
ECE 5390/MSE 5472, Fall Semester 2017
Quantum Transport in Electron Devices & Novel Materials

Debdeep Jena (djena@cornell.edu), Depts. of ECE and MSE, Cornell University
Assignment 2

Policy on assignments: Please turn them in by 5pm of the due date. The due date for this
assignment is Monday, Oct 2nd, 2017.

General notes: Present your solutions neatly. Do not turn in rough unreadable worksheets -
learn to take pride in your presentation. Show the relevant steps, so that partial points can
be awarded. BOX your final answers. Draw figures wherever necessary. Please print out this
question sheet and staple to the top of your homework. Write your name and email address on the
cover. Some problems may lead to publishable results - be on the lookout!

Problem 2.1) The Harmonic Oscillator: Classical vs. Quantum

In class we discussed that classically a mass oscillating in a harmonic oscillator potential is more
likely to be found at the extremities of the oscillation when it has the highest potential energy and
lowest kinetic energy. You also know the quantum wavefunction ψn(x) of the quantum harmonic
oscillator. Find the classical probability density Prcl(x) of finding the mass classically between
(x, x + dx) and make a sketch. For the same oscillator and mass, make a plot of the quantum
probability densities Prquantum(x) = |ψn(x)|2 for a few n. Show that there is a correspondence
between the quantum and classical results for large quantum numbers n, and significant deviation
for small n.

Problem 2.2) Second Quantization Methods

To handle interactions between many particles, we introduced the occupation-number (or Fock-
space) formalism of quantum mechanics through the creation and annihilation operators that

obeyed the relations [bi, b
†
j ] = bib

†
j − b†jbi = δij for Bosons, and {ci, c†j} = cicj

† + c†jci = δij for

Fermions. The creation and annihilation operators follow the ladder operations b†|n〉 =
√
n+ 1|n+

1〉 and b|n〉 =
√
n|n− 1〉 for bosons, and corresponding relations for Fermions. The Pauli-exclusion

principle is built into this formalism from the get-go because the occupation number of an orbital
for Fermions can be only 0, or 1, the only possible eigenvalues of the occupation number operator
N̂ = c†c.

For Bosons, we could create a Fock-state |Ψ〉 = |n1, n2, ..., nk, ...〉 by repeated application of the

creation operator on the Vacuum state: |Ψ〉 = |n1, n2, ..., nk, ...〉 =
(b†k)nk
√
nk!

...
(b†2)n2
√
n2!

(b†1)n1
√
n1!
|0〉. Since

the Bosonic creation and annihilation operators of different orbitals commute, we do not have to
worry about the order in which the creation operators act on the vacuum state. The vacuum state
|0〉 = |0, 0, 0, ...〉 has all orbitals unoccupied, and formally looks the same for Bosons and Fermions.
Similarly, we could create a Fermionic Fock state by repeated application of the creation operators
on |0〉, but since the creation operators of different orbitals anti-commute, we have to pay spe-

cial attention to the ordering: |Ψ〉 = |n1, n2, ..., nk, ...〉 = (c†k)
nk ...(c†2)n2(c†1)n1 |0〉. Note that since

nj = 0 or 1 for Fermions,
√
nj ! = 1 for all, so we do not need to write out the factorials.
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(a) Show that the fermion anti-commutator algebra directly implies (ĉ†λ)2 = 0. Argue why this

is nothing but the Pauli exclusion principle for fermions, meaning n̂λ = ĉ†λĉλ acting on fermion
eigenstates can only produce eigenvalues 0 or 1, unlike 0, 1, 2, ... for bosons.

Evaluate the following matrix elements (Note that a = b and a† = b† for bosons, and a = c and
a† = c† for Fermions, a is simply a more general creation/annihilation operator symbol):

(b) 〈1, 1|a†1a
†
2a1a2|1, 1〉 for Bosons (a = b), and then Fermions (a = c), and compare the results

with 〈1, 1|a†1a1a
†
2a2|1, 1〉.

(c)
∑∞

j=1〈...0k+1, 1k, ..., 12, 01|a†jaj |01, 12, ..., 1k, 0k+1, ...〉 for Fermions and then for Bosons.

The ground state of an electron (Fermion) system may be written as |Φ〉 = |11, 12, ..., 1N , 0N+1, ...〉,
where N is the highest occupied orbital (its energy EN is the Fermi energy). Work out the following
matrix element sums for |Φ〉:

(d)
∑∞

j,k,l,m〈Φ|a
†
ja
†
kalam|Φ〉 = 0.

(e)
∑N

j=1

∑N
k=1

∑N
l=1

∑N
m=1〈Φ|ei(l−k)xa†ja

†
kalam|Φ〉 = N2 − sin2(Nx

2
)

sin2(x
2

)
= GN (x). Make a sketch of

the function GN (x)
N2 as a function of x for various (large) values of N . This function is called the

pair-correlation function.

Problem 2.3) Bandstructure and Quasiparticles

In class we discussed writing the single-particle tight-binding Hamiltonian for electrons on a linear
chain of atoms with lattice constant a as Ĥel =

∑
n

(
E0c

†
ncn − t0c†n+1cn − t0c

†
n−1cn

)
.

(a) Explain the meaning of this form of Hamiltonian, and the approximation made to write it in
this form.

(b) Now Fourier-transform the on-site orbital indexed creation/annihilation operators c†n and cn
to the |k〉 orbital indexed creation/annihilation operators c†k and ck, and show that the Hamilto-

nian is then diagonalized to the form Ĥel =
∑

k E(k)c†kck, where the bandstructure, or electron
energy dispersion is given by E(k) = E0−2t0 cos(ka). This is a typical model of a one-orbital band.

Solve the following simple yet profound problem. In the Bardeen-Cooper-Schrieffer (BCS) theory
of superconductivity, the annihilation and creation operators for a correlated pair of electrons of
opposite spins (the Cooper-pair) are defined by âk = ĉ−k,↓ĉk,↑ and â†k = ĉ†k,↑ĉ

†
−k,↓.

(c) Show that [âk, âk′ ] = [â†k, â
†
k′ ] = 0.

(d) Show that [âk, â
†
k′ ] = δk,k′(1− n̂−k,↓ − n̂k,↑).

(e) Show that {âk, âk′} = 2âkâk′(1− δk,k′).

(f) Argue from the above algebra that Cooper pairs seem to follow boson algebra for ‘hole’ states,
when n̂−k,↓ = n̂k,↑ = 0, even though they are made of fermions! But also argue why their cre-
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ation/annihilation algebra is not exactly bosonic.

(g) Discuss how particles of different types (fermions & bosons) may be treated by the 2nd quan-
tization techniques. Identify the importance of diagonalization of the many-particle Hamiltonians,
and how this process predicts quasiparticles such as excitons, polarons, or polaritons - all of which
have been experimentally observed.

Problem 2.4) Quantum Transport by Tunneling, Transmission, and
Thermionic Emission

From the handouts, solve the following problems:

(a) Kroemer, Problem 5.5-1, page 161.

(b) Kroemer, Problem 6.4-1, page 181.

(c) Lundstrom, Problem 1.15, page 53.

Problem 2.6) A 2DEG as a parallel array of 1D conductors

Here is a question from the 2017 ECE 4070/MSE 6050 Final exam. It is very relevant for this
class. Electrons of sheet carrier density ns sit in the conduction band of a 2D electron system of
energy bandstructure E(kx, ky) = h̄2

2m?
c
(k2
x + k2

y) with the k−space occupation of carriers shown
in Figure 1. The grey shaded states are occupied, rest are empty. Assume a spin degeneracy of
gs = 2 and a valley degeneracy of gv = 1. The width of the 2D system is W , the length L, and
ohmic source and drain contacts are made to connect to the electrons to flow a current in the
x−direction. Solve this problem entirely at T = 0 K. The allowed discrete points in the k−space

(kx, ky) = (2π
L nx,

2π
W ny) where (nx, ny) are integers are considered individual modes of the 2DEG

as indicated in Figure 1. The collection of modes with the same ny is considered a 1D mode of the
2DEG.

Figure 1: Lateral Modes of a 2D Electron System.

(a) When the applied voltage across the source/drain contacts is Vds = 0, find the Fermi wavevec-
tor k0 as shown in the left of Figure 1.

(b) Show that the number of 1D modes with current flow in the x-direction because of the finite
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width of the 2D conductor is M0 = k0W
π . Use part (a) to write this in terms of the 2DEG density.

(c) Now a voltage Vds is applied across the drain and the source such that the net sheet car-
rier density of the 2DEG does not change. Assume ballistic transport and show that in Figure 1,

kR =
√
k2

0 + m?
c

h̄2
(qVds) and kL =

√
k2

0 −
m?

c

h̄2
(qVds).

(d) Show that the voltage Vds reduces the total number of left going modes ML and increases the
total number of right going modes MR. Find expressions for ML and MR.

(e) Find the voltage Vds at which carriers in all modes move to the right and no carriers move to
the left.

(f) Find how many right-going 1D modes are present in the above situation when all carriers move
to the right.

(g) Because each 1D mode in the ballistic limit can provide the maximum conductance of a quan-

tum of conductance G = gsgvq2

h , find the ‘saturation’ current Id when the critical Vds of part (e) is
reached.

Problem 2.6) A Ballistic FET with a 2D Semiconductor Crystal
We derived the characteristics of a ballistic field-effect transistor in class. Assume a double-gated
2D semiconductor crystal (e.g. MoS2) with a gate barrier thickness tb = 4nm, and a dielectric
constant εb = 20ε0.

(a) Plot the 77K and 300K Id − Vds and Id − Vgs characteristics of the 2D crystal FETs made
of a semiconductor with dispersion E(k) = h̄2k2/2m? with m? = 0.3m0. Use a spin degeneracy of
gs = 2 and a valley-degeneracy of gv = 1. Compare the characteristics of the transistor for a 2D
crystal semiconductor with m? = 0.2m0.

(b) Find an expression for the effective carrier injection velocity vinj by writing the current per
unit width as Id = qnsvinj where ns ∼ Cg(Vgs−VT ) in the on-state of the ballistic FET. Make plots
for the parameters in part (a). Note that not all the ns carriers are actually moving at uniform
velocity of vinj . Make a ‘spectral’ plot of the number of carriers vs the velocity in the direction
of the source/drain contacts, that runs from -ve to +ve velocities, for 77K and for 300K for the
parameters for part (a).

(c) Find expressions for the gain (transconductance per unit width, gm = ∂Id
∂Vgs

) for the ballistic

FET as a function of the gate voltage Vgs and small Vds << kT/q, and for Vds in current saturation.
Make plots for the parameters of part (a) and comment.

(d) A popular method to extract the field-effect mobility in FETs in the ‘resistor’ or linear region
of operation where the electric field driving transport is F ∼ Vds/L is the following: For a channel
length L use qns ∼ Cb(Vgs − VT ) with the drift current per unit width Id = qnsµ

Vds
L to write

Id = Cb(Vgs − VT )µVdsL , and take the slope of the measured Id − Vgs curve to extract µ. Because
Cb, Vds and L are precisely known, this gives the unknown µ. Find an expression for the effective
‘mobility’ that will be measured when this technique is applied to a ballistic FET, and why the
results must not be trusted.
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