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Conventional device analysis begins by assuming that carriers behave as classical 
particles which obey Newton's laws. A more fundamental treatment describes 
the electron by its wave function, Y(r, t), which is obtained by solving the 
Schrodinger equation, 

The quantity Y*(r, t)!P(r, t)dr is the probability of finding the electron between 
r and r + dr. Three different potential energies appear in the wave equation; the 
first, Eco(r), describes potentials that are built-in or applied to the device. (The 
energy band diagram of a semiconductor device is just a plot of this potential 
versus position. Device engineers usually refer to this potential as Ec(r), but in 
this text Ec will refer to the position and momentum-dependent conduction band 
potential; it contains a potential energy component, Eco(r)), and a kinetic energy 
component.) The second potential is the crystal potential, Uc(r), which describes 
the electrostatic potential due to the atoms. (Since eq. (1.1) is a wave equation for 
a single electron, &(r) also includes the average potential due to the other 
electrons in the solid.) Finally, Us is a scattering potential due to random devia- 
tions in potential caused by ionized impurities or by lattice vibrations. Device 
analysis is usually based on an approximate solution to eq. (1.1) known as the 
semiclassical treatment which describes carrier dynamics in the applied and built- 
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in potentials by Newton's laws without explicitly treating the crystal potential. 
The influence of the crystal potential is treated indirectly by the use of an effec- 
tive mass or an energy band structure. Carrier scattering is treated quantum 
mechanically. 

This chapter reviews techniques for treating the three different potentials in the 
wave equation. The emphasis is on justifying the semiclassical approach to car- 
rier transport because it serves as the basis for most of conventional device 
analysis and for most of this text. It is important to understand the underlying 
approximations because they can be violated in advanced, ultra-small devices. 
For the most part, this chapter should be a review of introductory quantum 
mechanics and solid-state physics; results are stated, not derived, and their sig- 
nificance and relevance to device analysis is noted. For a thorough treatment of 
the fundamentals surveyed in this introductory chapter, the reader is referred to 
Quantum Phenomena, by Supriyo Datta [I.]]. 
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3.1 Electrons In a nonunifarm potential, ECO(r) 

Let us first review the nature of solutions to the wave equation in the absence of 
the crystal and scattering potentials; we further simplify the problem by reducing 
it to one spatial dimension. Application of the technique of separation of vari- 
ables to the wave equation then shows that the solutions are of the form 

which oscillate in time with a frequency of w = Elh. When eq. (1.2) is inserted in 
the wave equation, we obtain the time-independent wave equation, 

where 

The nature of the solutions is determined by whether k2 is greater or less than 
zero. 

General features of the solutions can be illustrated by a few very simple 
examples (see Fig. 1.1). First, we let Eco(z) be constant and set the constant to 
zero. Since k2 2 0, the solutions to eq. (1.3) are of the form 

3 ELECTRONS I N  A N O N U N I F O R M  POTENTIAL,  E 
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Fig. 1.1 Example potential profiles. (a) free electron, (b) infinite potential well, (c) finite 
potential step, and (d) slowly varying potential. 

(or, equivalently, sin kz or cos kz), where 

and ak is an arbitrary constant. According to eq. (1.5), 

is the relation between the electron's energy and its wave vector. Since hk can be 
shown to be the electron's momentum [1.2], the energy and momentum of a free 
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electron are related exactly as they are in classical physics. The time-dependent 
solution, 

represents a wave traveling in the h2 direction. 
The probability of finding the electron, P(z) = $(z)*$(z), is simply lak12; the 

electron has an equal probability of being anywhere. To describe a particle 
located near zo with a momentum of about hko, we form a linear combination 
of the solutions, eq. (1.4). Such a solution, 

is known as a wave packet. The weighting function, a(k - ko), is large only near 
ko as shown in Fig. 1.2. At t = 0 and z = zo the phase is zero so the contributions 
for all wave vectors add in phase and the result is a large amplitude. But for 
/z/  >> lzo/, the exponential, oscillates rapidly with k, and the contribu- 
tions from different k add destructively. The result is that eq. (1.8) describes an 
electron that is located with high probability near z = zo. The plane wave solu- 
tion, eq. (1.7), had a well-defined momentum (hk) but the particle's location was 
undefined. Equation (1.8) localizes the particle, but since we had to add waves 
with different momentum, an uncertainty, hAk, has been introduced in the elec- 
tron's momentum. 

The uncertainty in the particle's position is related to the spread in wave 
vectors by [1.2] 

which states that many Fourier components are needed to describe a small 
particle. Similarly, a particle can be localized in time by adding contributions 
with different frequencies such that 

Fig. 1.2 Weighting function a(k - ko) used to localize an electron. 
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When a change of variables to momentum and energy is made in eq. (1.9) and eq. 
(1.10), we find the uncertainty relations: 

AzAp 2 Zz 

and 

AEAt 1 Zz 

which state that we cannot know both a carrier's position and momentum 
exactly and that we cannot determine its exact energy in a finite time. 

Each of the individual components of the wave packet, eq. (1.81, travels at its 
own phase velocity 

Since each of the components travels at a different velocity, both the center of the 
wave packet and its shape change with time. The center, which occurs where the 
components add constructively, moves at the group velocity, vg, where 

According to eq. (1.14) and eq. (1.61, for free electrons 

which shows that the group velocity of the electron wave packet is simply its 
average momentum divided by its mass -just what classical physics would give. 

For electrons constrained within a potential well, the solutions are much 
different. Consider a second example (Fig. 1. lb) for which Eco = 0 between 0 
and W ,  but assume now that W is small and that Eco + oo at x = 0 and W so 
that the electron is bound - it must remain between 0 and W. The solutions are 
still given by eq. (1.4) but it is more convenient to use linear combinations of 
these, or sin(kz) and cos(kz). Because $(z) = 0 at z = 0, we find 

+(z) = ak sin kz. (1.15) 

But +(z) must also be zero at z = W ,  so the wave vector must be restricted to 

In the first example, the electron was free, and we found a continuous distribu- 
tion of wave vectors given by eq. (1.6), but in this example, the electron is bound 
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From a classical perspective, we expect that when the electron's energy is 
greater than the top of the step, it will simply transmit across. The finite prob- 
ability of reflection at a step is a quantum mechanical effect due to the wave 
nature of carriers. Such reflections occur when the potential changes rapidly 
(meaning that it varies significantly on a distance comparable to the electron's 
wavelength). 

The final example, illustrated in Fig. 1. ld,  shows an electron moving through a 
slowly varying potential (the electron's energy is assumed to be greater than the 
potential energy). For such potentials, reflections do not occur and the solution 
can be obtained using the Wentzel-Kramers-Brillouin approximation as in [1.2] 
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and only certain k's, specified by eq. (1.16) are permitted. From eq. (1.6) we find 
that the energy is also quantized according to 

With modern microfabrication technology, potential wells can be engineered 
into devices by appropriate variations of doping or composition. In a silicon 
metal-oxide-semiconductor field effect transistor (MOSFET), inversion layer 
carriers are confined in a potential well at the oxide-silicon interface. For such 
structures, the carriers are confined in only one direction; in the orthogonal 
plane, the potential is constant and the wave functions have the plane wave 
character of the first example. Electrons confined in the so-called quantum 
wells are discussed in Section 1.3. 

As a third example, we consider an electron, which may be propagating 
through a device, when it encounters the potential step sketched in Fig. 1 . 1 ~ .  
For the conditions shown, E > Eco(z) everywhere so the solutions are traveling 
waves of the form 

where k(q) is given by eq. (1.3b). The absence of reflections can be understood if 
the slowly varying potential is approximated by a large number of small poten- 
tial steps. The small reflections that occur at each interface add destructively so 
that no net reflected wave occurs. Electron motion in a slowly varying potential 
can be described classically because reflections do not occur. 

and 

The goal of device analysis is often to compute the current through the device. 
Since quantum mechanics is based on probability, we evaluate the flow of prob- 
ability, 

where 

and 
The derivatives can be evaluated from the wave equation, eq. (1.1), and its 
complex conjugate to find 

Both +(z) and d+/dz must be continuous everywhere otherwise d2$/dz2 would 
be infinite and eq. (1.3a) could not be satisfied (unless Eco(z) goes to infinity as it 
did for the second example). Applying these continuity conditions at z = 0, we 
find 

where 

Equation (1.23) is a continuity equation - the first term is the rate of increase of 
probability and the second term, the divergence of a vector J, represents the flow 
of probability away from z. The vector J ,  which describes the flow of probability, 
is termed the probability current. For an ensemble of electrons, we interpret 
Y(z) * Y(z) as n(z), the electron density and J(z) as the electron flux. 

and 
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For the plane wave solutions found in the first example, the probability cur- 
rent works out to be 

Zzk J = Y * Y -  
m 0 

Since Y *  Y is the electron density and hk the electron momentum, eq. (1.25) 
simply states that J = nu. For the second example, the states were bound, and 
$(z) was proportional to sinkz. For such states, eq. (1.24) shows that J = 0 
which is consistent with the fact that the electron is localized and not going 
anywhere. For the potential step considered in the third example, the wave 
functions, eq. ( I .  181, produce a current 

and 

from which the incident, reflected, and transmitted currents Ji, J,, Jt ,  are appar- 
ent. Transmission and reflection coefficients for the currents can be defined as 

and 

Notice that T and R are real numbers unlike t and r and that T + R = 1 as 
expected. 

For electrons moving in a slowly varying potential, the wave function is given 
by eq. (1.21). For electrons in such a potential, 

Since +* $ - l/k(z), the current is constant - as it should be. When $*$ is 
interpreted as the electron density, eq. (1.29) is seen to correspond to the classical 
current density, J  = n(z)v(z). The electron's momentum is hk(z), so from eq. 
(1.29) its velocity is 
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E is the electron's total energy and Eco(z) its potential energy, so eq. (1.30) is just 
the expression for the velocity of a classical particle. 

These examples show that the wave nature of carriers is important when the 
potential changes rapidly, but when the potential varies gradually, reflections 
don't occur and electrons can be treated as classical particles which obey 
Newton's Laws. The electrons in the conduction band of a semiconductor always 
see at least one rapidly varying potential - it is the crystal potential due to the 
nucleus and core electrons. 

**wamm@m= 

1.2 EBectrons in a periodic potential, Uc(r) 

Electrons in a semiconductor crystal respond when fields are applied, but a 
crystal potential due to the lattice atoms and other electrons is always present. 
As sketched in Fig. 1.3a, the crystal potential, Uc(z), displays the periodicity of 
the lattice. To find the wave functions we solve the one-electron wave equation 

Fig. 1.3 Illustration of wave functions in a periodic potential. (a) Uc(z), the crystal 
potential, (b) $J~, the eigenfunction, (c) uk,  the Bloch function, (d) e'"' ", a plane wave. From 
Harrison [1.4]. (Reproduced with permission from Dover, New York.) 
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The solutions sketched in Fig. 1.3b also reflect the periodicity of the lattice. The 
solutions for a periodic are called Bloch waves and consist of a function with the 
periodicity of the lattice inultiplied by a plane wave. Figures 1 . 3 ~  and 1.3d dis- 
play the two components of a Bloch wave, which is mathematically defined by 

The electron's momentum varies with position because the crystal potential 
alternately speeds up and slows down electrons. Nevertheless, the quantity hk, 
termed the crystal momentum, often acts like the carrier's momentum. 

To find uk(z) we insert eq. (1.32a) in eq. (1.3 1) and find 

which must be solved with the boundary condition eq. (1.32b). For any k we 
select, eq. (1.33) can be solved for the energy eigenvalue, E(k), and the eigenfunc- 
tion, uk Since there are an infinite number of eigenvalues, we should label them 
as En(k), where n = 1,2,  3, . . . labels the particular eigenvalue. Choosing another 
k results in another infinite set of eigenvalues. Each eigenvalue is associated with 
a band because as k varies a band of energies is traversed. 

The general features of energy bands found by solving eq. (1.33) are summar- 
ized in Fig. 1.4. Only four eigenvalues for each k are shown. The eigenvalues 
El(kl), E2(kl), E3(kl), E4(kl), etc., are found by solving eq. (1.33) for k = kl.  By 
repeating the procedure for other choices of k, one continuous curve, E,(k), is 
mapped out for each of the various eigenvalues. The dashed lines show that E,(k) 
is periodic in k-space. Note also that there are certain energy gaps - forbidden 
regions on the energy axis that cannot be reached by any real k in any band. 

The periodicity of E(k) is a consequence of the spatial periodic crystal poten- 
tial. In general, 

Fig. 1.4 Electron energy versus wave vector, E(k). 

is a reciprocal lattice vector, and a is the lattice constant. Because E,(k) is 
periodic, all information is available in one period or Brillouin zone. It is con- 
venient to use a period centered about the origin (the so-called reduced zone 
representation). 

The band structures of common semiconductors are well known from various 
experiments and from numerical solutions to the wave equation. For semicon- 
ductor work, approximate solutions to eq. (1.33), accurate near a band mini- 
mum, are often adequate. The so-called k .  p method for obtaining such 
approximate solutions is discussed in the texts by Datta [1.1] and by Singh 
[1.6]. To treat very energetic carriers, however, a full, numerical tabulation of 
E(k) throughout the Brillouin zone is essential [1.7]. 

If the band structure is known, E(k) can always be expanded in a Taylor series 
as 

When the band minimum occurs at k = 0, the gradient of E(k) is zero at k = 0, 
so, to the lowest order, 

where 

where 
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is the effective mass. A comparison of eq. (1.36) with eq. (1.6) shows that for 
electrons near a band minimum, the E(k)  relation in a crystal is just like that for 
free electrons except for a change in curvature of the band. The electron mass is 
simply replaced by the effective mass. Knowledge of m* is sometimes the only 
information from the E(k) characteristic that is required to describe carrier 
transport. 

1.2.1 Model band structure 
Tn real, three-dimensional, semiconductors the Brillouin zone becomes a volume 
and E(k) generally depends oil the direction of k. The simple E(k) model shown 
in Fig. 1.5a describes both diamond and zincblende crystals such as silicon and 
GaAs. The conduction band has three minima; one at & = 0 (called the r point), 
another along (1 11) directions at the boundary of the first Brillouin zone (called 
k) and a third near the zone boundary along (100) directions (the A-line). (The 
standard notation for labeling lines and points in the Brillouin zone is displayed 
in Fig. P.5b.) The model semiconductor has three valence bands - each has a 
maximum at k = 0. Two of the valence bands are degenerate at k = 0; the third is 
split-off by the spin-orbit interaction. 

Table 1.1 lists several band parameters, defined in Fig. 1.5, for a variety of 
semiconductors. For silicon and germanium, the lowest conduction band minima 
are along A and at E respectively. When the conduction band minimum doesn't 
occur at the same point as the valence band maximum, the semiconductor is 
called indirect. GaAs is seen to be direct, but it also has a minimum at L that is 
only a few tenths of an electron volt higher. This upper minimum plays an 
important role for electron transport in CaAs. 

When the conduction band minimum or valence band maximum lies at k = 0, 
E(k) may be approximated as 

where the positive sign is for the conduction band and the negative sign for the 
valence band. The energy zero is taken at the band extrema, so E(k) represents 
the carrier's kinetic energy. Equation (1.38) describes a band whose constant 
energy surface in k-space is a sphere; the effective mass is isotropic. This simple 
model is appropriate for the conduction band at r and for the split-off valence 
band, but is often used more widely - whenever rough estimates suffice. 

- 
Wave vector 

u 
m a 
a, 0 
C 
a, - 
9 

Fig. 1.5 (a) Band structure of the model semiconductor (from Reggiani, L., Chapter 1: 
General Theory. In Hot Electvon T~~anspout in Serniconductous. Springer-Verlag, New 
York, 1985.) (b) Standard notation for labeling high symmetry lines and points in the 
Brillouin zone for diamond and zincblende crystals. (Reproduced with permission from 
Springer-Verlag.) 
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Table 1.1. Band parameters of common cubic semiconductors (from 
L. Reggiani, Chapter I: General Theory. In Hot Electron Transport in 
Semiconductors. Springer- Verlag, New York, 1985. Reproduced with permission 
from Springer- Verlag.) 

C 11.67 12.67 5.45 0.006 1.4 - 0.36 - 3.61 0.18 3.76 
Si 4.08 1.87 1.13 0.044 0.98 - 0.19 0.5 4.22 0.78 4.80 
Ge 0.89 0.76 0.96 0.29 1.64 - 0.082 0.65 13.35 8.50 13.11 
A1P 3.3 3.0 2.1 0.05 - - - - 3.47 0.12 3.98 
AlAs 2.95 2.67 2.16 0.28 2.0 - - - 4.04 1.56 4.71 
AlSb 2.5 2.39 1.6 0.75 1.64 - 0.23 - 4.15 2.02 4.95 
GaP 2.7 2.7 2.2 0.08 1.12 - 0.22 - 4.20 1.96 4.65 
GaAs 1.42 1.71 1.90 0.34 - 0.067 - 0.64 7.65 4.82 7.71 
GaSb 0.67 1.07 1.30 0.77 - 0.045 - 1.36 11.80 8.06 11.71 
InP 1.26 2.0 2.3 0.13 - 0.080 - 0.67 6.28 4.16 6.35 
InAs 0.35 1.45 2.14 0.38 - 0.023 - 2.73 19.67 16.74 13.96 
InSb 0.23 0.98 0.73 0.81 - 0.014 - 5.72 35.08 31.28 22.27 
ZnS 3.8 5.3 5.2 0.07 - 0.28 - 0.14 2.54 1.50 2.75 
ZnSe 2.9 4.5 4.5 0.43 - 0.14 - 0.26 3.77 2.48 3.87 
ZnTe 2.56 3.64 4.26 0.92 - 0.18 - 0.26 3.74 2.11* 4.30 
CdTe 1.80 3.40 4.32 0.91 - 0.096 - 0.45 5.29 3.78 5.46 

For many semiconductors, electrons respond to applied fields with an effective 
mass that depends on the crystallographic orientation of the field. In common 
cubic semiconductors, we find that 

Equation (1.39) describes a band with ellipsoidal constant energy surfaces. The 
effective mass is a tensor - the longitudinal and transverse effective masses, m: 
and m:, differ. Equation (1.39) describes conduction bands at L and along A .  
Note that there are eight equivalent L points and six equivalent d lines in cubic 
crystals so there are actually many of these valleys in k-space. 

For high applied fields, carriers may be far above the minimum, and the higher 
order terms in the Taylor series expansion cannot be ignored. For the conduction 
band, nonparabolicity is often described by a relation of the form 

#j where m* is determined from eq. (1.37) at the minimum. (Equation (1.40) is B 
+$ obtained from approximate solutions to eq. (1.33) derived by k . p theory.) For k @ a minimum at k = 0, 

where EGr is the direct bandgap. 
The simple expressions we have presented generally work well for electrons in 

the conduction band, but the valence bands are much more complex. In k . p 
theory, the shape of E(k) is attributed to interactions between various bands. In 
wide bandgap semiconductors, the conduction band is well separated from the 
valence bands, interactions are weak, and the resulting band structure is para- 
bolic. (But at high energies, or in narrow bandgap semiconductors, these inter- 
actions become important leading to conduction band nonparabolicity as 
discussed above.) The light and heavy hole valence bands, however, are degen- 
erate at k = 0, so the interactions are strong and the band shapes become com- 
plex. Since the split-off valence band is generally rather well-separated from the 
other valence bands, we expect its shape to be more nearly parabolic. Because the 
band structure has such a strong influence on carrier transport, it is important 
that we develop a descriptive understanding of the valence bands. (For a discus- 
sion of how to actually compute these band shapes, consult Datta [I. 11 or Singh 
[1.61.) 

The light and heavy hole valence bands in common semiconductors can be 
described by 

Such bands have a warped constant energy surface (the refers to the heavy and 
light hold bands respectively). The angles, Q and 4, are the polar and azimuthal 
angles of k with respect to the crystallographic axes. The function g(Q, 4) is given 
by 

2 . 4  g(Q, 4) = [b2 + c ( s ~ n  Q cos2 4 sin2 4 + sin2 6 cos2 o)]"~ (1.43) 

with 

where A, B, and C are listed in Table 1.1. 
Figures 1.6-1.8 show the constant energy surfaces for the heavy, light, and 

split-off valence bands in Si. As shown in Fig. 1.6, the heavy hole band is warped 
at low energies, and the shape becomes complicated at higher hole energies. For 
the light-hole band displayed in Fig. 1.7, the distortion is smaller, and it is even 
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Fig. 1.6 The constant energy surfaces for the heavy hole band in Si. (a) E = 1 meV, and 
(b) E = 40 meV. From Singh [1.6]. (Reproduced with permission of The McCraw-Hill 
Companies.) 

less for the split-off valence band, as shown in Fig. 1.8. For Si, the spin-orbit 
coupling is small (Aso = 0.044eV), so the split-off band can play a role in hole 
transport, but for most semiconductors, the spin-orbit coupling is much larger, 
and the split-off band is not typically populated by holes (e.g. in GaAs, 
Aso = 0.35eV). fhese examples show why hole transport is difficult to treat, 
even at low fields when the carriers reside near the top of the band. We will 
generally make use of very simple, spherical and parabolic energy band models, 
but it is important to recognize that a realistic description of the valence band 
shape is required for a quantitative treatment of hole transport. 

1.2.2 Full band structure 
As discussed in the previous section, the conduction band can be approximated 
as parabolic only near the band minima. For higher energies, we can approx- 
imate the conduction band with a nonparabolicity parameter, a, as defined in eq. 
(1.40). In Section 1.4.2, we will show that a spherical, nonparabolic band pro- 
vides a reasonable approximation to the density of states in Si up to an energy of 
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Fig. 1.7 The constant energy surfaces for the light hole band in Si. (a) E = 1 meV, and 
(b) E = 40 meV. From Singh [I .6]. (Reproduced with permission of The McGraw-Hill 
Companies.) 

about x 1-2 eV. There are important reasons, however, for examining electrons 
at much higher energies. Impact ionization, for example, involves electrons with 
a few electron volts of kinetic energy, and in Si MOSFETs an important relia- 
bility problem is the injection of electrons from the channel into the gate oxide. 
The energy barrier at the SiOz : Si interface is % 3.1 eV. For such problems, we 
must abandon simple expressions for E(k) and resort to a numerically-generated 
table of E@). 

To evaluate E(k) numerically, eq. (1.1) is solved for a bulk semiconductor 
(ECO(r) = 0) in the absence of scattering (US@, t )  = 0). The well-developed art 
of such calculations is discussed by Singh [l.6]. One popular method is the 
pseudopotential technique which relies on the fact that the band structure is 
largely determined by the valence electrons. Accordingly, the effect of the core 
potential is subtracted out by replacing the actual potential by a pseudopotential 
which reproduces the actual potential between atoms but which is smooth 
through the ion core. Empirical form factors have been derived to fit optical 
bandgaps at the high symmetry locations. Using this empirical pseudopotential 
method, the energy band structures of most common semiconductors have been 
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Fig. 1.8 The constant energy surfaces for the split-off hole band in Si. (a) E = 45meV, and 
(bj E = 84meV. From Singh [1.6]. (Reproduced with permission of The McGraw-Hill 
Companies.) 

evaluated. The results of such calculations are generally presented as plots of 
E(k) along the high symmetry lines displayed in Fig. 1.5b. Figures 1.9 and 1.10 
show the results for the conduction bands of Si and GaAs [1.7]. 

Figures 1.9 and 1.10 show the first several conduction bands; the lowest con- 
duction band in each case is indicated by a heavy line. For Si, we see that the 
lowest conduction band energy is along the x-line (a [100] direction) and occurs 
at about 85% of the way to the zone boundary. These are the well-known six, 
equivalent ellipsoidal constant energy surfaces of Si. Note that when electrons 
gain x 0.13 eV of kinetic energy, they can cross the zone boundary. More impor- 
tantly, we see a second conduction band only 0.1 eV above the minimum of the 
first conduction band. Carriers above x 0.1 eV in kinetic energy may reside in 
either of two conduction bands. Note also that the first conduction band mini- 
mum at L lies about 1 eV above the lowest first band minimum. Under high 
electric fields, carriers can gain enough energy to populate these (Ge-like) valleys 
too. 

The ellipsoidal constant energy surfaces at low energy become very compli- 
cated at high energies. In Figs. 1.1 la-c we examine the constant energy contours 
in a cross-section of the Brillouin zone. The ellipsoidal constant energy surfaces 
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Fig. 1.9 E(k) for the conduction bands of Si. From M. Fischetti [1.7]. (0 1991 IEEE) 

u L r  A X U , K  r 
Wave vector 

Fig. 1.10 E(k) for the conduction bands of GaAs. From M. Fischetti [1.7]. (0 1991 IEEE) 

of the first conduction band are displayed in Fig. 1.1 lb,  and the constant energy 
surfaces of the second conduction band are displayed in 1 . l  lc. The second con- 
duction band minima lie at the zone boundary, and the constant energy surfaces 
are more spherical than the first. Under high electric fields, electrons populate the 
entire Brillouin zone, and Figs. I . l l b  and c show that the constant energy 
surfaces between the minima cannot be described by simple analytical expres- 
sions. 

The E(k) relations for the conduction bands of GaAs are displayed in Fig. 
1.10. In contrast to Si, we see that the second conduction band lies well above the 
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Fig. 1.11 (a) A (100) plane cross-section of the Brillouin zone. From J .  U. Tang and K. 
Hess, Impact ionization of electrons in silicon (steady state), J. Appl. Phys., 54(9) 5139% 
5144, 1983. (b) The (100)-plane contours of constant energy for the first conduction band 
in Si. From Tang and I-Iess. (c) The (100)-plane contours of constant energy for the second 
conduction band in Si. From Tang and Hess. (Reproduced with permission of American 
Institute of Physics.) 

first; we can do a decent job of describing transport in GaAs with just a single 
conduction band. Note, however, that the first conduction band shows three 
minima with the lowest at the r point. The first conduction band minima at L 
(the Ge-like valleys) lie only about 0.31 eV above the r-valley minima, and the 
minima along X (the Si-like valleys) are only about 0.5 eV above the T-valley 
minimum. These valleys are easily populated under modest and high electric 
fields and give GaAs its distinctive transport features. 

Because of the increasing importance of high energy carriers in modern 
devices, the use of full, numerical tables of E(k) is common. When generating 
such tables, it is important to exploit symmetry to minimize the data to be stored. 
Consider Fig. 1.12, which shows a location in a cubic coordinate system. For a 
cube, one symmetry operation is reflection across the x-z plane. From repeated 
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Pig. 1.12 Illustration of the symmetry operations for a cubic lattice. (a) Reflection across a 
(100) plane, (b) reflection across a (1 10) plane, and (c) rotation of 3x12 about a [ I l l ]  
direction. 

Fig. 1.13 The irreducible wedge of the Brillouin zone. Given E@) for this 1148th of the 
Brillouin zone, E(k) for the entire Brillouin zone is obtained by applying the symmetry 
operations of the cubic lattice. 

reflections across equivalent planes, eight equivalent points can be formed. 
Another symmetry operation is reflection across a (1 10) plane, which generates 
another equivalent point for each of the first eight equivalent points. Finally, one 
can rotate a cube by 3n/2 about a [ I l l ]  direction to get three more equivalent 
points. The result is that for the given point, there are 8 x 2 x 3 = 48 equivalent 
points. It is sufficient, therefore, to evaluate E(k) in 1/48 of the Brillouin zone 
and to generate the other points by symmetry operations. The volume commonly 
used is shown in Fig. 1.13; it is known as the irreducible wedge of the Brillouin 
zone and is defined by 

When simple, analytical expressions for E(k) (e.g. eq. (1.38)) are used, we shall 
see that analytical expressions for quantities such as the density of states and 
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I carrier scattering rates can be obtained, but when a full, numerical description of 
the bandstructure is employed, we must resort to numerical integration. 
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1.3 Semi~onductrsr heterostructures 

One feature of modern semiconductor technology is that the material composi- 
tion is readily varied as a semiconductor film is grown. This is particularly easy 
to accomplish in semiconductor alloys, but other combinations of different semi- 
conductors are readily produced. Junctions between two different semiconduc- 
tors are called heterojunctions. More complex, perhaps continuous, compo- 
sitional variations are referred to as heterostructures. In this section, we introduce 
some general concepts that we will use when we discuss transport in heterostruc- 
tures. 

1.3.1 Band structure of semiconductssr alloys 
Alloys of two or more semiconductors have many device applications. The alloy 
A1,Gal-,As, for example, comprises GaAs (a direct gap semiconductor with a 
bandgap of 1.42eQ) and AlAs (an indirect semiconductor with a bandgap of 
2.16 eV). As the AlAs mole faction varies from 0 to 1, the bandgap of the alloy 
varies from that of GaAs to that of AlAs. The use of such alloys offers an 
additional degree of freedom to device engineers because both the doping and 
bandgap can be varied with position. To analyze such devices, the alloy's com- 
position-dependent properties must be known. Adachi [1.9] describes how para- 
meters such as the bandgap, effective masses, and dielectric constant vary with 
alloy composition in the Al,Gal-,As system. For other materials, consult 
kandolt-Bornstein [l ,101. 

Energy band diagrams for abrupt heterojunctions 
To draw energy band diagrams for compositionally nonuniform devices, we need 
to know more than how the bandgap varies with composition, we must also 
know how the bands line up at compositional junctions. Figure 1.14 shows the 
experimentally observed band alignments for Alo,3Gao,7As/GaAs heterojunc- 
tion. For AlXGal -,As heterojunctions, the offset in conduction bands is found 
to be about 65% of the difference in band gaps for alloy compositions below 
about x = 0.5 where the band structure is direct. 

With modern epitaxial growth techniques, the alloy composition can be varied 
on an atomic scale to produce structures like that shown in Fig. 1.15a, which 
consists of a GaAs quantum well sandwiched between two AlXGal-,As layers. 

I 
Evo 

Fig. 1.14 Experimentally observed band alignments for A1,Gal_,As for x = 0 and x = 0.3. 

Fig. 1.15 Energy band diagram for an Al/GaAs/GaAs/AlGaAs quantum well structure. 
(a) For this case, we assume that the electrons are 'frozen' in place in the N-AlGaAs so 
that they cannot transfer to the i-GaAs. (b) A more realistic energy band diagram for the 
AlGaAs/GaAs/AlGaAs quantum well which displays the effects of mobile charge transfer 
to the quantum well. 

Since the width of the well may be less than 100 A, carriers within these wells are 
strongly influenced by quantum effects. 

For this example, we assume that the A1,Gal-,As layers are doped n-type 
and that the GaAs well is undoped. In Fig. 1.15a we have assumed that the 
electrons are frozen in place so that they cannot move down in energy from the 
W-AlGaAs to the i-GaAs. For this case, the bands are flat, and there is no 
electric field. A more realistic case is illustrated in Fig. 1.15b where the electrons 
move from the higher Fermi level to the lower one and establish equilibrium. 
As a consequence of the charge transfer, the AlGaAs layers are depleted and 
the GaAs well is accumulated. It is interesting to note that the electrons reside 
in the undoped quantum well - spatially separated from their parent donors in 
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the N-AlGaAs. As a result, electrons in the well experience little ionized impur- 
ity scattering and have an especially high mobility. The technique is known as 
modulation doping and is the basis for a transistor known as a modulation 
doped field-effect transistor (MODFET) (or HEMT) in which the electrons in 
a modulation-doped quantum well comprise the channel of the field-effect 
transistor. This device, and several other heterostructure devices are described 
in Weisbuch and Vinter [ I .  1 I]. 

It 

1.3.3 Energy band diagrams for continuous compositional variation 

For a conventional, homostructure semiconductor device, the conduction and 
valence band edges move in response to a macroscopic potential set up by space 
charges. The slope of the conduction or valence band give the electric field. More 
generally, both V ( x )  and the composition of the semiconductor vary with posi- 
tion. Since the composition is nonuniform, the crystal periodicity is broken, and 
one may question the whole concept of energy bands. If the composition varies 
slowly, however, we may take the band structure at any point to be the band 
structure of the correspondng bulk semiconductor with the composition at that 
point (see [1.12-1.141). 

Because the composition is nonuniform, Eco and Evo (and therefore the elec- 
tron affinity x and the bandgap EG) will also be nonuniform. As a result, 

and 

An energy band for this case might look like Fig. 1.16 which shows a semicon- 
ductor with band-bending which is due to both an electric field and to composi- 
tional variations. The slope of the conduction band gives the force of an electron, 
but it is impossible to deduce the electric field from the energy band diagram. 

Consider the force acting on an electron in the conduction band, 

I 
I and on a hole in the valence band 
I 

The force on electrons is not equal in magnitude and opposite in direction to the 
force on holes, as we would expect for forces due to electric fields. The electric 
field is only one component of the force on a carrier. Since we are used to 

Fig. 1.16 An energy band diagram for a compositionally graded semiconductor 

thinking of electric fields producing forces on carriers, we can define quasi- 
electric fields for electrons by 

Fe = -qE(z)- qEQ~(z> (1.48a) 

and for holes by 

Fh = +~E(z) f 9lQp(z). (1.48b) 

With these definitions we have 

and 

Notice that the quasi-electric field for electrons can differ both in magnitude and 
direction from the quasi-electric field for holes. These quasi-electric fields give the 
device designer an additional degree of freedom since they can be controlled by 
the nonuniform composition. Notice that Eco and Evo are not constrained to be 
parallel in a heterostructure. 
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1.4 Counting electron states 

Any finite volume of semiconductor will contain a finite number of states derived 
from the finite number of energy levels in the isolated atoms. To determine the 
macroscopic properties, the contributions from each occupied state have to be 
added. Because the number of states is usually very large, it is more convenient to 
integrate over a range of states in k-space or in energy space. To do so, however, 
we need to know the density of states in k-space or in energy space. 

1.4.1 Density of states in k-space 
Although we have drawn E(k) as continuous, in a semiconductor of finite size 
only a finite number of k's is allowed. Consider a chain of N atoms. Since the 
precise boundary conditions matter only very near the ends, we impose periodic 
boundary conditions, 

$(z) = $(z f Nu), (1.50) 

for mathematical convenience. From eq. (1.32) 

The boundary condition eq. (1.50) then requires 

kNu=2nl  C = 1 , 2 , 3  , . . . ,  N 

so only discrete values of k are given by 

are allowed. Since Nu = L the sample's length, each state occupies a space 2n /L  
in k-space. The number of states between k and k + dk on the curves of Fig. 1.4 
is Ldk/2n. In three dimensions the number of states per unit volume of k-space 
generalizes to ~ ~ / 8 n ~ .  We also need to multiply by two to account for the spin of 
the two electrons which can occupy a state. We conclude, therefore, that 
Number of electron states D 

= N , = ,  Volume of k-space 4n- 

where D = L~ is the sample's volume. 
We shall frequently have to evaluate sums like 

where g(k) is some function of k and the sum contains all states in the first 
Brillouin zone as given in eq. (1.52). It is usually convenient to think of the 
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E(k) curve as continuous and to integrate rather than sum. To do so, we must 
properly account for the number of states between k and k + dk as given by eq. 
(1.53). The result, 

is one that we shall often make use of. For device applications, we'll evaluate 
sums like eq. (1.54) to determine how the carrier density or current density varies 
with position within the device. 

For carriers in a bulk semiconductor, Nk is given by eq. (1.53),  and S2 is a 
purely conceptual box whose dimensions are large compared to an average 
electron's wavelength but small on the scale of the device. With the use of 
heterostructures, carriers can be confined in quantum wells, where they are 
free to move only in two dimensions, or in quantum wires where they can 
only move in one dimension. Equation (1.53) generalizes to 

where L is the sample size, d the dimensionality (1, 2, or 3), and the factor of two 
accounts for spin degeneracy. The integrals are then carried out in one, two, or 
three dimensions. We shall see many applications of eqs. (1.54) and (1.55).  

1.4.2 Density of states in energy space 
Equation (1.53) shows that the density of states in k-space is constant. We will, 
however, frequently find it convenient or necessary to deal with the density of 
states in energy space. Figure 1.17 illustrates the relationship between N(k)  and 
N(E).  The states are distributed uniformly in k-space, but not in energy space. 
One way to evaluate N(E)  is to construct a histogram. After defining bins of 
width AE, we can scan through all of the allowed k-states, evaluate their energy, 
and increment the count in the appropriate energy bin. Mathematically, the 
number of states in a range of AE about E is 

where the sum is over all states in the Brillouin zone and A[E - E(k)] = 1 if 
E(k)  - AE/2 < E < E(&) + AE/2 and zero otherwise. Letting AE approach 
zero, we obtain 
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Fig. 1.17 Illustration of the density of states in k-space and in energy space. In k-space, the 
density of states is uniform as shown by the x's. A given number of k-states, however, 
occupies different ranges of energy, as shown by the shaded lines on the energy axis. In this 
example, g(E) decreases as E increases because we are considering 1D electrons (see 
eq. (1.63a)). 

(In this equation, 6(s) is actually a ICronecker 6, which becomes a 6-function 
when the sum is converted to an integral.) 

Equation (1.57) can be understood as a count of every state with energy E.  We 
can prove that this is the correct result by evaluating the electron density from 

where the f (k) is the probability that the state at k is occupied. Alternatively, we 
can evaluate the electron density in energy space from 

Using eq. (1.57) for the density of states, we find 

By interchanging the order of integration and summation, 

we find 
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The fact that eq. (1.62) is identical to the correct result, eq. (1.58), verifies that eq. 
(1.57) is the correct expression for the density of states. 

For parabolic energy bands, the density of states goes as E " ~ ,  as the example 
calculation showed. For non-parabolic energy bands, we need to repeat the 
calculation using eq. (1.40) for E(k). (See homework problem 1.4 for the result- 
ing expression.) As illustrated in Fig. 1.18, nonparabolicity flattens the energy 
bands, so there are more k-states between E and E + dE and the density of states 
increases. In general, it will be necessary to evaluate eq. (1.56) numerically using 
a table of E(k). 

Figure 1.19 compares the density of states in silicon assuming full, numerical 
energy bands, to that evaluated from the parabolic and nonparabolic expres- 
sions. The structure in the full band density of states is a result of the E(k) 
relation plotted in Fig. 1.9. The sharp drop above x 2eV results from the fact 
that the first conduction band extends to only about 2eV. The parabolic band 
assumption is seen to apply only to very low energy carriers near the band 
minima. The non-parabolic energy band assumption provides a rough approx- 
imation to almost 2 eV, but for very energetic carriers, the full, numerical density 
of states must be used. 
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Fig. 1.18 Illustration of how conduction band nonparabolicity flattens the E(k) relation 
and increases the density of states in energy space. For a given dE, shown in dark on the 
energy axis, there are more allowed k-states for the nonparabolic energy band. 

2 3 4 5  
Energy (eVP 

Fig. 1.19 Coinparison of the density of states (DOS) for the conduction bands of silicon. 
The results for parabolic and non-parabolic energy bands are compared to the result using 
the full numerical description of the energy bands. From Kunikiyo, T. et al., Jouvnal of 
Applied Physics, 75(1), 297-3 12, 1994. (Reproduced with permission of American Institute 
of Physics.) 

1.4.3 Densiv of states for confined carriers 

For carriers in a bulk semiconductor, the density-of-states for parabolic energy 
bands goes as but for confined carriers, the density of states is altered. 
Using eqs. (1.54) and (1.55), we find the one-, two-, or three-dimensional density 
of states as (see homework problem 1.3) 

3 1 1 . 5  E L E C T R O N  WAVE P R O P A G A T I O N  I N  D E V I C E S  
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Fig. 1.20 The density of states versus energy for 1, 2, and 3-dimensional carriers with 
parabolic energy bands. The energy E has been referenced to Emin, the conduction band 
minima for three-dimensional carriers. For two- and one-dimensional carriers, the 
minimum energy is raised by quantum confinement. 

for one-dimensional carriers, and 

for two-dimensional carriers. These results should be compared to 

for three-dimensional carriers. Figure 1.20 sketches the density-of-states versus 
energy for one-, two-, and three-dimensional carriers. Because carrier confine- 
ment is common in modern devices, we shall have to become familiar with 
evaluating carrier densities, average kinetic energies, scattering rates, etc. in 
one, two, and three dimensions. 

/ 
& B ~ P M ~ ~ @ ~ ~ ~ -  

1.5 Electron wave propagation in devices 

An electron propagating within a device sees both the crystal potential and those 
that are applied or built-in to the device. When the applied and built-in fields are 
absent, only the crystal potential, Uc(z),  sketched in Fig. 1.21a is present. The 
solutions to the wave equation are well known for the crystal potentials of 
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Fig. 1.21 Illustration of the crystal and applied potentials within a semiconductor. (a) The 
crystal potential versus position, (b) the applied or built-in potential versus position, (c) the 
total potential versus position. 

common semiconductors [1.6]. In devices, however, another potential can be 
built-in by varying the doping or material composition or imposed by biasing 
the device. [This is the potential we refer to as Eco(s).] As sketched in Fig. 1.21b, 
the applied and built-in potentials often vary slowly in comparison to the crystal 
potential [but with modern epitaxial growth techniques, potentials that vary as 
rapidly as the crystal potential can also be engineered into the device (recall Fig. 
1.1511. Electrons see both the crystal and applied or built-in potentials as 
sltetched in Fig. 1 .21~.  

8.5.1 The eflectin mass equation 

When scattering can be neglected, the electron's wave function is found by 
solving 

1 ay + Uc(z) + EcoQz) y(z, t) = ih- 2mo dz2 at 

Since the Bloch function solutions to eq. (1.64) in the absence of ECo(z) are 
assumed to be known, the question of whether eq. (1.64) can be simplified by 
using these known solutions arises. The answer is yes, for carriers near the 
bottom of a simple, spherical, parabolic band, the wave equation can be written 
as 

[ "I"' 1 aF + Eco(z) F(z, t) = ih- 
2m* dz2 at 

where FQz, t) is the envelope function, and the actual wave function is 

The wave function is the product of a slowly varying envelope function and a 
rapidly varying Bloch function evaluated at the band minimum. Equation (1.65) 
is known as the single band effective mass equation and represents an enormous 
simplification of eq. (1.64) because the effects of the complicated crystal potential 
have been described by a single number, the effective mass. Equation (1.65) 
applies only when the applied or built-in potential varies slowly on the scale of 
the crystal potential. /This certainly is not the case for the quantum well sltetched 
in Fig. 1.15, but if the well is not too narrow, then an effective mass equation 
usually provides a good description of the energy levels for electrons within the 
well. Equation (1.65) also applies only to a parabolic band. The effective mass 
equation needs to be generalized when the band is non-parabolic or, in the case 
of valence bands, when several nearby energy bands are coupled. The derivation 
of the effective mass equation, and its extension to more realistic band structures, 
are discussed by Datta [I .  11. 

In devices, the contacts launch electron waves which propagate through the 
device according to the effective mass equation. A device can be described by 
specifying its energy band diagram as displayed in Fig. 1.22. The 'contacts' are 
heavily doped regions where Eco(z) is uniform; they are assumed to be near 
thermodynamic equilibrium so that each can be described by its own Fermi 
level. To compute the current through the device, we evaluate the sum 

In this equation, hk,/m* is the velocity of electrons as they are injected from the 
contact with wave vector, k, fL(k) is the Fermi factor for the left contact, which 
gives the probability that such an electron is injected from the contact, and 
TLR(k) is the current transmission coefficient for the electron. In Section 1.1, we 



3 4  
AW~P"P#%W~ 

THE QUANTUM FOUNDATION 

Fig. 1.22 Representation of a device by its energy band profile. Each contact, assumed to 
be in thermodynamic equilibrium, injects electrons into the device and absorbs electrons 
incident upon it. 

. .z  0 wx 
Fig. 1.23 Electrons confined in a quantum well (a) and in a quantum wire (b). 

where A = LxLy is the cross-sectional area. After substituting eq. (1.69) into eq. 
(1.68), we find an equation for @(z) as 

computed T(k)  for a simple potential step. For arbitrary potential profiles, the 
current transmission coefficient is found by numerically solving the effective mass 
equation. The sum of eq. (1.67) accounts for the current due to all the electrons 
injected from each of the two contacts, and must, in general, be evaluated numeri- 
cally. 

Device analysis based on solving the effective mass equation is necessary when 
the potential, Eco(z), varies rapidly so that wave phenomena are important. 
Vassell et al. [1.8] describes how this technique is applied to devices. 

where 

and 
1.5.2 Quantum confinement 

Because electrons confined within a small potential well experience a rapidly 
varying potential, the carriers' wave nature becomes important. For the quantum 
well illustrated in Fig. 1.23a, electrons are confined in the ?-direction but are free 
to move in the 2 - j plane. For the quantum wire illustrated in Fig. 1.23b, 
electrons are confined in the 2 - j plane but are free to move in the ;-direction. 
Such structures can be produced with semiconductor heterojunctions, as illu- 
strated in Fig. 1.15 for the quantum well. To describe confined carriers, the 
three-dimensional effective mass equation, 

Because h2(k2 + k;)/2m* is the kinetic energy we associate with motion in the 
2 - j plane, E must be the energy associated with confinement in the ?-direction. 

Equation (1.70) is identical in form to the simple, one-dimensional wave equa- 
tion, eq. (1.3). The three-dimensional wave equation consists of a plane wave in 
the 2 - j plane multiplied by a function, @(z), which is found by solving an 
equation that is very similar to the one-dimensional wave equation. If the quan- 
tum well is deep, then @(z) is given by the infinite well solutions of Section 1.1 as 

L 
@(z) = J, sin k g ,  

where 

k, = nn/ W 
must be solved. Equation (1.68) is readily solved by separating variables. For 
quantum wells, carriers are free to move in the 2 - j plane, so we try solutions of 
the form 

and 
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where E, is given by eq. (1.17). Quantum confinement restricts k, to discrete 
values, and the energy consists of a component due to confinement in the 
%direction and one due to the free motion in the i - j plane. 

Carriers in quantum wires are treated in a very similar manner. Instead of eq. 
(1.691, we write the wavefunction as 

If the confinement potential is infinite, we find 

where 

k, = nxn/W, (1.78a) 

and 

ky = nYn/ W'. (1.78b) 

For quantum wires, the bottom of subbands are at the energies, 

and if the electron is moving in the 2-direction, its total energy is 

h2k,2 
E = Eco + + -. 2m* (1.80) 

1.5.2.1 Carrier density relations for confined carriers 
For three-dimensional carriers in a bulk semiconductor, there is a simple relation 
between the equilibrium carrier density and the location of the Fermi level. The 
corresponding relations for confined carriers are readily derived. Figure 1.24a 
shows three energy levels, or subbands, in a quantum well along with the position 
of the Fermi level. To compute the density of electrons in the well, we evaluate 
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Fig. 1.24 Energy band diagram of a quantum well with the location of three subbands and 
the Fermi level indicated. (a) The filled circles at the right indicate occupied states and 
show that only the first subband is occupied. (T = 0 R is assumed.) (b) The first two 
suhbands are occupied. 

where the sum is over each state in the Brillouin zone, and fo gives the 
probability that the state at energy, E,  with crystal momentum, (k,, k,, k,), is 
occupied. 

The sum, eq. (1.81), is easiest to evaluate at T = 0 K because then all states 
below EF are occupied, and all those above EF are empty. For the example 
illustrated in Fig. 1.24a, only states with k, = kZl are occupied, so eq. (1.81) 
becomes 

Using eqs. (1.54) and (1.55), we convert the sum over wave vectors in the 2 - j 
plane to an integral as 
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where ns is the electron density per unit area, and 

4 = k ; + k ; .  (1.84) 

Only states below EF are occupied, so from eq. (1.75) we find that all states above 

k2 - k2 - 2m* 
1 1  - F--(EF-EI) (1.85) ii2 

are empty. At T = 0 K, eq. (1 33) becomes 

If the Fermi level lies above two subbands, as it does in Fig. 1.24b, then the sum 
in eq. (1.8 1) becomes 

For this case, the carrier density is simply the sum of the contributions from 
the two subbands, 

n~ = ~ Z D ( ~ F  - ~ 1 )  + g 2 ~ ( ~ F  - ~ 2 ) .  (1.88) 

The corresponding results for finite temperatures are also readily derived. We 
begin with eq. (1 31) but use the Fermi function, 

Alternatively, we can work in energy space and evaluate 

In either case, for one occupied subband, we find 

ns = gzDks T ln(l + e(EF-El)ikBT) cmP2, (1.91) 

which is analogous to 

n = NCFl12[(EF - Ec)/ks TI cmP3 (1.92) 

for three-dimensional electrons. Here, FIl2 is the Fermi-Dirac integral of order 
112, and 
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is the effective density of states. When additional subbands are occupied, eq. 
(1.91) is easily generalized by adding the contributions from the additional sub- 
bands. 

Quantum confinement often occurs in modern devices such as heterostructure 
field effect transistors in which the channel comprises carriers confined in a 
quantum well [1.10]. Even in the conventional, silicon MOSFET, carriers are 
confined within a nearly triangular potential well at the oxide-silicon interface. 
The wave functions of confined electrons are qualitatively different from the 
plane waves that describe three-dimensional, bulk electrons. There is a close 
analogy between these confined electrons and electromagnetic waves in a wave- 
guide. The various subbands are analogous to the waveguide modes; occupied 
subbands correspond to propagating modes, unoccupied subbands to evanescent 
modes. This analogy can even be exploited to build electron devices analogous to 
optical or microwave devices. 

a~~-##sm@m 

4.6 Semiclassical electron dynamics 

For conventional devices, the applied or built-in potentials vary slowly in com- 
parison to the crystal potential, so that wave phenomena such as reflections and 
tunneling are absent and electron motion can be described by classical physics. 
When the potential is nearly constant, the bottom of the band is simply shifted, 

Eco(z) is interpreted as the bottom of the conduction band, and E(k) repre- 
sents only the kinetic energy. Since Eco = constant - qV(z), where V(z) is the 
electrostatic potential, it varies with position only when applied or built-in fields 
are present. 

Equation (1.94) is illustrated in Fig. 1.25. As the electron wave packet (cen- 
tered at ko) moves without scattering, its total energy remains constant. From eq. 
(1.94) we have 

Because energy must be conserved, dE/dt = 0 and we conclude that 
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Fig. 1.25 Motion of an electron wave packet centered at k, = ko across a region of slowly 
varying potential. After Datta [ l  .I]. 

where ko is the wave vector at the center of the wave packet. Because eq. (1.95a) 
is so similar to the equation of motion for classical particles, with hko playing the 
role of momentum, hko is termed the crystal momentum. 

For heterostructures, the effective mass inay vary with position, so 

For heterostructures, the equation of motion generalizes to (see homework 
problem 1.13) 

In this case, only the first term represents a real, physical force on carriers. 
The analogy of hko to momentum is also apparent from the velocity of a Bloch 

electron as given by eq. (1.14). For spherical, parabolic bands described by eq. 
(1.381, we obtain 

which looks like momentum divided by mass. But for nonparabolic bands 
described by eq. (P.40), the group velocity is 
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In the semiclassical view of electron transport, the electron wave packet is 
treated as a particle; the uncertainty in the momentum is assumed to be small 
so that the electron's energy is sharply defined, the uncertainty in the electron's 
position is assumed to be small in comparison to the distance over which applied 
and built-in potentials vary significantly. The motion of the center of this wave 
packet is described by eq. (1.951, which looks like the classical relation between 
force and momentum. The velocity of the electron, eq. (1.141, corresponds to the 
velocity of a classical particle only for spherical, parabolic bands. This semi- 
classical treatment of carrier dynamics is the basis for each of the following 
chapters, but collisions involve rapidly varying potentials and must be treated 
quantum mechanically. 

~=#&~~88i=s"S". 

1.7 Scattering of electrons by the random potential, Us(r,t) 

Bloch waves move through the lattice unimpeded by the crystal potential. 
Occasionally, however, the electron encounters a perturbation caused when a 
lattice vibration moves an atom or by impurities or defects which may be present. 
When an electron encounters such a perturbation it scatters - scattering 'knocks' 
an electron wave packet centered at ko to k;. Frequent scattering tends to 'wash 
out' the interference effects due to the carrier's wave nature. Scattering plays a 
dominant role in transport, and it is important that we know S(ko, k;), the 
transition rate from ko to k;. We now present a brief derivation of the expression 
for S(ko, kh) in terms of Us(z, t ) ,  the perturbing potential. For a proper deriva- 
tion, consult a quantum mechanics textbook such as Datta [ I .  I]. The intent here 
is to indicate how the result is derived and some of its limitations. We will make 
extensive use of the result, known as Fermi's Golden Rule, to calculate scattering 
rates for electrons in semiconductors, so the reader should develop a familiarity 
with its use. 

I .  Fermi's Golden Ruie 
The wave equation, [eq. (1.1)] is written as 

where No is the Hamiltonian operator for the unperturbed problem (the problem 
without the scattering potential). We assume that the unperturbed problem: 
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has been solved. These solutions form a complete, orthonormal set, so we can 
express the solution to the perturbed problem as linear combinations of them: 

Now consider the situation sketched in Fig. 1.26 - an electron wave packet 
centered at k = ko enters, interacts with Us(z, t), and emerges centered at ki. At 
t = 0 we have 

cko(t = 0) = 1 

cl,(t = 0) = 0 (k # k,) 

After the scattering event, the probability of finding the electron with wave 
vector, kh, is 

so the scattering rate from ko to ki is 

I ~ ~ ~ ( ~ ) I ~  S(ko, ki) = lim ---- 

(To allow t -+ co in these expressions, without another collision occurring, colli- 
sions must be infrequent.) 

To find el,, we insert eq. (1.101) in eq. (1.98) and obtain 

Next, we multiply both sides by $~i;;eiE(k~)t", integrate over position, and make 
use of the orthogonality of eigenfunctions, to find 

Pig. 1.24 Scattering of a wave packet centered at k = ko to one centered at k = kh. 
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where 

is the matrix element of the scattering potential between states ki and k. We have 
normalized the wavefunctions over a length L, which becomes a volume, 92, in 
three dimensions. 

Since we assume that the scattering is weak, ck, 2 1 for all time, and the other 
C ~ ' S  are always small. With this approximation (the so-called Born approxima- 
tion) the sum in eq. (1.106) can be approximated by one term as 

which can be integrated to find 

Because the final state ki was empty at t = 0, ck;(0) = 0. 
Let's specify the time-dependent matrix element as 

(The significance of the a and e superscripts which apply the minus and plus signs 
respectively will be explained shortly.) With eq. (1.109) for the matrix element, 
eq. (1.108) can be integrated as 

When we define 

then eq. (1.110) can be written as 

1 
ck; (t) = -Hi;: e i ~ t / 2  sin(At/2) t. 

lk 0 At12 

Now, according to eq. (1.104), we find the transition rate as 
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2 1 " i0  1 [sin(~t/2)] 2t2. 
S(ko, ki) = lim ---- (1.113) 

t,, th2 At12 I 

For large t, the function in brackets is very sharply peaked near the origin and 
looks like a 6-function. The strength of the 6-function is determined from the I , 
area under the curve. Recall that 1 

00 sin2 x 
dx = n, I 

-00 x2 I 

so sin2 x/x2 can be replaced by 6(x). Using x = At/& we find the replacement I 

sin2(/8t/2) 2n 
I 

lim = - 6(A) (1.114) i 
t+m (iat/212 t 

which can be inserted in eq. (1.1 13) to find I 

I 
I 

I 
I 

(1.115) 

I 

The 6-function in eq. (1.115) simply expresses conservation of energy and applies 
when scattering is weak, so that time can approach infinity in eq. (1.113). For 
frequent scattering, there is an uncertainty in the final energy, given by eq. (1.121, i 
which is known as collisional broadening. The first term in eq. (1.1 15) contributes , 
when E(k6) = E(ko) + hw; an energy of hw has been absorbed. The second con- 

1 

i 
tributes when E(k6) = E(ko) - hw; an energy of hw has been emitted. 

Equation (1.115) is the basic result of scattering theory that we will apply to 
carriers in semiconductors. The result is known as Fermi's Golden Rzrle. To apply 
the Golden Rule, the scattering potential must be identified so that the matrix 
element can be evaluated. For electrons in semiconductors, the wave functions 1 
for the unperturbed problem are Bloch waves. When the matrix element, eq. 
(1.107) is evaluated for Bloch waves, one finds [1.5]: 

1 

Hkik = I(k, k') Us(k - k') 

where 
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+ ~ / 2  e-ilc'z tilcz 
Us(k - k') = UsGI dz. 

For a parabolic band, I(k, k') -. 1 [1.5] and 

which is just what we would have obtained from eq. (1.107) using plane waves 
rather than Bloch waves. When we evaluate scattering rates in Chapter 2, we'll 
keep the algebra to a minimum by assuming that the energy bands are parabolic 
and employ eq. (1.1 191, but for quantitative work, overlap integrals should be 
considered. 

1.7.2 Examples 
To illustrate how the Golden Rule is applied to scattering problems, we consider 
two simple, but illustrative, examples. First, we consider scattering from a 6- 
function potential, which might approximate a short range scattering potential. 
Second, we consider a periodic perturbing potential, which might represent, for 
example, a lattice vibration. 

is called the overlap integral (the integral is over a unit cell), and 
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1.8 Lattice vibrations (phaanoras) 

Because much of the scattering in semiconductors is due to lattice vibrations, it is 
important that we understand their basic properties. If an atom is displaced from 
its equilibrium position, the bonding forces tend to push it back, so it oscillates 
about its equilibrium site. Since lattice waves propagate in a periodic medium, 
they have properties much like those of Bloch waves. Figure 1.27a shows a 
typical dispersion relation, w versus P, observed for elastic waves in cubic semi- 
conductors like silicon and gallium arsenide. (We label the wave vector by /I 
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Longitudinal - - - Transverse 

Fig. 1.27 (a) Typical dispersion relation for elastic waves propagating along a high- 
symmetry direction in cubic semiconductors. (b) Simplified dispersion relation useful when 
only longitudinal lattice vibrations near the center of the Brillouin zone are considered. 
After Datta [I.  11. (Reproduced with permission from Addison-Wesley) 

rather than k to distinguish elastic waves from electron waves.) Six types of 
elastic wave exist - three acoustic modes, and three optical modes. Acoustic 
modes are like sound waves in that adjacent atoms are displaced in the same 
direction - only the magnitude of the displacement varies from atom to atom. Of 
the three acoustic modes, one is longitudinal (LA) and two are transverse (TA). 
For longitudinal waves, atoms are displaced in the direction of propagation; the 
two transverse modes, in which atoms are displaced in a transverse direction, are 
degenerate in cubic silicon and CaAs. 

In Chapter 2 we shall establish that the scattering of electrons within a valley is 
due to lattice vibrations with wave vectors very near the origin of the Brillouin 
zone. For small /3, the dispersion relation for acoustic modes can be approxi- 
mated by 

where v, is the sound velocity. 
Optical modes differ from acoustic modes in that adjacent atoms are displaced 

out of phase. (The term arises because such vibrations can interact strongly with 
light.) As shown in Fig. 1.27a, the dispersion relation for optical modes displays 
relatively little variation with wave vector. When electrons are scattered by opti- 
cal phonons and remain within the same valley, only sinall wave vectors are 
involved and the dispersion relation can be approximated as 



48 
B ~ ~ ~ ~ ~ ~ Q '  

T H E  QUANTUM FOUNDATION 

where wo is a constant. Figure 1.27b shows a simplified dispersion relation for 
acoustic and optical modes that is often used for scattering calculations. 

Lattice vibrations are much like the vibrations of a harmonic oscillator, so the 
energy of each normal mode must be quantized according to 

The quantum of energy is viewed as a particle called a phonon, and the number of 
phonons is given by the Bose-Einstein factor as 

For 

hw(P) << k ,  TL 
eq. (1.133) reduces to 

which is known as equipartition and is usually valid for acoustic phonons - 
except at very low temperatures. Equation (1.134) is easy to understand; kBTL 
is the thermal energy and fiwB is the energy of the phonon at P, so eq. (1.134) just 
tells us how many phonons are needed to account for the thermal energy. In 
Chapter 2, we shall describe how phonons, both acoustic and optical, scatter 
carriers. 
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1.9 Summary 

A simple approach for treating carrier motion within conventional devices has 
been outlined. This semiclassical approach treats carriers as particles whose 
dynamics, between collisions, are governed by eq. (1.14) and eq. (1.95), which 
are analogous to Newton's Laws. Carrier scattering, however, is treated by 
quantum mechanics using Fermi's Golden Rule. The semiclassical approach is 
applicable when the applied and built-in potentials vary slowly on the scale of an 
electron's wavelength. Room-temperature, thermal average electrons in silicon 
have a wavelength of about 120 A and about 240 A in GaAs, so the semiclassical 
approach may be questioned in ultra-small devices. Many devices contain quan- 
tum wells, and the carriers within such wells clearly display their wave nature. 
Quantum confinement alters the wavefunctions of electrons confined in potential 
wells, but transport within the confined region can often be described semi- 
classically. Our focus in this text is on the semiclassical transport of three dimen- 
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sional carriers, but we shall also from time to time consider the transport of 
carriers confined in quantum wells and wires. An introduction to quantum trans- 
port, in which the electron's wave nature is essential, is contained in Chapter 9. 
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1.1 Assume the scattering potential shown below and assume that electrons are free to move in the 
z direction only. 

(a) Work out an expression for the transition rate, S(p, p') for one-dimensional electrons. Be 
sure to normalize the wavefunction over a length L. 

(b) An incident electron with crystal momentum p can only make a transition to one different 
state, p'. What is that state? 

(c) Explain what would happen if the sign of AU were to change. 

1.2 Consider the effect of a perturbing potential that is constant in both space and time, 

and answer the following questions. 
(a) Obtain an expression for the transition rate, S(k, k'). 
(b) Interpret your answer to part (a). What does your result imply about the motion of 

electrons through regions of uniform potential? 

1.3 The densities of states in one, two, and three dimensions can each be expressed as the sum in 
k-space as given by eq. (1.57). 
(a) Evaluate the two-dimensional density of states, and show that the result is eq. (1.63b). 
(b) Evaluate the density of states for one-dimensional electrons and show that the result is eq. 

(1.63a). 

1.4 When evaluating the density of states in energy space, we have assumed parabolic energy 
bands, but energy bands are typically nonparabolic. 
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(a) For three-dimensional carriers with parabolic energy bands, the density of states goes as 
E ' / ~ ,  as given by eq. (1.63~). Work out the corresponding result for 3D carriers with 
nonparabolic energy bands as given by eq. (1.40). Show that the density of states for 
nonparabolic energy bands is the parabolic band result multiplied by d m ( 1  + 2aE). 

(b) For two-dimensional carriers with parabolic energy bands, the density of states is con- 
stant, as given by eq. (1.63b). Work out the corresponding result for 2D carriers with 
nonparabolic energy bands as given by eq. (1.40). Show that the density of states for 
nonparabolic energy bands is the parabolic band result multiplied by (1 + 2aE). 

1.5 The following problem concerns electrons in a quantum well of width, W, with one subband at 
E = FI .  Assume equilibrium conditions and that the Fermi level is located above 61. Answer 
the following questions assuming parabolic energy bands. 

(a) Write an expression, involving sums over momentum space, which gives the average 
kinetic energy (due to its motion in the x-y plane) per electron. 

(b) Convert the sum to an integral over momentum or k-space. 
(c) Write an expression, involving an integral over energy space, which gives the average 

kinetic energy per electron. 
(d) Assume T = OK and evaluate the average kinetic energy per electron. You may work in 

either energy or momentum space. 

1.6 Obtain an expression for the concentration per unit area of electrons in a quantum well as a 
function of the Fermi level position, ns(EF). You should assume that the temperature is finite, 
and do not assume that the semiconductor is nondegenerate. 
(a) Find ns(EF) when one subband is occupied. For this part, you should work in energy- 

space using eq. (1.90). 
(b) Repeat part (a) but do the work in &-space using eq. (1.83). For both parts (a) and (b), 

show that the answer is eq. (1.91). 
(c) What is the result when two subbands are occupied? 
(d) Explain how the results depend on the shape of the quantum well (i.e., does eq. (1.91) 

hold for parabolic or triangular quantum wells? What changes, if anything?). 

1.7 For an infinite depth GaAs quantum well of width W = 200 A at T = OK, 
(a) How many subbands are occupied if ns = 5 x 10" cmP2? 
(b) How many if ns = 5 x 10" cmp2? 

3.8 For the quantum well problems, we have been asking about the total number of electrons per 
unit area within the well - not how the electrons are distributed within the well. The carrier 
density as a function of position within the well is found from 

where 
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2 . nnz 
@(z) = & sin 

(a) Show that the carrier concentration within the well is 
I 

nnz n(z) = --- 2 m * k ~ T  sin2 in(l + e-"1 
nh2 w 

I where 

Hint: It's easiest to perform the integral over k, and k, in polar coordinates. 
(b) Compute and plot n(z) versus z for quantum wells of width W = 50, 100, and 5001\. 

Assume that m* = 0.067m ,,, Eco - EF = 0.3 eV, T = 300 K. 
(c) Compare the results of part (b) with the classical result. 

1.9 Consider a 100A wide GaAs quantum well, and assume that = 56meV and ~2 = 225meV 
above the bottom of the quantum well. If the Fermi level is 100 meV above the bottom of the 
well, then 
(a) What is ns at T = 300 K? 
(b) If the electrons were considered to be three-dimens~onal, what ns would be computed? 

I I 1.10 The quantum well that confines carriers at the AlGaAs/GaAs interface in a MODFET 1s 
I approximately triangular. The first two energy levels are given by 
I 1 1  E~ = yln;13 

and 

where 
I 

and 

y2 = 3.2 x 1 0 ~ ' ~  eV - rn4l3. 

(See M. Shur, GaAs Devices and Circuits, p. 519, Plenum Press, New York, 1987, for a 
derivation of this result.) If we require that only one subband be occupied, what is the max- 
imum number of electrons per square centimeter that can be accommodated in the well at 
T = O K ?  

1.11 Verify the results, eqs. (1.77)-(1.80) for electrons in a quantum wire. 

1.12 Assume Ec(z) is as follows: 
v 
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(a) Compute @*p;(z)@,(z) assuming AEc = oo. 
(b) Compute n(z) for x > 0, approximate fR(k) using Boltzmann statistics. 
(c) Sketch n(z) and compare it with the classical value. Show that differences occur when z is 

with A of z = 0. 

1.13 Prove that the equation of motion for a semiconductor heterostructure in which rn* varies 
slowly with position is given by eq. (1.95b). 

1.14 In the so-called tight binding method for computing bandstructures, the E(k) relation for a 
one-dimensional lattice is given by 

where A and B are constants, and a is the lattice spacing. Using this band structure for one- 
dimensional electrons, answer the following questions. 
(a) Plot the E(k) relation for -n/a 5 k 5 nla. 
(b) Plot the velocity, v(k), for -n/a 5 k 5 nla. 
(c) Assuming that the electric field is -Eo, how long would it take an electron to travel from 

k = 0 to k = n/2a? 
(d) Given the answer, To, from part (c), how far would the electron go in this time? 
(e) Compute the density of states, g(E), for this one-dimensional semiconductor. 

1.15 Consider a metal-semiconductor barrier as shown below: 

(a) Write an expression, involving a sum, for the electron current injected from the semi- 
conductor to the metal, JSM. 

(b) Convert the sum to an integral. Be sure to show the limits of integration. 
(c) Sketch the transmission coefficient versus k, expected from (1) quantum mechanical and 

(2) classical considerations. 
(d) Set up the problem for computing the classical (thermionic emission) current JSM. Show 

the formula that has to be integrated, but do not integrate it. 
(e) Evaluate the integral and show that the result is the expected thermionic emission rela- 

tion. 


