
ECE 5390/MSE 5472, Fall Semester 2017
Quantum Transport in Electron Devices & Novel Materials

Debdeep Jena (djena@cornell.edu), Depts. of ECE and MSE, Cornell University
Assignment 4

Policy on assignments: Please turn them in by 5pm of the due date. The due date for this
assignment is Monday, Nov 20th, 2017.

General notes: Present your solutions neatly. Do not turn in rough unreadable worksheets -
learn to take pride in your presentation. Show the relevant steps, so that partial points can
be awarded. BOX your final answers. Draw figures wherever necessary. Please print out this
question sheet and staple to the top of your homework. Write your name and email address on the
cover. Some problems may lead to publishable results - be on the lookout!

Problem 4.1) Survey of Superconductivity

Create a well-thought out table of the experimental status of various superconducting materials
and their transport and related properties such as critical parameters Tc, Hc, Jc, gaps ∆, London
penetration depths λL, material stability, and other parameters you consider important. Include
high-Tc superconductors, and superconductors that are semiconductors under normal conditions.
Indicate in the table which ones are used for industrial applications, and for what.

Problem 4.2) Current Transport in Josephson Junctions

We have discussed how the Ginzburg-Landau theory explains superconductivity by introducing the
macroscopic wavefunction Ψ(r) =

√
n(r)eiθ(r), and in one masterstroke explains all the hallmarks of

transport and related properties of superconductors such as persistent currents, the Meissner effect
and London penetration depths, flux quantization, etc. This theory is also central to understanding
most superconducting quantum devices, the Josephson junction being a prime example.
In class I outlined how to understand the rather remarkable current-voltage characteristics of a
superconductor/insulator/superconductor junction in which Cooper pairs can tunnel from one su-
perconductor to the other, leading to the flow of a ac Josephson current

I = I0 sin(
2eV

h̄
t+ α), (1)

where all terms have their usual meanings. Using the Landau-Ginzburg macroscopic wavefunctions
Ψ1 =

√
n1e

iθ1 and Ψ2 =
√
n2e

iθ2 and using Schrodinger equation allowing for tunneling from one
superconductor to the other, show that the current given by Equation 1. Assume n1 ≈ n2. Dis-
cuss what is rather remarkable about the transport in this superconducting device, and show that
V ≈ 1 mV across the tunnel diode leads to an oscillation frequency of ∼ 3 THz. Explain how such
junctions are used in SQUID magnetometers.

Problem 4.3) Cooper pairs in Superconductors

In this problem, we expose the limitations of perturbation theory in quantum mechanics. The rea-
son why it took nearly half a century from the experimental discovery of superconductivity to the
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development of a theory for it is because its physics cannot be obtained from perturbation theory.
One has to solve the Hamiltonian problem more or less exactly - even if for a simplified toy model
that captures the essential physics. Now Bardeen, Cooper, and Schrieffer (BCS) constructed such
a theory. We first solve the toy model that Cooper did to unlock the mystery.

(a) Working in the Fourier (k-)space, show that for an electron of mass m moving in 1D with an
attractive Dirac-delta potential V (x) = −αδ(x), there is exactly one bound state, no matter how

small the strength α. Show that this bound-state energy is E0 = −mα2

2h̄2 .

(b) Following (a), set up the same problem for a D−dimensional Dirac-delta attractive potential
for an electron moving in D−dimensions. Show why a naive search for bound states leads to di-
vergent k−space integrals for D > 1. Fact: theorists just love such divergences!

(c) Tame the ultraviolet divergence as k →∞ by imposing an ultraviolet cutoff of kmax = 1
a . This is

a fancy way of saying that we will set a minimum floor on the wavelengths permitted for electrons.
Find the required condition for bound states in D−dimensions with this UV cutoff.

(d) Now a great many profound physics discoveries have resulted from studying the long-wavelength,
or the infrared divergences. This happens when integrals blow up as k → 0, or electron wavelengths
become very long. Show that for a vanishingly weak Delta-function α→ 0, there cannot be a bound
state for D ≥ 3.

(e) Show that for D = 2, there is a bound state of energy E0 = − h̄2

ma2(e
2πh̄2
mα −1)

≈ − h̄2

ma2 e
− 2πh̄2

mα for a

vanishingly small attractive Dirac-delta potential as α→ 0. Explain why this result is unattainable
from perturbation theory.

(f) Now make the connection of this toy problem to the Cooper pair1 problem we have discussed
in class: two electrons of opposite momenta and opposite spins at the Fermi energy surface EF of
a metal bound by phonons of energy up to h̄ωD via a vanishingly weak pairing potential −V0.
Show how the pairing causes the 2-electron energy to reduce from 2EF → 2EF − ∆, where

∆ = (2h̄ωD)e
− 2
N0V0 , where N0 is the DOS at the Fermi energy. Discuss why the gap is small,

and why it cannot be obtained from perturbation theory.

Problem 4.4) The BCS Theory of Superconductivity

(a) Show that an estimate of the critical current density that converts a superconductor of gap
∆ to a normal metal is Jc ≈ 2en ∆

h̄kF
, where n is the normal single-particle electron density, e the

electron charge, and kF is the Fermi wavevector. Show that for standard metals it evaluates to
Jc ∼ 107 A/cm2. (You can imagine that the superconducting gap prevents scattering, till the single
particle states have kinetic energies larger than the gap. Another way to picture this is to estimate
the electron kinetic energy needed to break the Cooper pairs.)

In class we discussed the BCS Hamiltonian is

HBCS =
∑
k,σ

E0(k)c†kσckσ − V0

∑
k,q

c†q↑c
†
−q↓c−k↓ck,↑, (2)

1Cooper, Leon N. (1956). ”Bound electron pairs in a degenerate Fermi gas”. Physical Review. 104 (4): 1189.
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and the BCS macroscopic wavefunction is

|ΨBCS〉 = Π
k

(uk + vkc
†
k↑c
†
−k↓)|0〉 = Π

k
(uk + vkb

†
k)|0〉, (3)

where b†k = c†k↑c
†
−k↓ is the Cooper pair creation operator with the corresponding annihilation oper-

ator bk = c−k↓ck↑. In Problem 2.2, you have seen that these operators composed of two fermionic
operators look somewhat like Boson operators, but are not quite Bosonic. The terms uk and vk
are unknown coefficients. For our purposes, assume them to be real (though this is not necessary).

(b) Show how normalization of the BCS macroscopic wavefunction 〈ΨBCS |ΨBCS〉 = 1 followed
by the minimization of the energy 〈ΨBCS |HBCS |ΨBCS〉 gives us the T << Tc K Cooper pair
occupation function

v2
k =

1

2
[1− E0(k)− EF√

(E0(k)− EF )2 + ∆2
], (4)

where ∆ is the superconducting gap given by ∆ = −V0
∑

k ukvk. Make a plot of this function,
and compare it with the single-particle non-interacting Fermi-Dirac function choosing appropriate
numerical values.

(c) Using the earlier part on occupation functions, show that the condensation energy, or energy
reduction for electrons to make a transition from the normal metallic to the superconducting state
is Usc − Um = −1

2N0∆2.

(d) I outlined in class how to obtain excited state properties from the BCS theory using the
Bogoliubov de-Gennes approach instead of the variational approach. Show how this approach
diagonalizes the BCS Hamiltonian in Equation 2 to the form

HBdG =
∑
k

EBdG(k)(γ†k↑γk↑ + γ†−k↓γ
†
−k↓), (5)

where the quasiparticles have an energy spectrum EBdG(k) =
√

(E0(k)− EF )2 + ∆2. Write the
relation between the creation/annihilation operators γk’s and the original ck’s. Write the commu-
tation relations of these new operators and comment.

(e) Outline how the temperature-dependent properties of the superconductor, say the gap ∆(T )
may be obtained from the BCS type theory.
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