <n|¢> |TL> - Zn ‘n> <TL‘ U)
economy of expression by writin = Ap|n). The orthogonality of the basis states —
y Ob exp y writing [¢) =3, An|n) & y ) Zn |n><n|
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By projecting states, get various representations

v \ —
Hate veckre " Hi b best" 5)040. -
PYD\')-eo‘—

(P=*K)
Real 5
V‘“"'}: M&'Z"fmm.
A - \
| PP =¥ & |Gy
Pecl < R Movvard o Sha (e
¥ = 24 1w 2 A = On|yd
" A
> =3 m—v/"%ﬁfw “" e
~ - h -
T e N (k[4) = (k)
2 l—% Iy dnl= \J_ SIMGIO";) J‘J}x \xHex| = \ <:U|k > _ gtka®
M DuAey }rmdu&" OO\\ ) \/%

Wali) = [ dalualz)alin) = | " da (2 ()

— OO0 — OO0

We can think of the states as vectors.
The ‘inner product’ is a complex number generated by projection to the appropriate space.
This number is the wavefunction — it can be found in real space, momentum space, etc...
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Identity crisis: Indistinguishable particles

2 ‘Jpah’f\d%- 4otal mengy El 1 E; 3 time evolubiop~e %
. ‘S«woe, -}/k%u,:l;\.y , quu;,,,.-%_ E
WG Dyt e e
'Z\‘t\ _ @k ‘ﬁchShh wicld!
- ' ~» S WX X) = W ln) Y (X, ) & ”ﬁf mé é/
b i i s b !
S 1!)? —> 5%, f— — d"“‘

%, L% /fb\o"S‘FiK«jkiSl\aA(z =>}kx <> 2. Shsuld Nb?
d | | 2 (

| Changy The b Vdae

This is OK for distinguishable particles such as a proton and an electron.
_ But NOT OK for indistinquishable particles such as two electrons!
— )

w (il'} 1s L2 ) wa (ZEl )¢b ($2) For example, |psi|? should not change on swapping x; €= X,.

How must we then write the wavefunction for two identical particles?
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Resolution of identity crisis: Bosons &

Fermions

This is necessary for indistinguishable patrticles.

P(z3,71) = P(z1,22) = |¥(2, 1) > = |[¥(21, 22)|%.

VY(21,T2) = VYa(T1)Vp(T2)

l

|

(@1, 22) = Yalz1)Vp(22)[H]¢a(z2)V6(21) P(@1, 72) = Ya(®1)¥6(22)] —|Ya(z2)thp(71)
(@2, 21) =[P (21, 22) Y(x2, 1) =[ (@1, 22),
Y(z1,21) = +9¥(21,21) W(z1,z1) = —¥(z1,71) — (21, 71) = 0.
— e The Paull exclusion principle!
fop(B) = g frolB) = e

The Bose-Einstein distribution!
Particles are called Bosons.
Examples: Photons, Phonons

Bose

Note: Why not

The Fermi-Dirac distribution!
Particles are called Fermions.
Examples: Electrons, Protons

W(xa, 1) = (x1,20) ? Majorana particles = later...
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Quantum Statistical Mechanics in 1 slide

Einstein

[/
et ;
W) ' -
¢ 451, S ! nc\l;o o 4 /// :
3 0 N :
| — & \ firn /T/ \z‘ L
L___;_\ / ﬁ ‘\ ° \/'L/-‘ /b°
RESERVOIR, 1 retom :
P(E2) - e—/BEQ \‘ Gibbs Fundamental law of quantum statistical mechanics 4
Boltzmann P(El) — e_ﬁ(El_nlu) _ enlﬁ(u_gl) eﬁ(ni“_Ei) eﬁni(ﬂ_gi) [ eani(u—&)
P(Ep) — e~PEa—nap) _i::,r.;cting Bt | | P(Ei) = ﬁ =—F—= /22223"‘” i)
/ / /
<n> . f(g) . O . 60 + ]. . 6:8(1-/11—1'61‘)/ Partition function < > B f(g) 0- ’LLO + l/u + 2. U + 3. ’U, + ..
‘ ’ 1 + eBu—&) / = e / (1—wu)
! B(u—E&i)
Irol&) = 1w IpB(&) = e . 1

» Boltzmann equilibrium allows enerqy exchange without particles between reservoir and system
« Gibb’s equilibrium allows enerqy and particle exchange between the reservoir and the system
« The chemical potential is a measure of the number of particles
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Fermi-Dirac and Bose-Einstein Distributions

30 T T T T T T T T T T |
25+ _
Bose-E fBE(&) :
L ose-Einstein i) =
20} BEA®1) = eBE—m) — 1
W 1.5k .
ol ) Maxwell-Boltzmann ;8—6(52-—“)
- m
0.5+ 1 ]
|\ frp(&) = ——— |
- ’ 1+ eBEi—n) classical
I limit
OO L L 1 1 I I 1 1 1 1 1 1 L 1 1 T~'A‘-+ ——td
-4 -2 0 2 4
(E- p)/KT

« Both the Fermi-Dirac and Bose-Einstein distributions are for non-interacting particles
* In the limit of high energies, they merge to the classical Boltzmann limit
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Fermi-Difference function and its integrals

1.2 T 1.2 T T T T
r 1 300K
| fO(E'HZ) 77K |
1.0 S 4 1.0 \
| foE-nq) ||/ '. | \
0.8} ! | . 08 \
L | 1 \
0.6 { = 0.6
L | |
04} | 4 04}
fo(E-1LH)-fo(E-LLq)
02l 0\="H2’7'0 1 0ol
0.0} 0.0
‘ -04 -0.2 ‘. 0.0 .. 0.2 . 0.4 -04 .. -0.2 .. 0.0 . 0.2 ‘ 0.4 “
(E-p) eV (E-p) eV

FIGURE 6.4: Illustration of the temperature dependence of the Fermi-difference distri-
bution. The difference is a window between ps — pq that becomes increasingly rectan-

gular as the temperature drops. flu)=1/(1+e%) and f(v) =1/(1+€?)
F(w) = £(v) = [f(w) + £(v) — 2/ (u)f(0)] x tanh(~——)
% © dE 1 >0
/0 dEfo(E—M):/O WZBIH(PF@W),
00 1 14 ePm 1 14ePm 3
/ dE[fo(E — p1) — fo(E — p2)] = 3 ln[%] = (p1 — p2) + 3 111[11_27_% : M) /0 dE[fo(p1) — fo(m2)] = (p1 — pa2).
0

» The Fermi difference function will dominate our treatment of electron transport.

« The Fermi difference function looks like a box function with edges smeared with temperature.
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Fermi-Dirac Integrals

100 T T & . 100 —— — — ——

/ /

/ /

/ /

/ /
n<<-1 K n<<-1 /
approx. K i approx.
1F 1 exact

exact
G G
e T N>>+1 N T~ N>>+1
" approx. w approx.
T =
5 [
[} (o]
. -
§ crossover Q crossover
5 102} regime 5 10721 regime
E E
i ks

1074}
.....................
10 5 0 5 10

FIGURE 6.5: Fermi-Dirac integrals and their non-degenerate (n << —1) and degenerate
(n >> 1) approximations, illustrating Equation 6.20.

F 1 R F || F '
j(U)—m/O Um, in) &~ €|, j(ﬂ)\N,m~
n<<—1 n>>1

« The Fermi-Dirac Integrals (are moments) appear when we sum over states to calculate current
« The “order” of the integral is dependent on the dimensionality of the problem
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Equilibrium at contacts

FIGURE 6.6: Illustration of the concept of equilibrium for Ohmic and Schottky contacts
between metals and semiconductors.

» Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in
equilibrium with them by particle (or energy) transfer

« States in equilibrium share the same chemical potential, and their f(k) is thus known

»  Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves;
the net current flows if there is an imbalance in current carrying states

Debdeep Jena (diena@comell.edu), Comell University




Equilibrium at multicarrier junctions

ft

V=0

FIGURE 6.7: Illustration of the concept of equilibrium for p-n junctions.

» Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in
equilibrium with them by particle (or energy) transfer

« States in equilibrium share the same chemical potential, and their f(k) is thus known

»  Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves;
the net current flows if there is an imbalance in current carrying states

Debdeep Jena (diena@comell.edu), Comell University




Equilibrium Iin Transistors

4161

ILQ | |.___'_"§”H” :\lok 'TH'ALI\
R 4"\\ ﬁ L~— é(UI (_l zm-)kJ

Bltehqw channal
l\ue

! P"‘U}’C' Chexe ;
b [ B {;jita-/;dkcf M*W“"
. Ec 7)_—-

ﬁ‘%osvu

+;,

FIGURE 6.8: Illustration of the concept of equilibrium for a 3-terminal MOSFET

» Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in
equilibrium with them by particle (or energy) transfer

« States in equilibrium share the same chemical potential, and their f(k) is thus known

»  Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves;
the net current flows if there is an imbalance in current carrying states
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Perfect Crystal: ‘Bloch’single electron transport

PERFECT

A static periodic potential causes no scattering.

CRYSTALLINE
MATERIALS

* Bloch
oscillations
dk
F—(—e) [E+vxB|]=hte
dt
10E(k) 1
V=t ok nVER)
F dr
— — V = —
a m>* dt

Can easily transform to real space.

Umklapp process

AE

Conduction

-
T

haed

" AE valence
3 Band
U : ]
= .
“ I
) \
i \
S . _
n :
Q | k
g)l
5§
o
& E
0

Acceleration <——Velocity <«

‘One’ electron: Bloch oscillations
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Electron in a periodic potential (no analytic soln!)

FIGURE 13.1: A periodic potential W (z) = —2Ug cos(Gz) acts as a perturbation to
the free electron.

k]?(J(Af)

band
%
"

We know the bandstructure, or
E(k) eigenvalues of the electron in
the crystal.

bandgap

-
[\]
-
&‘1

energy band

band

A
/
\

FIGURE 13.2: Bandgap opening in the energy spectrum of a free electron upon per-
turbation by a periodic potential.
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Effective Mass Approximation

« Effective Mass Approximation MAPS the complicated problem of
*Electrons in a complicated crystal + heterostructure potential ... to ...
the simplest of all quantum mech problems: The particle in a box

PHYSICAL REVIEW VOLUME 97, NUMBER 4 FEBRUARY 15, 1955

Motion of Electrons and Holes in Perturbed Periodic Fields

J. M. Lorrincer* Axp W. Kount
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 13, 1954)

A new method of developing an “effective-mass” equation for electrons moving in a perturbed periodic
structure is discussed. This method is particularly adapted to such problems as arise in connection with
impurity states and cyclotron resonance in semiconductors such as Si and Ge. The resulting theory gener-
alizes the usual effective-mass treatment to the case where a band minimum is not at the center of the
Brillouin zone, and also to the case where the band is degenerate. The latter is particularly striking, the
usual Wannier equation being replaced by a set of coupled differential equations.

CNLL N
.v' *1(9!}/‘?_ The Nobel Prize in Chemistry 1998

v
SN

Walter Kohn

» Developed by Luttinger & Kohn and refined since then...
 Real power of the EMA is exercised in understanding the electronic
University of Calforna properties of Quantum Heterostructures.

Santa Barbara, CA, USA >

@ 1/2 of the prize
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Effective Mass Approximation

Y /7 R 1121'2 . ) . . /l2 9
b” l/‘) ~ b‘(ll L — [L,,l—lV) ~ t(lfl R YO V-

2
[ - h V2 + Central Result of Effective
m | Mass Approximation 3

“Particle-in-a-box” problenj with:

Real mass -> Effective maps,

Real wavefunction -> Envelope functjon

Crystal potential -> Band-edge potential + Impurity potentials, etc

Example: Shallow donor states , . .om

£ -J E—E.=E—

€

112 P (') " €y ’
[——V* — |C(r)y=(E — E.)C(r) ap = ag—
2m* dmer 1
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Density of States

,TS N

LU
Wl

LU
LRI

B
e

DOS: | g(€) = gs - > 1. 0| — E(k)]

Valid for electrons, photons, phonons...

Important result: [ >, (...) — [ (gil)‘d()

If we know the energy dispersion
£(k), we can find the DOS using this prescription.

Free Electron: £(k) = 7122|_H1:c|)2

Free electron in 3D: ¢g(€) = g - (2;)2 (20 )2VE

Debdeep Jena (diena@cornell.edu), Cornell University




Effective Mass Approximation

Application: Bulk Semiconductors ]

- 3D (Bulk) l

A A A

A Y bonar / [iq' V2 + \l-)(':;rill('(,r) = [E — E(r) ('(ril}

E DOS N < /

Gap /
o
Y . . g =
E VB T /‘ 1

T . Acceptor ik
N S Total ' ( ll | - '

. DOS ~
N v

/ N VE-E, \ \
‘ > A
DOS Moderate Doping Heavy Doping
)

BN = B R k2
E(k) = Eqp(r)+ . = Ep(r) + ,') (—% 4+ —L 4 —=)

2m* 2 m* m* m*_’
/ el vy ==
1 2m”

gsp(E) = o5 (57) %2, /E — E

=

{

l

-~

'.-\ Y .
n = dE frp(E)gsp(E) = NP Fy o —) ~ N\ (;'1, e kp
Jo Sl Sl . l"])‘j ;
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Effective Mass Approximation

- 2D (Quantum Wells) ]

<0
V(r,y,2) =0,2 > W
—AE.0<z< W

Viie,y.z) =0,z

Vix.y, z)

k. =

7

W

AlGaAs

e, |

2:

Figure

0

GaAs

AlGaAs

W

n

(3]

Subbands

|

(in x-y plane) K
X \

Bandstructure, and DOS of realistic heterostructure quantum wells

[(',,_(.r. y,z) = oz, y)xn. (2) = |

ilkrx+k,yn . {

\,,:lis)ﬁ}

P . /12 ) ]1-)' /\'2
h(lw ) = ll(.() -+ Tl T~ J ' > —
\ / ¢ X * * ¢ * ’
2 my,  my, o 2mi N
[“‘_,!):".l -'I"IJ

2
— sin

Xn. (2) = W

%4

TN, 2

oe > PR /g I”’ll\' )':[' L Ep—E
/ dE frp(E)gap(E) = B2 In(1 + e *57
N2ZP

Ep—E;

= N?PY In(l+e %67
J

H)
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Effective Mass Approximation

- 1D (Quantum Wires) ] by = .

A Aoy £\E, WEo k, = Ty
\ \ \ Ty Yy
N1y — L,

2,2) \N><

b h./!( N // ~—
(2, -4+ X nds | S peeen-

4 1
X % (1,3)--------t-----% N ’ RY; L
L — B\ Mg,y Ty ) 7T

,"

Quantum \ / \
Wire 1 R —
. - R L -
(ny, ny ) (in z direction) [, g(b)

Figure 3: Bandstructure, and DOS of realistic quantum wires.

||I ‘) —
» (z,y,2) = [}/ — '\‘iu(‘””l
Ngp Ny \*y Yy~ — f i .
= \ L L

' I
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1 [2m* 1
0
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| ' 2my, L, 2y, _
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Effective Mass Approximation

* 0D (Quantum Dots)] p

o - [2 . : T1. 1.0 | 2 ™, N [2 (-77”:-)<
(x,y,z) = [\ — sin( [ — sin(—) [ — sin( )|
\o' L1 I \' L'_"I Yy \| L- L:
N
" 4 ) ) )
g h T, h=  mn h N
E(n,,n,n.)=- (—)° (—2)* + ( )<
2m,, L, 2my, L, 2m L
L Y
E A A W E
Quantum
Dot . .
A2 g . 7 B ~7 7 . :
X4x° . . 9qoot = »_, O(E — Ey, nym.)
Ty (2,1, 1)} S s igem
L /77 (1,1,2)] i —
L, atomic-like
' levels : artificial atoms
(11, 1) oo
(Ny, Ny N2 ) g(E)

Figure 4: Energy levels and DOS of quantum dots.
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Effective Mass Approximation @ Heterojunctions

AIGURE 3.22. Wave functi

e Bl wh tunctios

« Effective Mass Theory works even at sharp
heterojunctions, and it works amazingly well! Quantum
cascade lasers are designed using this theory.

Proof presented in:
Burt, APL 65 717 (1994)

On the validity and range of applicability of the particle in a box model

M. G. Burt
BT Laboratories, Martlesham Heath, Ipswich IPS 7RE, United Kingdom

(Received 24 February 1994; accepted for publication 27 May 1994)

”

| S

Ef - —)~1:) = Ex(2), (3.16

(_ € 2mgmydz? A X )
h: dl

(1;‘:‘* - —ﬁ) x(2) = Ex(2). (3.17)
- Zﬂlgmgd_"

The difference in the bottoms of the conduction bands behaves like a step potential
with material 8 higher by AE. = EZ — EZ. If the materials were the same we
would simply match the value and derivative of the wave function at the interface,
giving the usual conditions

B dx(2)]

x(04) = x(03), (3.18)

dz f2=0, d: |-=05

where 0, means the side of the interface in material 4 and so on. This simple
condition is not correct for a heterojunction where the two effective masses are
different, and we shall see in Section 5.8 that equation (3.18) does not conserve
current. A correct set of matching conditions is

1 dy(z)| 1 dx(z)

% (04) = x(0s), — = ——
;( A / 8 m4 dZ o0, mg d:

(3.19)

=0

The condition for matching the derivative now includes the effective mass. Sinee
the derivative is essentially the momentum operator, equation (3.19) requires the
velocity to be the same on both sides to conserve current. The envelope functios’s
gains a kink at the interface if m, # mg.
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Example: Exciton in an InN Nanowire

C(r)]7 T(r)[* = |C(r)* x |u(r)?
envelope function  exciton  Bloch function
\ |
LN 1
L N % oL
N§[969$ Q):ooibooibf‘-o
Eal @S W8 1 %G &% PP
c |4 p3 T o040
."f)
n 1.44 nm FWHM InN
_ Nanowire
" — R T T N TR B AT .

-3 -2 -1 0 1 2 3
Position relative to hole (nm)

Nano Letters (2014) E. Kioupakis et al. (Michigan)
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“Ballistic ” Transport & Quantized Conductance

Many electrons: F — hdk / dt | Most gener.al 7e>.<p1“es781(?n for.
Current Density’ in ‘d’ dimensions:

[Jd =qx &y, Vg(k)f(k),}where

gs = spin degeneracy

g, = valley degeneracy
vg = + VE(k) is the group velocity
f(k) is the Fermi-Dirac function

Example: 1D current flow at T'=0 K :

Jp=1=1"—1"
— __ 2q Quantum of
1 h EF 1 conductance

[~ =2 Ep, o
e e
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“Ballistic ™ Transport & Quantized Conductance

Experiments:

10+t W=§§,Q nm _ | (@) GaN 3 nm cap
L ] 6
8L . Al ,Gay o,N 16 nm s
= | . . (R Nf
~ 6F Q4
& - GaN2um  2DEG 2 5
o4 g
5 HVPE GaN 40 pm §2
I J Sl
O _l2 -1 i8 -1 l.6 -14 -12 -1 Sapphire substrate 0 : . . :
(V) 09 -08 -07 -06 -05
gate vo ltage Gate Voltage Vg (¥)

FIG. 1. (a) Schematic layer structure of the heterostructure. (b) improve-
ment of plateau quantization with the application of a small magnetic field.
Linear conductance G(V,) is plotted at magnetic field B=0.1 T, 02 T,
0.5 T, and 1 T. Traces are shifted vertically for clarity. Inset: micrograph of
the QPC. The gap between the two split gates is 80 nm at its narrowest

FIG. 44 Point contact conductance as a function of gate volt-
age at 0.6 K, demonstrating the conductance quantization in
units of 2e*/h. The data are obtained from the two-terminal
resistance after subtraction of a background resistance. The

constriction width increases with increasing voltage on the point. All experimental data shown in this letter were measured at 300 mK.
gate (see inset). Taken from B. J. van Wees et al., Phys. Rev.
Lett. 60, 848 (1988). Appl. Phys. Lett. 86, 073108 (2005);
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A

“resistor”

[ —

From Ballistic conductance to Ohm’s Law
L
h . ’_/3< P

> [

For L >> A, ¢p and 3D: M ~ k2 A

h 1 L ’

For L << Ap,¢p and 3D: M ~ k2 A
— R~ S = (Sharvin resistance)
q F

Debdeep Jena (diena@cornell.edu), Cornell University




Contact resistances are at the quantum limit!

IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 4, APRIL 2012 525

MBE-Regrown Ohmics in InAIN HEMTs With a ] etalTD
Regrowth Interface Resistance of 0.05 €2 - mm ] contacts

Jia Guo, Student Member, IEEE, Guowang Li, Student Member, IEEE, Faiza Faria, Yu Cao, Ronghua Wang,
Jai Verma, Xiang Gao, Shiping Guo, Member, IEEE, Edward Beam, Andrew Ketterson, 1-
Michael Schuette, Member, IEEE, Paul Saunier, Senior Member, IEEE, Mark Wistey, Member, IEEE, ] 2D channel
Debdeep Jena, Member, IEEE, and Huili Xing, Member, IEEE ]

Metallic

1T and doped
c TMDs
€ Graphene —
o ~~__ InGaAs
] - - 4
= T~ Si
[ ~ - _ GaN
~ - Quantum
i T~ - limit
2D CRYSTAL SEMICONDUCTORS T Y
1072 Tt~

7 Intimate contacts -

-1 NATURE MATERIALS | VOL 13 | DECEMBER 2014 | www.nature.com/naturematerials

1 Debdeep Jena, Kaustav Banerjee and Grace Huili Xing

’10-3YT!|Y| T T T T T T T T T T L N B .
01 1 10

nyp (107 cm™)

ki 103 /cm?
Ro="" ™ _ (00269 mm) 107 /em®
q 2ns ns

 MBE grown ohmic contacts are a key enabler of high RF performance
« Various groups (e.g. HRL) have adopted AIN/GaN MBE HEMT technology

Debdeep Jena (diena@cornell.edu), Cornell University



Ballistic Field-Effect Transistor

Ballistic metal-oxide-semiconductor field effect transistor
Kenji Natori
Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
(Received 14 March 1994; accepted for publication 6 July 1994)
0021-8979/94/76(8)/4879/12/$6.00

J. Appl. Phys. 76 (8), 15 October 1994 © 1994 American Institute of Physics

ky
Vias =0
Az = ki
occupied k-”u’
states
f unoccupied
states
area
nad = C!'JS(VC] o Vi)/q

On-state approximation

4879

kR

injected from injected from
the drain contact the source contact

EFS - EFd — (I‘/ds

k x

» The physics of a Ballistic FET can be understood by inspecting the carrier distribution in k-space

at the source-injection Point.
Debdeep Jena (diena@comell.edu), Comell University




Ballistic FET

2D crystal channel
Gate

Insulator
Source

ky
log(ly) 5
c P ( x
| &
q2ns e *'./
c + kT'In (eCaVen — 1) = q(Vgs — V1)
Y
b Vgs'VTl
/ Off On
°
qns _qns VYgs—Vr / S J—
— | e%bvVen (quVth — 1) —e Vin . ky
Vgs'VT
ky
ky 2 >
B ’
qVys
E "
a 'Carr‘ErS "I)O\/e ......................
to the right (saturation) n ld
y
> e L
ky /
o
{r
| )
1/*
qVys Z _
Vds
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Ballistic Field-Effect Transistor

)

— Gate @
Source barrier 1 ty Drain o

_J _________ N |

$—> T 2DEG channel
Z < - T > > N
y /f} (k)
/ \
I \

)
4 1
\ |
\ !
\ /

\ /

\ ’
N 7
N ’
< -
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~ -\

Left-going | Right-going
carriers carriers

g )

V;l.s' =0V

Figure 1: Field effect transistor, energy band diagram, and k—space occupation of states.
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Ballistic Field-Effect Transistor

)

— Gate @
Source barrier ty Drain o
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Right-going
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Figure 2: Field effect transistor, energy band diagram, and k—space occupation of states.
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Ballistic Field-Effect Transistor

qns qns Vgs—Vr
e CvVin (quVth — 1) —e Vin

10t

102y .

):
10°5
| 2D electron gas density at the
77K _ , | Iinjection point of a FET as a
,’ 1 function of the gate voltage
77K L(\ ]
_ I qns ~ ((."‘:(v",‘ (Vgs — V)
T L U B I ENPP SIS AP B O b=, L it
-04 -03 -02 -01 00 01 02 03 -04 -03 -02 -01 00 01 02 03
VQS Vgs

FIGURE 10.2: Illustrating the dependence of the 2DEG sheet density at the injection
point on the gate voltage.
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Ballistic Field-Effect Transistor

k, ky » Ballistic FETs are much simpler to understand than

Vas =0 ﬁEF 8 long-channel devices based on drift/diffusion.
A‘{ = kL vk}/
occupied K ke
7tes EFd m * 2DEG electron density dependence on Vs & V

unoccupied N B . s m*kT Efg Efq

b e thzljf:idct:::ict the";':ﬁi: irsr:act Minj = NR TN = b 2 [ln(l t ek’ ) + ln(]‘ + e krT )]

J 47I'fb

na2q = Cqs(‘/q - Vt)/q EFs - EFd = qv’ds ‘

Thus, gninj = Cys(Vys — Vi), and Efs — Efq = qVys. Solve these two equations and show that
the source quasi-Fermi-level is related to the gate and drain biases through the relation

_ Eys

= 2L = In[y/(1 + %) 4 deve(er — 1) — (14 )] ~ In2, (4)

Vs

where vy = V. /kT and p = 47rh20gs(Vgs — Vi) /qgsgom*kT. 3

I gsgy h 2m*kT 3
Wd - q(27r)2 m*( B2 )2 [F1/2(vs) = F1ya(vs —va)l) (5)

_ « Ballistic FET current!
where Fj(z) =1/T(j +1) [5° ¥/ (1 + exp[y — z])'dy is the Fermi-Dirac integral of order j.
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Ballistic Field-Effect Transistor

drain control

!_ _ 98, g \2m
2D crystal G 0 (kT)z

212
channel nh

Id /W m Fl/z(ns)_Fl/z(nd)]
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FET output characteristics




Ballistic Field-Effect Transistor

drain control
G

2D crystal E e J, = 98,8, 2. (kT)? 1,1W Q F,(M,)—-F,mn,]

2rh?

channel

Iq

—_— J é Vin

wo Y

Subthreshold (off) On-state
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Silicon Ballistic Field-Effect Transistor

10 T T T T 4~ —————————— L e e B e e N e e e B L e e 4— — T

V,50.5V | 300K | | | 300K _
0.05V >m==
OFF ON 5l OFF ON | 3; Vie- V= 0.4V
10-2| ~ , A
1q Vgs —Vr s
S c | ™ JO( 1 )2 c
S s W Vin S
£ = € 0.3V
< 300K S 2 On-state A E ol '
< < <
S 10° 0.05V S .
2 | % ‘ S
=3 3 i 3 | 0.2V
\ » v=02v/ |
77K | 1 |
1.
nawi Vgs —Vp | | » 0.1V
10824 Joe” Vin ] | 0.05V/ |
W | <‘ [ 0.0V
Subthreshold (off) 0- ‘ ov ol -0.1V
-04-03-02-0.100 01 02 03 -04-03-02-0100 01 02 03 0.0 01 02 03 04

Vgs_ VT VQS' VT Vds

FIGURE 10.4: Ballistic Silicon FET. The device dimensions are t;, = 1 nm, €, = 10¢q,
and for Silicon, m* = 0.2my and g, = 2.5 are used.

» Note the on-off ratio, and the sharper switching at low temperatures. The subthreshold slope is ~(kT/q)In(10).
 This calculation neglects the contact resistance incurred in injecting carriers from 3D source to 2D channel.
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Silicon Ballistic Field-Effect Transistor

Cer= 691107 Flem' Ve-V, =1.25V n - Channet 130
[ n = Channel ___ 333& i
77K - - /
10— = L A
~ 100V 5 § A
§ 2 20+ / =20 §
— > - / o] -~
< = 4 4"’ <
£ 75V B o
~ 05 0 5 é i - ,//’ i é
; ’ g - ’/",,// — E
= 050V g 1 ?Z N o =
e /L _-< 7 4%
0.25V < - e _ =
00 T I T T B /,/, .
@ 00 0.05 0.1 0.15 ey 7 oo OO~ ’1/ IR T R
a 1
Vo (V) * Injection velocity 00 20 40 60 80 100
(ensemble averaged) Inversion carrier density (10° q/cmy)
10 : Cer=6.91x107 F/cm? FIG. 8. Saturation current per unit width and the injection velocity of a
: n - Channel nMOSFET on (100) plane as functions of inversion carrier density. The
— 77K current valuc gives the maximum limit of the MOSFET current.
E B VD = 03 V
> T I
< - - sat
D= e (31)
£ os}- 003V WEWC (V- Vo)
EQ n Vi gives the mean carrier velocity injected from the source
- - to the channel in ballistic MOSFETS, and we will call it the
L I 01.01 Vv \njection velocity. With use of Eq. (24),
00 L1 | L ——
00 03 10 8#V|Ql . _ 8#VCel(Vo—V.) 2)
b Vo=V, (V) Vinj= =
®) ’ 3mpgmM, 3mygmM,
FIG. 5. Calculated examples of /-V characteristics of an nMOSFET on when the carriers towards the drain are degenerate This
(100) plane. C ¢ corresponds to effective 5 nm oxide thickness: (a) channel . . . g L
current per unit width vs drain voliage, parameter is the gate voltage; (b) value is consistent with the fact that the propagating state
channel current per unit width versus gate voltage, parameter is the drain towards the drain is occupied at Xmax UP to those with the
voltage.

velocity v,
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Ballistic FET vs Vacuum Tube Transport

Space-charge transport of electrons

The saturated current, Eq. (24), is - proportional to
(Vg—V,)*” since the carrier mean velocity is proportional to Ballistic metal-oxide-semiconductor field effect transistor
\/@ as is the Fermi velocity. The fact that carriers are'de- Kenji Natori
generate Fermi particles plays an impdrtant role here. This is Institute of Applied Physics, University of T}ukuba', I?flkllba, Ibaraki 305, Japan
in contrast with the classical MOSFET where the saturated (Received 14 March 1994; acoepted for publication 6 July 1954)
current is proportional to (Vg—V,)% or (Vg—V,).

The ballisti in the. bull ia] ind ¢
twmmmmm
law—_of Tangmuir’s _eguation. The geometry of the 84| Q|32
MOSFET is different from those that are assumed in these I =W =
bulk type current structures, but a similar simple discussion 3mgnM,
is attempted so that we may be able to gain some insight into
the resultant potential variation along the channel. Suppose
that the carrier transport is ballistic and the channel length is
not as short. The channel potential variation along the x axis
measured from the value at the source edge is denoted by
A¢(x) [A¢(0)=0]. The carrier mean velocity at x v(x) is
rclated to Ag(x) as

v (0)?= dmv (x)>+ A (), (34) f ‘®l

where m is the carrier effective mass. The current continuity =
condition requires that

I=qWn(x)v(x). (35) h -

3 A
x V2 <€——  vacuum

1) Ballistic Limit: J;¢,. ...
2) Mott-Gurney, diffusive limit: J5¢ diff X 1/ 4 «<— insulator, low field
3) Saturated diffusive limit: J3¢, o< V «— insulator, high field

Debdeep Jena (diena@cornell.edu), Cornell University




A 2D Crystal Channel Ballistic FET

10— 3,07 — 30—
Vds=0.4v
60 mV/decade 2.5] 257 Vgs=0.4V|
1 ’ ’ '
2.0} 2.0}
C [ i c [ 1
o o o 0.3V
E E | E .l -
2: 10—3 <\E 157 <\E 157
e e I & I ]
= S | S | 0.2V
=3 = 1.0¢ ~ 1.0t 1
107° 7 7 0.1V
2D crystal : - .
chanZ\eI T=300K oo ] 0o
m*=0.5mo [ O-OV:
tb=3 nm 0.1V-
10—7 .............. I.<=2Q 0 O 0.0 _T‘f ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ j
-04 -0.2 0.0 0.2 04 -04 ) ) ) ) 0.0 0.1 0.2 0.3 0.4
Vgs_VT Vds
subthreshold 2
Ve Ve __ Ve-Ve On-state
—~ Cq‘/;;h ‘/bf/—_w Vin gns qns Vgs—Vp Vin 1 Cqu
Nns ~ ( q ) e Tth 1€ e SvVin (quVth — 1) —e Vin —D N R 5019 I Cq (Vgs - Vr

» Note the on-off ratio, and the sharper switching at low temperatures. The subthreshold slope is ~(kT/q)In(10).
 This calculation neglects the contact resistance incurred in injecting carriers from 3D source to 2D channel.
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Ballistic FET limits
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How good can GaN TFETs be?

. 32bit ALU
2015 e Aaees
< < cSL f@ %\
N N AN I 1
\\ N Spln ‘ \\'l
(inte[) ‘" TN Torque \@ /
103 K AN NN N S"I'Ologlc
X N N N N
h \\ \\ \\
\\QMOS HP \SplnFET S MITEET \\
N O \ \. N
O o, FEFET '~
=102 k  VvdWFETg o ~§ NCFET ./ "~ /‘W% N
N N
3 \ 7 "\STTD
o)) /4
s " (FetTFET _ ~ CMOS LvQo FET, AN
5 ~_  gnWFET @) lP|ez BT v
1 \Th|n FET I ,,\\
107 P Tu &b, 7SMG |
Bt WD,
Magneto
N
Preferred . electric <
10 2 103 104 10° 106

« Tunnel-FETs have the potential to beat the 60 mV/decade limit in switching
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How can one go below the 60 mV/decade limit?
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How can go below the 60 mV/decade limit?

a Boltzmann tails

Source

No Boltzmann tails

hig

Tunnelling
FET

Band-edge and

", E, vy tunnel-filtered
0 - Lgs distributions
~60 mV dec! <60 mV dec™ E, IIII e
V-V,
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Equilibrium at contacts

FIGURE 6.6: Illustration of the concept of equilibrium for Ohmic and Schottky contacts
between metals and semiconductors.

» Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in
equilibrium with them by particle (or energy) transfer

« States in equilibrium share the same chemical potential, and their f(k) is thus known

»  Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves;
the net current flows if there is an imbalance in current carrying states

Debdeep Jena (diena@comell.edu), Comell University




Equilibrium at multicarrier junctions

ft

V=0

FIGURE 6.7: Illustration of the concept of equilibrium for p-n junctions.

» Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in
equilibrium with them by particle (or energy) transfer

« States in equilibrium share the same chemical potential, and their f(k) is thus known

»  Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves;
the net current flows if there is an imbalance in current carrying states

Debdeep Jena (diena@comell.edu), Comell University




Equilibrium Iin Transistors
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FIGURE 6.8: Illustration of the concept of equilibrium for a 3-terminal MOSFET

» Electrons states in the metal contact reservoirs try bringing the “semiconductor” channel electron states in
equilibrium with them by particle (or energy) transfer

« States in equilibrium share the same chemical potential, and their f(k) is thus known

»  Multiple contacts with different chemical potentials bring parts of channel states to equilibrium with themselves;
the net current flows if there is an imbalance in current carrying states
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Outline

1 Part I: Review of fundamentals
1: Review of classical and quantum mechanics
2: Current flow in quantum mechanics

3: Quantum statistics, quest for equilibrium as the driver for transport

Part Il: Single-patrticle transport

4: Ballistic transport: Quantized conductance, Ballistic MOSFETs

5: Transmission and tunneling, Tunneling FETs

6. Closed vs. open systems, the Non-Equilibrium Green’s Function approach to transport

7. Diffusive transport: Boltzmann transport equation, scattering, electron-phonon interactions
8. High-field effects, Gunn diodes and oscillators for high-frequency power

9. Feynman path integrals, Aharonov-Bohm effect, Weak Localization

Part Ill: Geometrical and topological quantum mechanics, unification with relativity
10: Spin, transport in a magnetic field, Quantum Hall effect, Berry phase in quantum mechanics

11: Chern numbers, Edge/Topological states, Topological insulators and Majorana Fermions

Part IV: Many-particle correlated transport
12: Fock-space way of thinking transport, second quantization, conductance anomalies

13: BCS theory of superconductivity, Josephson junctions, Phase transitions and broken symmetries

Y
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Example: Exactly solvable 2-state problem

Simplest case: A 2-level system with step perturbation ‘ 2> E
2
2) FEs 2) FEs
» P What is the occupation of 4 12
' states at time t?
1)—8— E, [1)——E, |1>_ FEA
\
Perturbation:
W(r,t)
I Wi \ > how = ])'Lu‘gl - (E_) — El) + (U’YQQ — n’yll)
A time ; ( )
=0 adeol(t ST
el ih = ¢ (t)e"“ Wy,
dt
v
I/ T lcq (1 e
- ( (1( ) : —10wt 4
Pocl S WSS SN WSS, YD} ih dt = (,Tg(f)(f “ H'12
2 . ¥2 . 2 - . oy
L2 ol ‘('1 (f)‘ =1—C*sin” setting c1(t) = b1 @299 and cy(t) = bye! @299 to get
= CF o fre NI f oo N - . 5 .
leo()]? = C? sin® Ot
0 T 2T rt bih(w — %Ou)) + baWo1 =0
, 1.
Example: Electrons in an atom with N “{'l 5 ‘ 2 biWia + bah(w + §f>‘w’) =0
electric field perturbation. W=eFx, ('* = T = —
W,,=eF<1|x|2>=eFx,,~eFr, ris ~ (3how)* + [W 12]%
the size of the atom. For F~1
Mv/em, r~0.1 nm, W,,~10 meV [ 5
(small energy, sharp resonance). [ W12 1
w=+0= £ )’ + (=0w)?
- 1 / 2 2

Debdeep Jena (diena@cornell.edu), Cornell University




The idea behind “Scattering”

T Ae)® . . <P dyres
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W
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A k) lrploo to

T

Continuous, all weights

Bk

Sk

States mixed; extended states may not be
allowed -2 localization, but gaps still possible
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Time-dependent perturbation theory

Perturbation
L0 0 &= i,
Zhal‘l’ﬁ - HO‘\I’t> g Zh§|‘1’t> — [HO +|W; |\I’t> transformation >|\Ift> =€ — |\IJ( ))

Unperturbed problem Time-dependent perturbation Hy is the Hamiltonian operator

If the system was in an eigenstate |Uy,) = |0) of energy Ey at time ¢, then the state at
i (= troe Fwo) + e 00 ) = Ho + wile Y w(e)

a future time differs from the initial state by a phase factor

. E
Ho|Wys,) = Eo|¥y) = |0y) =|em ¢ty ).

b4

I‘I’( )) = [ W R W (1) = W (1) 2 (1)

n) | In(0)
Tlme-dependent evolution in the Interaction picture
|rue)
W;=0—
0) Wy =0 = W(t) =0 = 2% — g

‘ (.dot
Q\ot \ / \ If W=0, the state vector does
= |W(tg)) not rotate in time in the

State vectors rotate in time State vectors do not rotate in time . . .
interaction picture.

W) 1 W (t))
Ty) = e "7 [ T(t))

Transformation

0
i (W () = W (1) 2 ()

9 %) g g -
ih— V) = [Ho + We]|Py) ih— | (t)) = [e7" " "Wee "= 1| U(2)) 1

o oM w(0) =190 + 5 [ W)
Schrodinger picture Interaction picture (t) Zh

FIGURE 24.1: Schrodinger vs. Interaction pictures of time-evolution of quantum state. Starting point for time-dependent perturbation theory
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Time-dependent perturbation theory

t t/ 1 ’ / / /
|xp(t)>=|x1;(to)>+l/ dt'w (¢ |x1;(t0)>+i/ "Wy I‘P(t)>=|\11(to)>+i—h/t at'w (e (t))

ih Jy, ih Jy, 0

Starting point for time-dependent perturbation theory
1 t 1 t t/
) = (o) + g [ W)+ g [ arw ) [ W wo) +. W) = ettt

~W1 ~W2

Approximation: retain terms to 1% order in perturbation W Let |¥(to)) = |0) be the initial state of the quantum system.

|0>‘./

1 [t 1 [t . Hg ., Hp .,
(n[T()) ~ (n]0) +— / dt’ (n|W (£)]0) = — / dt! (n]e 50 W e
N~ ’Lh to ’Lh to
Assume that the perturbation is turned on ‘slowly’

Wy=e™W n=0",and W =W(r) <

=0

M 1 [t H H wlo) rt (En—Eg\,/
m|U@t)) ~ = [ dt'|(n|et" =Y [e® W e hY|0)| = M dt’el< o)t e’
th to < — . N > ih to
e R () i 2t 10)
b o z( e )t’ nt! _ € (#Q)te”t — ez(En;E )toe”to ei(@)t(z”t
/ dt'e el = B _Ey \:/ —E.Eq
to i (F2570) 4+ W () A
Probability that the system is in state n at time t
M i( EnEo)y i(E”_EO)t 2nt
(n|W1]0) e ( z et e\ B et S 9 9 9 e
W(t)) ~ : = (n|W|0 U = V()| ~ [{n|W]0
@)~ T e = W) e P [0 = (O~ [l WO
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Time-dependent perturbation theory

The probability of the state making a transition from |0) to |n) at time ¢ is

6277t

(Eo — En)? + (hm)>

[(n|T4)|* = [(n| T (2))[* ~ [{n|W]0)|?

The rate of transitions from state |0) — |n) is

1 d 2n
= — |(n|U@))]? ~ nW02< )e2nt
w . w .
: > ) T . / dte™?t = lim+ dte et
hmn—>0+ 224n2 hm"’?_*(H ilz—in = ztind T 27T5($) 0 n—=0" Jo . .
1 /)
_ = li =
6(az) = d(z)/|al no0r @+ in | wt
1 2 i Two useful results to be used extensively later!
~ —|<n|W|O)|25(E0 — Ep), Eerm/s gglden rule.for Y
T h time-varying potentials
10)—|n) 1 1 ,
— = P[;] —imd(w) —
w
+o0 +oo
- - - - - w w
Perturbations oscillating in time / g f0£+) _ P[/ deEu )] _inf(0)

W; = 2We™ cos(wt) = e™W (e™? + e~ 1)

(n|W10)

t
dt'e"
ih (/to €

to

En—Eg+hw ),/ t ( En—Eqg—hw
( R )t e 4+ / dt'e’ R ¥ ent’

(n|¥ (1)) ~
NN
Tloysln) 1

[(n|W0)[* x [6(Eo — Ep + hw)

N

>4

+6(Ey — By — hw)].

v

absorption

emission

Debdeep Jena (diena@cornell.edu), Cornell University

Here PJ...] is the “principal part” of a function

Fermi’s golden rule for
oscillating potentials




Higher order perturbation theory

dt
to

dt”V(t //

1
vy = J0) + h/dtvmo
N~ (/ to
LTINS

to

Iw(t»“) Iw(t)>(2)

dt dt”

to

dtl//V ///) | 0>

to to

|¢(t))(3)

>4

n|V|m)(m|V|0) (n|V|k)(E|V|D){|V]0
(n|V| || Z (n|V|K) (V1) {[V]0)

2
. |40(eg—

2T
Lo = 0IVIO}+3

(€0 — €k + 2inh)(eo — € + mh)

k,l

G = Z [m)(m/|

m eg—em+inh

2
Toyn = %|(n|V +VGV +[VGVGV]+ ...
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Scattering events in semiconductors

Scattering processes -

‘ -

Neutral
impurity

Piezoelectric

Elastic Inelastic
| | - 108 = Dr;fotrm:.li:)n
| | Optical phonon 2 [ o
Coulombic Isotropic B \ fonized
—E impurity

Remote impurities Alloy disorder s L —_—
Background impurity Interface roughness -
Charged dislocations Acoustic phonon i S

Strain field of dislocations
Dipoles in alloy

105 - O  Experimental
B Calculated

ool 1 I O (O T 1Y
10' 10?

Temperature (K)
Figure 6.7 Temperature dependence of the mobility for n-type GaAs showing

the separate and combined scattering processes. [From C. M. Wolfe, G. E. Still-
man, and W. T. Lindley. J. Appl. Phys. 41. 3088 (1970).)

Scattering by each type of impurity affects the net electron mobility.

» Mobility in a ultra-clean (defect-free) semiconductor is limited by phonon (optical+acoustic) scattering.
« If the scattering rate of defects/impurities exceed that of phonons, then they determine the mobility.
» Method: find the scattering rate due to each type of defect. The total scafttering rate is the sum of all.
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Scattering of Bloch Electron States

> F
Momentum Dilute defects = |V (q)|*6[Ex — (Ex + hw)]

dephasing by / O Tkk’

scattering O ( L» B TR
® é /’

k

O V(q) = K'|W(r)|k
Carriers everywhere Band transport (q) < | ( )l >
Fermi’s Golden Rule tells us that th ek e 3
ermi’s Golden Rule tells us that the — _— wi ()] x Wir) x ue (r)d°r
Scattering potential is the SUM of /V[ \/V K( )] ( ) [ \/V K( )]
ALL the scatterers in the
macroscopic crystal. pi(k—k')-r . 5
— [ W) * i) urc ()
How do multiple scattering centers v
add up and contribute to the total . A3y d3r
scattering rate? ~ (/ e’q'rW(r)—) X (/ uf{(r)uK(r)—)
cr;gtal ;rl
Fourier Transform of real-space scattering potentiall Viq) = [, e1"W(r) %
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Scattering by many impurities

< F Wtotal(r) = W(P)+W(P—R1) +W(P—R2) + ...

\ 7

Dilute defects ~

‘N! _impurities

Momentum

imp

dephasing by / O 73

scattering O ( L» ~ / iq-r ar
( \ />O VO (q> v € W(I’) V
O é . d>r

k . i

O Viotat(a) = Vo(aq) + gy e" "W (r — R1)7
Carriers gerywhere Band transport Viora (@) = Vo(q) + Vo(q)eiq‘Rl n Vo(q)eiq'Rz...
Impurity locations are Ry, Ry, ... Viotar (@) = Vo(q)[1 + "4 4 g2 ]

They are “uncorrelated” ‘N'terms
Viotar(@)]* = [Vo(@)P[(Lt €' + "2 ) x (L4 e "™ "2 )
‘N, terms ‘N{,. . terms
 WVisa(@)? = |Vo((1)|2+ (9B Ra) 4 i Ro) ]
Fourier Transform property: \ zO(EPA)

/ e f(x)dx «— F(q) Effect of multiple scattering [Viotal () ’2 = Nimp|Vo(q) ’2

/eiqxf(x + a)dz < F(q) x "1 [ 1 27 }
= N 28| By — (Ey %
Tkk'’ (tOtCLl) FL b 8 |V0(q>‘ [ K ( K hw)]

Scattering rate is linearly proportional to impurity density in the dilute uncorrelated limit!
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Scattering rate due to point scatterers
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The Boltzmann Transport Equation

|
YS

FIGURE 30.1: Scattering term of Boltzmann transport equation depicting the inflow
and outflow of the distribution function.
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The Boltzmann Transport Equation

) + (Szn — Sout)dt

F
f=f(z,k,t)= f(x—vdt, k — %dt,t—dt

A

6‘f of | Fof

3t TV T haE  Din T Sout
9 F
8{+vk Vef + 7 Vif = Sin— Sous

Sin = S(k‘l — k)fk/(l — fk),

k

Y

Sout = S(k = k') f(1 — fur)-

7

-~

scattering term, C fr

— S(k = K) fu(1 = fr)].
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The Boltzmann Transport Equation

0
% + Vi Ve fi + % - Vifr = zk;[S(k’ = B)fir (1= fi) = S(k = k) fo(1 = fi)]-

7

-~

scattering term, C fr

S(k — ]{I/) s 2%|Wk,k’|25(Ek — B+ h(.d)

S(k" — k) forr (1 — for) = S(k —= k') for (1 — for)
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The Boltzmann Transport Equation

Microscopic nature of ["f(k)y = IS(K, k) f(K)[L = f(k)] — S(k,K) f(k)[1 - f(k’)]]-} (85)

the collision term ot

‘Field’ flow '

S(K’,K)fy(1-fy) Collisions

Ak AK’

S(K’,K)fy (1-F 1)
Figure 11: Scattering term of Boltzmann transport equation depicting the inflow and outflow

of the distribution function.

At equilibrium (f = f), the ‘principle of detailed balance’ enforces the condition

S(k', k) fo(K)[1 — fo(k)] = S(k, k') fo(k)[L — fo(k)],
which translates to

k!

S(K, k)e 5T = S(k, k')

[In the special case of elastic scattering, e, = €/, and as a result, S(k', k) = S(k, k' )}
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Absorption, Spontaneous and Stimulated Emission

Enforcing the principle of detailed balance is telling us that for electrons, the scattering
rate from state |k) — |k') is not the same as for the reverse process, unless the energies of
the two states are the same. For elastic scattering events E}, = Fj for which the energy
of the electron is unchanged, the scattering rate S(k — k') = S(k’ — k) is the same for

a process and its reverse. But for inelastic scattering events with Ep — Ep = hw, the

scattering rate going uphill in energy is slower:| S(k — k') = S(k' — k)e ™/kT | The

scattering rates S(...) remain the same whether electrons are in equilibrium or not, the

occupation functions f are what change.

Consider for example, the electron scattering rate due to either the absorption or emis-

sion of phonons of energy fw. The rate of phonon absorption must be proportional to

the number of phonons already present, i.e,|Sgps < npp.| The rate of phonon emission
hw/kT o phw/kT

by an electron requires it to go downhill in energy, thus|Sem = Sapse Nph -

Since the number of phonons in mode w is given by the Bose-Einstein function np, =
1/(eh‘”/kT—1), we note that eh‘*’/anph = 1+4+nph. Thus,|Saps o< npp, but Sem, o< (14+npp).

Electrons are free to ‘emit’ phonons even when there are no phonons present - thus, the

‘1’ represents spontaneous emission. But if there already are phonons present, the emis-

sion rate is enhanced, or stimulated; this is the reason for the 1 + n,, proportionality of

the net emission rate.
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The Collision Integral

E—E

ka—ZS k= k) (e  fi(l—fi) — fiu(l— fr))

v v

Ey — E, = hwy >> kT.
Ey = E.

Jefr << frr

v

kl

Inelastic Scattering Elastic Scatter/ng

Debdeep Jena (diena@cornell.edu), Cornell University




Quantum and Momentum Scattering Rates

dﬂ uujZSkk' (k') — £(k)). E e

One can rewrite this collision equation as

401055y ‘

dt Tq

where the quantum scattering time is dcﬁncd as

1 , S
[ 7o (k) N g Stk k )} __________

quantum scattering rate (dephasing)

<<

)/ (k) g k-E ) {) !
( ) = COS SN ¢ S111 7y tan o
f(k) = folk) — 7F¢ - v 3: k-
F
R iy fu E'V,. %
k') — f(k) =er—E -
) = 1(k) i ()‘ ) E-v ) Ky "o
flk)— /l k) k/o/
1 .
1 , E- k' = S(k,k')(1 — cosf) 1= 111 coso)]
)~ 2SI &um 2 Sk ‘ K

momentum scattering rate (mobility, conductivity)
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Fermi level and temperature at equilibrium

e vy Vefit T Vifi = SIS = K)fela = ) = Sk K) (1= g(r,k, T) = Eel)t&elk)—Er(r)
scatterin;erm, Cfr f - ].
A 0 — 1+e9
Vk‘vrfO‘l‘E'kaO:O' Ofo _ 090fo _ 1 €9 — |[8fo _ 790
O — OE Bg KT (1+e9)? dg — "1 B

Vifo = kT8 V,g and Vifo = kT U2V, g

8f0 F F V.aq = 0 requi
A0 q] = + = quires
kT 5c [k +V,g9] =0 LT rg

(P + VoBulr) = V. B (1) + [Belr) + (k) — Bp(r)] V() = 0.

since F = -V, E.(r)

— VeEr(r) + [Belr) + E(F) — Er(n)]TV, (7

would imply V,.Er(r) = 0 and V,T(r) = 0, implying the Fermi level and the lattice

) = 0.

temperature are equal everywhere at equilibrium.

Debdeep Jena (diena@cornell.edu), Cornell University




The Boltzmann Transport Equation

equilibrium perturbation
1
fole) = T
€= mr_ w flkrt)
Boltzmann Transport Equation \
af  Fy | ¢
P ‘ka(k)‘-”v'vrf(k)‘-”at

‘ Particle number conserved

o _OF —E ) — v Ve

‘ Ty lecoll T

ot ot ' h
of s (f = fo) Relaxation time approximation
at | Tm

equilibrium ‘ Scattering

approximation.
(Fevr)

aé ‘ \

Tm L J
f=fo— 2VE- (=

\\ / af )
h / (—

4

bandstructure

applied forces

N\
conc. gradients
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(-e)F

The Boltzmann transport equation gives a full-
blown treatment of transport properties, and
can be solved in several levels of



Many electrons: Model by Distribution Function

Distribution function: Solution of
Boltzmann Transport Equation

1 2 m* d d 1 -

0u(e) = gy et /

{f( ) = fo(k) + eF; @’vzdfo}
J = 26/ (ddk V@// Fermi’ sGoIden Rule —J

27l-)d 3
‘ Basic ideas:
‘ d ¢ - If we know the distribution function and the
i ( 2¢ j dETm€2 Q}& ) 2 bandstructure, then the current can be
i — EN\— . o= i calculated.
dm* [ de f (8 )E 21 » The distribution function changes from the
-~ -’ equilibrium Fermi-Dirac form in response to
Hd perturbation.
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The Boltzmann Transport Equation

Boltzmann equation —

fy(K) + g, (K)(F -v) T2

& {tm(K))

. ZS(k k')(1 - cos0) - Momentum scattering time (u= )

(k, k") - Quantum scattering time

27‘[ , 2 Fermi’s Golden Rule
S(k, k") <k | AE_(r) | k>‘ o(&, — &,.)| gives: Scattering rate from
h state k > k’ by
perturbation DE,

Most general expression for
‘Current Density’ in ‘d’ dimensions: qvg may be replaced by other physical quantities:

qvg—> charge current density (electrical cond.)
1 > carrier density
E (k) > heat current density (thermal cond.)

charge current density (general case)
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Scattering events in semiconductors

Scattering processes

Elastic Inelastic
|
| | | Optical phonon
Coulombic Isotropic
Remote impurities Alloy disorder
Background impurity Interface roughness
Charged dislocations Acoustic phonon

Strain field of dislocations
Dipoles in alloy

A static periodic potential causes no scattering =2 every other potential causes scattering!

Periodic ‘non-static’ potentials: Phonons.
Static non-periodic potentials: Defects & Impurities.
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Scattering events in semiconductors

Scattering processes -

‘ -

Neutral
impurity

Piezoelectric

Elastic Inelastic
| | - 108 = Dr;fotrm:.li:)n
| | Optical phonon 2 [ o
Coulombic Isotropic B \ fonized
—E impurity

Remote impurities Alloy disorder s L —_—
Background impurity Interface roughness -
Charged dislocations Acoustic phonon i S

Strain field of dislocations
Dipoles in alloy

105 - O  Experimental
B Calculated
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10' 10?

Temperature (K)
Figure 6.7 Temperature dependence of the mobility for n-type GaAs showing

the separate and combined scattering processes. [From C. M. Wolfe, G. E. Still-
man, and W. T. Lindley. J. Appl. Phys. 41. 3088 (1970).)

Scattering by each type of impurity affects the net electron mobility.

» Mobility in a ultra-clean (defect-free) semiconductor is limited by phonon (optical+acoustic) scattering.
« If the scattering rate of defects/impurities exceed that of phonons, then they determine the mobility.
» Method: find the scattering rate due to each type of defect. The total scafttering rate is the sum of all.

Debdeep Jena (diena@comell.edu), Comell University




Calculating the mobility/conductivity

dfo +q J ! (0o /TEWV(VE)(E — €)' d¢
f=fo+ qgtm— vE W = ——— -
I n (—)8 "' fn(“ cg ((')I:(,‘:
viviE) = +viE, v = v+ i+ vi=3v
[ v f (l\' 2o J- Tl dfo/d€ (€ — €, )2 ¢
e ’ Sy
1y = : <:I‘> = 2 B <
<‘/ v i am . " f”([ — '((‘)l 2 €
[ f dv Je
Udx = _SI”[—' (— n>
oo o m*
I " ".rn (lv -+ (I ] Tn)(("fﬂ'/(’,"‘ )‘1‘"":) (l\' ‘
(v) = —— —
) -!l“ (l\' g q [ Tn:("’fﬂ"’ﬂ’“l“V'l':) d" - [ Tn:( . (’"f()/l(".\').\‘iv: ([.\.
i Jo
Ti) ™= =
’ 3 ] f)\"': dx
o P, - (-
+ (I [ Tn;((',fl)/(“‘ )"( “'1'4) (l‘ JO ;
(v) = - -
((\ (l\'
f = - — Q<Tm> J. = qzn(-r,,,) E o q "(‘m)
Vdx = -ll-rE.t Be = m* SRR x '"*
% — B = Im*v? = Im*v?

Thus. for the simple case of a small applied electric ficld, we can define all
the transport parameters in terms of the average momentum relaxation time,
{(1,,). Once (1,,) has been obtained, the transport problem is solved
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Formalism for diffusive charge transport

* Find the perturbation potential due to the defect.

« Use Fermi’s Golden rule to evaluate the single-particle scattering rate
» Add up for all allowed states

 Use the solution of Boltzmann equation to find the mobility/conductivity.

Ec(r) =& + W(x)
V(@) = (W (x)lk) < £——=—-

Ev

. 1 270N
Fermi’s golden rule £7'kk/ =5 V(q)|“d[Exw — (Ex £ hw)ﬂ
ot 'k,

Distribution function: Solution of " Current density: Sum over all
Boltzmann Transport Equation group velocities ‘v’ in k-space
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General Nature of Scattering Rates

(a) 4 (b) ¢

' (a) 10 -
[ Si at 300 K
2 ODP 2
2 S @
=) = =
£ ADP % =
- ° g
@© - e
@ = POP o
k= = 8
= © E
© Q
S 3 I 3
=
1 . - 1 > 1012 1 | L 1 L ] A
hao - ho 0.0 0.2 0.4 0.6 0.8 1.0
L
0 0 Electron energy, E (eV)
Carrier kinetic energy Carrier kinetic energy

b) 10" S
j

Fig. 2.4 General features of carrier scattering in semiconductors. (a) Nonpolar phonon
: : » - . . PR C GaAs at 300 K

scattering, acoustic deformation potential (ADP) in the elastic limit and optical

deformation potential (ODP). (b) Scattering by electrostatic interactions, ionized impurity

(IT) and polar optical phonon (POP). 101}

Scattering rates are typically proportional to the density of states 107

Scattering rate, 1/7 (1/s)

1012 TR T S SR S S S S —
0.0 0.2 04 0.6 0.8 1.0

Electron energy, E (eV)
From Lundstrom: Fundamentals of Carrier Transport
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Scattering by a neutral impurity

E(r) =E) +W(r) < W(r)=Wy0(r —ry)

‘ / This & next few slides: material from
V(q) = (k'|W(r)k) - Wolfe/Holonyak/Stillman

‘ - Seeger

1 27
= —|V(qQ)|?0[Ex — (Ex + hw)]
Tkk’ h
[ .' Tm( = dfoldx)x? dx From Seeger: Derive your own expression!
2 Jo .
<‘7m - § i "“.\.1"3 d.\. ’l _ e n’/":o
3 Vash %N
q{Tm) which is independent of temperature,
o 1.44 x 102 cm™? m/my
{= )
/ N¥ »

For example, for electrons in Ge, where m/my=0.12 and z = 16, a mobility
of 1.1 x 10’ cm?/V's is obtained assuming, e.g., 10" cm™? neutral impurities.

Debdeep Jena (diena@cornell.edu), Cornell University




Scattering by charged impurities

Water
Free carriers 'Screened’ fluctuation

Y S N — T S A —

. / M ad L I

dectron~~ “harged - River Bed River Bed VB — ~

pati scattering thi River bed fluctuations Insufficient water fails
center ‘screened’ by water to screen fluctuations
Z ¢ . o y
Hyp=— o T — K jcxp(— r/Lp)sin(‘k—=Kk''r)dr
; F (% | K — 0
Screened coulomb scattering potential /7 "y | . : (6.3.13)
V(r)=—(Z |e|/4n %%y r) exp(— r/Lp) T Van k—KP+L T Vzxgdk® sin?(0/2) + 2k Lp)?
|k — K|~ 2k sin(6/2) The mobility 4 = (e/m) {(z,,) is given by
72 ar . 2
i 2"2(4m % %9)* (kg T)*"
- 12 32 72 53 W12 N 2 2 2
fon =2 %(—Wx I) Lp n=Z2e m' = Ny[In(1 + fgn) — Bau/(1 + fin))
which in units of cm*/V's is
k1% T m \'2[2.08 x 10" cm=3)'2 - 2 1.5
/"”_(|() |00K(mo) ( é ) 1_3.68x103°cm 3 ] ( Z)“( f i )
o ’ N, z7\16) 100K,
Brooks-Herring dimensionless factor l

(m/mo) 2 [log (1 + Biw) — 0.434 B3u/(1 + Pin)]
and the log is to the base 10.
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Phonons in Semiconductors

UA

bond
length

Newton’s law for mass-spring chain
d?u,
Us = qui(qsa—wt) Vibrations form a wave
TA
20 — QR
2 _ : . ! [ S N S B |
w(q) = ﬁ(l — cos qa) | Acoustic phonon dispersion 06 00y 050"
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Phonons in Semiconductors

At SIS o d U

Equiyjlibrium |

TA

e

—qr2nm —qQrm
1 Ll 1 | 1 1 1 1 1
00 cmi015+0° & 005 0.0y 005-10°

Equijlibrium

Acoustic and optical phonon dispersion 2(k) = —[1+4/1 " (1 —coska)]
+
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Phonons in Semiconductors

Difference in energies of
longitudinal and optical
acoustic phonons

—qr2nm
| I — | 1 1 i |
0 005 00e05«0° & 005

—e=qrm
11 1
0.0 ¢y 015+10°

1

Typical phonon spectra of semiconductors

Equijlibrium

'Qut of phalse’ |

LO
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Electron-Def. Pot. Acoustic Phonon interaction

O OO~V LA

TA

(a)

vir)

(bl

Deformation Potential Acoustic Phonon
Scattering Potential

u(r, 1) = au(r, t)
where

u(r, t) = wuexp li(qyr — w,t)]

(6.4)

(6.5)

In these equations a is the displacement direction, and « is the amplitude.

The strain associated with the displacement is
V-u(r, 1)
Veu(r, 1)

a-Vu(r. t)

iqau(r, 1)

(6.6)
(6.7)

Equation (6.7) indicates that for the transverse components of a phonon
where the displacement and the wavevector are orthogonal, q,-a = 0, and
no strain is produced. The scattering potential for the longitudinal component

is, therefore,

AUr, 1) = E,Vulr. 1)

!f\‘Sn

p 1t f snoro 1l nnad the
where the deformation potential, €, in units ol energy. 1s defined as the

proportionality constant between the scattening potential (umis of energy)

and the strain.

Figure 6.2 Displacements of a diatomic chain for LA and TA phonons at () the
center and (b) the edge of the Brillouin zone. The lighter mass atoms are indicated
by open circles. For zone edge acoustic phonons only the heavier atoms are dis-

placed.
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Electron-Piezoelectric Acoustic Phonon interaction

V00 e Piezoelectric Acoustic Phonon Scattering Potential
I[/_\’ =>=1 AU(r.1) = —qb(r. 1)
1 \_/

O— 00000000 -O0—0—0—0 1A Uir, 1) = - [F.(r.(\'(lr

TA D(w) = e(wE = ¢E + Plw)

(a)

l)((” = E‘(h": = qu. + P“”

‘ Piezo charge
—— _ ’ v l(l". ’
] N N
. €pz
Er, 1) = — ——= Vu(r, 1)
000~ O0—000—D0—000—0—0 1A €(0)
— (l(:p,
W\o}{O TA AU(r, 1) = u(r, t)
e(0)
v
(b)
Figure 6.2 Displacements of a diatomic chain for LA and TA phonons at () the i(](’p,
center and (b) the edge of the Brillouin zone. The lighter mass atoms are indicated A U(l'. 1 = 0 V.U(r' !)
by open circles. For zone edge acoustic phonons only the heavier atoms are dis- E( )(]\
p:.l.’cd.
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Electron-Def. Pot. Optical Phonon interaction

uir)

0
”?
" 10
r
s.—
sl Vv 0
- ()
Lo 6 ' LA LA
WWW - .
(3}
TA
2
ulir)
i —eq2m —eqnn
1 1 1 1 1 1 1 1 1 1 1
N N LN 0 005 O0cmm0is®® O 005 00y 050"

Typical phonon spectra of semiconductors

W\O/O\O/ oulr, 1) = ulr, 1) = wyr, 1) (6.17)
J 0O T0
where u,(r, 1) and uy(r, r) have the form given by (6.4) and (6.5). The scat-

) tering potential due to modulation of the conduction and valence edges must
Figure 6.3 Displacements of a diatomic chain for LO and TO phonons at (2) the then be prOpOf:iOnill (o this relative di\placcmcnt and
center and (b) the edge of the Bnllouin zone. The lighter mass atoms are indicated

h:\ cpie;'. circles. For zone edge optical phonons only the lighter atoms are dis- AUlr, 1) = D Bulr. 1) (6.18)
piaced.

where

. ; ; ou(r. 1) = a dulr, 1) (6.19)
Optical Deformation Potential

scattering potential D~108 eV/cm
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Electron-Polar Optical Phonon interaction

D(0) = e(0O)E = ¢E + P(0)

D(x) = e(*)E

— Eu": + l’['L)

P(0) = P(») + P; (6.22)
Using (6.22) in (6.20) and subtracting (6.21), we obtain
€(0)E = e(=)E + P, (6.23)

or

D(0) = e(=)E + P, (6.24)

From (6.24) we can determine the internal fields induced by the optical
phonon polarization of the unit cell.

The polarization of a unit cell, P(r. 1), is determined by the relative
displacement of the ions in a unit cell. du(r, ), and the effective ionic charge,
¢*. such that

*

dulr, 1)

C
Pir.1) = 0

In this equation 2 = V/N is the volume of the N primitive op

"igner-Seitz
unit cells and ¢* is the Born effective charge given by

172
1
€(=)  €(0)
where p is the mass density. This equation is derived in Chapter 7. Assuming
no space or surface charges, (6.24) and (6.25) give an internal field,

e* = Nuyoe(=)p'? (7.174)

-
»

. oulr, 1)

E(r, 1) = e() (6.26)
Frohlich interaction e(0) (.)
(‘,(:/—) Wro

as the Lvddane=Sachs=Teller relation
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Using (6.9). (6.10). and (6.26). the scattering potential for polar mode scat-
tering is

-qge* . =
AU(r, 1) = f dulr, 1)-dr (6.27)

‘ (le(x)

or with (6.5) and (6.19).
ige*
AU, 1) = —F— Bur, 1) (6.28)
(le(=)q,
. A

A comparison of (6.18) and
deformation potential an
of phase by 90° and ay

728) shows that th
Olar mode scattering by
thus independent.

scattering potentials for
tical phonons are out

Polar optical
phonon scattering
potential

S.(k,k-g) S(ke§ k)

Optical phonon absorption
and emission processes

S.(k-§.k) S(kkeq)

Fig. 6.12. Schematic representation of electron
transitions involving phonon emission and
phonon absorption

& © @

[~ 9f(K)/0t)eon = V (27)* [ d*q (S_(k, k — q) f(K)[1 = f(k — q))
+S.(k k+q) f(k) (1 = f(k + )] - S-(k + q. k) f(k + g) [| = f(K)]
~Si(k—q.k) f(k-q)[1 —f(K)]. (6.9.1)




Amplitude of Phonon Vibrations

. | ' 10
U, (.CI’J, t) _ quz(ﬁx—wt) 4 uoe—z(ﬁaz—wt) akxo

- ()
lus|? = 4u3 cos(Bx — wt) |1 LA LA

dus . 5
dt

1
PE = iKug = 2K u? cos®(Bx — wt)

1
KE = 2 M(

)? = 2Mw?ui sin?(Br — wt) ‘

TA

—qr2n
L4 11 1

—e=qrm
1 1 1 1 1 1

5 K 0 00S  00e05+0® 0 005 0.0 10650
but...w* = — — ,
M Typical phonon spectra of
KE + PE =2 M2 uo = N, - hw — semiconductors
since...M = pV,
B Vibration amplitude as a function of the
(2) — - N, temperature: Quantum-Classical
2wpV connection of the phonon harmonic
1 oscillator
Ny (T) — " hw
erT — |
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Electron-Phonon Scattering Rates

Debdeep Jena (diena@cornell.edu), Cornell University

. _ 27 h 1 1 q
Polar optical phonon S(k — k' %% 2 N(w 4 = 21814+ cos(6 s
D=eE+L"
2 Deformation potential acoustic phonon 3
Momentum conservation
ou /
qq*u W(z,t) = Dge— hk' = hk £ h3
E(z,t)=— o) (z,1) “or
Energy conservation
__ _ 9T eiBrwn :
W(r,t) = q/dscE(x,t) il o O Uoe W(’f‘, t) — Dac(v . u) — ,L-Dacﬂuoez(ﬂ-r—wt) Ek’ = Ek + h&)ﬂ
*\ 2 1 1 . . .
<q5 ) — peou( ) Deformation potential optical phonon
s k' = k% + 8% + 2kB cos @
W(r,t) = Dopu = Dopuoei(ﬂ T—wt)
W (r,t) = / dzE(z, 1) = quﬁ\/ﬁ 1 lo g B Energy conservation
1 €° € m*hw
ﬁ2i2ﬁkcosa¥ 2 50
Piezoelectric acoustic phonon
Bu For acoustic phonons, fwg = hv,3, and we get
D = epesE +epy o
ox
Allowed angles for acoustic Vs
Bla,t) = — 2= O phonon scattering events B = 2k( = 2k(Fcost £ Uk
’ €0€s OT
For optical phonons, we get
L B
Allowed angles for optical 2m* iw
_ 2 o2 B
K? e, phonon scattering events B = Fkcost + \/k' cos® 0 + 72
1— K2 eesus




Electron-Acoustic Phonon interaction: Mobility

dr=A,exp[ti(g )] Acoustic phonon scattering 8 /\_b/-\
Eac Q1 A , C
| Hien| === | fexp [i (k- k' £ @) ) aPr
K=k+tgq g’U \_/-\/
2Mw?ui = Npp, X hw
Hirl=tacquA).
Nh2M w)'? for N=N-1 : ' o i
A= vhsr xund?r| = ( I SHO: |amplitude|? ~ number of phonons
‘ 1= |J ke x wn dr| (N+ 1) h2M @) for N—=N+1
N = Ng=[exp(hw/keT) = 1] S~ 3,'3 | Hei 2 [6(e(K') = e(k) + h @) + 8(e(K') — e(k) — h w))
n b) o ..
|Higok! = e qi[(Ng+ 1/2F 1/2) h/2¢ Vwl”?. - pvQ ~ 2% | Hyr 2 8[e(K) = e(K)]. absorption~emission
S
'Hk‘kl = fac q,[kgT/2Q V(l)ﬂ“z = Lac [/\BT/Z V(‘/]“2
Deformation potential Piezoelectric
| — @ Y. iqge
v AU(r,t) = €AV u(r, 1) - . AU, 1) = —=E V-u(r. 1)
= €(0)g,
2)2n eh'c _ K= P C,' : V2r 2
=73 m*? (kg)*”? &3 = %%+ Cpal €l n= ) i R . :Ufo o T7172
: 3 3 m*” e K*(kgT)'"
which in units of cm?/Vs is given by Coupling|~10: and in units of cm?/V's
/10'? dyn cm™2 »
(=3.06x 10* L -3 = ‘
’ (m7moy 2 (T/100 K2 (eufeV): * | H= 2 T R(TII00 K) 2 °
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Electron-Optical Phonon Scattering Rates, Mobility

- 10 1q
Erv\w ", 0 hwo=k39.

© 1s known as the Debve temperature

TA

L L
——qr2m —e=qrm

......

0 005 00cm0150® 0 005 00 y050°

Deformation potential Optical Phonon Polar Optical Phonon Scattering
hiel E 1 m ¢ l 1
4Y2n e’ o(kg®)'? = 0 = I/ ( ——)
Jo= 3"’,,290(28 ) f(T/0). N 2'2m'2(h we)*? 137 2kg® \oy %
The function f(7/6) is given by m/my [ | I
T )7 e dy =974V ek T
f(T10) = (22)*(e¥ - 1) | : : Yo X
o Jy+1+e¥Ref)y-1}
where :=@/2T and y = £/ky©. The function is shown| The mobility is simply (e/m) tp:
Its numerical value in units of cm*/V's is given by p=[lel/(2m a wy)] exp(6/T)
) -3 12 which in units of cm*/Vs is given by
=204 x 10 2B )OANK) 70
(m/mg)*2(D/10* eVem™') exp(@/T)
_ 5 P
p=26x10 for T<O
a(m/mg) (6/K)

For example, in n-type GaAs where @ =417 K, m/mg = 0.072, a = 0.067, we
calculate a mobility at 100 K of 2.2 x 10°cm?/Vs. This is of the order of
magnitude of the highest mobilities observed in this material. At this and
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All Scattering Matrix Elements

TABLE 6.1 Scattering Potentials and Matrix Elements for Various Scattering

Mechanisms”
Scattering Scattering Matrix
Mechanisms Potential Element
Impurities
lonized 2q° Zq’
onize , .
dme(0)r eMHVIK - k''-
i e\ 2ah* (20rg\ "
Neutral — (—) ( )
m* \r m*V \ k
Acoustic phonons
12 |
Deformation [ h ( D
) &4V u £ ( . ) (a.q,) | n, + - = *)
potential A AL pw, I ( 2 2
. / 172 /2
, , iqep, q€n; h 1 1
Piezoelectric V-u ( : ) (,,", L o— - _)
- e(0)g, e(0) \2Vpw,/ 2 2
Optical phonons
172 172
Deformation h ‘ A
eform D p () (n + 1)
potential 2Vpw o 2 2
o N 12 172
iqge~ qe : h 1 1y °
Polar ! ou { ( X ) (n,', $ - =+ —)
we(*)q, ONe(=)g, \2Vpw o, 2 Ly
“ ru = Bohr radius; n, = phonon occupation number: e* = Quw; oe(=)p' [ 1/e(=) — 1/e(0)]'~

Debdeep Jena (diena@cornell.edu), Cornell University




All Momentum Relaxation Times

TABLE 6.2 Momentum Relaxation Times and Reduced Energy Dependence for
Materials with Isotropic Parabolic Bands®

Scattering
Mcchanisms 7i (sec) ri
Impurities
, 0.414€2(0)T** m*\""*
lonized Z*NAgem ™ en*. T, x) ( m ) !
Neutral 8.16 x 10‘*‘ (m')2 0
' e (ONMem M) \m
Acoustic phonons
Deformation 2.40 x 10~ *°Cy(dyn/cm?) (m )-"’ iy
potential taleV)T? m* :
_ , 9.54 x 10°* m\"?
Piezoelectric I(VIem)(3/C, + 4IC) T (m) :
Optical phonons
Deformation 4.83 x 10" *Cidyn/cm?)[exp (0/T) — 1} { m\*? N
potential €ieV)T' % (m") = -1
9.61 x 10~ "ef0)e(=)[exp (8/T) — 1] [ m\'"? ]
Polar [€0) — e(=)0 20/ (m) ’ (?)

“ N; = concentration of ionized.impurities: g(n*, 7, x) = In(1 + b) — b/(1 + b); b = 4.31
x 10" [eA0) T /n*(cm ™ *)}(m*/m)x; Nx = concentration of neutral impurities: C; = ¥3Cy,
+ 2C12 + 4C): C, = UCyy — Ciz + 3Caa)i 8 = hoy o/k.
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Material Properties relevant for Transport

TABLE 6.3 Parameters for Calculating the Transport Properties of n-Type
Semiconductors with Isotropic Parabolic Bands

3 4
. i (2 4)

m 0 f‘,, Ci C, C,

Material m €,(0) €,(=) (K) (eV) (10" dyn/cm?®)  (10* V¥/dyn)
> [GaN _ 0.218 9.87 580 1044 8.4 2.65 18.32|\
GaP 0.13 11.10 9.11 SR80 13.0 1.66 1.15
> GaAs 0.067 12.53 10.90 423 6.3 1.44 2.04 Note relative

GaSb 0.042 15.69 14.44 346 8.3 1.04 Strengths!
InP 0.082 12.38 9.55 497 6.8 1.21 0.137
InAs 0.025 14.54 11.74 337 5.8 1.0 0.192
InSb 0.0125 17.64 15.75 274 7.2 0.79 0.409
ZnS 0.312 R.32 5.13 506 4.9 .28 6.87
ZnSe 0.183 9.20 6.20 360 4.2 1.03 0.620
ZnTe 0.159 9.67 7.28 297 3.5 0.84 0.218
CdS 0.208 8.58 5.26 428 3.3 0.85 32.5
CdSe 0.130 9.40 6.10 303 3.7 0.74 16.7
CdTe 0.096 10.76 7.21 246 4.0 0.70 ().445
HgSe 0.0265 25.6 12.0 268 4 0.80 ().445
HgTe 0.0244  20.0 14.0 199 4 0.61 (.445
PbS 175 17 300 20
PbSe 250 24 190 24 0.71
PbTe 400 33 160 28
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Scattering events in semiconductors

Scattering processes -

‘ -

Elastic Inelastic

Neutral
impurity

Piezoelectric

| |
| | Optical phonon = [ 4
. . E
Coulombic Isotropic s [ \ fonized
—E impurity

Remote impurities Alloy disorder s L —_—
Background impurity Interface roughness -
Charged dislocations Acoustic phonon i S

Strain field of dislocations
Dipoles in alloy

105 - O  Experimental

Calculated

ool 1 I O (O T 1Y
10' 10?

Temperature (K)

Figure 6.7 Temperature dependence of the mobility for n-type GaAs showing
the separate and combined scattering processes. [From C. M. Wolfe, G. E. Still-
man, and W. T. Lindley. J. Appl. Phys. 41. 3088 (1970).)

Scattering by each type of impurity affects the net electron mobility.

 Mobility in a ultra-clean (defect-free) semiconductor is limited by phonon (optical+acoustic) scattering.
» If the scattering rate of defects/impurities exceed that of phonons, then they determine the mobility.
» Method: find the scattering rate due to each type of defect. The total scattering rate is the sum of all.
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Handling Diffusive Transport in Low-Dimensions

Example: Transport in 2DEGs

A

Fermi circle

1 — cos @ = q*/2k3,

2DEG electron wavefunction (note: k, r are in the 2D plane!)

1 iker / 2 ‘
=™ X(2)uni(r) —> S(k,K) = =" [ Hicw[*0(ex — ew)
VA h
o \
envelope fn. Hyw = K|V (r,2)|k) - Ixw
[y =1
2
: 9 2dq
\/1 o (2kF)

In general, scattering can lead to intersubband transitions...

Screening in 2D

€2q(q) = €(0)(1 + QTTF) 2D screening function
m*e?
p=————=—  Ihomas-Fermi wavevector
arr 2me(0)eoh®  af
Vg, 20) = Vuns (9, 20) Screened 2D potential
€24(9)

Viml@) = [ 4 (xi(hxn(2) [ @1V (x,z)eis)

n, m are the subband indices.

Within the same subband: ‘Electric quantum limit’

V(g) = Vao(a) = ~F(q)V (g, 20)

A
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Handling Diffusive Transport in Low-Dimensions

p(z) — engd(z) ‘verfect’ 2D: Graphene, BN \ A

p(r, 2) = p(z) = ens|x(2)|* Quasi-2D: MOSFETS/HEMTs

>
2 . N,T 7
Xn, (2) = L—sm( 7 z) Infinitely’ deep square QW \
x(z)=0,2<0 Triangular QW:
B Variational Wavefunction
x(2) =/ —ze"%,2 >0, (Fang-Howard)
2 Can handle multiple
‘ ‘ 1/3 I
b — (33m*e 2. /Sh‘zeoeb) /3| subband occupation...
& >
z=01
1 . b . Z
Vig) = =F(q)V(q,z)l&e F(q) =n® = (——)° Form factor
(9) = 4 F(@V(g, 20) & Flg) =" = (5 7 \
Ec
Vg, z0) = Vans(g, 20) Screened scattering potential

€24(q)
/ qrr
€24(q) = (0)(1+TG(Q)€)-—G( q) = (277 +3n° + 3n)

Screenlng form factor
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Handling Diffusive Transport in Low-Dimensions

. g 7
Example: Remote Impurity Scattering (2DEG) 107 prr [ """"(bj \
i ch. disl
13 3
o R 0~"/cm . remote\m
5 @ 10°F E back T
5 “g : ;\ dipole
~ 12, 2 1 I %,
- - o S 1 o
® = ] = alloy %
o e | 1012/cm? § -
° (@ ]
( ) 2 1 (o) ‘\ 104:— ‘l
V(r)=— o i
/ 2 2
ane r+z 2DEG Remote impurity 1\
electrons 03 scattering limited mobllltf‘ . 5x1012/cm2
l bedededaaaal hedddoddanl PR —— :- =
] E S A AL ALAL A
Screened remote Coulomb potential ' 10 100 S T —-
tp(A)
V(g2 o &2 o2 =420 Temperature (K)
V(q) — / T‘dT‘/ do ezqrcosf) 350 25 30 35 40
€24(q dme(q)\/T? + 22 2€0€(0) ¢ + grr ) _—A|(02'3'5(|;16rr51)')7N;~\(71Arl\’:n) " Gan
204 :\'
Scattering rate (note dependence on Kg) 3 us) .
§1.0 e
oo
Sosk

1 * 2 2"-1~ F 2qt‘ 1
=N m._ © 0) )2/ dq( +(q)eG 0.0f---- { ————— e “J
0 qQrr \/1 _ L 051 Al 1Gag N Er 8><1019

l (26nm)

Trem (kl') o 2’/Th3k';,- ( 2606(

/% 2DEG 1 -
Averaging over distribution: No averaging necessary for degenerate g A 1° §
2DEGs because transport occurs by electrons at the Fermi energy! scattoning | || \i scattering 14 <
' \ removed _ 2
0fo(E) qTm (kF) e e
=57 ~ 0 - Br) = pappe ~ 0 TR
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Transport in 3D vs 2D

2D mobility in GaAs
2007: MBE growth conditions

e,

2000: Sample structure o, 36 million cm® V™""7)

107 1988: UHV cryopumpbake

[ T 1T T 077 ll[ T I T TTT HT T 1T T17T1rr1r1h
L Deformation \ \/ i oy -
potential  \ /| Polar n 1986: As, Al, Ga source purity
106 L mobility A \ mobility _ >
- // \\ = g 106 -1982: LN2 shielded sources *
- C = O
s / N\ , ] >
B= B \ )\\ y = 1981: Sample loadlock °
(&)
= 0 N I g
3 / \ [ ; ’
2 105 / N _ s 10 1980: Single interface
: £ : g
g C  lonized N o 1979: Undoped setback o———0—=<
= | impurity ]
T mobility ot 1978: Modulation doping ° ’ B
L . 104 S
104 & = Bulk mobility at thes
c . carrier densities
C | I 1 ) I | L1 1 11 Il—

10 100 1000 01 1 10 100

Temperature (K)

—_

Temperature, T (K)

3D (Doped GaAs) Modulation Doped GaAs
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High Field Transport: Current/velocity Saturation

electric fieldE 1 Hot-electron
“ u‘/goln rate peE? /= 1 + exp [(€ — Q/kT,|€— temperature
oE hwp o Energy
: ‘ i [ zn?:fg 'gsthe —=(-e )Ud ) balance eqn.
%kgT. | 4 i a - ot TE(Te)
loss rate +ky(T,-T)/t, F
| vy, -—e v M t
-g-k T 777, 77777, d _ _ d omentum
® _{é«// s.'{ér/gy/ in t{%/ 7 s m r (T.)’ balance egn.
crystal lattic /" / e m\~ e
// // / // // / / // Steady state
' 10° T 0
Hot—electron temperature: V=Uo\ T,/ Tg

models non-equilibrium

Vo= \/ﬁwLO/me)

Ensemble saturation
velocity ~ (E,,/m*)'2

o
=)

However(!): Unanswered questions -
« Story not complete yet... 105 ! !
* [s saturation velocity independent of carrier concentrations? Not clear... 10° 10° 10° 10°
 Monte-Carlo simulations necessary for accurate high-field transport modeling. Electric field (V/cm)
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Superconductivity
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Superconductivity

/L

| r | l | I | |
FOO b= veorrrarrenionnsrsenrsasehosrsssrsasrecmionsssnsrsnensasroasrossssmisraasraasonsqrsns : g d e A A
i ' ' HgBaCaCu() @30 GPa Hao (¥ L33 GEa ¢
150 k- . TIBaCaCuO . o HngRaCaCuO ...
BiSrCaCuO r 1 | |
_ : : : - HgBaCaCuO : FeSe Im :
E' 100 - - ............. R P REEERES SEERER) _SPEPRY .............. R e L CEE T PR
: : YBaCuO : ;
o ( 5 SrFFeAs ;
o) - ; : L
5 ) } : Cs3C60 : |
< : : @ 1 4 GPa MgB, :
3 : : : /p : B :
= : : LabrLuO Rb(stb() : :
& :
9 BI\BO YbPd>B,C L a()FFeAq ;
E 5 OA l’u(o(;d— : :
~ 20 o V : :
K3Cgo Li @ 33 GPa C) CNT ;
: - PURhGas A\ :
1() ............................................ e LR R R LR R R LY A 2 l ....... l .................... ,_.
. cdlamondc .
: : UPd, Al- CeColn- : : :
CeCu,Si, - UBejz UPty b RPN LaOFeP :
0 Hg | y T i i L ACNT | | i
1900 1940 1980 1985 1990 1995 2000 2005 2010 2015
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Superconductivity

1911: Liguefaction of Helium

1912 Discovery of Superconductivity

1913: Discovery of Persistent Supercurrents

1920: Electronic Specific Heat of Superconductivity
1938: Discovery of Meissner Effect

1935: London theory of Meissner Effect

1950: Landau Ginzburg Theory of Superconductivity
1951 Frohlich theory of electron-phonon interactions
1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity
1960: Giaever Measurement of Superconductor gap
1962: Josephson Tunneling Effect

1987 High-temperature superconductivity in cuprates

200x: Topological superconductivity
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Superconductivity

015
1911: Liguefaction of Helium
1912: Discovery of Superconductivity | a1ns /
1913: Discovery of Persistent Supercurrents ("/
1920: Electronic Specific Heat of Superconductivity 010 :
1938: Discovery of Meissner Effect :
1935 London theory of Meissner Effect Qo075 , 3
1950: Landau Ginzburg Theory of Superconductivity : Kammerligh Onnes
1951: Frohlich theory of electron-phonon interactions 0,05 ?
1953: Isotope Effect in Superconductors :
0025 '
1956: BCS Microscopic Theory of Superconductivity !
{0’5ﬁ.:
1960: Giaever Measurement of Superconductor gap X
9,00 y oL L y
1962: Josephson Tunneling Effect 400 410 4%0 490 4%0
1987 High-temperature superconductivity in cuprates
200x: Topological superconductivity
v
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Superconductivity

1911: Liguefaction of Helium

1912: Discovery of Superconductivity

1913: Discovery of Persistent Supercurrents

1920: Electronic Specific Heat of Superconductivity

1938: Discovery of Meissner Effect

v

1935: London theory of Meissner Effect

1950: Landau Ginzburg Theory of Superconductivity

Specific heat ¢_ (arbitrary units)

1951 Frohlich theory of electron-phonon interactions

From Wikipedia
| L

1953: Isotope Effect in Superconductors

0
1956: BCS Microscopic Theory of Superconductivity

1960: Giaever Measurement of Superconductor gap
1962: Josephson Tunneling Effect

1987 High-temperature superconductivity in cuprates

200x: Topological superconductivity
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Superconductivity

1911: Liguefaction of Helium

1912: Discovery of Superconductivity
B

1913: Discovery of Persistent Supercurrents AAAAA AAT

1920: Electronic Specific Heat of Superconductivity

Meissner

1933: Discovery of Meissner Effect

1935: London theory of Meissner Effect

1950: Landau Ginzburg Theory of Superconductivity

1951 Frohlich theory of electron-phonon interactions

T>Tc T<Tc

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity
1960: Giaever Measurement of Superconductor gap

1962: Josephson Tunneling Effect

1987 High-temperature superconductivity in cuprates

200x: Topological superconductivity
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Superconductivity

Free energy of a superconductor:
B 1 B[’
1911: Liguefaction of Helium 2 4 . 2
F=F, +aly|” + Z[¢|" + 5—|(—ihV — 2eA) |
2 2m 219
1912: Discovery of Superconductivity
1913: Discovery of Persistent Supercurrents Minimization of the free energy
| - y 2 . 2
1920: Electronic Specific Heat of Superconductivity aw ol )@|¢| w 4 _2m (—ZFLV — 26A) 1/) =0
1938: Discovery of Meissner Effect 2¢
VxB=mwuj; j=—Re{¢p*' (—ihV — 2eA) ¢}
1935: London theory of Meissner Effect m
1950: Landau Ginzburg Theory of Superconductivity )
o + Bl ¢ = 0.
1951 Frohlich theory of electron-phonon interactions
: 2 (84
1953: Isotope Effect in Superconductors |"(,b| = - E .
1956: BCS Microscopic Theory of Superconductivity
|¢|2 C\C()(T - T'()
O 4 =TT a4
1960: Giaever Measurement of Superconductor gap o B8
1962: Josephson Tunneling Effect v
1987 High-temperature superconductivity in cuprates | ] = |/ 4#062% 4m|a
‘ . I 1 2
200x: Topological superconductivity -{H,/8n
¥ Type-l and Type Il Superconductors
v S
From Wikipedia
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Superconductivity

418 198
Superconducting Hg
1911: Liquefaction of Helium 417 L transition temperature
. as a function of
1912: Discovery of Superconductivity Isotopic mass. 199.7
“n 416
1913: Discovery of Persistent Supercurrents c
>
. 3 3 © 415
1920: Electronic Specific Heat of Superconductivity A
U
1938: Discovery of Meissner Effect = 414
1935: London theory of Meissner Effect
413
1950: Landau Ginzburg Theory of Superconductivity
4.1 2 1 1 1 1 1 1
1951 Frohlich theory of electron-phonon interactions 0700 0704 0708 0712
1/VA
1953: Isotope Effect in Superconductors ® E. Maxwell, Phys. Rev. 78
477 (1950)
1956: BCS Microscopic Theory of Superconductivity B C.A.Reynolds, et al, Phys
. Rev. 78, 487 (1950)
1960: Giaever Measurement of Superconductor gap
1962: Josephson Tunneling Effect
1987 High-temperature superconductivity in cuprates
200x: Topological superconductivity
v
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Superconductivity

1911: Liguefaction of Helium

1912: Discovery of Superconductivity

1913: Discovery of Persistent Supercurrents

1920: Electronic Specific Heat of Superconductivity
1933: Discovery of Meissner Effect

1935: London theory of Meissner Effect

1950: Landau Ginzburg Theory of Superconductivity
1951 Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

1956: BCS Microscopic Theory of Superconductivity

1960: Giaever Measurement of Superconductor gap
1962: Josephson Tunneling Effect

1987 High-temperature superconductivity in cuprates

200x: Topological superconductivity

1.0
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X — Theoretical
S 06r (BLS)
o
w
~
E o4l
o
w
0.2
After Blatt,
Modern Physics
u] 1 1 1 I 1 1 1 1 1
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Fig. 3.
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The Nobel Prize in Physics
1972

-~
Leon Neil Cooper
Prize share: 1/3

John Bardeen
Prize share: 1/3

John Robert
Schrieffer
Prize share: 1/3

The Nobel Prize in Physics 1972 was awarded jointly to John
Bardeen, Leon Neil Cooper and John Robert Schrieffer "for their
jointly developed theory of superconductivity, usually called the

Fig. 2.
The normal ground state fi ion, An
Py, is a filled Fermi sphere for both spin

directions.

ion of the normal system.

/ ///////////4%
2 7

////,' FigAG.I .
"/ A single par icle excitation of the
Kd-}-(-//// 7 superconduc or in one-to-one cor-

///// respondenc with an excitation of

the normal fermion system.
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Superconductivity: Reason for Cooper Pairing

1911: Liguefaction of Helium

1912: Discovery of Superconductivity

. 0 Fig. 1.

1913: Discovery of Persistent SUPEICUITENtS  Tre nomat ground siae
@, is a filled Fermi sphere for both spin

directions.

1920: Electronic Specific Heat of Superconductivity
1938: Discovery of Meissner Effect

1935: London theory of Meissner Effect

1950: Landau Ginzburg Theory of Superconductivity
1951 Frohlich theory of electron-phonon interactions

1953: Isotope Effect in Superconductors

U(ry,r2) = > gee™7m2)([ 1)) — | 1))
k

. 212
il: 2. of the normal system. ng(Q M)eik.(rl—r2)+z ng(I‘1 _ rz)eik-(n—rz) _ Ezgkeik-(rl—rz)

1956: BCS Microscopic Theory of Superconductivity

1960: Giaever Measurement of Superconductor gap
1962: Josephson Tunneling Effect

1987 High-temperature superconductivity in cuprates

200x: Topological superconductivity

2m
k = k k
Eo(k)
writing r = r; — ry, multiplying by e~ T

3 -1,/
and integrating both sides %G_Zk (.

~

— Vi gi
=Egx = |gx = ; 5Eo(k) — E

re-indexing k < k’ 2E0(k)gk+z g
k/

f

Vi = [ %V(r)e_i(k_k,)'r

Simplified pairing potential Vk,k’ = —W Exx € (EF,Ep + hwp), and Vo = 0 otherwise

v

g =103 Mm — (;}ﬁ) = Vo(;g{) ) m
" 4 k

(2.27)

1 1 1 /EF”“D N(E)dE 1 /EFJF"WD d&
Vo Zk 2Eo(k) — E Vo Jg, 26— E NoVo ~ JE, 26 — E

Pairing energy

2FEr + 2hwp — F 2 2hwp C*_E{
1 ~ — 2Ep-E~ 2P | E~2E:C 2 Nvl
i NoVo F o _ 1 Focpe o

Total energy of two interacting
electrons is lower than their single
particle “Fermi” equilibrium value
2F¢ --> Reason they pair.
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Superconductivity: The BCS “condensate”

Wiy,
/ / /4/’:’5 The BCS Hamiltonian Hpos =Y Eo(k)cl,cxo — Vo ¥ clicl o icwieir
% at®—al
. - / % k,o k,q
1.0l : / 7
0.8/ ‘ M,
Single-partide Cooperpalt | Py .
N_« 0.6} gi?&gggﬁ probapbi\ity e e bL = CLTCT_k | Pair creation operator
= (g4  probabiiy
i o 1 o bl .3 bt
0.2 The BCS many-body wavefunction [¥Bcs) = E(Uk + vkbk)m - Eeak . |0> = esk k|O>
0.0f T s |
-2 -1 0 1 2 v t 2 2
Eo(K)-EF <\IJBcs|\Ilgcs> = IE(O|(uk+vkbk)(uk+vkbk)|0) =1 = |up+tov=1|
1950: Landau Ginzburg Theory of Superconductivity Occupation probability of state k (‘I’Bcs|CLTCkH‘I’BCS> = 1112(
1951 Frohlich theory of electron-phonon interactions
Hpcs = Z Eo(k)clyir — Vo Z CLTCT_qic—kwk,T
1953: Isotope Effect in Superconductors koo ka
i i ivi E wationvalie (¥ Bcs|Hpes|V >=2ZE (k)vi — V, Zvv/u U
1956: BCS Microscopic Theory of Superconductivity nergy expectation Velss BCS|41BCS|* BCS 0 k 0 kUK %k Uk
k k,k’
1960: Giaever Measurement of Superconductor gap minimize @
1962: Josephson Tunneling Effect 02— 1[1 3 Eo(k) — Ep |2 = 1y Eo(k) — Ep
k™2 — 2 3| [ Yk T 2[ + — 5 2]
V(Eo(k) — Ep)?2 + A V(Eo(k) — Ep)2+ A
1987 High-temperature superconductivity in cuprates
200x: Topological superconductivity I _
Zukvkzézz A A= —17— le ~ (2hwp)e oV
- Vo 422y/(Eo(k) — Ep)? + A2 sinh(#7v7)
4

Superconducting gap
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Superconductivity: 2" quantization in pictures

ky
ky (i1) $s T
7 K
(i) PO // =
/// ait l/ ky \\
\ \
/ - i
/ ) kx s | P [Uk) = ux|0) + UkCLTCT_k¢|O> = (ux + ”kCLTCT—u”O) = e**’x|0)
SRR e e /
; /
\ . .
\ // bl = CLTCT—M Pair creation operator
N /
\\\- __’//
10)
ky \/j —TII T _ agb] S, agb!
- = IT(ux + vkby )|0) = [1e“*"x|0) = 4k ¥k |0
(iii) (iv) [¥scs) k( k k k)| ) N 0) 0)
/”‘ -‘\\\
/ \\ The BCS many-body wavefunction
/ =5
i/ 5 kl \\
| k2 |
\ e I >k
Ny /
2% 5
Set e

lui, + o, b s
2! k2] [ld}’|+v-*k b £ 00
Ak ]lO) . * * 7 > b H
l [uk3 +v?3b7c’3] luig l ”E'zbi'z] [ukl+vk‘ it

From: van Duzer and Turner
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Superconductivity: The Bogoliubov approach

Wy,
/% . k,o k,q
7 / ‘
Coopiil ] //{/9’ / f\'“,}.fglc par icle excitation of the v Wirite energies with respect to the Fermi surface
occupation ///////// e vt o

probability
Hyeq = Z(Eo(k) — Er)el_cxo — Vo Z CLTCEq¢C—k¢Ck,T
k,O’ kaq

Single-particle
06+ Fermi-Dirac
occupation

04F probability

4™ power in ¢'s creation/annihilation operators

2 1 0 1 2 A
Eo(k)-E Convert to bilinear form, Z CqtC_qlC—kiCk,+ =~ —k|Ck,t CkTC ki
0 F or 2M power in ¢'s k,q

bT ~ (b bk~ (bk)
1950: Landau Ginzburg Theory of Superconductivit
= ki - 4 v "Expectation value” of pair occupation or un-occupation

1951 Frohlich theory of electron-phonon interactions

Hyeq = E (Eo(k) — EF)CyyCko E (A*c_x et + Acch K i)
1953: Isotope Effect in Superconductors k.o k

Ck,t = UK Vk,t + 'Uk'Yik 1
1956: BCS Microscopic Theory of Superconductivity v ¥ The bilinear form can now be diagonalized with linear transformation of c-

' operators using a general Bogoliubov-Valatin technique

CT_k’¢ = —UkVk,t + uk'YT_k’\L
1960: Giaever Measurement of Superconductor gap

1962: Josephson Tunneling Effect t 4 4
Hpag = E (Mep et + VYV k)
1987 High-temperature superconductivity in cuprates k
\

200x: Topological superconductivity

Epac (k) = v/ (Eo(k) — Ep)? + A2
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Superconductivity:

: Gap in excitation spectrum

Sk)

—k

E(k)

} Electron (l)
excitation
N !

|

|

|

|

|

|

|

|

|

(ii)
k x
= A >
—k e R S = ERE ‘

—kq —k3 —ky —ki 3 Al kz‘l |Ik3 |k4

Figure 2.09a Hole and electron excitations in a normal metal: (i) Fermi function; (ii) excitation en- ' l|
ergies. !

|
L
(|
!
|
i 1|
(1

N i
Hpdic = Z Edc (k)M et + ’Y_kﬂT_kQ

\

Epac(k) = /(Eo(k) — Ep)? + A%

Figuye 2._09b Excitations from the superconducting ground state: (i) the ground state with four
Guasiparticle excitations; (ii) the excitation energy for each of these excitations.

From: van Duzer and Turner
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Superconductivity

VoLuME 5, NUMBER 4 PHYSICAL REVIEW LETTERS Aucust 15, 1960

1911; Liquefaction of Helium ENERGY GAP IN SUPERCONDUCTORS MEASURED BY ELECTRON TUNNELING

Ivar Giaever
General Electric Research Laboratory, Schenectady, New York

1912: Discovery of Superconductivity (Received July 5, 1960)
1913: Discovery of Persistent Supercurrents

1920: Electronic Specific Heat of Superconductivity
1938: Discovery of Meissner Effect

1935: London theory of Meissner Effect

RELATIVE SLOPE dI/dV

o

1950: Landau Ginzburg Theory of Superconductivity

1951 Frohlich theory of electron-phonon interactions

| | 1 J
2 3 4

MILLIVOLTS POTENTIAL DIFFERENCE

0l

CURRENT IN UNITS OF 78 MICROAMP

1953: Isotope Effect in Superconductors )
FIG. 2. From Fig. 1, slope dI/dV of curve 5 rela-
tive to slope of curve 1.

1956: BCS Microscopic Theory of Superconductivity

1960: Giaever Measurement of Superconductor gap 0 | 2 3
MILLIVOLTS POTENTIAL DIFFERENCE

o g FIG. 1. Tunnel current between Al and Pb through
1 962 “Josephson Tunnellng EﬁeCt Al,O; film as a function of voltage. (1) T=4.2°K and

1.6°K, H=2.7 koe (Pb normal). (2) T=4.2°K, H=0.8
koe. (3) T=1.6°K, H=0.8 koe. (4) T=4.2°K, H=0

1987 High-temperature superconductivity in cuprates (Pb superconducting). (5) T=1.6°K, H=0 (Pb super-

conducting).

200x: Topological superconductivity
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Superconductivity

1911: Liguefaction of Helium
1912: Discovery of Superconductivity
1913: Discovery of Persistent Supercurrents
1920: Electronic Specific Heat of Superconductivity §
3
1938: Discovery of Meissner Effect
1935: London theory of Meissner Effect
1950: Landau Ginzburg Theory of Superconductivity
1951 Frohlich theory of electron-phonon interactions
Voltage (V)
1953: Isotope Effect in Superconductors C
1956: BCS Microscopic Theory of Superconductivity
A B
1960: Giaever Measurement of Superconductor gap
1962: Josephson Tunneling Effect
1987 High-temperature superconductivity in cuprates Diagram of a singlzjosephson &
: = junction. A and B represent
200x: Topological superconductivity superconductors, and C the weak link
between them.
v

From Wikipedia
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Superconductivity

‘ﬂi?; The Nobel Prize in Physics 2003
@4V Alexei Abrikosov, Vitaly L. Ginzburg, Anthony J. Leggett

Share this: B 13

The Nobel Prize in Physics
2003

Alexei A. Abrikosov Vitaly L. Ginzburg Anthony J. Leggett
Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Physics 2003 was awarded jointly to Alexei A.
Abrikosov, Vitaly L. Ginzburg and Anthony |. Leggett "for pioneering
contributions to the theory of superconductors and superfluids".

Photos: Copyright © The Nobel Foundation

Debdeep Jena (diena@cornell.edu), Cornell University

The importance of order

Together with his colleague Lev Landau, Vitaly Ginzburg
developed a phenomenological theory of superconductivity in
the late 1940s. This theory proposes that those electrons that
contribute to superconduction form a superfluid. The
ls;perconduclor is described by a complex function

called the order parameter, and

w12

indicates the fraction of electrons that has condensed into a
superfluid.

| [y Ea) ey AVIY-0
= <

o

Vitaly L. Ginzburg
PN, Lebedev Physical Insttute, Moscow, Russia

The Ginzburg-Landau order parameter
v

is the solution of an equation similar to
the quantum-mechanical wave equation.

Vortices give guidance

Landau's pupil, Alexei Abrikosov, realised almost immediately
that Ginzburg and Landau's theory can also describe those
superconductors (type l) that can coexist with strong magnetic
fields. According to Abrikosov's theory this occurs because the
superconductor allows the magnetic field to enter through
vortices in the electron superfluid. These vortices can form
regular structures, Abrikosov lattices, but disordered structures
can also occur.

Alexei A. Abrikosov
Argonne National Laboratory, Argonne, llinois, USA

An Abrikosov lattice of vortices in a
type-lI superconductor. The magnetic field passes through the
vortices.

A fluid with directions

In the early 1970s Anthony Leggett developed a theory for the
superfluid that is obtained when the rare gas isotope He is cooled
down to very low temperatures. This fluid has magnetic properties,
which makes it anisotropic:; it has different properties in different
directions. In addition, the fluid has several states with different
properties, called phases, in which several types of ordering
phenomena occur. Here the magnetic properties are linked to the
atoms' movements

Phase A Phase B
AN Ay Ity
AN bZAAN

(broken red
t

Anthony J. Leggett nat appears

University of linois, Urbana, llinois, USA




Superconductivity

gwirling superfly;

’ ’ 1wo types of superconductors _ v :53‘5-'?(;:‘3:.‘.‘".‘55:'“55;"-'3 :;‘:o:;:'-
ype-| superconductors are characterised by a total so- “‘he!lr':lc““’ro"aw:dby'::‘::d;ﬂvnnl,x
called Meissner effect. This means that the superconductor "’:;:s‘-y,v;"’;’;‘;?,';f;f;:::;‘::l‘;mz;::ﬂ:,
completely expels a magnetic field. If the magnetic field ’f,'«‘;‘:!F%J‘:{“}Q,Tﬁﬁiﬂ"fﬁﬁ.fﬂL‘;';‘,:"rtﬁzciﬁ'
becomes too strong, the superconductive property L‘“.:nml,u::':;:""dun"’%
disappears abruptly. But there are other superconductors, .l.§‘\ﬂi“..:.T€-l:E::::;"""‘l' “,‘,’,‘,';'j,‘,‘li;;j}ft‘::_-rr;'ﬂf:',\v
often alloys, in which the Meissner effect is not total. Here a P ot where o
surrounding magnetic field can intrude partly and the
materials can retain their superconductive property even in
TYPE I TYPE II very strong magnetic fields.
- o . gigur.e 4. Abri.kosov. lattice of magnetic
e superfluid ux lines (vortices) in NbSe, — a type-II

superconductor - visualised by magneto-
optical imaging. The first pictures of

. If electrons and 3He atoms are to condense into a
\

0.0 superfluid liquid, they must first pair up. This can take place . '
R PR ll:'ll ll:":,:l,l . f 9 y th t'pl } P i t? such a vortex lattice were talsen in 1967
ey o in two ways concerning the particles' magnetic properties, by U. Essmann and H. Triuble, who
their so-called spin. This is described with an arrow — a sprinkled their sample surfaces with a
) compass needle. The spins are either opposite, in which ferromagnetic %OW(.k:r tthhat arranges 1t§elf
“He o Lt 1 18
He case they counteract each other (electrons in a in a pattern reffecting the magnetic Hux
ne structure.
superconductor) or in the same direction so that they
& N reinforce each other (*He atoms in a superfluid). In the
e - latter case the superfluid can have magnetic properties.

It all started in
1911!

1911 Heike Kammerlingh Onnes 1957 Alexei Abrikosov builds on the 1972 David Lee, Douglas Osheroff and
discovers superconductivity in work by Ginzburg and Landau and Robert Richardson discover superfluid
mercury. publishes a theory for superconductors 3He.
Nobel Prize in Physics 1913. of type Il Nobel Prize in Physics 1996.
) . Nobel Prize in Physics 2003.
1938 Pyotr Kapitsa discovers 1972 Anthony Leggett proposes a
MRI image of a ' sup n < s superfluid *He. 1957 John Bardeen, Leon Cooper and theory for superfluid 3He.
human brain = , Nobel Prize in Physics 1978. Robert Schrieffer publish a Nobel Prize in Physics 2003.
U fationlinleanetic ¢ microscopic theory for
1947 Lev Landau proposes a theory for superconductivity (type I). 1986 Georg Bednorz and Alex Miiller
superfluid “He. Nobel Prize in Physics 1972. discover high-temperature
Nobel Prize in Physics 1962. superconductors (type Il).
1962 Brian Josephson predicts Nobel Prize in Physics 1987.

1950. Vitaly Ginzburg and‘ch Landau properties of supercurrents.
publish a phenomenological theory for Nobel Prize in Physics 1973.
superconductivity.

Nobel Prize in Physics 2003.
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Superconductivity

Pairing of electrons

.

o . 2 - -

° . ‘
. oo . .
.
. . . .
. . .
.
L . - . . . .

oo . . "
. . o .
In simplest (“BCS™) theory, Cooper pairs, once formed, must

automaucally
must all do (also ir
nonequilibrium situation)
> - .
. -
» v » >
. > W >
> > -
> 4 — - —
* b
> ¢ . .
.
» N . .
o~

» - —

Qualitative explanation of the two major
phenomena of superconductivity:
London (1935), Ginzburg+Landau (1950)

Superconducting state is characterized by “macroscopic wave

function which behaves in (almost) all aspects like a single

Like that, it is a cc

particle Schrodinger wave functior mplex scalar

quantity, so can write
J |
For a single particle in magnetic vector potential A

p p-cA
A
A

atomic damagnetism

In absence of fie ent flows around

/"A nucleus

d, nO curr

. f
In presence of (weak) field, must still have
!
But now
r r r A Alr
) (damagnetism)
By Ampere’s law, this current generates magnetic field in a sense
opposite to the original B(r), so tends to screen it out. But
screening length is So observable eff
atom size

Vo (eg in NMR) smah=

What is superconductivity?

Physics of
superconductivity

: J
Spin of elementary particles: 2
At low temperatures:

rticles
4

S —— 4 \ .
5 N >
- Sucong
e -
Electrons in metals: spin 1/2 fermions
fe agy p
Me or off But a compound object
pu . consisting of an even number boson
- of fermions has spin 0, |, 2
No a p ) ¢ two p omena always go together! (b
e, Bactnen® ko on dee Ex:2p + 2n + 2e = *He can undergo Bose condensation
J
Consequence 2: persistent currents
imagine we have set up a current in ring in zero

field (e g by starting with nonzero fhlunx
and turning it off
Recal Wr bir \ r *Alr
Since Alr but j(r must have
r Mowever “’\"""‘Z(‘ vaueness

R

winding number

rgand dagram

How to change n! The only way is to depress |V(r)| to zero

For an electron in an atom, nothing prevents this,e. g

I { I I I
n= \ > n=0
r W point wher )
Because TDSE endent Schrodinger equatior
near (f bir revents ths
I I E ; = monotonically decreasing
However; in superconducting case
: }
! A WIT

Free energy bamier

and herce j
0 b

b dme (B4t coma brom

- g
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Handling Diffusive Transport in Low-Dimensions

Example: Transport in 2DEGs

A

Fermi circle

1 — cos @ = q*/2k3,

2DEG electron wavefunction (note: k, r are in the 2D plane!)

1 iker / 2 ‘
=™ X(2)uni(r) —> S(k,K) = =" [ Hicw[*0(ex — ew)
VA h
o \
envelope fn. Hyw = K|V (r,2)|k) - Ixw
[y =1
2
: 9 2dq
\/1 o (2kF)

In general, scattering can lead to intersubband transitions...

Screening in 2D

€2q(q) = €(0)(1 + QTTF) 2D screening function
m*e?
p=————=—  Ihomas-Fermi wavevector
arr 2me(0)eoh®  af
Vg, 20) = Vuns (9, 20) Screened 2D potential
€24(9)

Viml@) = [ 4 (xi(hxn(2) [ @1V (x,z)eis)

n, m are the subband indices.

Within the same subband: ‘Electric quantum limit’

V(g) = Vao(a) = ~F(q)V (g, 20)

A
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Handling Diffusive Transport in Low-Dimensions

p(z) — engd(z) ‘verfect’ 2D: Graphene, BN \ A

p(r, 2) = p(z) = ens|x(2)|* Quasi-2D: MOSFETS/HEMTs

>
2 . N,T 7
Xn, (2) = L—sm( 7 z) Infinitely’ deep square QW \
x(z)=0,2<0 Triangular QW:
B Variational Wavefunction
x(2) =/ —ze"%,2 >0, (Fang-Howard)
2 Can handle multiple
‘ ‘ 1/3 I
b — (33m*e 2. /Sh‘zeoeb) /3| subband occupation...
& >
z=01
1 . b . Z
Vig) = =F(q)V(q,z)l&e F(q) =n® = (——)° Form factor
(9) = 4 F(@V(g, 20) & Flg) =" = (5 7 \
Ec
Vg, z0) = Vans(g, 20) Screened scattering potential

€24(q)
/ qrr
€24(q) = (0)(1+TG(Q)€)-—G( q) = (277 +3n° + 3n)

Screenlng form factor
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Handling Diffusive Transport in Low-Dimensions

. g 7
Example: Remote Impurity Scattering (2DEG) 107 prr [ """"(bj \
i ch. disl
13 3
o R 0~"/cm . remote\m
5 @ 10°F E back T
5 “g : ;\ dipole
~ 12, 2 1 I %,
- - o S 1 o
® = ] = alloy %
o e | 1012/cm? § -
° (@ ]
( ) 2 1 (o) ‘\ 104:— ‘l
V(r)=— o i
/ 2 2
ane r+z 2DEG Remote impurity 1\
electrons 03 scattering limited mobllltf‘ . 5x1012/cm2
l bedededaaaal hedddoddanl PR —— :- =
] E S A AL ALAL A
Screened remote Coulomb potential ' 10 100 S T —-
tp(A)
V(g2 o &2 o2 =420 Temperature (K)
V(q) — / T‘dT‘/ do ezqrcosf) 350 25 30 35 40
€24(q dme(q)\/T? + 22 2€0€(0) ¢ + grr ) _—A|(02'3'5(|;16rr51)')7N;~\(71Arl\’:n) " Gan
204 :\'
Scattering rate (note dependence on Kg) 3 us) .
§1.0 e
oo
Sosk

1 * 2 2"-1~ F 2qt‘ 1
=N m._ © 0) )2/ dq( +(q)eG 0.0f---- { ————— e “J
0 qQrr \/1 _ L 051 Al 1Gag N Er 8><1019

l (26nm)

Trem (kl') o 2’/Th3k';,- ( 2606(

/% 2DEG 1 -
Averaging over distribution: No averaging necessary for degenerate g A 1° §
2DEGs because transport occurs by electrons at the Fermi energy! scattoning | || \i scattering 14 <
' \ removed _ 2
0fo(E) qTm (kF) e e
=57 ~ 0 - Br) = pappe ~ 0 TR
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Transport in 3D vs 2D

2D mobility in GaAs
2007: MBE growth conditions

e,

2000: Sample structure o, 36 million cm® V™""7)

107 1988: UHV cryopumpbake

[ T 1T T 077 ll[ T I T TTT HT T 1T T17T1rr1r1h
L Deformation \ \/ i oy -
potential  \ /| Polar n 1986: As, Al, Ga source purity
106 L mobility A \ mobility _ >
- // \\ = g 106 -1982: LN2 shielded sources *
- C = O
s / N\ , ] >
B= B \ )\\ y = 1981: Sample loadlock °
(&)
= 0 N I g
3 / \ [ ; ’
2 105 / N _ s 10 1980: Single interface
: £ : g
g C  lonized N o 1979: Undoped setback o———0—=<
= | impurity ]
T mobility ot 1978: Modulation doping ° ’ B
L . 104 S
104 & = Bulk mobility at thes
c . carrier densities
C | I 1 ) I | L1 1 11 Il—

10 100 1000 01 1 10 100

Temperature (K)

—_

Temperature, T (K)

3D (Doped GaAs) Modulation Doped GaAs
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Shubnikov de Haas Oscillations

'||| |l¢“ 70 hz .
| " e Er = W(3”2n30)3
\ 1) 2830, 33
‘ | \ .- - 65 |- [\’ A[BJ T (37°n3p)
| .- —\i:_»___ ~ [ 1\ - Mmp =10%cm™ J J
\ -7 - ‘T’ i 1| \E j l o~
l--=" N/ sel ||l l-—»J J J J § AT
““» g \g V ’ “ '\\‘ !‘.“‘ ' J X /ﬁ\v/
: & IRRI A AV A
55 || \s\ | \\‘ ‘H" \/ v
\‘ | | \‘y /( \v;‘ v
\ O, |
J i\ ¢
I b 0.05 0.10 0.15 0.20 ‘ 0.25 I 0.30 0.35 0.40
0] 1y — o
\&O B(T )
5 > mTy o 2
B ARy o< f( 3 )-e "7 - cos( > £)  Dingle formula
E F O
A Experimentally measured Shubnikov de-Haas oscillations
. R, 1. <+ Landau levels
O Shubnikov de-Haas | E = Y (kz +k,) = En=(n+ §)ﬁw2 B
oscillations > We = %
Energy eigenvalues with a B-field ~ cyclotron frequency
»
B At large B, the density of states collapses into bunches of energies called

Landau levels. Conductivity is expected to oscillate 2 SdH oscillations.
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The Quantum Hall Effect

30 r - T : 3.0
25 : 2.5
2 S
g 20 ; }8\5\
e ] 5 Quantization of Hall
Q:H 15 _— 1 1.5 & conductance is precise to
0 2 4 6 ] ~1 part in a billion!
L v 1 1.0
10 el . v
-~ - . . . ?
5 3 4 1 0.5 Why is it so precise:
0 | 10.0 v
0 2 10 12 5
From: John Davies €
h 7
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The Quantum Hall Effect

edge states are
conducting

3.0

/

AN N N

NN
Y Y Y

Conducting edge states

/
e

Insulating “atomic”

O O _— bulk states

|

R,,=0: Superconductor?

ny= ny/ Txx

Ryx=Vxx/Ixx
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The Quantum Hall Effect

edge states are bulk states
conducting are insulating

3.0 ‘

1.5 r::q @9 NN B //

Insulating “atomic”

_— bulk states
0w = OO -
—/ Conducting edge states

M ‘\v/‘_\v /_\Y P \/‘

0.0
12 C
)@'/ o

‘ Ryx=Vxx/Ixx

R,,=0: Superconductor? Metal?

(i)
&)
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The Quantum Hall Effect

W

edge states are bulk states
conducting are insulating
3.0 ‘
MZS\
2.0 ,?'4 | /ZDEG
1.5 r::ﬁ @9 NZAN SN
Insulating “atomic”
bulk states B Field
w0 O -
—/ Conducting edge states
05— | OV

0o ]
12 (::
W . vxy/Ixx

‘ Ryx=Vxx/Ixx

R,,=0: Superconductor? Metal?
Neither, actually an insulator!! @

—1
[Jx . [Uxx Ozy E; , Ozz Oxy|  |Pzz Pxy . 1 Pyy  —Pzxy
Jy Oyz  Oyy| [ Ly Oyx Oyy Pyz  Pyy PrzPyy = PryPyz | —pyz  Prx
conductivity
tensor

For the QHE plateaus,|pze = pyy = O|, which implies that [0 = 0.
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The Quantum Hall Effect

From a Landau-level picture, it is easy to see that:

* Landau level separation increases with B. 30 1 o W ( . 3.0
« If 2D electron gas density is constant, the DOS at | , /I .
the Fermi level Er goes into gaps and inside 25 R, o s 120
Landau levels successively. a o0 | 15 ?; § 190 @
* When the Ef is inside a Landau level, the system 2T £ S o
behaves in the classical Hall effect, R,,~B/n,4e, oF 115 g
and R, is a scattering-limited magnetoresistance.
» But when the Er is in the gap of DOS between 1.0
Landau levels, R,,->0, and R, =h/(e?.integer)to a
_ XX iy 1 0.5
very high degree of precision. '
 R,->0is justified because of low conductivity and 100
insulating bulk states, but the very precise 12
quantization of R, is a big surprise!
AE A E(k) A E(K) AE AE AE
Quantum Hall metal Quantum Hall
Insulator, n=2 Insulator, n=1
ideally the
Landau bands ehB
are flat Landau level hwe = — I
. increase " increase
Larﬁ»B field / B fﬂg ] B ﬁi‘i
|/ f 1
SR PR Er --{et===== L A  GEEEEEEE E.
- T T I —
S DS E— E—
DOS k k DOS DO§ DOS

A
Y

<
<
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Quantum Hall Insulator & Topological Insulator

30 ¢ . 5T Quantum Spin Hall Insulator State
L h//el [ ]
25 | - in HgTe Quantum Wells
19 Markus Konig,* Steffen Wiedmann,® Christoph Briine,* Andreas Roth,> Hartmut Buhmann,*
,_CE: 20 Laurens W. Molenkamp,** Xiao-Liang Qi,? Shou-Cheng Zhang?
(A 15 I : : I 0 Conductance
3 0 2 4 6 8 10 chann.el with
B BB T
10 “_ v=4 V= 2 ';:";, N : \
B ] ‘j
0 & L ' L} ‘ ‘ 0.0 l‘
0 2 ¢ 6 8 12 ﬁ )
CO)npare B / T W Conductance
gy . x channel with
Parts per billion precision Quantum down-spin

well charge carriers

Schematic of the spin-polarized edge channels in a quantum spin Hall

'_' insulator.
Compare

= F G =0.01e2/h 200

£ o7 [ eereeeeneneneneens T=003K

~ 3 15 . G=2e2m] 3

= s g Vi '

= a T s 3

= <

= Q ]

5 ¢ 105 %5 =65 00 05 10]

- E V,—Vy)/V
i T grogesm Vo~V
: -2 —1I 8 —1‘ 6 —1. 4 —1l 2. -1 4: Fon
- Rt It A4 -2 Topological 10 -//’ 1\{ G=2e2h
GATE VOLTAGE (V) insulator \

FIG. 2. Point-contact conductance as a function of gate 3 ) . ) . ) , N, . , .
voltage, obtained from the data of Fig. 1 after subtraction of 10_1,0 -0.5 0.0 0.5 1.0 1.5 2.0
the lead resistance. The conductance shows plateaus at multi- e (Vg = Vi) /' V
ples of e*/rh. Low precision Low precision g
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Electron spin is a consequence of relativity

1922 Stern-Gerlach experiment shows evidence of spin

1928 Uhlenbeck and Goudsmit propose spin as an intrinsic angular momentum of electrons

1927 Pauli introduces spin matrices and spin into the Schrodinger equation in an ad-hoc manner

1927 Dirac unifies special relativity and quantum mechanics and finds spin as a byproduct

A A EXxv A h
H—H0+‘MBG'B+MBU' 92¢2 \—H0+/,1,BJ-B+4ﬂ:c20-[(VV)><v]

o >

Spin-less Extra terms because of spin Extra terms because of spin
Energy
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Crash course on special relativity

=z —vt,t' =t. “Galilean” relativity theory of how coordinates
transform from one reference frame to
. di’  dx  d(vt) ) another.
=— = w =w-—v
dt dt dt

Main idea: Constant velocity is NOT
ABSOLUTE, but depends on the speed of

d=a0a = F'=mad =F =ma the observer
2 y . N .
(V2 . c% % )E — 0 Maxwell’s Equations: Speed of light

emerges with no indication of observer.
1 ] Experiments by Michelson/Morley show that .
C = =3 x10°m / S. the measured speed of light DOES NOT Lorentz
0
depend on the speed of the observer!

Postulate 1: All inertial observers are equally privileged wrt physical laws: laws of

A
S
mechanics and laws of electromagnetism. Einstein’s two postulates to explain
Ag the strange behavior of light
Postulate 2: Velocity of light is a constant, independent of source, observer, or the
!
L et reference frame! 1 e ~ oz
v / 4y v / c?
> V= ——F=—.| | = —F——| and |t = ——
v2 v2 v2
x=ot — 2 ) )
r = ct and ' = ct’ Lorentz Transformation
/ / / w=2""| and w_w’+v
' =vy(x—vt), and x = y(a' + vt') N 1+ |
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Crash course on special relativity

The views of space and time which | wish to lay before you have sprung from the soil of experimental physics, and
therein lies their strength. They are radical. Henceforth space by itself, and time by itself, are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an independent reality.

— Hermann Minkowski, 190714

At — vAm
At = W / Space-time 4-vectors
— — — / / AR R |
= (ct,z,y, 2) = (v0,%1,22,73) = (To,r) X' = (ct',2',y,2)
— vt ﬁ Z0
2
1-2 \/ 1-p
=X -X=a2—xz2—22—z2=22—|r?
I It B Mirdosrts
The Minkowski Norm is invariant for intertial observers! Hermann Minkowski (1864 — 1909) was a &
o - German mathematician. He found that the
theory of special relativity, introduced by his
+ 1 0 0 O former student Albert Einstein, could best be
/ / / understood in a four-dimensional space,
X - X' = XTX — XTgX . 0 —1 0 0 since known as the Minkowski spacetime.

Juv = wikipedia
The Minkowski dot 0 0 -1 0 P
product for 4-vectors
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Crash course on special relativity

vr g . . 5 . -
o — 2 Since time is relative, the only time all observers agree on is
02 | the “proper” time, or the time measured on the clock carried
2 by the particle whose motion is being studied.
) AT dt 1
At — vAzx At = — | == =
I c? 4 — (V)2 — ()2
At = 1— (2)2 V1= ir  v1-()
C
7 is the proper time  9(-) _ d(..) dt
dr dt dr
v dX (dCC() dxl dCCQ dajg) 1 (dxo dCEl d:l?g dmg) 1 ( dr)
= — = = = C. —
dr dr’ dr’ dr’ dr p2  dt T dt’ dt’ dt 02 dt
2 2

The 4-velocity. Note the time derivative is w.r.t. the proper time, not the time in the observer’s frame!

The 4-momentum. Because space and time are

5 5 tangled, the ‘momentum’ is strangely not a 3D vector,

v \/ 1-% but a 4-D vector, with a strange connection between
c the mass of the particle and the speed of light!

P =mV = (po,p) = (
Vi-
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Crash course on special relativity

mc mv Einstein dissects the 4-momentum.
P:mV:(p07p):( 5 2)
v v
2 2
I/ \\
\N
2
Ve _1 1 V.9
=mu(l — =) 2~~mv+ -mv(-)°+...
p ( 02) 2 (C)

Similar to classical momentum, but extra terms...

2

Very different from classical momentum, but strangely connected to kinet)‘ energy! \

/ Einstein
v?. 1 1 02 ol 11 o
po=mc(l— =) 2 xmec+-m—+ .. = | cpg =|mc° |+ =mv|+ ...
c

Z Rest energy Kinetic energy

P=(g,p) Fowm= =

Minkowski Norm of 4-momentum is invariant for intertial observers!

Total energy of a particle

E2
P-P=(mc)?|=p —|p|* = 5 — 2= (me)? = |E?= (mci)2 + (cp)?
K — E dK- -K = 2_0 52_ 2_0 E = Total energy of a
— ( c 7p) an — (mc) — — ( c) Db = = = P massless particle

Debdeep Jena (diena@cornell.edu), Cornell University




Making the Schrodinger equation relativisitic

hz 9 0 Schrodinger equation does not
— — VoY = zﬁaw — FE) | have the correct relativistic

2m energy: there is no ‘c’!

?o;rgcf_ E? i 0 l 1 H? . 92 2
oy [ P = M) |D|[- 5 5p — (FRV)IY = (me)*y
1 82 - me I The Klein-
2 _ 2,0, 2 ordon
V2 - gl = (5% = (51)%y| Sodn

Fails this
requirement

A = h/mc is a characteristic Compton wavelength

- *
P = ¢ ¢ >0 The Klein-Gordon equation appears a likely candidate for the relativistic quantum mechanics
of electrons. However, the probability density of the particles it represents does not remain
positive definite. It can represent spinless particles, but NOT ELECTRONS!
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The Dirac Equation

vioLtO i L0 s Bo 4o, 4 Do,)? squarerostof
c? Ot? v Y 2 2 0t? v Y ‘e the operator! |

A’ =B’ =(C?=D?=1, AB+BA =0,....

4x4! Dirac’s major realization,
A, B,C, D are not numbers, but matrices| introduction of 4x4 matrices

) mc
C h /0_0—1—100_[20
lo 0 -1 0 _{0 —12]
Oy = c%,al = 38—:,3,82 = 3%753 = % 4 x 4 Dirac gamma matrices 7°, 7,72, 3 0 0 0 -~
0\2 _ 1\2 _ 2\2 _ 3\2 _
(7°)" =41but (v')* = ()" = (v")" = -1
rewrite . Pauli spifisss.
Minkowski metric tensor g {v",y*} = 2¢"* matrices <
The Dirac Equation for the electron

. mc . mc
(i[y°00 + 701 + 7202 + 03] — — )¢ = | (iv*0, — — )b =0

The Dirac equation predicts electron spin, and the existence of antimatter: positrons!
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Electron spin is a consequence of relativity

1922 Stern-Gerlach experiment shows evidence of spin

1928 Uhlenbeck and Goudsmit propose spin as an intrinsic angular momentum of electrons

1927 Pauli introduces spin matrices and spin into the Schrodinger equation in an ad-hoc manner

1927 Dirac unifies special relativity and quantum mechanics and finds spin as a byproduct

A A EXxv A h
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Spin-less Extra terms because of spin Extra terms because of spin
Energy
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Asymmetry between x and p. ..

d d

d_p = —eVT.V—I—e(d—)t(xB)
dx 1

— = —V.E(k

AL ()
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Asymmetry between x and p. ..
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Anomalous velocity terms in Bands

dp dx
E —eV V - G(EXB)
dx 1 dk

Note the dimensions here. Velocity is m/s, so the anomalous velocity term is also m/s.

The units of @ = Vi x A = Vi X i(n|Vg|n) =m?, and therefore the anomalous velocity

SRS U N
unit is —— -m* =m/s.
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The discrete Berry Phase and Berry Flux

yp = —arge "V2tInt-TIND = _are (W) | ) (Vs | 3) ... (N | 1))

b

(l) \I; ‘\ (l) ‘\1’ ‘ ': h q"_’_‘ 'h {‘Ilfi.;’:}
( ' 3 g1
\1;

( "~:1 V1)~ |Vs,) —F |V3,)

Asboth/Oroszlany/Palyi
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The Cherm Number

(0, g) Ak, 1

M N
l_[ l_[ e~ =1 (-=,0) (Z,0) Q — an
) G 21 z :

m=1n=1 < nm

Uk () )

ey

—
[ é

d

\

Figure 1: Berry phase and Chern Number.

We have found a simple picture for the Chern number: The Chern number Q, that
is, the sum of the Berry fluxes of all the plaquettes of a closed surface, is the number
of vortices on the surface,

Q — % Zan — Z Qnm € 7. (217)

Asboth/Oroszlany/Palyi
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Gauge Invariance € -2 Physical Observable

Clagoical  Mechomico Quadun Mehansr
/-5k9x
: 22 1= 4k
"~y ) = 0 [7(/ b’J .
[x > pJ . Swrwen’
A (8 4 V)p: E¥
Fe f \'”k (& + I
AI | %7 = Eanlh?
’V{ ﬁln? = £, Iny
\ ik 7 = T 1w
VA \Lﬁ |7
age” :
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Precision <<->> [opology

Let us consider the Hamiltonian H|¥) = EV).

>
>

Energy eigenstates

\/\/\/V 5
En[R(1) )
"\‘\/\

Adiabatic evolution —— t open path closed path

FIGURE 53.2: Berry phase derivation in quantum mechanics.
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Berry Phase in Electron Bands

Every band will have its own Berry phase. Let each band be labeled E, (k), where k is

8 \/\/\/\/ 5 the wavevector, |n(k)) the eigenvector and E, (k) the corresponding eigenvalue.
§ ~ S — Then the Berry phase of the band is given by
S |En[R(1)] |
& v\
Adiabatic evolution —— t open path closed path
o = i f K - (n(K)|Vin(k)) (53.3)
An (K)

which is a line integral of a quantity 4,,(k) over a closed loop. This quantity is called
the Berry connection, and is analogous to the magnetic vector potential A, whose curl
is the magnetic field B = V x A. In analogy to the magnetic field B, the Berry
curvature is defined as Q,(k) = V x A, (k). Thus, we have the analogies A, (k) <> A
and €2,(k) <> B. For example, the line integral of the magnetic vector potential gives
us the electromagnetic phase e’ = ein Jd-A Drawing analogy with Stoke’s theorem
$dl-A = fS dS-V x A = fS dS - B for the magnetic flux, we realize that the Berry

phase is an analogous flux

Berry curvature

o =ij[dk-,4n(k) =z’/SdS-Qn(k). (53.4)
. (n|OruH|n')(n'|Orv H|n) — (n|OrvH|n')(n'|0gsH|n) lGive me the bandstructure and
=1 Z (B — f o 2 <€~ ceigenstates, and | can calculate the
n#n/ n n Berry Curvature
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Electron [ransport In 3D vs 2D

Berry
d’k

£#%, The Nobel Prize in Physics 2016
#4'V David J. Thouless, F. Duncan M. Haldane, J. Michael Kosterlitz

Share this: B EIEIE] 1.9«

The Nobel Prize in Physics
2016

curvature

Photo: A. Mahmoud
J. Michael Kosterlitz
Prize share: 1/4

Photo: A. Mahmoud
F. Duncan M.
Haldane

Prize share: 1/4

Photo: A. Mahmoud
David J. Thouless
Prize share: 1/2

The Nobel Prize in Physics 2016 was awarded with one half to David
J. Thouless, and the other half to F. Duncan M. Haldane and J.
Michael Kosterlitz "for theoretical discoveries of topological phase
transitions and topological phases of matter".

Cherm Number

Reason for the fantastic precision of IQHE

VoLUME 49, NUMBER 6 PHYSICAL REVIEW LETTERS 9 Aucusr 1982

Quantized Hall Conductance in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto,*’ M. P. Nightingale, and M. den Nijs
Deparvtment of Physics, University of Washington, Seattle, Washington 98195
(Received 30 April 1982)

The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic substrate potential /., The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U /Aw,.

PACS numbers: 72.15.Gd, 72.20. Mg, 73.90.+b
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The Euler Characteristic of Polyhedra

V is the number of vertices, E the number of edges, and F' the number of faces

V_-_E+F=yx < The Euler Characteristic
Convex Polygons (Cube, Tetrahedron, ...) \L
_________ Images from FuklmotolLab _ _ X — 2 . 29 Fuler

g=number of holes, or ‘handles’

sphere donut double donut «e—————Topologically equivalent to
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The Gauss-Bonnet Theorem

Joo f o 7z 1% sin 0d9d¢ = dm z = z(x,y) Equation of the surface
K1 =— I‘LQ — 1/R

b 4

2(z,y) = ap + a17? + agy® + azzy |

sphere Taylor expansion
0z 0z
) l 0%2x  OxOy L
Y 2 Ty 0z Oz Gauss
yor 92y 1 LY

Hessian Matrix

football : ‘l'
eigenvalues k1, ko

L ocal cu_rvatures

The

v
/ K1 K,QdA = 27TX = 27T(2 — Qg). Gauss-Bonnet
S

| / Theorem

l g=number of holes, or ‘handles’

0O = k1Ko , i / OdA = C Cherrj number,
2T S

an integer!

total curvature
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The Pancharatnam-Berry Phase

H Parallel transport

E £ Berry around a conical
. ; surface
1e ghase —
H K r

el ’
Optical fiber cut the cone (
and flatten

Poynting vector k solid angle cone angle

v(C) = :I:fzzo dp2m(1 — cosO(¢))

Pancharatham-Berry Phase
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1he Pancharatnam-Berry Phase: experiment

-

T*
P
T~
P

,l; m
m
X
ne]
=
[v1]
[F3]
(D

%
o
==

LASER

(a)

2mr

FIBER 6 (¢

- Z

(b)

FIG. 1. (a) Experimental setup; (b) geometry used to cal-
culate the solid angle in momentum space of a nonuniformly
wound fiber on a cylinder.

VOLUME 57, NUMBER 8 PHYSICAL REVIEW LETTERS 25 AUGUST 1986

Observation of Berry’s Topological Phase by Use of an Optical Fiber

Akira Tomita‘®
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

and

Raymond Y. Chiao

Department of Physics, University of California, Berkeley, California 94720
(Received 28 February 1986)

We report the first experimental verification of Berry’s topological phase. The key element in the
experiment was a single-mode, helically wound optical fiber, inside which a photon of a given helic-
ity could be adiabatically transported around a closed path in momentum space. The experiment
confirmed at the classical level that the angle of rotation of linearly polarized light in this fiber gives
a direct measure of Berry’s phase. The topological nature of this effect was also verified, i.e., the
rotation was found to be independent of deformations of fiber path if the solid angle of the path in
momentum space stayed constant.

»
I

BERRY'S ——»
PHASE

ROTATION OF PLANE OF POLARIZATION, ® (rad.)
N
T

0 1 i - 1 1

0o 2 4 6
SOLID ANGLE, & (sterad)

FIG. 3. Measured angle of rotation of linearly polarized
light vs calculated solid angle in momentum space, Eq. (3).
Open circles represent the data for uniform helices; squares
and triangle represent nonuniform helices (see Fig. 2); solid
circles represent arbitrary planar paths. The solid line is the

theoretical prediction based on Berry’s phase, Eq. (4).

Experimental measurement of the Berry phase in optical fibers

Debdeep Jena (djen

@comell.edu), Comell University




Electron spin is a consequence of relativity

1922 Stern-Gerlach experiment shows evidence of spin

1928 Uhlenbeck and Goudsmit propose spin as an intrinsic angular momentum of electrons

1927 Pauli introduces spin matrices and spin into the Schrodinger equation in an ad-hoc manner

1927 Dirac unifies special relativity and quantum mechanics and finds spin as a byproduct
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Spin-less Extra terms because of spin Extra terms because of spin
Energy
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Berry Phase of ANY 2-Band System

Problem 4.5) Topological Insulators and Berry Phases

In class, we discussed that every 2 x 2 Hermitian Hamiltonian _matrix can be written as Ho =
( fo(k)+hs(k) ha(k)- Zhy(k)) and can be decomposed into the form‘Hz = ho(k)I+hy(k)og+hy(k)oy+

he(k)+ihy (k) ho(k)—h, (k)
h.(k)o, = ho(k)I + h - &,|where|h = [hy(k), hy(k), hz(k)]l, o’s are the Pauli spin matrices, and I is
the identity matrix.

(a) By drawing analogy to the Hamiltonian of an_electron in a magnetic field and Zeeman split-
ting, show that the eigenvalues form two bands |[Ey (k) = ho(k) = |h(k)|, and the gap at k is
Ey(k)=FE+(k)— E_(k) = 2|ﬁ(k)|| Show that the eigenfunctions are not well behaved near points
in k—space where the gap closes. Recall from our discussion of the Dirac monopole that this is a
signature of non-trivial Chern-numbers.
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Berry Phase of ANY 2-Band System

H(d) |£q) = £|d||£a)

' —ip/2 6/2
_ ia(b.y) (€ ¥/<cos 6/
d = (d\‘-d_\'~d;) |+d) ¢ ( ei‘p/z sin 9/2 )

ﬁ(d) = d,0, + [1_\'6_\' + (I’:(S': =d-o

dy + id, y-(¢) = 9§A(d)dd

cosf = | ‘
d| Jd + & ©

A(d) = i{—a| Va |—a)

(a) A d, (b) A d ) )
\Y \Y%
B*(d) = —Im (£ dHH:>4>(;2<$| af | £)
A 1 (0
_— ! Varl = 1t =(5) o= ())
X 01\ /1 (—loy[+) =i

Fig. 2.2 The Bloch sphere. A generic traceless gapped two-level Hamiltonian is a linear com- n d 1 1
bination of Pauli matrices, I:I(d) = d - ¢. This can be identified with a point in R*\{0}. The B (d) = +— Py )/_((6)) e —.Q<g
eigenenergies are given by the distance of the point from the origin, the eigenstates depend only on |d| 2d- 2

the direction of the vector d, i.e., on the angles € and ¢, as defined in subfigure (a) and in Eq. (2.62)
The Berry phase of a closed curve ¢ is half the area enclosed by the curve when it is projected
onto the surface of the Bloch sphere

Asboth/Oroszlany/Palyi
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Anomalous velocity term due to Berry Phase

_ e, ) u,, | ou,,/ o) _ de,(q)
Illn> - lﬁ 2 : : : Ull((]) ﬁﬁq
n'#n En = En
erturbation T T S {<11,1|(9H/(9(1um><u,,/(911,,/(?0 B C.C}
n'#n €n~ En’
v
dX 1 dk 1 Berry curvature

— VkE(k) _I_ _t % Q _ VkE(k) velocity term
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Example: Graphene

sp? hybridization

graphene
unit cell

N
g

Orbital figs from Pulfrey

graphene
primitive cell

Hopping energy: vo ~ 3 eV

basis: 2 nearest

&0021.24 Angstrom neighbor carbon atoms y /\
a = vV3a.. = 2.15 Angstrom (lattice constant) i
» Sigma-orbitals hold the atoms together. X\ > pl-orbital
sigma-orpital

(3 electrons/carbon atom, one left over)
Real-space picture

* Pil-orbitals are responsible for conduction.
(1 electron/carbon atom)
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Graphene Bandstructure

_ 3 8 cm
VF = S0ccy ~ 107 57

Hamiltonian of pi-electrons with 18t nearest neighbor interaction

FL’UF[k O' kx—iky][FA(T')] _ g(kx,ky)[FA(r>]

zFiky 0 Fg(r) Fp(r)
0Seudo-spi
hvp(o - k)F(r) = E(ky, ky)F(r)
4 . N
Figenvectors: |(r|k) = LQZk.r(ieiiek )

\
%QN@ ‘

V2
ky

. —1 5
Bandstructure O = tan™( k.. )
. N Y

ks
é’(l{:w,ky):é’pi%\/l—i—élcos(\/3 - y?

~ :antibondsi .
Some features:£(0,0) = Ep + 3yg — (P10 T2 eI ) — T—point

£(0,5%) = Er £ 0 — No gap (Dirac point), wavelength: A = 3¢ — K—point
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Graphene Bandstructure

Yo ~ 3 eV w
|

V3k.a a a « Expand around

)COS(%) + 4cos?(—-) the Dirac point

{E(kx, ky) =Er £v1/1+ 4cos(

~

Y

-------------------------------------

Y

I vp ~ 10%cm /s
¥ /

Conicall Gspin = 2

10 }
Linear dispersion  gyailey = 2
Yy
20 ) | ~ | ~
M r K » Reviews of Modermn Physics, 79 677 (2007).
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Graphene with a gap: the Valley Hall Effect

3a*At?
Q(q) = T

Berry curvature
2(A2 + 3¢2a?2)3 W

in “Gapped” Graphene

Ll

€ (eV)
o
H o wn —
7
\I
!
\
~
e
e
PV
7
7
/
Y
N
\
N
H (0]
o o

FIG. 2 (color online). Electric generation (a) and detection (b)
of the valley polarization. (a) An in-plane electric field will

|
| o
- w
N
A
~
N
7/
7’
7’
’
7’
RS
L \
7
" 7
,
N N
& o
o
)
Q (@9)

\ ) 2 7 80 generate a transverse valley current, which leads to a net valley

f% f% f% % % % polarization on the sample edges. (b) A valley polarization
created by the valley filter [6] results in a transverse voltage

(b) k, (z/a) y y [6] g

across the sample.
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The SSH Model of a Topological Insulator

v w

(O v 00000 w\ (a(k)e”"\ (a(k)e”"\
vOw0000O0]|| bke* b(k)e™*
OwOv00O0O a(k)e** a(k)e**
00vO0wO0O0O0|| bke* b(k)e**

sic | = E() 3ik
O0O0OwOv 0O a(k)e a(k)e
0000vOwoO||bke* b(k)e**
00000wOUV a(k)eNk a(k)eNk

\Ww00000uv0) \blk)e*) \b(k)eNi )

A representative Hamiltonian of finite 4 unit cell SSH chain

_ 0 v+ we . ak)\ a(k)
o = (v +we 0 ) o (b(k)) - E0 (b(k))

The SSH "bulk” Hamiltonian for a long (or periodic) 1D chain

Asboth/Oroszlany/Palyi
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The SSH Model of a Topological Insulator

L) w U L bw v

(b) 2 (d) 2 (@) 2

Q Q

0 v+ we ) a(k) a(k)\ The SSH"buk’ Hamiltonian f
= (00 ) me (59) = e (50 Tes e

N

w =\

/\
! _ \/
C}

enerqgy k
o

0
wavenumber |

(f) Ad (g) (h)

1

v+ we
H(k) = do(k)oo + d,(k)o, + dy(k)éy + d,(k)o, = dy(k)oy + d(k)o

d.(k) = v + wcosk; dy(k) = wsink; d,(k) = 0.

Asboth/Oroszlany/Palyi
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The SSH Model of a Topological Insulator

R e N TR What's different?

= >
y) 2 (b) 2 (c) 2 (d) 2 (e) 2
g . /—\ . : /\ .
o 0 u () 0 l u 0 0 I u 0 ! ()
v
9 1 \/ 1 1 \/ 1
-2 -2 -2 -2 -2
0 0 0 0 0
wavenumber |} ' J J
(f) Ad (g) Ao (h)

. ‘,} .(::| ‘I,' .:” Ad
1 1 d Q O Q Q k
-1

0 v+ we ) a(k) a(k)\ The SSH"buk’ Hamiltonian f
H(k) = (U n Weik 0 ) , H(k) (b(k)) — E(k) (b(k) algng (or p;riodic?r?[)%nkginﬂ 1

H(k) = do(k)60 + dy(k)6x + dy(k)6, + d.(k)6. = do(k)y + d(k)E

d.(k) = v + wcosk; dy(k) = wsink; d,(k) = 0.
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The SSH Model of a Topological Insulator

a) 2 (b) 2 (c) 2 (d) 2 )2
= I N . /-\ . /\ .
S o 0 0 Vol 0 0 0
"1_,
0 .] h—— -] \/ 1 1 \/ 1
2 2 2 2 'T‘ 2
0 0 0
number k f :
(f A (g) Ad (h) Ad (i) Ad (j)
1
e 0 3 O,
1
Bulk-Boundary
(@) (b) I correspondendes
2 " 0
_ ' -0.8
= T
= (c) 0.8
% o
o X 0.8
-1 X
IS , (d) I I 0.4
_2 \'\ . [=sa ] =1 .
N 0
w =1 =" 1 : l . I g
N -0.4
0 1 2 3 1 2 3 456 7 8 910
9

cell index m

. ... Nomal Insulator. .

”%.,f“,,””__m’y“y“auyTt K
~ Topological Insulator

H@%:(()hwv

h*(k) 0

h(k) = d.(k) — id, (k)

ﬁ — /_n dk—logh(k)

Winding number
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The SSH Model of a 1D Topological Insulator

. ... Nomal Insulator. .

~ Topological Insulator

. R 0 h(k)
d‘l', d.‘r —
20 Hb) (h*(k) 0 )

topological v <w
h(k) = d.(k) — idy(k)

1.5 | (adiabatically connected)

3 1.0 / ﬁ 2mi /—n k_ tog hik)

trivial v >w Winding number

Topological
phases of the
SSH chain, and 0.5
of any crystal can adiabatically
pe classified in not connected
this manner

0.0

0.0 0.5 1.0 p B 2.0
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2D Topological Insulators: 1D Edge States

Quantum Spin Hall Insulator State
in HgTe Quantum Wells

Markus Konig,* Steffen Wiedmann,® Christoph Briine,* Andreas Roth,* Hartmut Buhmann,*
Laurens W. Molenkamp,’* Xiao-Liang Qi,? Shou-Cheng Zhang?®

I ,T=0.03K
g 15 A “‘G=292/h' -g'
~
o 10
(3]
¥
c 5 3

09 =5 00 05 10]
(Vo= Vi) / V
G=03e2h 9 M

G=2e2h
\ Note: B=0!

10  -05 0.0 0.5 1.0 1.5 2.0
(Vg=Vin) /V

Topological
insulator

Conductance
channel with
up-spin charge
carriers

Conductance

channel with
Quantum down-spin
well charge carriers

Schematic of the spin-polarized edge channels in a quantum spin Hall
insulator.

Living on the edge!
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Weyl Semimetals: Dirac cone bulk + Fermi Arc Surface

0 50 100 150 200 250 30

¢ >
T x+k /d
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