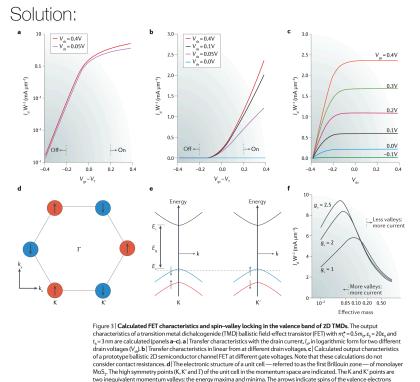
ECE 5390 / MSE 5472, Fall Semester 2017

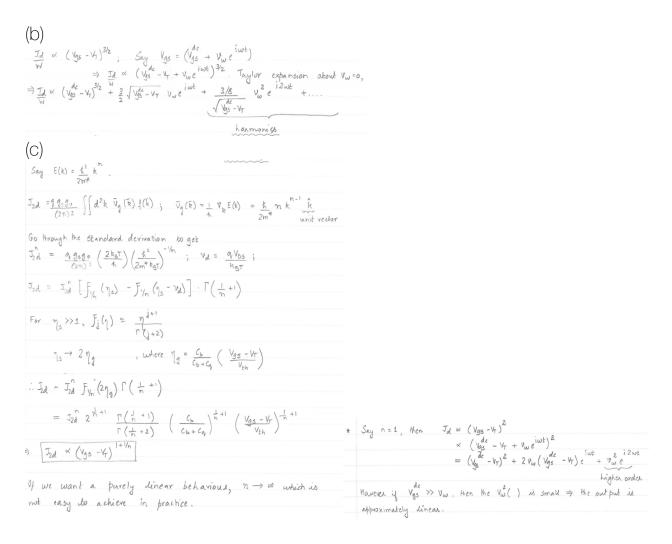
Quantum Transport in Electron Devices and Novel Materials Debdeep Jena (djena@cornell.edu), Depts. Of ECE and MSE, Cornell University **Assignment 3, Solutions**


Problem 3.1: Designer digital and analog ballistic FETs Problem 3.1) Designer digital and analog Ballistic FETs

In class we discussed that for a Ballistic FET with a 2D electron gas channel, a parabolic band-structure $E(k_x, k_y) = \frac{\hbar^2}{2m^2} (k_x^2 + k_y^2)$ leads to a current $\frac{I_d}{W} \propto (V_{gs} - V_T)^{\frac{3}{2}}$, leading to a gain or transconductance $g_m = \frac{\partial I_d}{\partial V_{gs}} \propto (V_{gs} - V_T)^{\frac{1}{2}}$.

(a) Using the on-state current as the primary metric, discuss the effects of the band-edge effective (a) can give originate current as the primary interfer discuss the encodes of the balanced generative mass m^* and k-valley degeneracy g_v on the FET on-current. Using your program for Problem 2.6 in Assignment 2, show that the dependence can be *non-monotonic*, meaning a lighter effective mass does guarantee the highest on-current, and a higher valley degeneracy does not always mean a higher on-current. What is the reason?

(b) Show why if the gate of the FET is driven by a monochromatic input signal $V_{gs} = V_{gs}^{dc} + v_{\omega}e^{i\omega}$ the output ac current has many frequencies, not just the frequency of the input signal


(c) Assume $v_{\omega} \ll V_{gs}^{dc}$. Can you design a bandstructure that will remove these higher harmonics? This will make the transistor more linear. If you have a good strategy, you can make an impact on communication electronics, where transistors with high *linearity* are in demand.

two nequivalent momentum valleys: the energy maxima and minima. The arrows indicate spins of the valence electrons occupying that valence state. $k_{\rm g}$ are the wavevectors that represent the direction of electron avevection clience of the valence electrons is occupying that valence state. $k_{\rm g}$ are the wavevectors that represent the direction of electron avevection clience on avevection of or electron avevection clience of strong spin-orbit coupling. Time reversal symmetry requires spins to be opposite at different valleys 1 (Drain current as a function of effective mass for three different values of valley degeneracy (Q). The drain currents were obtained for $V_{\rm g}$ and $V_{\rm g}$ =0.4V. The cross-over of current scaling with valleys and effective mass depends on the gate capacitance. (a) Here is a calculation that I had done recently for a review paper. Fig (f) shows how the maximum on current depends on the band effective mass, and the valley degeneracy. For example for a single valley, an effective mass of ~0.1m0

-requires

gives the highest on-state ballistic current drive. Note that I have assumed that the bands are isotropic for the calculation, that is another parameter one could vary further to squeeze out more performance in ballistic FETs. Also, note that the calculation neglects the effect of contact resistances (this effect can be strong, and current densities of Id~10 mA/um are not possible at small voltages because a quantum-limited contact resistance of Rc~50 Ohm-um will still 2*Id*Rc ~ 1.0 Volt, with Id*Rc dropping at each contact. Though this contact effect will stretch out the Id-Vgs and Id-Vds curves, and limit the current drive, it will not change the fundamental observation that there is an optimal effective mass for any given valley degeneracy.

Problem 3.2: The Boltzmann Transport Equation

problems. For any scattering potential, we found that $\frac{S(k \to k')}{S(k \to k)} = \exp(\frac{E_k - E_{k'}}{kT})$, which led us to distinguish between elastic and inelastic scattering events.

Problem 3.2) The Boltzmann Transport Equation

In class, we discussed the Boltzmann transport equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{r}} f + \mathbf{F} \cdot \nabla_{\mathbf{p}} f = \hat{C} f$$

(1)

(2)

where the symbols have the usual meanings. The collision term on the right is

$$\hat{C}f = \sum_{k'} [S(k' \to k)f_{k'}(1 - f_k) - S(k \to k')f_k(1 - f_{k'})],$$

where $S(k \to k') = \frac{2\pi}{h} |\langle k'|W(r)|k \rangle|^2 \delta(E_{k'} - E_k \pm \hbar \omega)$ are the scattering rates given by Fermi's golden rule. In this problem, we discuss a few details of this recipe of solving diffusive transport

Solution:

- a) Under what conditions can we make the relaxation time approximation (RTA), where $\hat{C}f \approx -(f f_0)/\tau^2$ Discuss for both elastic and inelastic scattering events.
- b) Outline how from the RTA of the distribution function f, one may obtain charge transport properties such as the electrical conductivity, and thermoelectric properties.
- c) For a force F = qF_e due to an electric field *alone*, the RTA solution of the BTE took the form

$$f \approx f_0 + \tau \left(-\frac{\partial f_0}{\partial E}\right) \mathbf{v} \cdot \mathbf{F}.$$
 (3)

- However, in the presence of a crossed electric and magnetic field, the net force is the Lorentz force, $\mathbf{F} = q(\mathbf{F}_{e} + \mathbf{v} \cdot \mathbf{B})$. Work out a solution for f in the RTA for this situation. You may refer to Wolfe/Holonyak/Stillman's book on the Physics of Semiconductors for this part. Realize that this is the situation encountered in a Hall-effect measurement.
- d) Outline how magnetoresistance properties may be obtained from the BTE from your discussion above.

(a) The key to apply PTA is that
$$T_{k}$$
 dees not depend on f
assume f can be splitted into a symmetric and an antisymmetric
 $fart \cdot f = f_{s} + f_{A}$
 $symmetric arcti-symmetric.
 $-\frac{5-5}{t} = \sum [S(k' \Rightarrow k)f'(1+f) - S(k \Rightarrow k')f(1+f')]$
for non-degenerate case.
 $1-f - 1$
 $for non-degenerate case.
 $1-f - 1$
 $for non-degenerate case.
 $1-f - 1$
 $for spherical bardion is not far from deglibbrium
 $f_{s}' - f_{s} - f_{s}$.
 $2 - \frac{f_{A}}{T_{k}} = \sum S(k \Rightarrow k') [enp(\frac{Ek' - Ek}{kT}) \frac{f_{A}}{f} - f_{A}]$
 $= -\frac{f_{A}}{T_{k}} = \sum S(k \Rightarrow k') [enp(\frac{Ek' - Ek}{kT}) \frac{f_{A}}{f} - f_{A}]$
 $for spherical bands under low fields. fa has a general form.
(Rep Mark landsmits here) $f_{A} = g(k) \cos 0$.
 $= \frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos 0}]$
 $E[astric Scattering]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos 0}]$
 $E[astric Scattering]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos 0}]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos 0}]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos 0}]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos 0}]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos 0}]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos 0}]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos'0}]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos'0}]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - enp(\frac{Ek' - Ek}{kT}) \frac{g(k')}{g(k)} \frac{\cos'0}{\cos'0}]$
 $\frac{1}{T_{k}} = \sum S(k \Rightarrow k') [1 - \frac{k}{k} \cos 4]$$$$$$

go back to
$$\frac{1}{4} = \sum_{p} S(1+pk) \left[1 - exp \left(\frac{Ek}{kT}\right) \frac{S}{4}\right]$$

 $\int_{A} is not a function of k'
 fA' is anti-symmetry.
for sphericab band Ek' is even in k'
 i as long as $S(k > k')$ is even in k'.
He integral of the te second term will vanish.
 \Rightarrow Isotropic scattering (nu action clastic or inclestic)
 $\Rightarrow \frac{1}{4k} = \frac{7}{k} S(k > k')$
(b) Once we know f and Ts
 $electrical conductivity $\sigma = \frac{q^2 n < T n^2}{m^4}$
 $(SD semiconductor) < T m > = \frac{1}{2} \int_0^{\infty} \frac{T}{1} e^{-\frac{1}{2}f(x)} x^{34} dx$
 $\int_0^{\infty} \frac{1}{2} e^{-\frac{1}{2}f(x)} \frac{1}{2} \frac{1}{k} = \frac{1}{2} \frac{e^{\frac{1}{2}r}}{m^2}$
Thermal conductivity dut to electron:
 $In = \frac{n}{m^2T} \left[(Te^{2}) - \frac{(Te^{2})^2}{e^{\frac{1}{2}T}} \right]$
Thermal conductivity dut to electron:
 $In = \frac{1}{m^2T} \left[(Te^{2}) - \frac{(Te^{2})^2}{e^{\frac{1}{2}T}} \right]$
 $Thermal conductivity dut to electron:
 $In = \frac{1}{m^2T} \left[(Te^{2}) - \frac{(Te^{2})^2}{e^{\frac{1}{2}T}} \right]$
 $e:kast context therma classificient : $T = T \frac{d}{dT} \left[\frac{dTe^{2}}{qTer^{2}} \right]$
 $e:kast context therma classificient : $T = -\frac{1}{2} \frac{dT}{T} \frac{p}{qTer^{2}}$
 $pr etecron therma classificient : $T = -\frac{e^{\frac{1}{2}r}}{qTer^{2}}$
 $e:kast context therma classificient : $T = -\frac{e^{\frac{1}{2}r}}{qTer^{2}}$
 $e: E = E_{T}$
 $f_{T} = \frac{1}{2} (E + \overline{v} \times B) \cdot v_{h}f - \overline{v} \cdot rf$
 $f_{T} = \frac{1}{2} (E + \overline{v} \times B) \cdot v_{h}f - \overline{v} \cdot rf$
 $f_{T} = \frac{1}{2} (E + \overline{v} \times B) \cdot v_{h}f - \overline{v} \cdot rf$
 $f_{T} = \frac{1}{2} (E + \overline{v} \times B) \cdot v_{h}f - \overline{v} \cdot rf$$$$$$$$$$$

 $f = \frac{\partial f}{\partial E} \vec{v} \cdot \vec{G} = \frac{q}{\hbar} (\vec{E} + \vec{v} \times \vec{B}) \nabla_{\mu} f - \vec{v} \cdot \nabla_{r} f.$ $(\vec{E} + \vec{v} \times \vec{B}) \cdot \nabla_{k} f = \frac{\partial f_{0}}{\partial \epsilon} \vec{v} \cdot \vec{E} + \tau \frac{\partial f_{0}}{\partial \epsilon} (\vec{v} \times \vec{B}) \cdot \nabla_{k} (\vec{v} \cdot \vec{G})$ $\vec{v} \cdot \nabla_{r} f = k \tau \frac{\partial f_{0}}{\partial \epsilon} \vec{v} \cdot \nabla_{r} \left(\frac{\vec{E} \cdot E_{F}}{\kappa_{T}}\right)$ $\Rightarrow \frac{\partial f_{0}}{\partial \xi} \vec{v} \cdot \vec{G} = q \frac{\partial f_{0}}{\partial \xi} \vec{v} \cdot \vec{E} - kT \frac{\partial f_{0}}{\partial \xi} \vec{v} \cdot Dr \left(\frac{\xi - E_{F}}{k_{T}}\right)$ + 7 4 250 2. [B× (G. Vk) Pk 8] $G = q\vec{E} - kT \nabla_r \left(\frac{\xi - E_F}{kT}\right) + \tau \frac{q}{42} \vec{T} \left[\vec{B} \times (\vec{G} \cdot \nabla_k) \nabla_k \xi\right]$ 9Ŧ $\Rightarrow \overline{G} = 2\overline{F} + \frac{2\overline{T}}{\overline{K^2}} [\overline{B} \times (\overline{G} \cdot \overline{P_k}) \overline{P_k} \in T]$ $\vec{G} = q \left[\vec{F} - qT_{m} \vec{M} (\vec{F} \times \vec{B}) + (qT)^{2} (de + \vec{M}) (\vec{F} \cdot \vec{B}) (M' \cdot \vec{B}) \right]$ $\left[+ (qT)^{2} (de + \vec{M}) (\vec{M}' \cdot \vec{B}) \cdot \vec{B} \right]$ M: effective mass tensor for spherical band. $f = f_{\circ} + \frac{\partial}{\partial \xi} q_{\tau} \overline{v} \cdot \left[\frac{\overline{F} - (q_{\tau}/m^{*})(\overline{F} \times \overline{B}) + (q_{\tau}/m)(\overline{F} \cdot \overline{B})}{(q_{\tau}/m^{*})^{2} \overline{B} \cdot \overline{B}} \right]$ Fterm: ohmic contribution -> electrical and thermal conductivity and themadectric effects F×B: Hall contribution. B2 term: magnetoresistive effects

Problem 3.3: Applications of Fermi's Golden Rule: Scattering rates due to Point Defects, and Alloy Disorder Scattering

Problem 3.3) Application of Fermi's Golden Rule: Scattering rates due to Point Defects, and Alloy Disorder Scattering

Assume that in a 3D semiconductor crystal of GaN (electron effective mass = $m^* \sim 0.2m_0$), point defects of volume density $n_{imp} = N_{imp}/V$ are present. Also, assume that the perturbation V_0 to the crystal potential due to each point defect is confined to a radius R_0 around its location, i.e.,

$$W(\mathbf{r}) = V_0 \theta(R_0 - |\mathbf{r}|), \tag{4}$$

where $\theta(...)$ is the unit-step function. This is an example of a 'short-range' scatterer. a) Find the matrix element for scattering of electrons by all the point defects.

- b) Assume the single-electron picture, and a parabolic bandstructure. Find an expression for the momentum scattering rate $1/\tau_m(E)$ of an electron due to the point defects as a function of its energy above the conduction band edge ($\epsilon = E E_c$). Make necessary assumptions in the process. Show that the momentum and quantum scattering rates are the same for this form of isotropic scattering potentials.
- c) Plot the mobility for 'thermal' electrons with $\epsilon=E-E_c\sim k_BT$ at 300 K, as a function of the impurity density in the range $n_{imp}=10^{15}\rightarrow 10^{20}/{\rm cm^3}$ for various values of $V_0=0.1, 0.3, 0.5, 2.1$ eV. Assume an $R_0\sim c/4$, where $c\sim 0.51$ nm is the c-axis lattice constant of GaN.
- d) This is a reasonable model for things such as alloy scattering, for example, for charge transport of electrons in AlGaN and InGaN layers. Explain why an disordered alloy can be considered to be a perfect crystal with a high density of point defects. Then, estimate the mobility for electrons in $Al_{2}Ga_{1-x}N$ layers as a function of the alloy composition x, by using your results in part (c). Find any references where this might have been done.

Solution:

Problem 4.5) Applications of Fermits Goldon Rule: Scattering notes
due to point Pofeers.
(a)

$$M_{K'K} = \frac{1}{V} \int e^{i\vec{k}\cdot\vec{r}} V_{*} \odot (R_{*} - i\vec{r}) e^{-i\vec{k}\cdot\vec{r}} d\vec{r}$$

$$\frac{q}{q} = \frac{k' - \vec{k}}{V} - \frac{1}{V} \int_{0}^{R_{*}} e^{-i\vec{k}\cdot\vec{r}} d(\cos\theta)$$

$$= \frac{2\pi V_{*}}{V} \int_{0}^{R_{*}} e^{-i\vec{k}\cdot\vec{r}} d(\cos\theta)$$

$$= \frac{2\pi V_{*}}{V} \int_{0}^{R_{*}} e^{-i\vec{k}\cdot\vec{r}} d(\cos\theta)$$

$$= \frac{2\pi V_{*}}{V} \int_{0}^{R_{*}} e^{-i\vec{k}\cdot\vec{r}} d(e^{-i\vec{k}\cdot\vec{r}}) d(\cos\theta)$$

$$= \frac{2\pi V_{*}}{V} \int_{0}^{R_{*}} e^{-i\vec{k}\cdot\vec{r}} d(e^{-i\vec{k}\cdot\vec{r}}) d(\cos\theta)$$

$$= \frac{2\pi V_{*}}{V} \int_{0}^{R_{*}} e^{-i\vec{k}\cdot\vec{r}} d(e^{-i\vec{k}\cdot\vec{r}}) d(e^{-i\vec{k}\cdot\vec{r}) d(e^{-i\vec{k}\cdot\vec{r}}) d(e^{-i\vec{k}\cdot\vec{r}}) d(e^{-i\vec{k}\cdot\vec{r}}) d(e^{$$

Ids. References: 0 Phys. Rev. 132, 1087 (1963) · Phys. Rev. B. 13. 5397 (1976) · JAP. 87, 7981 (2000) · JAP 97, 123705 (2005) · JAP 95, 1185 (2004) · JAP 97, 073710 (2005) · Physica E 67, 77-83 (2015 · Appl. Phys. Lett. 88,042103 (2006) · J. Appl. Phys. 101, 123706 (2007) · Semicond. Sci. Technol. 17, 159 (2002) " JAP. 96, 2095 (2004)

Problem 3.4: Flash Memory Design by Fermi's Golden Rule

Problem 3.4) Flash Memory Design by Fermi's golden rule

Figure 1 shows a 1-dimensional potential for an electron, which is in the state with energy E_0 at t = 0. Since there is a lower potential for $x > L_w + L_b$, the state $|E_0\rangle$ is a quasi-bound state. The electron is destined to leak out.

(a) Using WKB tunneling probability, and combining semi-classical arguments, find an analytical formula that estimates the time it takes for the electron to leak out. Find a value of this lifetime for $L_b \sim 3$ nm, $L_w \sim 2$ nm, $V_0 \sim 1$ eV, $E_0 \sim 2$ eV, and $E_b \sim 5$ eV. How many years does it take?

(b) This feature is at the heart of *flash memory*, which you use in computers and cell phones. Find an analytical expression that describes how the lifetime changes if a voltage V_a is applied across the insulator. Estimate the new lifetime for $V_a \sim 2.8$ V. This is the *readout* of the memory.

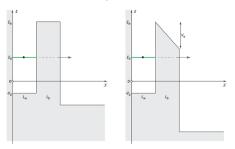


Figure 1: Escape and field-emission by tunneling.

(c) In the last two parts you invoked semi-classical arguments to estimate the tunneling escape time there. Now try solving the *same* problem using Fermi's golden rule. Model the problem carefully so that you can apply Fermi's golden rule. Discuss your approximations and their validity.

Solution: (a)

Tunneling probability $T(E) = exp - \int_{-D}^{-D} dx$ $\frac{2m}{h^2}$ (Eb-Eo) (a) = exp (-2 Lb / 2m (Eb - Eo) A particle of energy to in the region Lw has velocity /2 (Eo+Vo)/m It hits the night wall with a period 2Lw/JZ(Enth/m). Each time it hils, the electron can tunnel out with probability T(E) The timescale to escape ~ 2 Lw _ 1 $\sqrt{2(E_0+V_0)/m}$ T(E_0) = 20 years. (b)

(b)
$$T = e_{xp} \left\{ -2 \int_{0}^{L_{b}} d_{x} \sqrt{\frac{2m}{\pi^{2}} (E_{b} - E_{0} - q \frac{V_{a} x}{L_{b}})} \right\}$$

$$= e_{xp} \left\{ -\frac{4L_{b}}{3q V_{a}} \sqrt{\frac{2m}{\pi}} \left[(E_{b} - E_{0})^{3/2} - (E_{b} - E_{0} - q V_{a})^{3/2} \right] \right\}$$

$$ifetime ~ 81 second.$$
(c)

	ca) WKB result.
	Twike ~ 2 Lw J2(E0+V2) exp[2] = (E1-E0) 46]
	No bias Twee ~4.7 × 108 5 ~ 15 years
	With bias TWRB ~ 625 ~ 1 min,
	(b) Fermis golden rule.
	$\frac{1}{C_{i+f}} = \frac{2\pi}{\hbar} _{x+f} _{w(x)} _{y}^{2} > _{s(E_{f} - E_{i})}^{2}$
	Mfi: Matrix element.
	E. Dias. W(x)= Eb. initial State
	$E_{0} = \begin{cases} W(x) \\ T_{i}(x) = \begin{cases} A \sin(k_{0}x) \\ o \leq x \leq L_{u} \end{cases}$
	$\overline{E_0} \qquad \qquad$
	$-v_{0} \qquad \qquad$
	Continuties of 4: and 4: at x=lw
	gives $A^{2} = B^{2} \cdot \frac{E_{b} + V_{0}}{E_{0} + V_{0}}$ Normalization of 4: requires. $B^{2} = \left\{ \frac{1}{2k_{b}} - \frac{E_{b} + V_{0}}{E_{0} + V_{0}} \left[\frac{\sin(2k_{0} \log)}{4k_{0}} - \frac{L_{w}}{2} \right] \right\}^{-1}$
	For the given parameters
	$B \sim \int \frac{E_0 + V_0}{E_b + V_0} \frac{2}{L_W}$
	=) Initial state inside the barrier:
0	$\frac{1}{2} \frac{1}{2} \frac{1}$

final state assume a wall exists of Lp > 10 to reflect the electron. $\frac{\psi_{f}(x) = \left\{ C e^{ikrx} + D e^{-ikrx} L_{w} + L_{b} \leq x \leq L_{w} \right\}}{F e^{k_{b}\left[x - (L_{w} + L_{b})\right]}} \\ \times \geq L_{w} + L_{b}$ where $k_{\rm F} = \int_{\pi^2}^{2M} (E_0 + V_0 + V_1)$ continuity and normalization of 4f (x) => F= Eo+Vo+V, -> Eo+Vo+V, -> - final state inside the barrier : $\frac{\mathcal{L}_{f}(x)}{\int \overline{E_{b} + V_{0} + V_{1}}} = \frac{\left[\overline{E_{0} + V_{0} + V_{1}} + \frac{1}{L_{R}}\right]}{\left[\overline{E_{b} + V_{0} + V_{1}} + \frac{1}{L_{R}}\right]}$ Martix element $M_{fi} = E_b \begin{bmatrix} E_0 + V_0 + V_1 & E_0 + V_0 \\ E_b + V_0 + V_1 & E_b + V_0 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ L_b & L_b \end{bmatrix} = \begin{bmatrix} k_0 & L_b \\ e & d_x \end{bmatrix}$ assume Vice Fot Vo. Mfi = Eb Lb (Eo + Vo) 4 e-kilb. $|M_{fi}|^{2} = E_{b}^{2} L_{b}^{2} \left(\frac{E_{o} + V_{o}}{E_{b} + V_{o}} \right)^{2} \frac{4}{L_{b} L_{w}} e^{-2k_{b} L_{b}}$ Transien rate $\frac{1}{\tau_{i} \rightarrow f} = \frac{2\pi}{\hbar} E_{b}^{2} L_{b}^{2} \left(\frac{E_{o} + V_{o}}{E_{b} + V_{o}}\right)^{2} \frac{\mu}{L_{k} L_{W}} e^{-2k_{b} L_{b}} \delta(E_{f} - E_{i})$ Sscape hate $\frac{1}{T_{FGR}} = \sum_{k_+} \frac{1}{T_{i \to f}} = \int dE_{f} g(E_{f}) \frac{1}{T_{i \to f}}$ Density of states: $g(E_f) = \frac{2L_P}{\pi} \int \frac{m}{2\hbar^2 E_f}$ $E_f = E_i = E_o + V_o$ $\overline{T_{FGR}} = 8 \left[\frac{2m}{E_0 + V_0} \frac{1}{\hbar^2} \frac{L_b^2}{L_W} \overline{E_b^2} \left(\frac{\overline{E_0 + V_0}}{\overline{E_b + V_0}} \right)^2 - \frac{2k_b}{L_b} L_b^2 \right]$

-	iscape time:
	$T_{FGR} = \frac{\hbar^2}{8} \int \frac{E_0 + V_0}{2m} \frac{L_w}{L_0^2} \frac{1}{E_b^2} \left(\frac{E_b + V_0}{E_0 + V_0}\right)^2 e^{2k_b L_b}.$
	Compare with WKB results.
	$T_{WKB} = 2 L_W \int \frac{M}{2(E_0 + V_0)} e^{2k_b L_b}.$
	<u>Tran ~ <u>tr</u>. Twee 16m Ls² (Eo + Vo) ~ 0.00018</u>
(>)	With bias.
	$E_b \rightarrow E_b - \frac{eV_a}{L_b}(x - L_w)$
	and do the similar calculation as in no bias case

Problem 3.5: Higher-order time-dependent perturbation theory: Dyson series and diagrams

$$\begin{split} |\psi(t)\rangle &= \underbrace{|0\rangle}_{|\psi(t)\rangle^{(0)}} + \underbrace{\frac{1}{i\hbar}\int_{t_0}^{t}dt'W(t')|0\rangle}_{|\psi(t)\rangle^{(1)}} + \underbrace{\frac{1}{(i\hbar)^2}\int_{t_0}^{t}dt'\int_{t_0}^{t'}dt'W(t')W(t'')|0\rangle}_{|\psi(t)\rangle^{(2)}} \\ &+ \underbrace{\frac{1}{(i\hbar)^3}\int_{t_0}^{t}dt'\int_{t_0}^{t'}dt''\int_{t_0}^{t''}dt''W(t')W(t'')|0\rangle}_{|\psi(t)\rangle^{(3)}} + \dots, \end{split}$$
(5)

where $|\psi(t_0)\rangle = |0\rangle$ is the initial state. Restricting the Dyson series to the 1st order term in W for a perturbation of the the form $W_t = e^{\eta t} W(r)$, we derived Fermi's golden rule for the transition rate $\Gamma_{0-n}^{(1)} = \frac{2\pi}{\hbar} |\langle n|W(r)|0\rangle|^2 \delta(\epsilon_0 - \epsilon_n)$. We used the relation $\lim_{\eta \to 0^+} \frac{2\pi}{2^2 + \eta^2} = 2\pi \delta(x)$ in this process.

a) Show that the second and third order terms in W in the Dyson series lead to a modified golden rule result

$$\Gamma_{0\to n} = \frac{2\pi}{\hbar} |\langle n|W|0\rangle + \sum_{m} \frac{\langle n|W|m\rangle \langle m|W|0\rangle}{\epsilon_0 - \epsilon_m + i\eta\hbar} + \sum_{k,l} \frac{\langle n|W|k\rangle \langle k|W|l\rangle \langle l|V|0\rangle}{(\epsilon_0 - \epsilon_k + 2i\eta\hbar)(\epsilon_0 - \epsilon_l + i\eta\hbar)} + \dots |^2 \delta(\epsilon_0 - \epsilon_n),$$

(6) where in the end we take $\eta \to 0^+$. We identify the Green's function propagators of the form $G = \sum_m \frac{|m|/m|}{c_0 - \epsilon_m + i\eta\hbar}$. Thus, the result to higher orders may be written in the compact form

$$\Gamma_{0\to n} = \frac{2\pi}{\hbar} |\langle n|W + WGW + WGWGW + ...|0\rangle|^2 \delta(\epsilon_0 - \epsilon_n).$$
⁽⁷⁾

5.23 A one-dimensional harmonic oscillator is in its ground state for t < 0. For t ≥ 0 it is subjected to a time-dependent but spatially uniform *force* (not potential!) in the x-direction,

F(t) = F₀e^{-t/t}.
 (a) Using time-dependent perturbation theory to first order, obtain the probability of finding the oscillator in its first excited state for t > 0. Show that the t → ∞ (r finite) limit of your expression is independent of time. Is this reasonable or surprising?
 (b) Can we find higher excited states? You may use

 $\langle n'|x|n \rangle = \sqrt{\hbar/2m\omega}(\sqrt{n\delta_{n',n-1}} + \sqrt{n+1\delta_{n',n+1}}).$

Figure 2: Harmonic oscillator perturbed by a time-dependent field.

Problem 3.5) Higher-order time-dependent perturbation theory: b) Sketc Dyson series and diagrams b) Sketc

In class, we used the *interaction representation* to write the perturbed quantum state at time t as $|\psi_t\rangle = e^{-i\frac{H_0}{2}t}|\psi(t)\rangle$, where H_0 is the unperturbed Hamiltonian operator. This step helped us recast the time-dependent Schrodinger equation $i\hbar \frac{\partial}{\partial t}|\psi_t\rangle = (H_0 + W_t)|\psi_t\rangle$ to the simpler form $i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle = W(t)|\psi(t)\rangle$, where $W(t) = e^{+i\frac{H_0}{2}t}W_te^{-i\frac{H_0}{2}t}$ is the time-evolution operator. This equation was integrated over time to yield the Dyson series

Solution:

(a,b)

b) Sketch the 'Feynman' diagrams¹ corresponding to the terms in the series, showing the virtual states explicitly for the higher order terms.

c) Solve the above problem in Figure 2 from Sakurai (Modern Quantum Mechanics). Note that for part (b), you will need to invoke higher-order perturbation terms as discussed in this problem, the 1st order Fermi's golden rule result term will not be enough.

¹More accurately, Goldstone diagrams.

Problem 4.2) Higher-order time-dependent perturbation
theory: Dyson series and diagrams.
(a)
$$[\frac{1}{4}(t)2^{(t)} = \frac{1}{14}\int_{t_{t_{t_{t}}}}^{t} dt' W(t') |0>$$

 $[\frac{1}{4}(t)2^{(t)} = \frac{1}{(t_{t_{t}})^{2}}\int_{t_{t_{t}}}^{t} dt' \int_{t_{t}}^{t'} dt'' W(t') W(t'') |0>$
 $[\frac{1}{4}(t)2^{(t)} = \frac{1}{(t_{t})^{2}}\int_{t_{t_{t}}}^{t} dt' \int_{t_{t}}^{t'} dt'' W(t') W(t'') |0>$
 $[\frac{1}{4}(t)2^{(t)} = \frac{1}{(t_{t})^{2}}\int_{t_{t}}^{t} dt' \int_{t_{t}}^{t'} dt'' (n|e^{\frac{1}{2}t}e^{\frac{1}{4}t''} W(t') W(t'') W(t'') |0>$
 $W(t) = e^{\frac{1}{2}t}e^{\frac{1}{4}t} \int_{t_{t}}^{t'} dt'' (n|e^{\frac{1}{2}t}e^{\frac{1}{4}t}e^{\frac{1}{4}t''} We^{\frac{1}{4}t''}e^{\frac{1}{4}t'}$

(C)

Problem 4.3) Application of 1st and higher order perturbation
theories.
(a) Portuchation potential.

$$V(x) = \int_{0}^{x} F(u) = F_{0} e^{-t/t} = F_{0} \times e^{-t/t} \quad (t \ge 0)$$

$$(let \ V(v) = v).$$

$$(let \ V(v) = v).$$

$$(a) \frac{1}{2}(t) >^{(i)} = calve + \frac{1}{18} \int_{0}^{t} dv < al | e^{-t/t} = e^{-t/t} = -\frac{t}{16} + \frac{1}{16} + \frac{1}{16}$$

(1) higher
$$(n \ge 2)$$
 excited states
is when $n \ge 2$ $(n) \times |0> = 0$
=) $(n|\frac{1}{4}(1)^{2^{10}}) = 0$.
=) higher order terms need to be considered.
 $(21|\frac{1}{4})^{10} = \frac{1}{(1+1)^{2}} \sum_{m}^{m} (2|x||_{m}) \le n|x||_{0} > \int_{0}^{1} dt' e^{i\frac{1}{2}\frac{1-1}{2}t} e^{-t/t} \left\{ \frac{e^{i\frac{1}{2}\frac{1-1}{2}t}}{i(\frac{1-1}{2}t)} - \frac{1-t/t}{i(\frac{1-1}{2}t)} \right\}$
only m=1 term is non-zero.
 $(21|\frac{1}{4})^{10} = \frac{1}{1-\frac{1}{1+1}} \cdot \frac{1}{\sqrt{1-1}nw} - \frac{1}{(1w) - \frac{1}{1-1}} \int_{0}^{1} dt' \left[e^{2iwt - 3t/t} - e^{iwt - t/t} \right]$
 $= \frac{1-\frac{1}{1+1}}{(1+\frac{1}{2})^{2}} \cdot \frac{1}{\sqrt{1-1}nw} - \frac{1}{1-\frac{1}{2}} \int_{0}^{1} dt' \left[e^{2iwt - 3t/t} - e^{iwt - t/t} \right]$
 $= \frac{1-\frac{1}{1+1}}{(1+\frac{1}{2})^{2}} \cdot \frac{1}{\sqrt{1-1}nw} - \frac{1}{1-\frac{1}{2}} \left[e^{iwt - t/t} - 1 \right]^{2}$
 $= \frac{1-\frac{1}{2}}{(1+\frac{1}{2})^{2}} \frac{1}{\sqrt{1-1}nw} \cdot \frac{1}{(w^{2}t^{2}+1)^{2}} \left[e^{iwt - t/t} - 1 \right]^{2}$
 $= \frac{1-\frac{1-\frac{1}{2}}{\sqrt{1-1}nw} \cdot \frac{1}{(w^{2}t^{2}+1)^{2}} \left[e^{-4t/t} - 4\cos(wt) e^{-3t/t} + 2\cos(wt) e^{-2t/t} - 4\cos(wt) e^{-2t/t} - 4\cos(wt) e^{-2t/t} + 1 \right]$

Problem 3.6: Prelim: Electron Mobility in Semiconductors

Problem 3.6) Prelim: Electron Mobility in Semiconductors

The purpose of this question is to reproduce the theoretical calculation of electron mobility vs temperature as shown in Figure 3 and explain the physics of electron transport underlying what is measured in the experiment. This requires you to calculate the scattering rates due to phonons, ionized impurities, and neutral impurities, and applying the Boltzmann transport equation to evaluate the electron mobility vs temperature. On the class website I have provided you with a handout from Wolfe / Holonyak / Stillman to help you in this problem, and the paper from where this plot is taken, so you have everything you need to solve this problem.

(a) Boltzmann Transport Equation We derived the solution to the Boltzmann transport equation in the relaxation-time approximation for elastic scattering events to be $f(\mathbf{k}) \approx f(\mathbf{k}) + \tau(\mathbf{k})(-\frac{\partial \beta(\mathbf{k})}{\partial \mathcal{R}(\mathbf{k})})\mathbf{v}_{\mathbf{k}} \cdot \mathbf{F}$, where all symbols have their usual meanings. Use this to show that for transport in *d* dimensions in response to a constant electric field *E*, in a semiconductor with an isotropic effective mass m^* , the current density is $J = \frac{u \mathbf{k}^2(\mathbf{r})}{u \mathbf{k}^2} E^{-1} \frac{\partial (\mathcal{R}^2)}{\partial \mathcal{R}(\mathcal{R})}$, where the integration variable $\mathcal{E} = \mathcal{E}(\mathbf{k})$ is the kinetic energy of carriers. $\mu = \frac{d \mathbf{k}}{d \mathbf{k}} \frac{d \mathbf{k} - d \mathbf{k}}{f_0 \mathbf{k}} \frac{d \mathbf{k}}{f_0 \mathbf{k}}$, where value now at your disposal the most general form of conductivity and mobility from the Boltzmann equation for semiconductors that have a parabolic bandstructure! *Hint:* You may need the result that the volume of a *d*-dimensional aphere in the *k*-space is $V_d = \frac{\pi \frac{d}{k} k^d}{\pi (\frac{d}{k}+1)}$, and some more dimensional al Γ -function information.

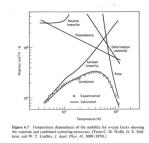


Figure 3: Electron mobility in doped GaAs semiconductor at high temperatures is limited by phonon scattering, and by impurity and defect scattering at low temperatures. In this problem, you will calculate the solid lines of this plot.

(b) Spatially uncorrelated scattering points: Show using Fermi's golden rule that if the scattering rate of electrons in a band of a semiconductor due to the presence of ONE scatterer of potential W(r) centered at the origin is $S(\mathbf{k} \to \mathbf{k}') = \frac{2\pi}{\hbar} |\langle \mathbf{k}' | \mathbf{W}(r) | \mathbf{k} \rangle|^2 \delta(E_{\mathbf{k}} - E_{\mathbf{k}'})$, then the scattering rate due to N_s scatterers distributed randomly and uncorrelated in 3D space is $N_s \cdot S(\mathbf{k} \to \mathbf{k}')$.

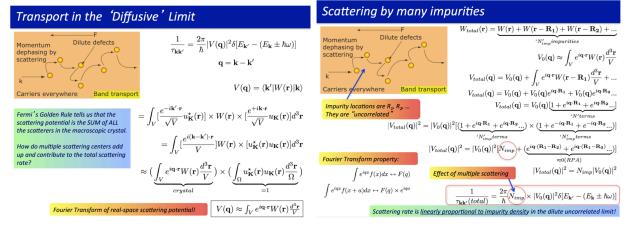
Solution:

In other words, the scattering rate increases *linearly* with the number of uncorrelated scatterers, which implies that the mobility limited by such scattering will decrease as $1/N_s$. This argument is subtle, and effects of electron wave interference should enter your analysis. [Hint: Add the potentials of each randomly distributed impurity for the total potential $W_{tod}(r) = \sum_i W(\mathbf{r} - \mathbf{R}_i)$. Use the effective mass equation for the electron states to show that the matrix element is a Fourier transform. Then invoke the shifting property of Fourier transforms.] Now calculate the neutral impurity scattering limited mobility for GaAs and compare with Figure 3.

(c) Impurity scattering: Using Fermi's golden rule, calculate the scattering rate for electrons due to a screened Coulombic charged impurity potential $V(r) = -\frac{1}{4\pi\epsilon_{x}}e^{-\frac{r}{L_{D}}}$, where Ze is the charge of the impurity, ϵ_{x} is the dielectric constant of the semiconductor, and $L_{D} = \sqrt{\frac{e_{x}k_{x}}{2}}$ is the Debye screening length and *n* is the free carrier density. This is the scattering rate for just one impurity. Show using the result in parts (a) and (b), with a 1 – $\cos\theta$ angular factor for mobility that if the charged-impurity density is N_{D} , the mobility for 3D carriers is $\mu_{I} = \frac{2^{\frac{1}{2}(e_{x})^{2}(k_{x}T)^{\frac{3}{2}}}{\pi^{\frac{3}{2}}e^{2\sqrt{m^{*}N_{D}F(\beta)}}} \sim \frac{N_{D}^{\frac{3}{2}}}{m^{\frac{3}{2}}}$. Here $\beta = 2\sqrt{\frac{2m^{*}(2k_{y}T)}{L_{D}}$ is a dimensionless parameter, and $F(\beta) = \ln[1 + \delta^{2}] - \frac{\beta^{*}}{\pi^{\frac{3}{2}}}$ is a weakly varying

 $\beta = 2\sqrt{\frac{2m^*(3k_bT)}{\hbar^2}}L_D \text{ is a dimensionless parameter, and } F(\beta) = \ln[1+\beta^2] - \frac{\beta^2}{\hbar^2} \text{ is a weakly varying function. This famous result is named after Brooks and Herring who derived it first. Calculate the ionized impurity scattering limited mobility and compare: are your values close to what is experimentally observed for these conditions as shown in Figure 3?$

(d) Acoustic Phonon scattering: The scattering rate of electrons due to acoustic phonons in semiconductors is given by Fermi solden rule result for time-dependent oscillating perturbations $\frac{1}{|\mathbf{r}_{\mathbf{k}} \rightarrow \mathbf{v}|} = \frac{2\pi}{k} [|\mathbf{k}'||\mathbf{W}(\mathbf{r})|\mathbf{k}||^2 (E_{\mathbf{k}} - E_{\mathbf{k}'} + h\omega_q)$, where the acoustic phonon dispersion for low energy (or long wavelength) is $\omega_q \sim v_q$ with v_i the sound velocity, and the scattering potential is $W(\mathbf{r}) = D_c \nabla_r \cdot \mathbf{u}(\mathbf{r})$. Here D_c is the deformation potential (units: eV), and $\mathbf{u}(\mathbf{r}) = \tilde{n}_0 e^{i\mathbf{q}\cdot\mathbf{r}}$ is the spatial part of the phonon displacement wave, $\hat{\mathbf{n}}$ is the unit vector in the direction of atomic vibration, and the phonon wavevector \mathbf{q} points in the direction of the phonon wave propagation. We also justified why the amplitude of vibration u_0 may be found from $2M\omega_q^2u_0^2 \approx N_{ph} \times h\omega_q$, where $N_{ph} = 1/[e^{\frac{1}{2}\mathbf{r}_{2}} - 1]$ is the Bose-number of phonons, and the mass of a unit cell of volume Ω is $M = \rho\Omega$, where ρ is the mass density (units: kg.m⁻³). Show that a transverse acoustic (TA) phonon does *not* scatter electrons, but longitudinal acoustic (LA) phonon scattering rate using Fermi's golden rule, and using the the ensemble averaging of Problem 25 (a), show that the electron mobility in three dimensions due to LA phonon scattering is $\mu_{LA} = \frac{2\sqrt{2\pi}}{(m_1)} \frac{m_1^2 D_2(k_T)_1^2}{D_1(k_T)_1^2} \sim T^{-\frac{3}{2}}$. This is a *very* useful result. Calculate and explain the acoustic deformation potential and acoustic piezoelectric phonon scattering rate using the scatterial and acoustic piezoelectric phonon scattering rate of with Figure 3.


(e) Discuss how polar optical phonon scattering is different from acoustic phonon scattering, and calculate the phonon scattering limited mobility for GaAs and compare with Figure 3.

(f) Now combine all the above parts of to explain the experimental dependence of mobility vs temperature and as a function of impurity density as seen in Figure 3. If you have succeeded in getting it to work, you have built a very powerful transport tool - because now you can use it to explain electron transport properties in any semiconductor! This is because the material parameters may change, but the transport formalism remains the same.

(a) Boltzmann Transport Equation in d-dimensions

)'4/	
$\begin{array}{ccc} f(k) \approx & f_{0}(k) + \tau(k) \left(\frac{2I_{0}(k)}{2E(k)} \right) \vec{v}_{k} \cdot \vec{F} \\ & f_{0}(k) \approx & f_{0}(k) + q \tau(k) \left(\frac{12I_{0}(k)}{2E(k)} \right) \vec{v}_{k} \cdot \vec{E} \\ & & & & \\ \end{array}$	
() E(H) 4 (Civilial & F. g. 9.5K S (1) at
for the the test of	Similarly, $\vec{J} = 9 \cdot \frac{3 \cdot 5 v}{1^4} \sum_{k} f(k) \vec{v}_{k}$
$\approx f_{2}(k) + qC(k) \left(\frac{12f_{0}(k)}{k} \right) \cdot v_{k} \cdot E $	
	Not the electric fall hairt class a fixed direction F can a
Sim valley	Not the electric field foint along a fixed divertion \vec{E} , say \hat{X} . Then
(a vriev density: $h = \frac{g_s g_v}{f} = \frac{f(k)}{f(k)} = \frac{g_s g_v}{g} = \frac{dk}{f(k)}$	Then, $f(\vec{k}) \simeq f_0(\vec{k}) + q \tau(\vec{k}) \left(\frac{2f_0}{2f_0} \right) \vec{V}_k \cdot \vec{E}$
Carrier density: $n = \frac{3 \cdot 9_V}{L^d} + \frac{f(k)}{L^d} + \frac{3 \cdot 9_V}{L^d} + \frac{1}{L^d} + \frac{1}$	$\int \frac{1}{\sqrt{2}} \int \frac$
	$\vec{T} = c c c c \left[(\vec{r}_{1} \rightarrow \vec{r}_{2}) \vec{r}_{1} \rightarrow \vec{r}_{2} \right]$
$n = \frac{ds}{dk} \int_{\mathcal{O}} (k + f_{0}) (k) + \frac{f_{0}(k)}{dk} + \frac{g}{dk} + \frac{g}{dk} \frac{f_{0}(k)}{dk} + \frac{g}{dk} + \frac{g}{dk} \frac{f_{0}(k)}{dk} + \frac{g}{dk} + $	$ \vec{J} = q \cdot \underbrace{\mathfrak{z}_{k} \mathfrak{z}_{k}}_{L^{\frac{1}{2}}} \cdot \int_{C} \underbrace{d^{\frac{1}{2}} \mathcal{L}}_{k} \cdot \underbrace{\vec{J}_{k}}_{k} \cdot \underbrace{f_{k}(\vec{k}) + q^{\frac{1}{2}}(\vec{k}) (\cdot \underbrace{\mathcal{H}_{k}(\vec{k})}_{\mathcal{H}_{k}}) \cdot \vec{v}_{k} \cdot \vec{E}}_{\mathcal{H}_{k}} $
$n = \frac{g_s S_V}{(2\pi)^d} \int d^d k f_b(k) \qquad \qquad f_{b}(k) + \frac{g_{b}(k)}{v_{ven}} \tilde{v}_{b} \tilde{v}_{b} \tilde{e}$	$\int \frac{2\pi}{T} a$
Islame of a d-dimensional sphere in k-spice. V = T kd (1.11)	
$\frac{1}{\left(\frac{1}{2}+1\right)} = \frac{1}{\left(\frac{1}{2}+1\right)} $	$= 9 \cdot \frac{2}{(2\pi)^{4}} \int \mathcal{A}_{k} - \frac{1}{\sqrt{k}} \left(\sqrt{k} \cdot \vec{E} \right) \cdot \mathcal{C} \left(\vec{k} \right) \left(-\frac{\mathcal{H}_{0}(\vec{k})}{\sqrt{k}} \right)$
	$\frac{1}{(2\pi)^2} \int dk ck \left(\frac{1}{k} \right) dk \left(\frac{1}{2} \frac{1}{k} \right)$
"Surfice" of a d-dimensional ophere In k-space: 1=3 => 43Tk3	
	$N_{\delta \omega} \vec{v}_{k} \left(\vec{v}_{k} \cdot \vec{E} \right) = \vec{v}_{k} v_{k \chi} E = \vec{v}_{k} v_{k} \omega_{\delta \chi} E$
$S_{1} = \nabla V_{1} = \frac{d \pi^{d/L} k^{d-1}}{\Gamma(d_{2}+1)} \qquad (k_{1}k) = \frac{1}{2} \frac{d \pi^{d/L} k^{d-1}}{d_{2}(k_{1}+1)}$	1
(-2,+1) $(-2,+1)$ $(-2,-2)$ $(-2,-2)$	$4 \qquad J_V = \int q^2 \cdot q_1 S_V \int A = 2 (2 - q_1 C_V) (2 F(1)) + K F$
⇒ Carrier density in d-dimensiono is.	$ = \int q^2 \frac{q_s \delta v}{(u_r)^2} \int d^4 k \frac{v_k}{v_k} c_k \delta_k c_k (k) \left(\frac{-\gamma f_k(k)}{\delta c_k} \right) \begin{cases} + E \\ - \frac{1}{\delta c_k} \end{cases} $
ζ _μ -	
$\frac{h}{(2\pi)^d} \int \frac{d^{-1}}{\pi^{-1}k} \frac{d^{-1}}{k} \frac{d^{-1}$	$\frac{J_x}{n} = q^2 \int dV_{\mu} v_{\mu} \log \tau(h) \left(-\frac{2t}{\delta f_{\mu}}\right) v_{\mu}^2 = 2\epsilon_{\mu}$
$\frac{1}{(2\pi)^d} \qquad \frac{1}{\pi} \frac{\mu}{(k)} = \frac{1}{\pi} \frac{1}{(k)} \qquad E = E_1 + \frac{1}{k} \frac{\mu}{k}$	$\frac{J_X}{p} = q^2 \int dV_{\mu}^* v_{\mu} \left[\omega v_{\mu} \left[\omega v_{\mu} \left[\tau \left(k \right) \left(-\frac{2J_{\nu}}{\delta f_{\mu}} \right) \right] \right] v_{\mu}^2 = 2 \frac{c_{\mu}}{c_{\mu}}$
	C
$= \partial_{S} \partial_{V} \cdot \frac{d}{dt} \int_{k}^{\frac{d}{2}} \frac{dt}{dt} \int_{k}^{\frac{d}{2}} \frac{dt}{dt} = \frac{\partial_{k} \mathcal{L}}{dt} \int_{k}^{\frac{d}{2}} \frac{\partial_{k} \mathcal{L}}{\partial t} = \frac{\partial_{k} \mathcal{L}}{dt} \int_{k}^{\frac{d}{2}} \frac{\partial_{k} \mathcal{L}}{\partial t} \int_{k}^{\frac{d}{2}} \frac{\partial_{k} \mathcal{L}}}{\partial t} \int_{k}^{\frac{d}{2}} \frac{\partial_{k} \mathcal{L}}$	$\int d_{k}V_{t} \cdot f_{b}(k) = \frac{1}{d}$
$= g_{3}g_{V} \cdot \underline{d}_{T} + \frac{1}{2} \qquad \qquad$	
$(2\pi)^{\circ} \uparrow (\frac{\alpha}{2} + 1)$	=> 2 (2 (14 c / 24)) t Note!
$h = 9.9 + -\frac{1}{2} + (0.4)^2 + (0.$	$J_{X} = \frac{n \cdot q^{2}}{m^{r}} \left\{ \frac{1}{q} - \frac{\int d\zeta_{\mu} \xi_{\mu}^{4/r} \varepsilon(\zeta_{\mu}) \left(-\frac{\partial f_{\mu}}{\partial \zeta_{\mu}} \right)}{\left(\zeta_{\mu} - \frac{\partial f_{\mu}}{\partial \zeta_{\mu}} \right)} \right\}$
$h = \frac{g_{1}g_{1}}{(2\pi)^{d}T(\frac{1}{2}+1)} \int d\mathbf{E} \cdot \varepsilon^{\frac{1}{2}-1} \int_{0}^{\infty} \varepsilon^$	me (d Jdfr. Extant for (sp)
$h = \int g_{J}(\zeta) f_{0}(\zeta) d\xi_{J} \qquad \qquad$	$T = \frac{2}{\sqrt{2}}$
Jor Tor Tor Co a 2 Jan 0 0 10 7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	\Rightarrow $J_x = \frac{\mathbf{n} \cdot \mathbf{q}^2}{1 + \mathbf{r}} \langle \tau \rangle$
generatized a-dimensioned DOS.	ha '

(b) Spatially uncorrelated scattering points

(c) Ionized Impurity Scattering

Therefore scattering rate of state k to k':

$$S(k \to k') = \frac{2\pi}{\hbar} * \left(-\frac{Ze^2}{\epsilon_s V\left(\frac{1}{L_D^2} + Q^2\right)} \right)^2 * \delta(E_k - E_{k'})$$

Total scattering rate of state k :

$$\frac{1}{\tau(k)} = \sum_{k'} S(k \to k')(1 - \cos \theta)$$

Here $\tau = \tau_m$, the momentum scattering time and θ is the angle between \vec{k} and $\vec{k'}$

$$\frac{1}{\tau(k)} = \sum_{k'} S(k \to k')(1 - \cos\theta)$$
$$= \sum_{k'} \frac{2\pi}{\hbar} * \left(-\frac{Ze^2}{\epsilon_s V\left(\frac{1}{L_D^2} + Q^2\right)}\right)^2 * \delta(E_k - E_{k'})(1 - \cos\theta)$$

Now.

(1)

$$\begin{split} Q^2 &= |\vec{k} - \vec{k}'|^2 = |k|^2 + |k'|^2 - 2|k||k'|\cos\theta\\ &= \underbrace{2k^2(1 - \cos\theta)}_{Flostic \; scattering}\\ \implies 1 - \cos\theta = \frac{Q^2}{2k^2} \end{split}$$

And,

$$E_{k} - E_{k'} = \frac{\hbar^{2}}{2m_{c}^{*}}|k|^{2} - \frac{\hbar^{2}}{2m_{c}^{*}}|k'|^{2}$$

$$= \frac{\hbar^{2}}{2m_{c}^{*}}(k^{2} - k'^{2})$$

$$\implies \delta(E_{k} - E_{k'}) = \frac{2m_{c}^{*}}{\hbar^{2}} * \delta(k^{2} - k'^{2})$$

$$= \frac{2m_{c}^{*}}{\hbar^{2}} * \delta\left[\frac{(k + k')(k - k')}{-2k}\right]$$

$$= \frac{m_{c}^{*}}{2k} * \delta(k - k')$$

$$\begin{split} &= -\frac{Ze^2}{4\pi\epsilon_s r V} \int_{\phi=0}^{2\pi} d\phi \int_{r=0}^{\infty} dr \, r \, e^{-r/L_D} \int_{\theta=0}^{\pi} d\theta \sin \theta e^{iQr\cos\theta} \\ &= -\frac{Ze^2}{\epsilon_s Q V} \underbrace{\int_{r=0}^{\infty} dr \sin(Qr) e^{-r/L_D}}_{\frac{Q}{L_D^{1+Q^2}}} \\ &W(r) |\vec{k}\rangle = -\frac{Ze^2}{\epsilon_s V \left(\frac{1}{L_D^{1}} + Q^2\right)} \end{split}$$

$$= \frac{\hbar^2}{2m_c^*}(k^2 - k'^2)$$

$$\implies \delta(E_k - E_{k'}) = \frac{2m_c^*}{\hbar^2} * \delta(k^2 - k'^2)$$

$$= \frac{2m_c^*}{\hbar^2} * \delta\left[\frac{(k+k')}{e^{2k}}(k - k') + \frac{m_c^*}{\hbar^2 k} * \delta(k - k')\right]$$

Substituting, we get : scattering due to N uncorrelated impurities in volume \mathbf{V} ,

$$\begin{split} \frac{1}{\tau^{tot}(E)} &= \frac{N}{\tau(E)} \\ &= \frac{g_s g_v Z^2 e^4 m_c^*}{8 \pi \hbar^3 \epsilon_s^2} \cdot \frac{N}{\sum_{e \in D}} \cdot \frac{1}{\left(\frac{2m_e^* E}{\hbar^2}\right)^{3/2}} \left(ln(1 + \frac{8m_e^* E}{\hbar^2} L_D^2) - \frac{\frac{8m_e^* E}{\hbar^2} L_D^2}{1 + \frac{8m_e^* E}{\hbar^2} L_D^2} \right) \\ \implies \tau^{tot}(E) &= \frac{8 \pi \hbar^3 \epsilon_s^2}{g_s g_v Z^2 e^4 m_c^* N_D} \left(\frac{2m_e^* E}{\hbar^2} \right)^{3/2} \cdot \left(ln(1 + \frac{8m_e^* E}{\hbar^2} L_D^2) - \frac{\frac{8m_e^* E}{\hbar^2} L_D^2}{1 + \frac{8m_e^* E}{\hbar^2} L_D^2} \right)^{-1} \end{split}$$

Now, mobility μ :

$$\mu = \frac{e < \tau >}{m_c^*}$$

$$< \tau > = \frac{2}{d} \cdot \frac{\int dE \tau(E) E^{d/2} - \partial f_o}{\int dE E^{d/2-1} \partial f_o(E)}$$

Here $f_o \approx e^{-E/kT}$ and $\frac{-\partial f_o}{\partial E} = \frac{1}{kT}e^{-E/kT}$, and dimension d = 3

$$< au> = rac{2}{3} \cdot rac{\int dE au^{tot}(E) E^{3/2} rac{1}{kT} e^{-E/kT}}{\int dE E^{1/2} e^{-E/kT}}$$

Let E = u.kT

$$\langle \tau \rangle = \frac{2}{3} \cdot \frac{\int_{0}^{\infty} du \, \tau^{tot}(u) u^{3/2} e^{-u}}{\int_{0}^{\infty} du \, u^{1/2} e^{u}}$$

 $= \frac{2}{3\sqrt{\pi}} \cdot \int_{0}^{\infty} du \, u^{3/2} e^{-u} \cdot \tau^{tot}(u)$

$$\tau^{tot}(u) = \frac{8\pi\hbar^3\epsilon_s^2}{g_sg_vZ^2e^4m_c^*N_D} \left(\frac{2m_c^*kT}{\hbar^2}\right)^{3/2} . u^{3/2} \cdot \left(ln(1+u.\frac{8m_c^*}{\hbar^2}L_D^2) - \frac{u.\frac{8m_c^*}{\hbar^2}L_D^2}{1+u.\frac{8m_c^*}{\hbar^2}L_D^2}\right)^{-1}$$

Screened Coulomb potential

 $W(r) = -\frac{Ze^2}{4\pi\epsilon_s r}e^{-\frac{r}{L_D}}$ Scattering rate is given by Fermi Golden rule as

 $S(k \to k') = \frac{2\pi}{\hbar} * |<\vec{k'}|W(r)|\vec{k}>|^2 * \delta(E_k - E_{k'})$

Matrix element :

 $<\vec{k'}|W(r)|\vec{k}>\approx \int d^3r\left(\frac{e^{-i\vec{k'}\vec{r}}}{\sqrt{V}}\right)\left(-\frac{Ze^2}{4\pi\epsilon_s r}e^{-\frac{r}{L_D}}\right)\left(\frac{e^{+i\vec{k}\cdot\vec{r}}}{\sqrt{V}}\right)$

Assuming the scattering is in the same band, the Bloch parts integrate out to 1 and only the envelope parts remain.

$$= \int r^2 \sin \theta \, dr \, d\theta \, d\phi \, \frac{e^{i \vec{Q} \cdot \vec{r}}}{V} \left(- \frac{Z e^2}{4 \pi \epsilon_s r} e^{-\frac{r}{L_D}} \right)$$

where $\vec{Q} = \vec{k'} - \vec{k}$

Check dimensions! Kinetic energy :

$$\begin{split} &=-\frac{Ze^2}{4\pi\epsilon_s rV}\int_{\phi=0}^{2\pi}d\phi\int_{r=0}^{\infty}dr\,re^{-r/L_D}\int_{\theta=0}^{\pi}d\theta\sin\theta e^{iQr\cos\theta}\\ &=-\frac{Ze^2}{\epsilon_s QV}\int_{r=0}^{\infty}dr\sin(Qr)e^{-r/L_D}}{\frac{Q}{\frac{1}{L_D^2+Q^2}}}\\ &<\vec{k'}|W(r)|\vec{k}>=-\frac{Ze^2}{\epsilon_s V\left(\frac{1}{L_D^2}+Q^2\right)} \end{split}$$

$$\begin{split} \frac{1}{\tau(k)} &= \sum_{k'} \frac{2\pi}{h} * \left(-\frac{Ze^2}{\epsilon_k V \left(\frac{1}{k_b^*} + Q^2 \right)} \right)^2 * \delta(E_k - E_{k'})(1 - \cos\theta) \\ &= \sum_{k'} \frac{2\pi}{h} \frac{Z^2 e^4}{\epsilon_k^2 V^2} \frac{Q^2}{(\frac{1}{k_b^*} + Q^2)^2} \frac{2k^2}{k^2 k} * \delta(k - k') \\ &= \frac{2\pi Z^2 e^4}{h} \frac{m_e^2}{\epsilon_k^2 V^2} \frac{|k - k'|^2}{(\frac{1}{k_b^*} + |k - k'|^2)^2} \cdot \frac{1}{k^3} \cdot \delta(k - k') \\ &= \frac{g_s g_2 2\pi}{h} \frac{Z^2 e^4}{\epsilon_k^2 V^2} \frac{m_e^2}{k^2} \cdot \int_{k'} \frac{d^2k'}{(2\pi)^3/V} \frac{|k - k'|^2}{(\frac{1}{k_b^*} + |k - k'|^2)^2} \cdot \frac{1}{k^3} \cdot \delta(k - k') \\ &= \frac{g_s g_2 2\pi}{h} \frac{Z^2 e^4}{\epsilon_k^2 V^2 (2\pi)^3} \frac{m_e^2}{2h^2} \cdot \int_{k'} k^2 \sin\theta \, dk' \, d\theta \, d\phi \, \left(\frac{|k - k'|^2}{(\frac{1}{k_b^*} + |k - k'|^2)^2} \cdot \frac{1}{k^3} \cdot \delta(k - k') \right) \\ &= \frac{g_s g_2 2\pi}{h} \frac{Z^2 e^4}{\epsilon_k^2 V (2\pi)^3} \frac{m_e^2}{2h^2} \cdot \int_{k'} k^2 \sin\theta \, dk' \, d\theta \, d\phi \, \left(\frac{|k - k'|^2}{(\frac{1}{k_b^*} + |k - k'|^2)^2} \cdot \frac{1}{k^3} \cdot \delta(k - k') \right) \\ &= \frac{g_s g_2 2\pi}{h} \frac{Z^2 e^4}{\epsilon_k^2 V (2\pi)^3} \frac{m_e^2}{2h^2} \cdot \int_{\phi=0}^{\pi} d\phi \, d\theta \sin \theta \int_{k'=0}^{\pi} k'^2 \, dk' \left(\frac{2k^2 (1 - \cos \theta)}{(\frac{1}{k_b^*} + |k - k'|^2)^2} \cdot \frac{1}{k^3} \cdot \delta(k - k') \right) \\ &= \frac{g_s g_2 2\pi}{h} \frac{Z^2 e^4}{\epsilon_k^2 V (2\pi)^3} \frac{m_e^2}{2h^2} \cdot 2\pi \cdot 2k \int_{\theta=0}^{\pi} d\theta \sin \theta \frac{(1 - \cos \theta)}{(\frac{1}{k_b^*} + 2k^2 (1 - \cos \theta))^2} \\ &= \frac{g_s g_2 2\pi}{h} \frac{Z^2 e^4}{2V (2\pi)^3} \frac{m_e^2}{2h^2} \cdot 2\pi \cdot 2k \left[\frac{1}{1+1} \left(\ln(1 + 4k^2 L_D^2) - \frac{4k^2 L_D^2}{2L_D^2} \right) \right] \end{split}$$

$$\begin{split} & = \frac{g_*g_e2\pi}{\hbar} \frac{Z^2 e^4}{c_1^2 V(2\pi)^3} \frac{m_e^*}{2\hbar^2} \cdot 2\pi \cdot 2k \left[\frac{1}{4k^4} \left(\ln(1+4k^2 L_D^2) - \frac{4k^2 L_D^2}{1+4k^2 L_D^2} \right) \right] \\ & \Longrightarrow \frac{1}{\tau(k)} = \frac{g_*g_e Z^2 e^4 m_e^*}{8\pi \hbar^3 e_t^2 V} \cdot \frac{1}{k^3} \left(\ln(1+4k^2 L_D^2) - \frac{4k^2 L_D^2}{1+4k^2 L_D^2} \right) \end{split}$$

Substituting, scattering due to single impurity

$$\begin{split} E(k) &= \frac{\hbar^2 k^2}{2m_c^*} \\ \implies k^3 &= \left(\frac{2m_c^* E}{\hbar^2}\right)^{3/2} \end{split}$$

 $\frac{1}{\tau(E)} = \frac{g_s g_v Z^2 e^4 m_c^*}{8\pi \hbar^3 \epsilon_s^2 V} \cdot \frac{1}{\left(\frac{2m_c E}{\pi k^2}\right)^{3/2}} \left(ln(1 + \frac{8m_c^* E}{\hbar^2} L_D^2) - \frac{\frac{8m_c^* E}{\hbar^2} L_D^2}{1 + \frac{8m_c E}{\hbar^2} L_D^2} \right)$

$$\begin{split} < \tau > &= \frac{2}{3\sqrt{\pi}} \cdot \int_{0}^{\infty} du \, u^{3/2} e^{-u} \cdot \tau^{tot}(u) \\ &= \frac{2}{3\sqrt{\pi}} \cdot \int_{0}^{\infty} du \, u^{3/2} e^{-u} \cdot \frac{\pi^{tot}(u)}{g_s g_v Z^2 e^4 m_e^* N_D} \left(\frac{2m_e^* kT}{\hbar^2}\right)^{3/2} \cdot u^{3/2} \\ &\cdot \left(\ln(1+u, \frac{8m_e^*}{\hbar^2} L_D^2) - \frac{u \cdot \frac{8m_e^*}{\hbar^2} L_D^2}{1+u \cdot \frac{8m_e^*}{\hbar^2} L_D^2} \right)^{-1} \\ &\cdot \left(\ln(1+u, \frac{8m_e^*}{\hbar^2} L_D^2) - \frac{u \cdot \frac{8m_e^*}{\hbar^2} L_D^2}{1+u \cdot \frac{8m_e^*}{\hbar^2} L_D^2} \right)^{-1} \\ &= \frac{2}{3\sqrt{\pi}} \frac{8\pi \hbar^3 \epsilon_s^2}{g_s g_v Z^2 e^4 m_e^* N_D} \left(\frac{2m_e^* kT}{\hbar^2}\right)^{3/2} \int_{0}^{\infty} du \, e^{-u} \frac{u^3}{\ln(1+ux) - \frac{ux}{1+ux}} \\ &\approx \frac{2}{3\sqrt{\pi}} \frac{8\pi \hbar^3 \epsilon_s^2}{g_s g_v Z^2 e^4 m_e^* N_D} \left(\frac{2m_e^* kT}{\hbar^2}\right)^{3/2} \cdot \frac{1}{D(u)} \int_{0}^{\infty} du \, \underbrace{e^{-u} u^3}_{\text{Max at } u=3} \\ &\approx \frac{4}{3\sqrt{\pi}} \frac{8\pi \hbar^3 \epsilon_s^2}{g_s g_v Z^2 e^4 m_e^* N_D} \left(\frac{2m_e^* kT}{\hbar^2}\right)^{3/2} \cdot \frac{1}{\ln(1+\beta^2) - \frac{\beta^2}{1+\beta^2}} \end{split}$$

Where $\beta = 2\sqrt{\frac{2m_e^* 3kT}{\hbar^2}} L_D$

Therefore, mobility

$$\begin{split} \mu &= \frac{e < \tau >}{m_e^*} \\ &\approx \frac{e}{m_e^*} \cdot \frac{4}{3\sqrt{\pi}} \frac{8\pi \hbar^3 \epsilon_s^2}{g_s g_s Z^2 e^4 m_e^* N_D} \left(\frac{2m_e^* kT}{\hbar^2}\right)^{3/2} \cdot \frac{1}{\underbrace{\ln(1+\beta^2) - \frac{\beta^2}{1+\beta^2}}_{F(\beta)}} \\ \mu &\approx \left[\frac{2^{7/2}}{6\pi^{3/2}} \frac{(4\pi \epsilon_s)^2}{Z^2 e^3 g_s g_v \sqrt{m_e^*} F(\beta)}\right] \frac{(kT)^{3/2}}{N_D} \propto \frac{T^{3/2}}{N_D} \end{split}$$

That was a long calculation!

(d) Acoustic Phonon Scattering

$$\begin{split} & \left[\langle \vec{k} \times \vec{k}' \rangle = \frac{2\pi}{k} \left| \langle \vec{k}' | W(0) \vec{k} \rangle \right|^{2} \hat{S} \left(\vec{k} \in -\vec{k}_{v}' + \vec{k} \omega \right) \\ & \left[\langle \vec{k}' | W(0) | \vec{k} \rangle \right]^{2} = \tilde{J}_{c}^{2} \tilde{u}_{0}^{2} q^{2} \cdot \tilde{S}_{k'} \tilde{j}_{1} \tilde{j}_{1} \tilde{k}_{0}^{2} \left\{ \begin{array}{c} N_{0} \vec{k} : \\ S_{0,k} = S_{0,k} \right\} \\ & \tilde{\mathcal{K}} = \tilde{\mathcal{K}} \cdot \tilde{k}' \right] = \frac{2\pi}{k} \frac{1}{2} \frac{\pi}{k} \frac{1}{2} \frac{\pi}{k} \frac{q^{2}}{k} \cdot \frac{S_{k'}}{k} \frac{1}{k} \frac{1}{k} \frac{q^{2}}{k} \frac{q^{2}}{k} \cdot \frac{S_{k'}}{k} \frac{1}{k} \frac{1}{k} \frac{q^{2}}{k} \frac{q^{2}}{k} \cdot \frac{S_{k'}}{k} \frac{1}{k} \frac{1}{k} \frac{q^{2}}{k} \frac{q^{2}}{k}$$

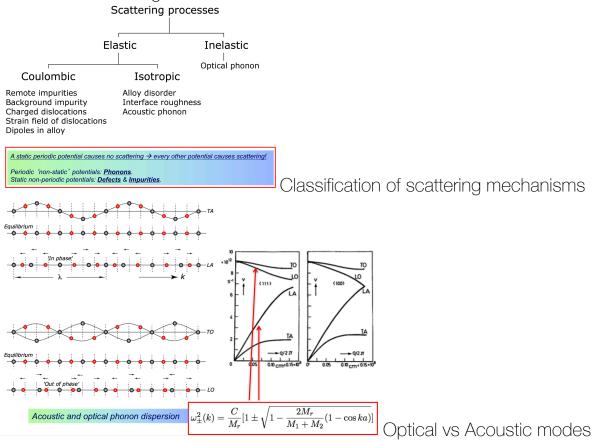
$$\begin{split} = \frac{1}{2} \frac{k_{0}T}{k_{0}} = \frac{2\pi D_{c}^{2} \kappa_{c}^{2}}{(2\pi)^{3}} \cdot \int_{c}^{2} d\phi \cdot \int_{c}^{4} d\phi \cdot \int_{c}^{4} \frac{\phi}{q_{s}} \cdot \int_{c}^{4} d\phi \cdot \int$$

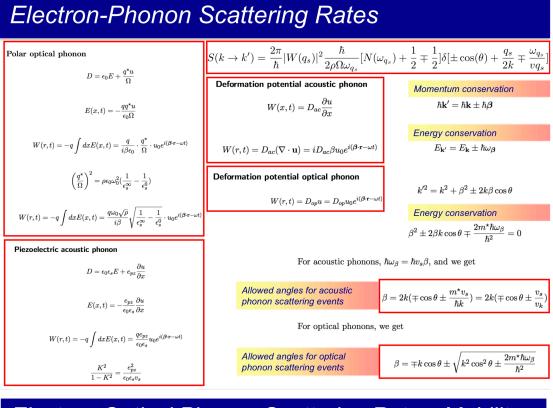
Another longish (but mostly

mechanical calculation of acoustic phonon scattering rates in semiconductors).

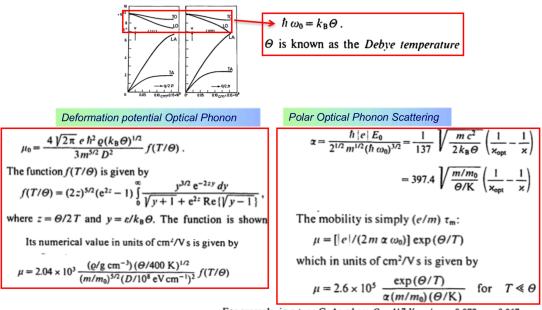
(e) Optical Phonon scattering: I have included some figures from the slides used in class. The major difference between optical phonons and acoustic phonon modes:

- in acoustic phonon modes, neighboring atoms vibrate in phase, whereas

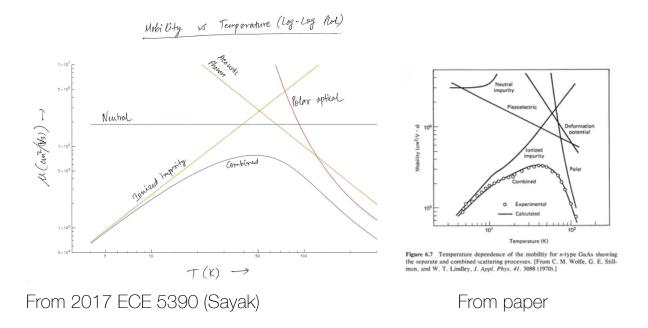

- in optical phonon modes, neighboring atoms vibrate out of phase.


Optical phonon scattering can occur by

- a non-polar deformation potential coupling due to strain of the crystal and resulting perturbation of the band edge energies. Unlike the acoustic phonon, the optical deformation potential has units of Dop~eV/Angstrom and unlike the strain field, it is the direct displacement of the atoms that


enters the perturbation matrix element, i.e. $W(r) \sim Dop^*d(x1-x2)$ where d(x1-x2) is the relative displacement of the nearest neighbor atoms in the crystal. This form of "mechanical" or strain-induced non-polar (non-Coulombic) scattering occurs in elemental semiconductors such as Si and Ge, which lack polar optical phonon modes and serves as the important means of energy loss of high-energy or hot electrons.

Polar-optical phonon scattering occurs in polar crystals such as GaAs, GaN, etc that have two atoms of different ionicities in the basis of the crystal. This form of scattering is due to the vibration of effectively charged ions causing a dipole field, and the scattering is of Coulombic nature, and is therefore typically much stronger and dominates non-polar kinds. Polar optical phonon scattering is typically the strongest scattering mechanism at room temperature for GaAs, GaN, and all III-V semiconductors. In other words, it limits the mobility and the performance of several high-speed transistors, light-emitting diodes and lasers, etc as it is the dominant low-field scattering mechanism at room temparuture that cannot be decreased by making the materials purer – because it is an intrinsic scattering mechanism and not tied to defects.


Electron-Optical Phonon Scattering Rates, Mobility

For example, in n-type GaAs where $\Theta = 417$ K, $m/m_0 = 0.072$, $\alpha = 0.067$, we calculate a mobility at 100 K of 2.2×10^5 cm²/V s. This is of the order of magnitude of the highest mobilities observed in this material. At this and

Expressions for optical phonon scattering rates

(f): Example Plot from Sayak Ghosh's 2017 solution. The numbers are a bit on the high side (for example the 300K mobility of GaAs is less than 10000 cm²/Vs, this calculation overestimates the optical phonon mobility number by ~10 X, but all other trends are reasonable. The neutral impurity concentration should be calculated as a function of temperature using charge-neutrality conditions, meaning as dopants are thermally activated at high temperatures, the neutral impurity density decreases, and the mobility due to neutral impurity scattering alone should increase as shown in the original paper.

