
ECE 5390/MSE 5472, Fall Semester 2017
Quantum Transport in Electron Devices & Novel Materials

Debdeep Jena (djena@cornell.edu), Depts. of ECE and MSE, Cornell University
Assignment 5

Policy on assignments: Please turn them in by 5pm of the due date. The due date for this
assignment is Friday, Dec 8th, 2017.

General notes: Present your solutions neatly. Do not turn in rough unreadable worksheets -
learn to take pride in your presentation. Show the relevant steps, so that partial points can
be awarded. BOX your final answers. Draw figures wherever necessary. Please print out this
question sheet and staple to the top of your homework. Write your name and email address on the
cover. Some problems may lead to publishable results - be on the lookout!

Problem 5.1) The Berry Phase and Chern Numbers

Figure 1: Berry phase and Chern Number.

Consider a discrete grid for the parameter space k = (kx, ky) = (n,m) of a Hamiltonian Ĥ(k) that
has eigenfunctions and eigenvalues given by the Schrodinger equation Ĥ(k)|ψk〉 = E(k)|ψk〉. Now
consider the eigenfunctions as vectors in the Hilbert space defined over a 2D parameter space in
the form of a 2D Brillouin zone as shown in Figure 1. To prepare for electron transport in a 2D
system, we assume that the Brillouin zone is a torus, and the discrete grid (n,m) forms closed
cyclic loops in values of (kx, ky). Choose the gauge to be |ψk〉 → eiαk |ψk〉, a k-dependent phase
factor multiplied by the eigenfunction.

(a) Show that the net phase accumulated in traversing an open path on the grid is not gauge
invariant because it depends on the gauge factors αk.

(b) Show why the net phase accumulated in traversing any closed path on the grid on the torus
is gauge invariant. This is the Berry phase γL around a Loop, defined by

eiγL = Arg[〈ψk1 |ψk2〉 · 〈ψk2 |ψk3〉 · 〈ψk3 |ψk4〉 · ... · 〈ψkN
|ψk1〉]. (1)
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(c) Show why the closed loop chain of inner products in the discrete form of the Berry phase above
becomes a line integral in the limiting continuum case, i.e.

γL = i

∮
dk · 〈ψk|∇k|ψk︸ ︷︷ ︸

Ak

〉, (2)

where ∇ is the gradient operator1. Here Ak is the Berry connection.

(d) The discrete Berry flux F is defined as the sum of the phases around a closed loop or a plaquette,
say around the lightly shaded rectangle in Figure 1 moving in a counterclockwise direction. Show
why the net Berry flux through a closed loop satisfies the Stokes theorem - like relation to the
Berry phase:

ei
∑

k Fk = eiγL ↔ ei
∫
dSk·Fk = ei

∮
dk·〈ψk|∇k|ψk〉. (3)

what is different from the Stokes theorem? Show how the discrete Berry flux leads to the Berry
curvature Bk in the continuum case defined as

Bk = ∇k ×Ak ↔
∮
dk · Ak =

∫
dSk · ∇k ×Ak︸ ︷︷ ︸

Bk

. (4)

(e) Argue why the sum of the Berry fluxes for any closed orientable surface must follow the relation∏
k

eiFk = e0 = 1 = ei2π×Q ↔
∮
dSk · Bk = 2πQ (5)

where Q =
∑

k Fk

2π is an integer. This integer is the Chern number.

(f) Argue why the Chern number counts how many vortices of the eigenvectors are present in the
parameter surface, for example the torus of Figure 1.

Problem 5.2) Berry Phase and Berry Curvature

We discussed the origin of the Berry phase in quantum mechanics by constructing a state |ψn(k)〉 =

eiγn(t)e−
i
h̄

∫ t
0 Endt

′ |n(k)〉. Here k(t) is a parameter on which the state depends adiabatically: for ex-
ample, the wavevector for electrons in a crystal. We can vary the wavevector k(t) with time, by
applying a magnetic (or electric) field. We let the Hamiltonian operator Ĥ and the time-dependent
energy operator ih̄ ∂

∂t act on this state separately, and then projected the new state at time t back
to 〈n(k(t))|. Time-dependent Schrodinger equation demands that they be exactly the same, for
all possible quantum states. Then one must have γn(t) =

∫
C dk · A, where A = i〈n| ∂∂k |n〉 is

an effective vector potential, analogous to the magnetic vector potential, and C is the path in k
space traversed in the process of time evolution. If one makes a gauge transformation of the state
|ψn(k)〉 → eiθ(k)|ψn(k)〉, the effective vector potential changes to A → A− ∂θ(k)

∂k . Since all physical
observables must be gauge-invariant, one could dismiss the above phase in part (a) as unphysical.

However, Berry argued that if we close the path, then γn =

∮
C
dk · A becomes gauge-invariant:

1In the specific case of Bloch functions, the Berry phase is defined as γL = i
∮
dk · 〈unk|∇k|unk〉, where unk is the

cell-periodic part of the Bloch wavefunction. The modulating envelope function eik·r is pushed out to the Hamiltonian
to make k the explicit parameter.
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verify his assertion. This is the Berry phase, and A = i〈n| ∂∂k |n〉 is the Berry vector potential.

(a) Electrons in 2D graphene have a Dirac-cone bandstructure whose eigenstates near the Dirac

points in k-space may be represented as |K〉 = eik·r√
2

(
1

e−iθ
)

and |K′〉 = eik·r√
2

(
1

e+iθ

)
, where tan θ =

ky/kx, and the states are defined on the (k, θ) plane. By integrating along a circular loop centered
at the Dirac point, show that the Berry phases of the states are γK = +π and γK = −π.

(b) In analogy to the relation between the magnetic vector potential and the magnetic field,
we defined the Berry curvature as Bk = ∇ × A(k) via the Stoke’s theorem γn =

∮
C dk · A =∫

S dS · (∇×A). Here S is the surface enclosed in the parameter space by the closed loop C. Show
that the Berry curvature can be written as a sum over eigenstates:

Bµν(k) = i[〈∂un
∂kµ
|∂un
∂kν
〉 − 〈∂un

∂kν
|∂un
∂kµ
〉] = i

∑
n′ 6=n

〈n|∂kµĤ|n′〉〈n′|∂kν Ĥ|n〉 − 〈n|∂kν Ĥ|n′〉〈n′|∂kµĤ|n〉
(En − En′)2

(6)
(c) Show that the Berry curvature of Graphene is zero everywhere except at the Dirac points,
where it diverges. Even though it diverges, it has a finite integral: what is the integral of the Berry
curvature around the Dirac points K and K′?

Problem 5.3) Quantum Hall Effect and Chern Number

We have discussed in class that the transverse conductance ρxy = n e
2

h in the integer quantum Hall
insulator state of a 2D electron gas is quantized to parts-per-billion precision for 2DEGs across
various material families such as Silicon MOSFETs, III-V 2DEGs, oxide 2DEGs, graphene, etc.
An explanation for the precision of the quantization is offered by the Berry phase which requires
that the integer n of quantization is exactly the Chern number of the Berry phase. This connec-
tion was made by Thouless and co-workers2. In this problem, you will work through the arguments.

(a) Outline why the velocity of a quantum state of charge q and bandstructure E(k) when the
Berry phase is taken into account is given by

v =
1

h̄
∇kE(k) +

q

h̄
E× B(k), (7)

where B(k) is the Berry curvature of the band and E is the electric field. Note that the velocity in
the second term is perpendicular to the external electric field.

(b) Use the standard quantum mechanical expression for the current density in the nth 2D band

J = q
∑
n

∫
d2k

(2π)2
vn(k)f(k), (8)

to argue why the first standard velocity term 1
h̄∇kE(k) gives zero net current if the band is com-

pletely filled. This is the situation when the magnetic field has formed Landau levels and the Fermi
energy lies in the gap between 2 Landau levels, σxx → 0 and σxy = n e

2

h , which we have referred to

2This connection was established in: Thouless, Kohmoto, Nightingale, den Nijs (TKNN), Phys. Rev. Lett. 49
405 (1882). Note that they do not call the Berry phase or curvature by name in this paper, because Berry’s paper
came out 2 years after the TKNN paper!
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as the quantum-Hall insulator states.

(c) Now show why for such filled Landau levels, the transverse conductance Jx/Ey is given by the
second velocity term q

h̄E× B(k), and the conductance with q = −e is

σxy =
Jx
Ey

=
e2

h

∑
n

(

∫
d2k · Bnk

2π︸ ︷︷ ︸
Qn=Chern Number

) =
e2

h
× integer, (9)

i.e., the Hall conductance is quantized. The quantization is precise to parts per billion because the
Chern number for each band is mathematically constrained to be an integer.

Problem 5.4) The Anomalous Hall Effect

When Edwin Hall discovered the Hall effect in 1879, he observed that ferromagnetic metals such as
Nickel exhibited a rather strange Hall voltage in addition to the standard linear term in B that is
present in non-magnetic metals. In fact ferromagnets can exhibit a Hall-voltage in the absence of an
external B field! This phenomenon is known as the Anomalous Hall effect, and an intrinsic origin
of this effect is explained by the Berry phase. In this problem, we use a toy model to understand
this effect3.

(a) Show why the transverse conductance of a partially filled band in d−dimensions is given by

σxy =
e2

h̄

∫
ddk

(2π)d
f(Ek)Bkx,ky , (10)

where f(Ek) is the occupation function of state k and B is the Berry curvature of the band.

(b) Argue the connection of the above to the integer quantum Hall effect, i.e., why for a partially
filled band even with a zero Chern number a nonzero anomalous Hall conductivity is provided by
the local Berry curvature.

(c) A model Hamiltonian for bands in a ferromagnetic metal split by strong spin-orbit interactions
is

H =
h̄2k2

2m
+ λ(k× σ) · ez −∆σz, (11)

where σ = (σx, σy, σz) are Pauli spin matrices, ez is a unit vector in the z−sirection, λ is the
spin-orbit coupling strength, and ∆ is an exchange field. Show that the resulting energy dispersion
is E± = h̄2k2

2m ±
√
λ2k2 + ∆2. Make a qualitiative plot of this bandstructure and label all relevant

parameters.

(d) Show that the Berry curvature of the two bands are B± = ∓ λ2∆

2(λ2k2+∆2)
3
2

. Using this formula,

make a plot of the T → 0 K anomalous Hall conductance σxy(EF ) as a function of the Fermi en-
ergy EF and align it with the bandstructure. Show that the anomalous Hall conductivity reaches
a magnitude of e2

2h inside the window −∆ ≤ EF ≤ ∆ and drops rapidly outside the window.

3Refer to Section III.D of the posted review paper Xiao, Chang and Niu, Rev. Mod. Phy. 82 1959 (2010) for this
problem.
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Problem 5.5) Topological Insulators, Winding Number, Berry Phase

t+δt t-δt

n

b

n

a

n+1

a
δt>0

δt<0

δt<0 δt>0

domain wall

Figure 2: A polyacetylene chain that exhibits a non-trivial topological feature in its bandstructure.

In class, we discussed that every 2× 2 Hermitian Hamiltonian matrix can be written as

H2 =
(
h0(k)+hz(k) hx(k)−ihy(k)
hx(k)+ihy(k) h0(k)−hz(k)

)
, (12)

and can be decomposed into the form

H2 = h0(k)I + hx(k)σx + hy(k)σy + hz(k)σz = h0(k)I + ~h · ~σ, (13)

where ~h = [hx(k), hy(k), hz(k)], σ’s are the Pauli spin matrices, and I is the identity matrix.

(a) By drawing analogy to the Hamiltonian of an electron in a magnetic field and Zeeman split-
ting, show that the eigenvalues form two bands E±(k) = h0(k) ± |~h(k)|, and the gap at k is
Eg(k) = E+(k)− E−(k) = 2|~h(k)|. Show that the eigenfunctions are not well behaved near points
in k−space where the gap closes. Recall from our discussion of the Dirac monopole that this is a
signature of non-trivial Chern-numbers.

(b) We discussed in class that the simplest topologically non-trivial Hamiltonian is for electron
transport in the 1D long-chain organic molecule Polyacetylene (see Fig 2) that has alternating
single and double bonds between Carbon atoms a and b. Because of the asymmetry in the hopping

terms, the tight-binding Hamiltonian is H =
∑

n

([
(t + δt)c†a,ncb,n + (t − δt)c†a,n+1cb,n

]
+
[
c.c.
])

in the occupation number formalism. Show that the resulting k−space Hamiltonian is H =∫
dk
2π ( c†a,k c

†
b,k )

(
h0(k)+hz(k) hx(k)−ihy(k)
hx(k)+ihy(k) h0(k)−hz(k)

) ( ca,k
cb,k

)
, where hx(k) = (t + δt) + (t − δt) cos ka, hy(k) =

(t− δt) sin ka, and hz(k) = 0. This is the celebrated “Su-Schrieffer-Heeger” or SSH model.
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(c) Assuming t = 1 eV, plot the bandstructures for δt = −0.1 eV, δt = 0.0 eV, and for δt = +0.1
eV. What happens as δt goes smoothly through δt = 0: is there a difference between the states at
δt = −0.1 and δt = +0.1?

(d) Because ~h(k) = [hx(k), hy(k), hz(k)] may be pictured as an effective magnetic field vector,

prove that since hz(k) = 0, as k changes, the tip of the vector ~h(k) winds around the origin of the
[hx(k), hy(k)] plane ZERO times for δt > 0 but ONE time if δt < 0.

(d) Show that the Berry phase for δt > 0 is ZERO, but for δt < 0 is π. Draw the similarity of
this situation with the Dirac monopole problem discussed in class.

(e) If an interface is created between the alternating double and single bonds (see Fig 2), argue
that there must be a topologically protected eigenstate at zero energy at the interface. This is the
simplest realization of a ‘topological insulator’.

Problem 5.6) Survey of Topological Aspects of Quantum Transport

In class, I mentioned the ‘zoo’ of Hall-effects: the ordinary Hall effect → Integer Quantum Hall
effect, the spin-Hall effect→ the Quantum Spin-Hall Effect, the Anomalous Hall effect→ the Quan-
tum Anomalous Hall effect. Early in this class we also encountered quantization of conductance in
ordinary 1D ballistic transport. Write a short summary in the form of a table of these effects, and
what sorts of materials, temperatures, and fields (magnetic, electric) are required to observe these
transport phenomena. In this table, also indicate the degree of robustness to disorder, and which
of these are considered to be ‘topologically protected’.
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