ECE 5390 / MSE 5472, Fall Semester 2017
Quantum Transport in Electron Devices and Novel Materials
Debdeep Jena (djena@cornell.edu), Depts. Of ECE and MSE, Cormell University
Assignment 2, Solutions

Problem 2.1: The Harmonic Oscillator: Classical vs. Quantum

Problem 2.1) The Harmonic Oscillator: Classical vs. Quantum

In class we discussed that classically a mass oscillating in a harmonic oscillator potential is more
likely to be found at the extremities of the oscillation when it has the highest potential energy and
lowest kinetic energy. You also know the quantum wavefunction ¢, (z) of the quantum harmonic
oscillator. Find the classical probability density Pre(z) of finding the mass classically between
(z,2 + dx) and make a sketch. For the same oscillator and mass, make a plot of the quantum
probability densities Prq, ) = |hn(z)]? for a few n. Show that there is a correspondence
between the quantum and classical results for large quantum numbers n, and significant deviation
for small n.

Solution: [By Sayak Ghosh, 2017]
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Problem 2.2: Second Quantization Methods

Problem 2.2) Second Quantization Methods

To handle interactions between many particles, we introduced the occupation-number (or Fock-
space) formalism of quantum mechanics through the creation and annihilation operators that
obeyed the relations [b;,bf] = bib} — blb; = 4; for Bosons, and {ci,c}} = eicjt + clei = 4§y, for
Fermions. The creation and annihilation operators follow the ladder operations bf|n) = v/n + Ljn+
1) and bln) = y/n|n — 1) for bosons, and corresponding relations for Fermions. The Pauli-exclusion
principle is built into this formalism from the get-go because the occupation number of an orbital
:an be only 0, or 1, the only possible eigenvalues of the occupation number operator

for Fermions le

N = e

For Bosons, we could create a Fock-state |¥) = |ny,na, ..., ny, ...) by repeated application of the
creation operator on the Vacuum state: |¥) = [ny,na,...,nk,...) = %%%\0) Since
the Bosonic creation and annihilation operators of different orbitals commute, we do not have to
worry about the order in which the creation operators act on the vacuum state. The vacuum state
[0) = ..) has all orbitals unoccupied, and formally looks the same for Bosons and Fermions.
Similarly, we could create a Fermionic Fock state by repeated application of the creation operators
on |0), but since the creation operators of different orbitals anti-commute, we have to pay spe-
cial attention to the ordering: |¥) = |ny, ng, ..., ng,...) = (r'L)"*.._((;;)"z(r';)"'|0). Note that since
n;j =0 or 1 for Fermions, \/n7 =1 for all, so we do not need to write out the factorials.

Solution: [By Sam Bader, 2015]

a)

The fermionic algebra satisfies

cm:} =&j, ci,c;j=0,

If we examine the last of those for the case i = j, wehavec!c: + c!c: =0,ie 2c"c! =0,ie (c})2 =0. Since ¢!

a) Show that the fermion anti-commutator algebra directly implies (¢1)2 = 0. Argue why this
8 y imp A 8 )

is nothing but the Pauli exclusion principle for fermions, meaning 7 = ﬁ;zﬂ acting on fermion

eigenstates can only produce eigenvalues 0 or 1, unlike 0,1, 2, ... for bosons.

Evaluate the following matrix elements (Note that a = b and af = bf for bosons, and a = ¢ and
al = ¢f for Fermions, a is simply a more general creation/annihilation operator symbol):

(b) (1, 1|u§a;a1u2\l, 1) for Bosons (a = b), and then Fermions (a = ¢), and compare the results
with (1, l\a;ala%aﬂl. 1).

(e) 27210k, Ly ..ulg,(ll\n;a,\()l, 12, ..., 1%, 041, ...) for Fermions and then for Bosons.

The ground state of an electron (Fermion) system may be written as [®) = 1y, 1o, ..., 15, 0y 41, ...},
where N is the highest occupied orbital (its energy Ey is the Fermi energy). Work out the following
matrix element sums for [®):

(d) 5% (®lafafaian| @) = 0.

(e) TN TN, TN TN (@M alal aa, | @) = N2~ ‘4(59 = Gn(z). Make a sketch of

the function as a function of = for various (large) values of N. This function is called the

N2
pair-correlation function.

L SR S
chc;=0

¢; creates a particle in the 1 state,

2 . .
(c..) would double-populate the 1 state. The fact that this product is zero means that a double-populated (or even further overpopulated) state is

unreachable through these operators. That is to say, if all the physics is

P

in terms of f

and annihilation operators (and some

validly-occupied ground state), then no state can ever be occupied by more than one such fermion: this is the Pauli principle.



b)

First, I'l demonstrate the number operator a:a.- does what its name suggests regardless of the particle statistics.

b}
For bosons, a state can be written 1)) = ]'I’ &r |0) Apply the number operator

f)n
ﬁ'

. The b; can commute freely past all but n; the bI operators in front of. It picks up a 1 from each of those n; commutators.

blbily) = blb H

(b' ny
sibily) = nab! [T %lm
J

- where n; = nj — &;. Then the b} from the number

p over to replace the mi ',b_! from the state.

bihtg) = [T ik |0) =nil¥)
For fermions, the state can be written [t) = ]'[j(c;-)"! |0). Apply the number operator
clal¥) = fei [] (c})™I0)
J

The ¢; moves past all the j # % operators picking up some number m of minus signs | won't bother specifying because it won't matter, on its way to the
4 It only picks up a 1 from the anticommutator if there is an i particle present (n; = 1), then continues on to annihilate the ground

posscbly present c;.
state. Then, if the result is still non-zero the c! from the number through to rep the possibly elimi d ' from the state, picking

up the same m minus signs. So

cleil¥) = n: [ (c})10)
J

Now, this problem is straghtforward. The matrix element (l 1|alalazaz|1 1) is simply two number operators in sequence, and there's a particle in
each state, so, reg of the parti istics, (1, llalaxazazﬂ 1) = 1. The matrix etement (1, 1|a} a,alazll 1) is the same but an a, and a2

have been switched. For b these so it doesn't matter. For fermions, these anticommute, so we pick up one sign.
In summary
(1,116} blbaba|1,1) =1
1,1 dael,1) = -1
(1,206 b1688201,1) =1
(Lldeade|1,1)=1
c)

Given the demonstration of the number operator from (b), this is easy.

e
2(01, 12... 1k Ok41,. .. |a}a,-|01, 12... 1k, 0k41, .. )
=1

00
= 2(01,12 oo 1g, Opy1y ... |nj|01, 12 . 1, Opyr,y .. )

=1
wherenjistforl<j<k
e
=2
=
=k-1
d)
00
Z(ﬂa;ala‘amli)
Jklm
] ) t
Unless the destruction operators for ! and m are d by 9 P s, (a1am|®)) and ((B|a a,,) are orthogonal. So we must

have j =m, k =1 orj =, k = m. We can break the non-zero contributions to this sum into those two options, being careful not to double count the



terms with j = k = 1 = m. ('l pull out these terms to a separate sum.)

00 00
=) (@] [alolaras(1 - 62) + alalajau(1 - )] 1#) + > (®lalalae;|®)
ik j

The d sum vanishes b it ins two of the same i in which we argued in (a) is zero.
00
= 2({>| [a}a{agaj(l - &) + a}ala,ng(l - 6,1,)] |®)
ik

Let's do some anticommutations on the left to prodi ber op This
on the second.

quires an even of anti ions on the first term, and odd

B i(ﬂ [ala;,a}aj(l — &) — a:aga}a,(l - 6,-.,)] |®)
*

We see that these terms are the same but for their sign.

e)
N
Z({’(e‘("”’a}almamli)
jkim
We can make the exact same arguments and commutations as in (d) to reduce the problem to
N 2
= Z(Ql [a{aga}a,(l = &ix) — e‘u"')’a{am;nj(l - 5,-;.)] |®)
ik

where the only difference from (d) is that a phase is now carried on the second term (this phase vanished from the first term becase that term came from
k = 1). Using the fact that |®) is occupied up to N:

N
= (1= 8)(1 - €0H%)
&
And the (1 — e‘U~*)%) factor vanishes for j = k so we can drop the (1 — &)
N
= 2(1 - c((j—l)z)
&

There are N'2 terms in this sum

() )

=N = (et 1 —e-iNz s 1 - eiNz
1-ei= 1-e
We can pull out phases from each parenthesized term, which conveniently cancel each other

_ N’ _ euv:/z - e-iN:/Z e-iN:/Z —- elN:/!
eiz/2 _ g-iz)2 e-iz/2 _ giz/2

_ 2o (2 sin(Nz/2) —2isin(Nz/2)
=N ( 2i sin(z/2) ) ( —2isin(iz/2) )
= N2 sin’(Nz/2)

sin?(z/2)
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The zoomed out images look the same, G is essentially 1 everywhere except in the vicinity of multiples of 27 where the second term has a near-
divergence (cut off by V) which cancels the first term and brings the G x to zero. If we zoom in on these spikes, we see that larger values of N make
the spikes sharper. (One could see this analytically by applying L'Hopital's rule.)

The plots above are normalized by the particle number.




Problem 2.3: Bandstructure and Quasiparticles

Problem 2.3) Bandstructure and Quasiparticles

1 writing the single-particle tight-binding Hamiltonian for electrons on a linear

chain of atoms with lattice constant a as H,, =3, (Enelc,, - t(]CikHl;l - tchlc,,).

(a) Explain the meaning of this form of Hamiltonian, and the approximation made to write it in
this form.

(b) Now Fourier-transform the on-site orbital indexed creation/annihilation operators ch and ¢,
to the |k) orbital indexed creation/annihilation operators c; and ¢, and show that the Hamilto-
nian is then diagonalized to the form Hy = EkE(k)cl_ck, where the bandstructure, or electron
energy dispersion is given by E(k) = Ep—2tg cos(ka). This is a typical model of a one-orbital band.

Solve the following simple yet profound problem. In the Bardeen-Cooper-Schrieffer (BCS) theory
of superconductivity, the annihilation and creation operators for a correlated pair of electrons of
opposite spins (the Cooper-pair) are defined by ax = ¢y yéxr and ay = 460y |

(c) Show that [&k,&k/] = [flk flk,] =0.

(d) Show that [ax, ak,] O (1 — g — e p).

(e) Show that {ay,aw} = 2akaw (1 — dk k).

(f) Argue from the above algebra that Cooper pairs seem to follow boson algebra for ‘hole’ states,
when fi_y| = fuy = 0, even though they are made of fermions! But also argue why their cre-

Solution:
(a, b) [By Andrei Isichenko, 2017]
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ation/annihilation algebra is not ezactly bosonic.

(g) Discuss how particles of different types (fermions & bosons) may be treated by the 2nd quan-
tization techniques. Identify the importance of diagonalization of the many-particle Hamiltonians,
and how this process predicts quasiparticles such as excitons, polarons, or polaritons - all of which
have been experimentally observed.
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(c) [By Sam Bader, 2015]

[6r,8y] = cricrrcy sep, — Ck 1€k C-kICKT = C-kICICK 1C_g, — C-kiCKICK 1C_y, =0
where the middle equality proceeds because it takes an even number of anticommutations to reorder the second term.

Also, the exact same math goes through if we put a dagger on every operator:

[“ll“L] =0

[“'hal']

= % B S |

= c'k'l'ck'tck'.‘fc-k'.l ck'.tc-k',;c"‘-lc"-f

=epuct to_ g

= -mc_k."ck,fc 't cll.tc-l’.lc_uq"t

=(—c' Coky + G)erpel, . —cl o enie
Kl A kK 1 ¥t Kt -k —k,4 Ck,t
= (_ct_k'.lc‘k-l + Jkk')(_c:"tck-f + Jhk') - c:lltct_k"lc'krlck.f

=d, el c +(1—c' ey —c Yo — ¢l et erien
= C_p -kl Cy 4 Chit k1 €kl = Cp 1 ChT )0k = Cpy 1C_p | C-k1Chit

= ct_y'lc_ucl,'fcm +(1- C'_uc-k.l - L’,fc’ﬂT)Jkk’ - c'.y,;c-k.lclr',ck.f
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=(-c, cns - CL,,Ck.t)Gu'

=1 =n_gy —ny;)ow

{ar,ay}
= C-kACk1C_K 1 Ck p F Cok 1O 2 C-k1Ck T -
= C-klCk1C_K 1CK,t — CK,1C-kLCK 1ChT
=ckicrtCyyCpy — (—c-ricpy + Sw)oy schr
If k = K/, then we have a repeated fermionic operator (Ck,1Cx,1 ), S0 that term would be zero.
= C-kICKTC_K, Okt + C-kIC K 1 Ok 4 Cht
=c-kiCktC_y Cpy +C-kiC_y (—Cricy s + Gpx)
If k = K, then we have a repeated fermionic operator (¢ ,1C—k,1 ), SO that term would be zero.
= CoklChtCoy 1Okt — C-kAC_K ) CEICK ¢
= C-kCk1C_K, Okt T C-kiCkIC_k, Cy

= hkak’

Note akay = C_kiChtC_y, Cxp = —C-kIC_g, Ch1Cy ¢, Which is clearly zeroif k = K due to the rep d fermionic op . So the fact that this
commutator is zero for k = K is already built into axa, . Thus it wouldn't change our answer at all to explictly include a factor which is one for k #¥K,
and zerofork =K.

= 2axay (1 - Jun)

(f)
When restricted to hole states (for which ax and ny vanish), the above relations become
[ak,ay] = [a{, a:,] =0
[ax, ﬂ:g] =0
{ax, al,} =0

That is the algebra of bosonic operators. However, to truly be bosonic, these relations would need to hold on the full space of possible states.

(9)

It turns out that there are many electrons, phonons, and photons in any actual material, and, unfortunately, they interacl. Because life is hard sometimes.
Finding the energy spectrum of an actual material is thus a process of diagonalizing a many-body Hamiltonian. However, given simple enough models of
the interactions, this diagonalization often leads approximately to combinations of true single-particle operators which behave compositely in simple
ways. A fine example being the emergence of the Cooper pairs, which behave (sort of) like a single boson from the many-body interactions of electrons.
Excitons (el hole binations), pol: (electron - polar phonon combinations), and polaritons (photon - polar phonon combinations) are other
examples of this procedure. ’
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Problem 2.4: Quantum Transport by Tunneling, Transmission, and Thermionic
Emission

Problem 2.4) Quantum Transport by Tunneling, Transmission, and
Thermionic Emission

From the handouts, solve the following problems:
(a) Kroemer, Problem 5.5-1, page 161.
(b) Kroemer, Problem 6.4-1, page 181.

(c) Lundstrom, Problem 1.15, page 53.
Solution:
(a) [by Sayak, 2017]

¢ PROBLEM TO SECTION 5.5

#55-1: T ission Properties of a ite Barrier
Consider a composite barrier of the general type shown in Fig. 5-5-2, containing N
i inuiti ing by N + 1 flat ial sections.
The propagation matrix of such a structure has the form
p=Dpw. Fo.pe. L pw-v ﬁ(m’ (5°5-T)
where the D’s are the p ion matrices iated with the di: inuities and the

Fs are associated with the flat-potential sections.

(a) Write a program that ines the current ission proba-
bility T as a function of the incident energy ¢, for a potential that contains an arbitrary
number of discontinuities with arbitrary lengths L, and arbitrary potential energies V.

(b) Execute the program for the following four-step potential
n: 0o 1 23 4
Lfoml: 0 1 2 3 0
VeVl 0 +1 -2 0 -1

Calculate and plot T for this potential, in the incident energy range 0 < £ < 2 ¢V, in
steps no coarser than 0.1 eV. Note: The choice of the length Ly of the exit side of the

1is irrel but specifying a zero length is a convenient way to signal the end
of the composite barrier to the program, without having to specify the number of
potential steps beforehand.

(¢) Re-run the program in the energy range appropriate for bound states of the
structure. Plot T'vs. € in that range, and determine the energy of any bound states that
might be present, to better than +0.05 eV. Also, explore the existence of quasi-bound
states showing up as resonances in T, with 7' < @ in the energy range 0 > £ > Va.

Vi

Figure 5-5-2. Barrier contain-
v, ing several flat-potential regions of
2 varying lengths and heights.




MAMMHM (ﬁt‘{a fer Slimuﬁllia«az b o MW%
mo-viers, ‘2'4') A
Clear(v,1,k,energy,P,F,M,len,e1,e2,estep,elen, tr];

e1-0; T

e2-2;

estep=0.01;

elen=Floor 1+ ( (e2-e1) /estep) |

len=5;

energy=ConstantArray (0,elen] ; 0<e I Zc.\/
tr=ConstantArray (0, elen] ; y

Do[ (energy[[i]]=(els((i-1)+estep))+econv}, (i,elen}]; . Grep = 0:0] =V

Array(v,len];
Array(1,len];
Array(k,len];
Array[P,len-1];
Array(F,len-1];
econv=1.6+10"-19;
lconv=18~-9; \

¢(eV)
T

con=(1.05+10%-34) "2/ (2+9.1+10%-31) ; . i

=0; H

a; s /2<Q<f)xu’
fulu Y3 bovud

ko

a3 6@"/) sy L\ ', Sheg > 0001 eV

-2;

o; 1V

=

{vii]=vii)«econv,1[i]=1[i]+1conv},{i,len}];
Do[{k[il]=Sqrt| (energy[[j]]-v(il])/con]},{il,1len}], |
M={(1,0},{0,1}), |
Do[{P[i-1]={{(k[i-1]+K[i])/(2+Sqrt[k[i-

—1Leco eV

5 (k[i-1]-k[1])/ (2+Sqrt [

(K[i-1]-K[i])/ (2+Sqrt [(K[i] +k[i-1]]), (k[i-1]-k[1])/ (2+Sqrt [K[i-1] N1
F[i-1]={{Exp[-I+k[i]+1[i]],0),{0,Exp[I+k[i]+1[i]]}}, O fokr e
P11 FI-11), (1,2,1en) ], -y quor- Do
e[l Abs[M[[1,1]]1]%2}, (j,elen}]; W ~0-9 |
Do {energy[[i]]=energy([i]]/econv},{i,elen}]; 6(1' ~ J )
- Skp - 01600) N

ListPlot [Transpose | {energy,tr}]]

(o) [oy A_ndrei & Sayak]

In solid-state physics, one encounters the problem of the tunneling of electrons through
a thin oxide layer between two metals, as a function of the voltage AV applied between
the metals. A simple model of this problem is the tunneling through the trapezoidal
barrier shown in Fig. 6.4-2.

AV
Vo
&

L Figure 6+4-2. Trapezoidal bar-
rier model for the tunneling of elec-
trons through an oxide barrier be-
tween two metals.

Determine the tunneling probability as a function of AV, provided that AV ins less

than Vo — € For simplification, assume that L and Vo are large enough that the total
tunneling probability remains very small compared to unity.




2 ) (Wl

/

bawsgmisien  geffi ciends T = —Lﬂf——’m
ﬁfwe, dofine xzce’;zl‘bf kL(a’)/fV] 1% M/
-k ky ~ e (@ e (L)
Gy (M) /m[@ ) (k« 3 )
o ac Ao, g o (1) (ka9 )]
0 -1
aso \(w) = ?—L: r@T—e f‘uu' b VDA and boge L, T is o (4<L).
I e ‘
oLl \f/m(” - _c/_(_;\)_ Q(Jlkf“/)h)»r%f; o e amdifory *>7 f/o(.y e
\ ik 7’3/ __B)L—— (qu'«)» ké“)) kg + ke -
A L7 \{/(S(q’) - %Q\\L«ﬂ\ " (%_ e 3R X ‘Mn' b kks k,f")kz(l')
’ - ¢V,
K m K0 = [ @Y, (e ) (vt k iy
LA . 5 b ECeY) (V-9 &€y
k@) = \j@ ~ LV

Feg . S
Noi e efPicients ALE owe el %) 16 JZ (e (V-9

8 (1% g b
(A) lr V) ”",’WQ gk s qwj X= wff@‘m’%‘g =
2\/ k()

1) il %[vﬁé) 1
' Jﬁ\/
kg 1 Bl :uL>~k~>>@ e Ve
. Vi, (D I
|\L4,_(L)"‘<3 Ky +iKa
2&5

o / — wv.»om) BT TR
EW Vo fr ddep b a=0, 94 W 4 = i
[%wjm bowber, Q¥ ls fr Gp ot azl .

And the WKB tunneling probability integral is given by:

B\ Kroewmes 6.4~ Tuniel:

¢ rb.r:_l,\‘ bt | app red yoliase

L:r,,\[ WUE  cppradinetisn

—I:._R% &Q[ -2 g:;,_J;. [c v - q

Ectx= -2Y yuy,
L
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(c) [solution by Andrei, and further detailed solution from ece4070/mse 6050)]

L15 Consider a metal-semiconductor barrier as shown below:

(a) Write an expression, involving a sum, for the electron current injected from the semi-
conductor to the metal, Jgy.

(b) Convert the sum to an integral. Be sure to show the limits of integration.

(c) Sketch the transmission coefficient versus k, expected from (1) quantum mechanical and
(2) classical considerations.

(d) Set up the problem for computing the classical (thermionic emission) current Jsy. Show
the formula that has to be integrated, but do not integrate it.
(e) Evaluate the integral and show that the result is the expected thermionic emission rela-

tion.
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ieesi- ClearAlL["Global #"] (» Clear all variables x)

= 1.6%107%%;

6.63

h= * 107345
27

kb = 1.38%10°23;

me = 9.1%1073;

mcGaAs = 0.067;

qe

qge x4 wxmex kbx0.067 »mcGaAs .
H

aStar =
a3
T = 3005
. -qe ge » voltage
jbyTsq[voltage_] := aStar  Exp * [Exp[ ——————] - 1|;
loer] e 17
- 1t
yintercept[voltage_] := aStar » Exp|[ ae ] Exp[w] B
Kb T kb T

Plot[jbyTsq[v], {v, 0, 1},

AxesLabel » {"Voltage (V)", "3/T? (A/m’K?)"}, ImageSize - Large]
LogPlot[{jbyTsq[v], yintercept(vl}, {v, 0, 1},

AxesLabel » {"Voltage (V)", "Log (3/T?) (A/m*K*)"},

ImageSize -» Large, PlotStyle » {Automatic, {Red, Dashed)}]

yintercept[0] (xFinding the y-intercept from the log plotx)
AT (AP K?)

25x10%
20x10% -
1.5%10% -
oulera)= [

1.0%10%

5.0x10% -

Voltage (V)

Log (JIT?) (Nm?K?)

10m |

102

107

107

109

Voltage (V)

Problem 2.5: A 2DEG as a parallel array of 1D conductors

Here is a question from the 2017 ECE 4070/MSE 6050 Final exam. It is very relevant for this
class. Electrons of sheet carrier density n, sit in the conduction band of a 2D electron system of
energy bandstructure E(kg, k) =

k2 + k2) with the k—space occupation of carriers shown

in Figure 1. The grey shaded states are occupied, rest are empty. Assume 2 spin degeneracy of
g+ = 2 and a valley degencracy of g, = 1. The width of the 2D system is IV, the length L, and
ohmic source and drain contacts are made to comnect to the electrons to flow a current in the
z—direction. Solve this problem entirely at T = 0 K. The allowed discrete points in the k—space

(kasky) = (2ng, 2Eny) where (ng,ny) are integers are considered individual modes of the 2DEG
as indicated in Figure 1. The collection of modes with the same n,, is considered a 1D mode of the
2DEG.

1D Mode

Figure 1: Lateral Modes of a 2D Electron System.

(a) When the applied voltage across the source/drain contacts is Vg, = 0, find the Fermi wavevec-
tor ko as shown in the left of Figure 1.

(b) Show that the number of 1D modes with current flow in the z-direction because of the finite

width of the 2D conductor is My = h”:—‘ Use part (a) to write this in terms of the 2DEG density.

(c) Now a voltage Vj; is applied across the drain and the source such that the net sheet car-
rier density of the 2DEG does not change. Assume ballistic transport and show that in Figure 1,
V8 2 Vi) and by, = \J — 2 (qVa).

kp=

(d) Show that the voltage V, reduces the total number of left going modes My, and incre
total number of right going modes Mp. Find expressions for My, and Mpg.

(e) Find the voltage V;, at which carriers in all modes move to the right and no carriers move to
the left.

(f) Find how many right-going 1D modes are present in the above situation when all carriers move
to the right.

(g) Because each 1D mode in the ballistic limit can provide the maximum conductance of a quan-
. 2 oo

tum of conductance G = 44 find the

reached.

saturation’ current /4 when the critical Vg, of part (e) is

Solution: [From ECE 4070/MSE 6040 2016]
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Problem 2.6: A Ballistic FET with a 2D Semiconductor Crystal

Problem 2.6) A Ballistic FET with a 2D Semiconductor Crystal
We derived the characteristics of a ballistic field-effect transistor in class. Assume a double-gated
2D semiconductor crystal (c.g. MoS,) with a gate barrier thickness #, = 4nm, and a dielectric
constant ¢, = 20

(a) Plot the 77K and 300K I; — Vy, and I — Vy, characteri » 2D crystal FETs made
of a semiconductor with dispersion E(k) = h*k?/2m* with m* = 0.3mq. Use a spin degeneracy of
gs = 2 and a valley-degeneracy of g, = 1. Compare the charac s of the transistor for a 2D
crystal semiconductor with m* = 0.2my.

(b) Find an expression for the effective carrier injection velocity v;,; by writing the current per
unit width as Iy = qngvin; where ng ~ Cy(Vys — Vi) in the on-state of the ballistic FET. Make plots
for the parameters in part (a). Note that not all the ny carriers are actually moving at uniform
velocity of vin;. Make a ‘spectral’ plot of the number of car in the direction
of the source/drain contacts, that runs from -ve to -+ve velocities, for 77K and for 300K for the

s vs the veloci

parameters for part (a).

(c) Find expressions for the gain (transconductance per unit width, g,, = ;(’( ) for the ballistic

FET as a function of the gate voltage Vy, and small Vz, << kT/g, and for Vg, in current saturation.
Make plots for the parameters of part (a) and comment.

(d) A popular method to extract the field-effect mobility in FETs in the ‘resistor” or linear region
of operation where the electric field driving transport is F' ~ Vj/L is the following: For a channel
lvnrrth L use qny ~ Cy(Vys — V) with the drift current per unit width I; = qnon to write

= Cy(Vygs — V) of the measured I; — V,, curve to extract p. Because
(‘,, Vi, and L are precis S the unknown s, Find an expression for the effective
‘mobility’ that will be measured when tlu~. technique is applied to a ballistic FET, and why the

and take the sloj

results must not be trusted.

Solution: [By Wenshen, 2018] Note: This solution uses a different effective
mass, but the answers and trends are the same.
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