
ECE 5390/MSE 5472, Fall Semester 2017
Quantum Transport in Electron Devices & Novel Materials

Debdeep Jena (djena@cornell.edu), Depts. of ECE and MSE, Cornell University
Assignment 3 and Prelim

Policy on assignments: Please turn them in by 5pm of the due date. The due date for this assign-
ment is Monday, Oct 30th, 2017. The due date for the Prelim question 3.6 is Friday Nov 3rd.

General notes: Present your solutions neatly. Do not turn in rough unreadable worksheets -
learn to take pride in your presentation. Show the relevant steps, so that partial points can
be awarded. BOX your final answers. Draw figures wherever necessary. Please print out this
question sheet and staple to the top of your homework. Write your name and email address on the
cover. Some problems may lead to publishable results - be on the lookout!

Problem 3.1) Designer digital and analog Ballistic FETs

In class we discussed that for a Ballistic FET with a 2D electron gas channel, a parabolic band-
structure E(kx, ky) = h̄2

2m? (k2
x + k2

y) leads to a current Id
W ∝ (Vgs − VT )

3
2 , leading to a gain or

transconductance gm = ∂Id
∂Vgs

∝ (Vgs − VT )
1
2 .

(a) Using the on-state current as the primary metric, discuss the effects of the band-edge effective
mass m? and k-valley degeneracy gv on the FET on-current. Using your program for Problem
2.6 in Assignment 2, show that the dependence can be non-monotonic, meaning a lighter effective
mass does guarantee the highest on-current, and a higher valley degeneracy does not always mean
a higher on-current. What is the reason?

(b) Show why if the gate of the FET is driven by a monochromatic input signal Vgs = V dc
gs +vωe

iωt,
the output ac current has many frequencies, not just the frequency of the input signal.

(c) Assume vω << V dc
gs . Can you design a bandstructure that will remove these higher harmonics?

This will make the transistor more linear. If you have a good strategy, you can make an impact on
communication electronics, where transistors with high linearity are in demand.

Problem 3.2) The Boltzmann Transport Equation

In class, we discussed the Boltzmann transport equation

∂f

∂t
+ v · ∇rf + F · ∇pf = Ĉf (1)

where the symbols have the usual meanings. The collision term on the right is

Ĉf =
∑
k′

[S(k′ → k)fk′(1− fk)− S(k → k′)fk(1− fk′)], (2)

where S(k → k′) = 2π
h̄ |〈k

′|W (r)|k〉|2δ(Ek′ − Ek ± h̄ω) are the scattering rates given by Fermi’s
golden rule. In this problem, we discuss a few details of this recipe of solving diffusive transport
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problems. For any scattering potential, we found thatS(k→k′)
S(k′→k) = exp(

Ek−Ek′
kT ), which led us to

distinguish between elastic and inelastic scattering events.

a) Under what conditions can we make the relaxation time approximation (RTA), where Ĉf ≈
−(f − f0)/τ? Discuss for both elastic and inelastic scattering events.

b) Outline how from the RTA of the distribution function f , one may obtain charge transport
properties such as the electrical conductivity, and thermoelectric properties.

c) For a force F = qFe due to an electric field alone, the RTA solution of the BTE took the
form

f ≈ f0 + τ(−∂f0

∂E
)v · F. (3)

However, in the presence of a crossed electric and magnetic field, the net force is the Lorentz
force, F = q(Fe + v ·B). Work out a solution for f in the RTA for this situation. You
may refer to Wolfe/Holonyak/Stillman’s book on the Physics of Semiconductors for this part.
Realize that this is the situation encountered in a Hall-effect measurement.

d) Outline how magnetoresistance properties may be obtained from the BTE from your discus-
sion above.

Problem 3.3) Application of Fermi’s Golden Rule: Scattering rates
due to Point Defects, and Alloy Disorder Scattering

Assume that in a 3D semiconductor crystal of GaN (electron effective mass = m? ∼ 0.2m0), point
defects of volume density nimp = Nimp/V are present. Also, assume that the perturbation V0 to
the crystal potential due to each point defect is confined to a radius R0 around its location, i.e.,

W (r) = V0θ(R0 − |r|), (4)

where θ(...) is the unit-step function. This is an example of a ‘short-range’ scatterer.

a) Find the matrix element for scattering of electrons by all the point defects.

b) Assume the single-electron picture, and a parabolic bandstructure. Find an expression for
the momentum scattering rate 1/τm(E) of an electron due to the point defects as a function
of its energy above the conduction band edge (ε = E − Ec). Make necessary assumptions in
the process. Show that the momentum and quantum scattering rates are the same for this
form of isotropic scattering potentials.

c) Plot the mobility for ‘thermal’ electrons with ε = E − Ec ∼ kBT at 300 K, as a function
of the impurity density in the range nimp = 1015 → 1020/cm3 for various values of V0 =
0.1, 0.3, 0.5, 2.1 eV. Assume an R0 ∼ c/4, where c ∼ 0.51 nm is the c-axis lattice constant of
GaN.

d) This is a reasonable model for things such as alloy scattering, for example, for charge transport
of electrons in AlGaN and InGaN layers. Explain why an disordered alloy can be considered
to be a perfect crystal with a high density of point defects. Then, estimate the mobility for
electrons in AlxGa1−xN layers as a function of the alloy composition x, by using your results
in part (c). Find any references where this might have been done.
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Problem 3.4) Flash Memory Design by Fermi’s golden rule

Figure 1 shows a 1-dimensional potential for an electron, which is in the state with energy E0 at
t = 0. Since there is a lower potential for x > Lw + Lb, the state |E0〉 is a quasi-bound state. The
electron is destined to leak out.

(a) Using WKB tunneling probability, and combining semi-classical arguments, find an analytical
formula that estimates the time it takes for the electron to leak out. Find a value of this lifetime
for Lb ∼ 3 nm, Lw ∼ 2 nm, V0 ∼ 1 eV, E0 ∼ 2 eV, and Eb ∼ 5 eV. How many years does it take?

(b) This feature is at the heart of flash memory, which you use in computers and cell phones. Find
an analytical expression that describes how the lifetime changes if a voltage Va is applied across
the insulator. Estimate the new lifetime for Va ∼ 2.8 V. This is the readout of the memory.
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Figure 1: Escape and field-emission by tunneling.

(c) In the last two parts you invoked semi-classical arguments to estimate the tunneling escape time
there. Now try solving the same problem using Fermi’s golden rule. Model the problem carefully
so that you can apply Fermi’s golden rule. Discuss your approximations and their validity.

Problem 3.5) Higher-order time-dependent perturbation theory:
Dyson series and diagrams

In class, we used the interaction representation to write the perturbed quantum state at time t

as |ψt〉 = e−i
H0
h̄
t|ψ(t)〉, where H0 is the unperturbed Hamiltonian operator. This step helped us

recast the time-dependent Schrodinger equation ih̄ ∂
∂t |ψt〉 = (H0 + Wt)|ψt〉 to the simpler form

ih̄ ∂
∂t |ψ(t)〉 = W (t)|ψ(t)〉, where W (t) = e+i

H0
h̄
tWte

−iH0
h̄
t is the time-evolution operator. This

equation was integrated over time to yield the Dyson series
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|ψ(t)〉 = |0〉︸︷︷︸
|ψ(t)〉(0)

+
1

ih̄

∫ t

t0

dt′W (t′)|0〉︸ ︷︷ ︸
|ψ(t)〉(1)

+
1

(ih̄)2

∫ t

t0

dt′
∫ t′

t0

dt′′W (t′)W (t′′)|0〉︸ ︷︷ ︸
|ψ(t)〉(2)

+
1

(ih̄)3

∫ t

t0

dt′
∫ t′

t0

dt′′
∫ t′′

t0

dt′′′W (t′)W (t′′)W (t′′′)|0〉︸ ︷︷ ︸
|ψ(t)〉(3)

+...,

(5)

where |ψ(t0)〉 = |0〉 is the initial state. Restricting the Dyson series to the 1st order term in W for
a perturbation of the the form Wt = eηtW (r), we derived Fermi’s golden rule for the transition rate

Γ
(1)
0→n = 2π

h̄ |〈n|W (r)|0〉|2δ(ε0 − εn). We used the relation limη→0+
2η

x2+η2 = 2πδ(x) in this process.

a) Show that the second and third order terms in W in the Dyson series lead to a modified golden
rule result

Γ0→n =
2π

h̄
|〈n|W |0〉+

∑
m

〈n|W |m〉〈m|W |0〉
ε0 − εm + iηh̄

+
∑
k,l

〈n|W |k〉〈k|W |l〉〈l|V |0〉
(ε0 − εk + 2iηh̄)(ε0 − εl + iηh̄)

+ ...|2δ(ε0 − εn),

(6)
where in the end we take η → 0+. We identify the Green’s function propagators of the form
G =

∑
m

|m〉〈m|
ε0−εm+iηh̄ . Thus, the result to higher orders may be written in the compact form

Γ0→n =
2π

h̄
|〈n|W +WGW +WGWGW + ...|0〉|2δ(ε0 − εn). (7)

Figure 2: Harmonic oscillator perturbed by a time-dependent field.

b) Sketch the ‘Feynman’ diagrams1 corresponding to the terms in the series, showing the virtual
states explicitly for the higher order terms.

c) Solve the above problem in Figure 2 from Sakurai (Modern Quantum Mechanics). Note that
for part (b), you will need to invoke higher-order perturbation terms as discussed in this problem,
the 1st order Fermi’s golden rule result term will not be enough.

1More accurately, Goldstone diagrams.
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Problem 3.6) Prelim: Electron Mobility in Semiconductors

The purpose of this question is to reproduce the theoretical calculation of electron mobility vs
temperature as shown in Figure 3 and explain the physics of electron transport underlying what
is measured in the experiment. This requires you to calculate the scattering rates due to phonons,
ionized impurities, and neutral impurities, and applying the Boltzmann transport equation to eval-
uate the electron mobility vs temperature. On the class website I have provided you with a handout
from Wolfe / Holonyak / Stillman to help you in this problem, and the paper from where this plot
is taken, so you have everything you need to solve this problem.

(a) Boltzmann Transport Equation We derived the solution to the Boltzmann transport
equation in the relaxation-time approximation for elastic scattering events to be f(k) ≈ f0(k) +

τ(k)(−∂f0(k)
∂E(k) )vk · F, where all symbols have their usual meanings. Use this to show that for trans-

port in d dimensions in response to a constant electric field E, in a semiconductor with an isotropic

effective mass m?, the current density is J = nq2〈τ〉
m? E, where 〈τ〉 = 2

d ·
∫
dE·τ(E)E

d
2 (− ∂f0(E)

∂E )∫
dE·E

d
2−1f0(E)

, where

the integration variable E = E(k) is the kinetic energy of carriers. µ = q〈τ〉
m? is the mobility. You

have now at your disposal the most general form of conductivity and mobility from the Boltzmann
equation for semiconductors that have a parabolic bandstructure! Hint: You may need the result

that the volume of a d-dimensional sphere in the k-space is Vd = π
d
2 kd

Γ( d
2

+1)
, and some more dimen-

sional and Γ−function information.

Figure 3: Electron mobility in doped GaAs semiconductor at high temperatures is limited by
phonon scattering, and by impurity and defect scattering at low temperatures. In this problem,
you will calculate the solid lines of this plot.

(b) Spatially uncorrelated scattering points: Show using Fermi’s golden rule that if the scat-
tering rate of electrons in a band of a semiconductor due to the presence of ONE scatterer of
potential W (r) centered at the origin is S(k→ k′) = 2π

h̄ |〈k
′|W (r)|k〉|2δ(Ek − Ek′), then the scat-

tering rate due to Ns scatterers distributed randomly and uncorrelated in 3D space is Ns ·S(k→ k′).
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In other words, the scattering rate increases linearly with the number of uncorrelated scatterers,
which implies that the mobility limited by such scattering will decrease as 1/Ns. This argument is
subtle, and effects of electron wave interference should enter your analysis. [Hint: Add the poten-
tials of each randomly distributed impurity for the total potential Wtot(r) =

∑
iW (r−Ri). Use

the effective mass equation for the electron states to show that the matrix element is a Fourier
transform. Then invoke the shifting property of Fourier transforms.] Now calculate the neutral
impurity scattering limited mobility for GaAs and compare with Figure 3.

(c) Impurity scattering: Using Fermi’s golden rule, calculate the scattering rate for electrons due

to a screened Coulombic charged impurity potential V (r) = − Ze2

4πεsr
e
− r

LD , where Ze is the charge

of the impurity, εs is the dielectric constant of the semiconductor, and LD =
√

εskbT
ne2

is the Debye

screening length and n is the free carrier density. This is the scattering rate for just one impurity.
Show using the result in parts (a) and (b), with a 1− cos θ angular factor for mobility that if the

charged-impurity density is ND, the mobility for 3D carriers is µI = 2
7
2 (4πεs)2(kbT )

3
2

π
3
2Z2e3

√
m?NDF (β)

∼ T
3
2

ND
. Here

β = 2
√

2m?(3kbT )

h̄2 LD is a dimensionless parameter, and F (β) = ln[1+β2]− β2

1+β2 is a weakly varying

function. This famous result is named after Brooks and Herring who derived it first. Calculate
the ionized impurity scattering limited mobility and compare: are your values close to what is
experimentally observed for these conditions as shown in Figure 3?

(d) Acoustic Phonon scattering: The scattering rate of electrons due to acoustic phonons in
semiconductors is given by Fermis golden rule result for time-dependent oscillating perturbations

1
τ(k→k′) = 2π

h̄ |〈k
′|W (r)|k〉|2δ(Ek − Ek′ ± h̄ωq), where the acoustic phonon dispersion for low en-

ergy (or long wavelength) is ωq ∼ vsq with vs the sound velocity, and the scattering potential is
W (r) = Dc∇r · u(r). Here Dc is the deformation potential (units: eV), and u(r) = n̂u0e

iq·r is
the spatial part of the phonon displacement wave, n̂ is the unit vector in the direction of atomic
vibration, and the phonon wavevector q points in the direction of the phonon wave propagation.
We also justified why the amplitude of vibration u0 may be found from 2Mω2

qu
2
0 ≈ Nph × h̄ωq,

where Nph = 1/[e
h̄ωq
kbT − 1] is the Bose-number of phonons, and the mass of a unit cell of volume

Ω is M = ρΩ, where ρ is the mass density (units: kg.m−3). Show that a transverse acoustic
(TA) phonon does not scatter electrons, but longitudinal acoustic (LA) phonons do. By evaluat-
ing the scattering rate using Fermi’s golden rule, and using the the ensemble averaging of Prob-
lem 25 (a), show that the electron mobility in three dimensions due to LA phonon scattering is

µLA = 2
√

2π
3

qh̄4ρv2
s

(m?
c)

5
2D2

c (kbT )
3
2
∼ T−

3
2 . This is a very useful result. Calculate and explain the acoustic

deformation potential and acoustic piezoelectric phonon scattering rates for GaAs and compare
with Figure 3.

(e) Discuss how polar optical phonon scattering is different from acoustic phonon scattering, and
calculate the phonon scattering limited mobility for GaAs and compare with Figure 3.

(f) Now combine all the above parts of to explain the experimental dependence of mobility vs
temperature and as a function of impurity density as seen in Figure 3. If you have succeeded in
getting it to work, you have built a very powerful transport tool - because now you can use it to
explain electron transport properties in any semiconductor! This is because the material parameters
may change, but the transport formalism remains the same.
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