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(a) What is the concentration of acceptors? (Assume that N, = 0.)
(b) How many donors ('g,, = 2, A¢,; = 6 meV) must be introduced to reduce
the hole concentration to 1 x 10'7 cm=3?
(c) (Cq(;nsmlk(:ll;)a lsfarrr:plc having the impurity concentrations calculated in parts
a) and (b). If the temperature increases slightly, will the h .
( 2 ; ole con 2
increase or decrease? Why? comtration
Aﬂ semiconductor s.ample is made quite thin in its Z dimension so that k. may
assume very few dlscrctg values. What is the concentration of electrons }n the
conducqon band at equilibrium (electrons per unit area)? Assume that the
c}(])nducuop band is spherically symmetric, the material is nondegenerate, and
the cffccuvg mass approximation is valid. If the Fermi energy is 4kT below
the conduction pand energy, what is the concentration of conduction band
electrons per unit area in GaAs at 300 K? (m, = 0.067m.)

Physical Properties of Semiconductors:
Wolfe, Holonyak, Stillman /

Transport
Properties

When electrons are in thermal equilibrium with the lattice, they are distrib-
uted among possible energy levels in a manner given by the Fermi-Dirac
function of (4.41). Under these conditions no net transport of charge or
energy occurs since the probability that a state with wavevector k is occupied
is the same as that for a state with wavevector —k. That is. the equilibrium
distribution function, fo. is symmetrical about the origin in k-space.

When external forces or temperature gradients are applied to the ma-
terial. however, this is no longer true. Under these conditions we can. in
principle, determine the nonequilibrium distribution function. f.in a manner
similar to that used for fo in Section 4.1. In the nonequilibrium case, how-
ever. we would have to maximize (4.10) for the most probable distribution
subject to the additional constraints that a steady flow of charge and energy
be maintained. That is.

J = ——qznkvk (51)
k

w

2 e NV (52)
k

where J is the electrical current density, W is the heat flow density, and ey
is the heat content per electron. These additional constraints produce an
asymmetry in the nonequilibrium distribution function which shifts its center
away from the origin in k-space. In this chapter we examine this nonequi-
librium distribution of electrons and use it to determine the transport of

charge and energy in semiconductors.
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5.1 BOLTZMANN'S EQUATION

The approach we take in determining the transport properties of semicon-
ductors is to first construct an electron wave packet from plane wave so-
lutions to the time-dependent Schrédinger equation. This is the same method
as that used in Section 2.8. Then, from the correspondence principle, we
can use a semiclassical approach.

On this basis, let f(k, r, 1) be the probability that a state with wavevec-
tor k is occupied by an electron with position r at time . The electrons are
continually changing their position according to (2.109) and, under the in-
fluence of forces F, (other than the periodic crystal forces), are continually
changing their wavevector according to (2.111). F, includes applied forces
F and forces F. due to electron collisions with lattice vibrations and other
imperfections in the crystal. Therefore, at time ¢ + dr the probability that

a state with wavevector k + dk is occupied by an electron with position r
+ dr is given by

1
f<k+ZF,dr.r+vdl.l+d1>

The total rate of change in the distribution function in the region of the point
r is then
of

af 1
— =< FeVf + vV, f + = 53
7 ﬁFV‘erva 7 (5.3)

On the right side of (5.3), the first term takes into account changes in the
distribution due to forces, the second term accounts for changes due to
concentration gradients, and the last term is the local change in the distri-
bution at the point r. Equation (5.3) is referred to as Boltzmann'’s transport
equation.

Since the total number of states in the crystal is constant, the total rate
of change of the distribution function must be zero (Liouville's theorem),
and

(:T{ = — ‘;‘I'F,'ka - V'v,f = %{‘ ) = %’F'V,\f = V'V,f (54)
Because of the difficulty of finding a value for F.., we separate the collision
forces from the applied forces by defining a local change in the distribution
due to collisions only as

1
= — —F.V,.f (5.5)
c h
Let us examine this collision term. The action of applied forces and gradients
tends to disturb the distribution function f from its equilibrium value f,. If

of
ot

SEhEOEIReREE
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this disturbance is removed, the scattering processes will tend to restore
equilibrium. When the change in the distribution is not large compared to
its initial value, it is reasonable to assume that
of _ af
at at

_ - - fa (5.6)

c Tm

where T, is a constant of proportionality called the momentum relaxation
time. In general, 7,, depends on the electron energy :fnd is dlfferem for
different scattering mechanisms. We examine T, for various scattering pro-
cesses in some detail in Chapter 6. In the meantime, integrating (5.6), we

find that
! =
f(t) = fo = [f(0) = fol exp (—T—) (5.7

That is, the momentum relaxation time 7, characterizes an exponential re-

laxation of the distribution function f to its equilibrium value fo. '
In the steady state af/ar = 0 and using this and (5.6) in (5.4), we ob_tmn

the steady-state Boltzmann equation in the relaxation time approximation,

f=fo- T_;ﬁ F-Vif — 7mvV.f (5.8)
1
Since
af — . <
f =—V,% (5.9
Vif = 22 Vi
the Boltzmann equation can be put in the form
T Of ;
= - 2 FVE — vV f (5.10)
f=rfo P K
From (2.109)
|
vV = EV,\‘f
so that (5.10) is finally
af
- e v |=F+ V.f (5.11)
f f() mV (ac& F J >
or
T aof
= - 2V& - —F+V,> (5.12)
f=to- 2wt (57 v

The Boltzmann equation in the form of (5.12) tells.us that the nonequilibrium
distribution of electrons depends on the scattering processes through the
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term 7,,, on the band structure through V,€. on applied forces through (af/
d€)F. and on concentration gradients through V,f. Therefore, we have, in
general, a rather difficult partial differential equation to solve for f. the
nonequilibrium distribution function.

5.2 DISTRIBUTION FUNCTION

Before looking at a more general solution for f, let us look at the simplest
possible case. We will assume that the only applied force is a small electric
field E and that there are no concentration or temperature gradients. Under
these conditions (5.11) becomes

0
f=fn+qu;_f ‘E (5]3)

— v
€

Equation (5.13) can be integrated to obtain an analytical expression for f
provided that the energy dependence of 7,, is known. The solution, however.
is nonlinear in E. Under the relaxation time assumption that the change in
distribution function is not large, we can also make the approximation that

af  afo
€~ 98 (5.14)
so that
d
f=fo+ qmm (TJ;;O v-E (5.15)

This retains only a linear term in E, which is consistent with our initial
assumption of a small clectric field.

Let us now look at a more general situation, where we include a small
electric field E and an arbitrary magnetic field B in the force term and retain

the term for concentration and temperature gradients. Under these condi-
tions (5.8) is

f - f()

+
= G E 4V X BV — vV (5.16)
1

We will assume that the solution for (5.16) has the form of (5.159),

_ dafo
f=fo+ 3% v-G (5.17)
and then solve for the unknown vector G. Inserting (5.17) into (5.16) the
term on the left-hand side of (5.16) is simply
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f-fo_ 13 ¢ (5.18)

-~ <0
Tm Tm dé

The terms on the right-hand side of (5.16) are more difﬁcglt to 'evalual_c.
Ignoring + g/A for the moment, the first term on the right-side of (5.16)

is

(E + v X B)V.f = E-Vifo + (v X B)-V.fo

0.f .
+ E-V, (%’ v-G) + (v X BV, (i,),; \'-G> (5.19)

In (5.19) the third term on the right has both E and G and is thusva S?C()nd-
order term in E. Neglecting this third term and making the substitution

Vifo = == hv (5.20)
[¢

in the first and second term on the right, (5.19) becomes

afo dfo . -
(E + v X BV f = f:ﬁv-[{ + h—fy(\ X B)-v

af _
+ (v X BV, (—’f—:—) v-(;) (5.21

Since (v X B)-v is identically zero. the second term on the right in—(.i.ZI') is
zero. When we perform the gradient operation in the third term. (5.2D)1s

Af .
(E + vXx BV, f=h %fTO v-E + (l—r:-) (v X B):-Vi(v-G)
[ ac

o
+ (vG)y XB) V== (5.22)
ac

From (5.20) we see that

ofo _

35
3% fo

= = g2 1Y
[ike J¢

Vi

and the third term on the right in (5.22) vzmishcs.hccausc of (v X B)-v. The
second term on the right in (5.22) can be resolved into Cartesian components
and rearranged to obtain the result.

= afo q dfo Y <91
9g +vx BV = —qg20vE - LEwB x (GVIViE] (5.23)
—ﬁ—(E v x BV = 8‘£‘E P (',f?‘:‘[ RAY

This is the desired form for the first term on the right in (5.16).
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Let us now examine the second term on the right in (5.16),

WV = it VY (% v-G) (5.24)

For our purposes we can assume that the spatial dependence of G is small
and consider only the first term in (5.24). We then have

fo g
"V, f = : i
vV = @ = wikD vV,( kT )

— ey (‘7 - “) (5.25)

é kT
where w is the chemical potential.

Using (5.18), (5.23), and (5.25), Boltzmann's equation is now

1 afe afo

10 i = &
o i 1 7€

v-[B X (G-V,) V€]

2 dfo é - pn
co R0 5
7 9% vV, < T ) (5.26)

afn q
===WE + =
P =

Sincc. egch term in (5.26) has a common factor (dfo/6€)v on the left, it can
be eliminated to obtain

1 -
— G = +qE - k7‘\'«,<6 =

kT

”m

) + % B x (G-Vo)Vi&]  (5.27)

Defining an electrothermal field for electrons, F, by

qF = +qE — TV, (6 ; p'> (5.28)

(5.27) has the form
(TI"
G = grnF + —’ﬁ— [B X (G-V,)Vi€] (5.29)

Equation (5.29) can be solved for G by using an explicit expression for
the conduction band minima. For this purpose we will assume ellipsoidal
minima with a quadratic dispersion relationship as given by (2.117). In vector
notation we have

€ = 6. + M’k-M-k (5.30)
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where
[ 1
— 0 01
n,
1
M=|0 = 0 (5.3D)
>
0 0 L,‘
L IH}_

is the effective mass tensor, the k on its left is a row vector. and the k on
its right is a column vector. From (5.30).

(G-V)VE = h*M-G (5.32)

and (5.29) takes the form
G = gm% + g,B X (M:G) (5:33)
Reducing this equation to its components and solving for G. we have. finally.

o - on [FoaM@xB) + (q7,) (et MEFBM "B < o
e I + (g, (det M)(M~'-B)-B

The nonequilibrium distribution function for electrons in ellipsoidal
conduction band minima is obtained by using G from (5.34) in (5.17). For
spherical minima the distribution function is

a_f() g - (q"—m/’”*)(g X B) + (qT"'/I’I*):(g.B‘B]

= % == gTm¥"™" %) 2
i = o 5 dTn¥ [ 1 + (g7/m*)*B-B

(5.39)

We can see that there are four components to the distribution function. The
first is simply the equilibrium function fo given by (4.41), which does not
contribute to the transport of charge and energy. The term that involves
F is the ohmic contribution to the transport properties. This term accounts
for electrical and thermal conductivity as well as the Seebeck, Peltier, and
Thomson effects. The term with & X B is the Hall contribution to transport
and accounts for the Hall, Ettinghausen. Nernst, and Righi-Leduc effects.
The B2 terms in the numerator and denominator of (5.35) account for mag-
netoresistive effects. We discuss these various effects in more detail later.

The distribution function derived above for electrons can also be used
for holes when the appropriate parameters of g, m*, and 7,, are substituted
in the equations.

From (5.1) and (5.2) we can determine the current density J and heat
flow density W by summing (or integrating) nxvx and exniV, respectively,
over the first Brillouin zone. In (4.68), however, we have already obtained
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an expression for n, the number of electrons in the conduction band minima.
For this reason we can approach the problem from a different point of view.
That is, the current density can be determined by

J = —qn(v) (5.36)
where (v) is the average velocity of the n electrons in the nonequilibrium
distribution. In a similar manner the heat flow density can be obtained from

W = n{ev) (5.37)

where the heat content per electron and the velocity are averaged over the

distribution. The problem is to determine how this averaging should be per-
formed.

5.3 CHARGE TRANSPORT

For this purpose let us examine the current density for spherical conduction
band minima in a small electric field. The average velocity is obtained by
summing the velocities of all the electrons in the distribution and normalizing

the result. That is.
J_‘ vf dv

V) = ——— (5.38)

fﬂ_} [ av

where f is given by (5.15). Inserting (5.15) in (5.38), we have

[: viodv + g J:' Tm(fo/0EWV(V-E) dv

(V) = — (5.39)
f, fodv + q f_ Tm(0f0/d€)(v-E) dv

The term on the left in the numerator of this equation is an average over
the equilibrium distribution. Since there is no transport of charge in equi-
librium, this term is zero. The term on the right in the denominator provides
for additional nonequilibrium carriers over the equilibrium concentration.
We will take this term to be zero as well. Equation (5.39) is therefore

+q [ m(afolENGE) dv
V) = : (5.40)

J -_ fo dv

For spherical conduction band minima we can replace the integrals
over three-dimensional velocity space by integrals over energy with relative
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ease. From (2.109) and (2.118) the relationship between € and v is
€ — 8. = Im*v? = tm*o? (5.41)
and the differential volume in velocity space is
dv = 4mv? dv (5.42)
With (5.41) and (5.42), (5.40) becomes
. f: (o JTEWVVE)(E — €)' dE

(v) = (5.43)
[ fote - &)™ d

If we consider an electric field in the x direction. the term
v(v-E) = +viE (5.44)

Assuming equipartition of energy. each degree of freedom has the same
average kinetic energy and

v? = v + v} + v} =30} (5.45)
Using (5.44) and (5.45), (5.43) is then
fx Tm(afﬂlafﬁ)(:é S ig(-)y: ({((:
i) = s % (5.46)

[ o - " 8
N

Defining a drift velocity vy as the average velocity of the carriers over the
distribution. and introducing the dimensionless variables of (4.65). (5.46)
becomes
—qE, =
Udce = i <TIN) ()47)

m*

where

f - Tm( = af()/(’).\').\'}/: dx
0

[, fox'=ax
0

Equation (5.48) gives the proper form for the averaging procedure over
the distribution of electrons. By evaluating the average momentum relax-
ation time in the manner proscribed, we can determine the drift velocity
from (5.47). Equation (5.47) tells us that for small electric fields, t!wc dr'ifl
velocity is directly proportional to the field. The constant of proportionality

(5.48)

w9

<TI”) =
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is called the conductivity mobility, p... Thus (5.47) can be put in the form

Vax = —ReEx (5.49)
where
e = q('r,:) (5.50)
m

From (5.36) and (5.47) the current density in the x direction is

2
= %’"—) E, (5.51)

Jx

Since the constant of proportionality between current density and electric
field is referred to as the conductivity, we have

2, (~
o= %(,;L) (5.52)
and
o= gnp. (5.53)

Thus. for the simple case of a small applied electric field, we can define all
the transport parameters in terms of the average momentum relaxation time,
{t,). Once (1,,) has been obtained, the transport problem is solved.

In general, however, the quantity to be averaged is more complex. For
example, to determine the energy transport from (5.37), an extra energy
term is included in the average. Also, from (5.34) the vector G depends on
multiple powers of 7., and depends on encrgy through both 1,,, and &. Thus
the quantity that must be averaged over the electron distribution in more
complex transport problems has the form 7,x‘, where s and ¢ are to be
determined. Equation (5.48) shows that the averaging procedure for this
quantity is

5 J’: 75 (= afolox)x’* 32 dx

(thax") = = = (5.54)
3 f fnxllz dx
0

Equation (5.54) can be evaluated if we know the dependence of 7, on
electron energy. In Chapter 6 we will find that 7,, can be represented as
having a simple power dependence on energy for most scattering mecha-
nisms. Therefore. let us take the momentum relaxation time as having the
form

Tm = ToX' (5.55)
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where To is independent of energy. Equation (5.54) is then

J: (= afolax)xsr=1~¥2 dx

To

Wit

(51" = (5.56)

f fox"’ dx
[}

This equation can be solved by integrating by parts.

Let # = x*'*3 and dv = (—8fo/ax) dx. Then du = (sr + 1 +
fHxr+1+12 dy and v = — fo. Using these expressions in the numerator of
(5.56) gives us

—[foxs 3R+ (sr+ 1 + g)_[o fox¥ 12 dx

" _ (5.57)
L X fox'? dx

(Thx") =

winNd

or

=
Foxs =12 dx

2 3 ~Jo
{5 x’) = 5 (sr + 1t + ;) ™ - .58)
) e
0

The integral in the numerator is a Fermi-Dirac integral of order j given by

—~
thn

l ¥ i "
Fim = % fo fox! dy (5.59)

The integral in the denominator is simply a Fermi-Dirac integral of order'%
which we saw before in (4.67). Values for these intcgrals are tabulated in
Appendix B. Using (5.59) and (4.67). we obtain

Fovic12(m)

(5.60)
F)/:(‘T])

5x") = -—i— sr+ 1+ 2)!'\"(‘,
™ 3IVa 2
which is the final form for the average.

To determine transport parameters. we will use expressions of the form
{(v5,x"). which can then be evaluated with (5.60). As an example, the con-
ductivity mobility in (5.50) and the conductivity in (5.52) can be obtained
from

() = 4r + Pl 1, Frarnln)
™ = T3Vn Fia)
when the value of r for the appropriate scattering mechanism is known.

Let us now look at the transport of electrons in both electric and mag-
netic fields. Assuming no concentration or temperature gradients, (5.34)

(5.61)



150 Transport Properties Chap. 5

reduces to

E — (q7/m*)(E X B) + (q7,,/m*)*B(E-B)
= T > .62
G = +qmm [ 1 + (gtm/m*)°B-B (5.62)

From (5.47) and (5.48) the drift velocity is

f " G(=afolax)x™? dx
2 0

Im*

;

Va

= (5.63)
J:) fox'? dx

and the current density is given by (5.36). Because of (5.58), it is not nec-
essary to average each term of G to obtain the current density. We simply
have. by inspection.

2 3 2

qn T qn Tm
="l B~ S\ — 5 X B
J m* <1 + (w‘.T,,,)‘> m*= <I + (m,‘Tm)'> E )

4 =3
+ 35 <——> B(E-B) (5.64)

3\ + (0eTm)?

where we have introduced the cyclotron frequency

B
0 = q’ln* | (5.65)

The first term in (5.64) is the ohmic term. The factor | + (w.7,,)* in
the denominator of the average in this term reflects the magnetoresistance
or reduction in conductivity due to the magnetic field. The second term
reflects the Hall effect; it also has magnetoresistance associated with it. The
third term is an additional magnetoresistance term.

Let us look at (5.64) for small magnetic fields. Under this condition
the second-order terms in B, which produce the magnetoresistance, are small
and

2 3
J= q—f (tm) E — q—f (t7) (E x B) (5.66)
m ma =
If we take B = ZB., (5.66) becomes
2 3
Jo = "—2 (Tm) Ex — q—f (r2)E,B, (5.67)
m= m= = :
2 3
5=y B+ L5 2)E.B, (5.68)
m m
J: = (’l,;,': <Tnv> E: (5.69)
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When J, = 0, (5.68) gives us

m* (7p)
Ex = T e E\' (570)
qB: (77"> '
Using (5.70) in (5.67) and neglecting a second-order term in B.. we have
—qn (Tm)?
= T B v ‘7
% B. () E -7

That is, J. and B. induce a field E,. This is the Hall effect. These geometric
constraints are obtained experimentally by applying a magnetic field in the
- direction, a current in the x direction, and measuring the voltage in the ¥
direction with a high-impedance voltmeter, so that the current in the y di-
rection is negligible.
The Hall constant is defined as
E; 1 (72)

Ry = J.B.- " ann) (5.72)
From (5.72) we can see that the concentration of electrons in the conduction
band can be obtained from an experimental determination of the Hall con-
stant. If the charge carriers are holes in the valence bands, the negative g's
in (5.28), (5.34), and (5.36) are replaced by positive ¢'s. The resulting Hall
constant is

1 G5

T ap G’

Ru (5.73)
Thus the sign of the Hall constant (and Hall field) indicates the sign of the
charge carriers and Hall measurements can be used to distinguish between
n- and p-type material. With (5.53) for the conductivity, we can define a
Hall mobility as

pu = Ruo = pe ((j;";: (5.74)
This mobility differs from the conductivity mobility p.. by the factor
{ea)
'y = 5 5.75)
'}.l <TI")- (

which is referred to as the Hall factor. For a nondegenerate semiconductor,
we find, from (5.60),

_3WE e+ )

m= 7 —_—_[(r FEE (5.76)

(In the analysis of experimental data, the Hall factor is often assumed to be
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1. Depending on the relevant scattering mechanisms and temperature, this
can produce about an 80% error in the carrier concentration.)

Let us next examine the flow of charge for small electric fields in the
presence of electron concentration gradients. We will assume there are no

magnetic fields or temperature gradients. Under these conditions the elec-
trothermal field (5.28) for electrons is

1
F=+E+-Vp=+ lV,C (5.77)
q q

and from (5.34),

G = quE + 'var}L o= +var§ (578)

Equations (5.36), (5.47), and (5.34) tell us that the electron current density
is given by

+qgn
=L (5.79)
m
or
a9 an
J ’n* ('nr) E + ’n* (Tm> Vrp- (580)

Using (5.50) for the conductivity mobility. (5.80) becomes

J = gnp,E + np, V,.n (5.81)

where p,, indicates conductivity mobility for electrons.
The gradient of the chemical potential can be written in terms of a
concentration gradient as

i)
i = T Mg (5.82)
an dn
Since
d
e Fi(m) = Fj—i(n) (5.83)
N

[J. McDougall and E. C. Stoner, Philos. Trans. R. Soc. London 237, 67
(1938)], (4.68) gives us

on

— = N.F_12(m) (5.84)
an
Also, from (4.65),
L
it (5.89)
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Using (5.84). (5.85), and (4.68) the chemical potential gradient is
kT

Vou = ————V.n (5.86)
. NrFx/:("])
and the electron current density is
Fiia(
J = gnp,E + kT, L) v.n (5.87)
F_1p(m)

Equation (5.87) shows that in the presence of an electric field and a
concentration gradient, the electron current density consists of two com-
ponents: The first component is proportional to the electric field and is called
the drift term. The second component is directly related to the concentration
gradient and is referred to as the diffusion term. Notice that the electron
current density is in the same direction as the concentration gradient. which
is in the direction of increasing concentration.

The diffusion component of current is usually obtained from Fick's
first law as gD, V,n. where D,, is the diffusion constant of the electrons. In
comparison with (5.87). we find that

— I\_T Fi2(n) 5
P q i F_1n(m) Bl
Equation (5.88) is the Einstein relationship between the diffusion coefficient
and the conductivity mobility. Although this relationship is easily derived
for an equilibrium condition where the total current density is zero, the
approach we have taken shows that Einstein's relation is also valid under
nonequilibrium conditions.

Following similar arguments for valence band holes. the current density
is

Fin(n)
PF_ 12(m)

where p, is the conductivity mobility for holes. Notice that the diffusion
component of hole current is opposite to the direction of the hole gradient.
From Fick’s law the diffusion coefficient for holes is also of the form of
(5.88). When the Fermi energy is in the energy gap at least 4kT removed
from either band edge. (5.88) reduces to
D, = A . (5.90)
q

J = qpu,E — KTy, v.p (5.89)

The equations we have derived for the mobility (5.50), conductivity
(5.52), and Hall constant (5.72) are applicable for electrons in spherical con-
duction band minima. When the electrons transport charge in an ellipsoidal
minimum, the situation is somewhat more complicated. Consider one ellip-
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soidal conduction band minimum at " given by (5.30). If the x direction is
Faken as one of the axes of the constant energy ellipsoids, an electric field
in the x direction will produce a current in the x direction,

20T
7, = B0l (5.91)
m,

Similar expressions containing m3 and m3 are obtained in the y and z di-
rections. The total current density is therefore

J = ¢*n{z,,)M'E (5.92)

where the effective mass tensor M is given by (5.31). This can also be put
in the form

J=0E (5.93)

where o is a conductivity tensor and E is a column vector. Thus, for an
ellipsoidal minimum at I', the current density is not necessarily in the same
direction as the applied electric field.

When there are g. equivalent ellipsoidal conduction band minima, it
is necessary to account for the fact that the concentration of electrons in
each minimum is n/g.. In this case the current density is obtained by sum-
ming the concentration of electrons in each minimum, while allowing for
the effective mass each minimum has in the direction of the current. For a
semiconductor with conduction band minima in the direction of X, such as
Si, this is relatively easy. As shown in Fig. 5.1, when the current is in the
x direction, the two minima along the k, axis each contribute n/6 electrons
with effective mass m;, while the two minima along the k, axis contribute
n/6 electrons each with effective mass m3. In the third dimension, the two
minima along the k. axis also contribute n/6 electrons of mass m35 . The total

Nm | 7 Nm
_/ Nt

Figure 5.1 Diagram showing how
equivalent ellipsoidal minima contribute
to conduction along one of their principal
axes.
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current density in the x direction is therefore
20t 2 2 2
Jime LDl (—* gk ——) E. (5.94)
6 m m> ms

Similar expressions are obtained for the components of current in the y and
z directions. Thus the total current can be put in the form

_ a'nlm) E
me

(5.95)

where

A 599
m. 3 \im, ms maz
defines the conductivity effective mass.

Equation (5.96) is also valid for semiconductors, such as Ge, which
have equivalent minima in directions other than X. Notice that the conduc-
tivity effective mass defined by (5.96) is a scalar, so that the current density
and the electric field are always in the same direction. Comparing (5.95)
with (5.92), we see that equivalent ellipsoidal minima result in isotropic
conductivity, while an ellipsoidal minimum at I' produces anisotropic con-
ductivity. This difference due to the position of ellipsoidal minima is reflected
in the conductivity of sphalerite crystals with indirect bandgaps as compared
to wurtzite crystals with direct bandgaps.

When the Hall effect in ellipsoidal minima is examined. similar results
are obtained. That is, an ellipsoidal conduction band minimum at I produces
an anisotropic Hall effect, while equivalent minima produce an isotropic
Hall effect. In the latter case, for simplicity, a Hall effective mass can be
defined to reduce the expression for the Hall mobility to the form of (5.74).

5.4 CHARGE AND ENERGY TRANSPORT

To determine the heat flow density, (5.37) tells that we must find the average

evf dv
%

f:: fdv

where ¢ is heat content per electron. This equation has the same form as
(5.38) except that, in this case, we must include e in the average since e
depends on the electron energy. We have already solved this problem with
(5.60), so in the same way we obtained (5.79) we can simply write

(ev) = (5.97)

W= — (o6 (5.98)
m-
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where the minus sign indicates that W is opposite in direction to G and thus
J for electrons. It is now necessary to obtain e in terms of €, so that the
average in (5.98) can be determined.

Since heat is that portion of the total electron energy which can be
added or removed in disordered form, the heat content of all the electrons
in the system is given by the entropy term in Euler’s equation (4.28). Thus
the heat content per electron is

3
e = [L, (TS)] (5.99)
an T.V
From (4.29) for the Helmholtz function,
TS =¢' - F (5.100)

where €' is the total energy of all the electrons. Using (5.100) in (5.99), we
have ™

0é’ d
€= <( > - <_F.> (5.101)
on T.V an TV

The first term in (5.101) is simply the energy per electron, €. From (4.39)
the second term is simply the chemical potential, . The heat content per
electron is therefore

e=% — p (5.102)

Let us now obtain the equations that determine the transport of charge
and energy under the following conditions. We will assume that the electric
and magnetic fields are small and allow for temperature and concentration
gradients. Also, for simplicity we will assume spherical energy band ex-
trema. From (5.79) and (5.34) the equation for the electron current density
is

+q° 5
= q*" [(T,,,% B —q-; (tm(F x B)>] (5.103)
m m
Using (5.98), (5.102), and (5.34), the electron heat current density is
w=_"2= [<T,,,e9> - L 22e(F x B))] (5.104)
m m
where from (5.28),
F= $E — Ve 4 LT (5.105)
q qT

We will use (5.103), (5.104), and (5.105) to examine various effects that
involve the transport of charge and energy in semiconductors.

Sec. 5.4 Charge and Energy Transport 157
5.4.1 Thermal Conductivity

One of the more important thermal transport parameters is the 1hcrmz_11
conductivity. Although in lightly doped semiconductors most of the heat is
carried by lattice vibrations or phonons, in heavily doped scmlcondu.cl.ors
a substantial proportion is carried by electrons. The thermal conducuvlt.y.
k. is defined as the proportionality factor between the heat current density
and the temperature gradient,

W= —-«xVT (5.106)

The minus sign is required because the heat flows from highcr to lower
temperatures. To determine the thermal conductivity. we examine a sample
under open-circuit conditions (J = 0) with no magnetic field. For small
temperature gradients, (5.103) is

0= +{Tm) <E - lvru> + L ) VT (5.107)
‘ q qT
and (5.104) is
- 1
_ —4n Ly > + — (tme?) V,T] (5.108)
W = [(THIC) <F4 q ri (]T

*

Using (5.107) in (5.108) yields

W= —= | (rme?) - M] v, T (5.109)
m*T Tom)
and the thermal conductivity due to electrons is
k= —= | (rme?) - <—_T"'p>—] (5.110)
m*T (Tm)

Numerical values for the averages in (5.110) can be obtained with (5.60).

5.4.2 Thermoelectric Effects

We can see from (5.107) that under open-circuit conditions, the elec-
trons diffuse down the temperature gradient and set up an electric ﬁcld that
opposes the motion of electrons due to the gradient. The produc‘:uon of an
electric field by a temperature gradient is referred to as the Seebeck or
thermoelectric effect. In the steady state the slectric field is given by (5.107)
as

1 1
= —=-V,p— ——=me) V. T (5.111)
k q " (I(Tm>T
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Using
o
V=%
=2V T (5.112)
(5.111) gives us
1 o (tme)
E=-—|T—=+-—
p [Tar + ) ] v.T (5.113)
or
d | {tme)
E=T-
a7 [qT('r,,,)] v.T (5.114)

Thus the electric field is related to the temperature gradient by means of
the equation

E

I

JvT (5.115)

where

«

d (Tme)
=T —

a7 [qT(Tm)] (5.116)
is the Thomson coefficient.

As indicated in Fig. 5.2, the Seebeck effect can be examined by mea-

suring the voltage across a semiconductor in a temperature gradient. The
voltage is given by

Ve - 3§E-dr = §3?V,T-a’r

1%

fﬂ g d T2 To
o Im T+ fr. J.dT + frz 9,,dT (5.117)
T2
v=[ @ -g)ar
where J, and 7, are the Thomson coefficients for the semiconductor and

T, —t—— T,

To<T,<T,

Figure 5.2 Determination of Seebeck
effect for n-type semiconductor. Vis neg-
To ative.

i
|
'
|
|
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metal, respectively. If the metal is chosen to have J,, = 0, the Seebeck
voltage is directly related to the Thomson coefficient of the semiconductor
and the temperature difference across the sample. Notice that the Thomson
coefficient for electrons is negative, as indicated by (5.115). For holes under
the same conditions, the Thomson coefficient is positive, so that the field
and temperature gradients are in the same direction.

A transport parameter closely related to the Thomson coefficient is the
absolute thermoelectric power, P. The relationship is

d

g = — —_— .
] TdTGP (5.118)
or from (5.116).
(Tmc)
P = - == 5.119)
qT(zm) (

Notice that the thermoelectric power for electrons and holes have opposing
signs. due to the dependence on g. Because of this the sign of the ther-
moelectric power can be used to determine whether a material exhibits n-
or p-type conductivity.

When the electric current density is not constrained to be zero. it adds
an additional component to the heat current density. Under these conditions
(5.103) can be written in the form

v.T (5.120)
Substituting this into (5.108). the heat current density is

weo iy [<T".e2> - ‘—*ﬁ] v G

q(Tm) m*T (Trm?
Using (5.110) and (5.119), this is simply
W=T?) -k VT (5.122)

Thus the electric current density carries heat in addition to that transported
by the temperature gradient. This is referred to as the Peltier effect. The
constant of proportionality between heat current density and electric current
density is the Peltier coefficient, I1, where

I=T7T% (5.123)
(Tme)
q(’rm)

Because of the dependence on g, the Peltier coefficient is negative for elec-
trons and positive for holes.

M= - (5.124)
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In addition to transporting heat, the electric current density also gen-
erates heat. The net rate at which heat is generated per unit volume is equal
to the rate generated per unit volume minus the rate at which it is transported
away, or

P=JE - VW (5.125)
From (5.120). (5.52). and (5.115).

E.= lJ + TV, T (5.126)

o

Also. from (5.122) and (5.123),

W=11J -« V,T (5.127)
Using (5.126) and (5.127) in (5.125). we have

P = l—l + )V, T - 11V,-] + V.-V, T (5.128)

(0 %

Thus the net rate at which heat is generated per unit volume. P, has several
components. The first term in (5.128) is simply the Joule heat. The second
term is referred to as the Thomson heat. The third term, which involves the
divergence of the electric current, allows for the generation or recombination
of electrons in the unit volume and will not be considered further. Finally,
the last term provides for the transport of heat out of the volume by thermal
conduction.

Notice that the Thomson heat term in (5.128) changes sign when either
the current density or thc\emperaturc gradient is reversed. Since the Thom-
son coefficient is negative for electrons, in n-type material heating is pro-
duced when J and V, T are in the same direction. That is, the electrons going
from a higher to a lower temperature have to give heat to the lattice. When
J and V,T are in opposite directions, the electrons produce cooling since
they take heat from the lattice in going from a lower to a higher temperature.
These effects arc indicated schematically in Fig. 5.3. Since the Thomson
coefficient for holes is positive, cooling is produced when J and V,T are in

v,T T, <T, vT
—_— —l
T4 —0 T, T, O— T
C— —fo——
J J
(a) (b)

Figure 5.3 The Thomson term in an n-type semiconductor produces (a) heating
when J and V, T are in the same direction and (b) cooling when they are in opposite
directions.
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J
—
‘Heat n-type
[ 1 sink ad
VA T ~— T
H V,T c
Figure 5.4 Schematic of a thermoelec- s
tric cooler. The heat sinks and cold junc- s;ak p-type
tions are metals that form ohmic con-
tacts. J

the same direction. These results can be used to construct a thermoelectric
cooler in the manner shown in Fig. 5.4.

Similar effects are obtained for electrons in concentration gradients.
In the absence of a temperature gradient, the electric field for n-type material
is given from (5.87) as

I kT
T o gN.F_ia(m)

=
|

V.n (5.129)

In this case. (5.125) is

4] kT "

P = & ———JV.n - 11V,-] (5.130)
a qN:F _1n(m)

Thus, when J and V,n are in the same direction. the electrons take heat from

the lattice as they go from higher to lower concentrations and cooling is

produced.

5.4.3 Thermomagnetic Effects

When we allow for a small magnetic field, in addition to small electric
fields and temperature gradients, the transport of heat produces several ther-
momagnetic effects. We examine these in the Hall configuration shown in
Fig. 5.5. In Section 5.3 we examined the Hall effect assuming that no tem-

A

Ey y Ey
Cold T ~ A T Cold
z(L—»x
z + Ey
Eg Slow Slow
R T e I
E, # Fast B, Fast™ E s
Hot l aT aT l Hot
oy ay
(a) (b)

Figure 5.5 Hall and Ettinghausen effects (0 = r) for (a) electrons and (b) holes.
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perature gradients were present (isothermal conditions) and that there was
no electric current in the y direction. That is, J, = dT/dx = dT/dy = 0. Under
these conditions, the electrons were deflected by the magnetic field in the
direction shown in Fig. 5.5(a) and an electric field, Ey, was induced in the
negative y direction to balance the Lorentz force. However, this Hall field
can only exactly balance the Lorentz force on electrons with average ve-
locity. If we assume that the momentum relaxation time increases with en-
ergy (7, = Tox’", where 0 = r), the faster or hotter electrons are deflected
more and the slower ones less by the magnetic field. As a result, the side
of the sample where the faster carriers are deflected becomes warmer and
the opposite side cooler, inducing a temperature gradient. In a manner sim-
ilar to the thermoelectric effect, the warmer electrons tend to diffuse to the
cooler surface, where they set up an electric field, as in (5.115), to oppose
the diffusion. The mechanism that produces this electric field is referred to
as the Ertinghausen effect.

The Ettinghausen coefficient is defined under conditions such that no
heat current is transferred to the surroundings (adiabatic conditions). For
J. = aTlax = W, = 0. this coefficient is

daTloy
JB:

Applying these conditions to (5.103) and (5.104), we can eliminate the electric
field and the chemical potential gradient,

He I:(T?n’{> (Tgnmeré):l

) (1)

(5.131)

E

Pg = —
qk

(5:132)

From this equation we expect the Ettinghausen field to change sign when
the sign of the charge carrier is reversed. Figure 5.5(b) for holes shows that
this is, indeed, what occurs. In either case, however, the direction of the
Ettinghausen field depends on the energy dependence of the momentum
relaxation time. It can be verified by (5.132) that when r in (5.55) is less than
zero, the slower carriers are deflected more than the faster ones and the
direction of the Ettinghausen field in Fig. 5.5 are reversed. Thus the direction
of the Ettinghausen field depends on the sign of the carrier and the scattering
mechanism.

Two other thermomagnetic effects we will mention are the Nernst and
Righi-Leduc effects. As indicated in Fig. 5.6, these effects are the thermal
analogues of the Hall and Ettinghausen effects, respectively. The Nernst
coefficient is defined under isothermal conditions (J, = J, = aT/dy = 0) as

E,

O~ = GT/av)B.

(5.133)

Thus we see that the Nernst effect is a process whereby a transverse electric
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Figure 5.6 Nernst and Righi-Leduc effects (0 = r) for (a) electrons and (b) holes.

field is produced by a temperature gradient. This equation can be compared
to (5.72) for the Hall constant. Under these conditions (5.103) and (5.104)
give us

pe [(726)  (Ta)Tm8 )]
= B L = : (5.134)
On = o7 [ A A
or
On = %P.; (5.135)

The Righi-Leduc coefficient is defined under adiabatic conditions (/. = Jy
=W, =0 as

aTlay

& (5.136)
SrL = Gan) B.
which gives
npl [(1282)  (2.)(71,8)? 2(??,,"@)(7,”‘5)]
= > - (5.137)
S, qTK[ T (Tm)* ()

Arguments regarding the sign of these coefficients are similar to those made
for the sign of the Ettinghausen coefficient.

5.5 HIGH-FREQUENCY TRANSPORT

The dc theory of charge and energy transport developed in this chapter can
be applied to transport at high frequencies with only slight modification. Let
us apply a small sinusoidal electric field,

E = Eo exp (—iwt) (5.138)

to a semiconductor sample where w is the angular frequency of the field.
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Assuming no other applied forces and no temperature or concentration gra-
dients, we can examine the form of the nonequilibrium distribution function.
In the same manner in which (5.15) was obtained, we have

]
f=fo+ qm a—g’ v-Eq exp (—iwt) (5.139)

The time-dependent Boltzmann equation in the relaxation time approxi-
mation from (5.4), (5.5). and (5.9) is

%{= —v-(g—éF+V,f) —-f—:mj (5.140)
Taking the time derivative of (5.139), we have
%f = +q7m2—{é‘-’(—iwv + %) « Eo exp (—iwt) (5.141)
Since
dv .
i —gM-E; exp (—iwt) (5.142)

the last term in (5.141) is second order in E and can be neglected. We now
have

i)
T iotf ~ f0 (5.143)
t
and the Boltzmann equation is
o~ (¥
f—=1fo= 1 = o) v (a‘é F + V,f) (5.144)

Except for the term (1 — iwT,,), (5.144) has the same form as (5.11).
Because of this, all of the dc transport equations can be used at high fre-
quency if we replace ., by 7 where

* _ Tm
T =T o P (5.145)
Thc general solution of the Boltzmann equation (5. 144) for ellipsoidal minima
is

f="Fo

fo +  [F - qriM«(F x B) + (qr)*(det M)(F-B)(M~"'-B)
8% q'r,,.v .

+ — 3 —
I + (g7m)*(det M)(M~'-B)-B
(5.146)

and this is used to determine the transport parameters. Since 7., is a complex
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number, all the terms in the distribution function (except for fo) are complex.
Thus, in general, the high-frequency components of electric current density
and heat current density are not in phase with the applied forces.

A useful effect can be observed when we examine the denominator of
the last term in (5.146). If we define a cyclotron frequency as in (5.65) by

o? = g*(det M)(M~'-B)-B (5.147)

the denominator becomes 1 + (w.7.)2. Using (5.145) gives

1+ (@) =1 + (—l(—_‘% (5.148)
which can be put in the form
R 2 — i = iwt, + 1
|+ (oorty? = e = o)t = Zo (5.149)

(1 - ior,)?

Equation (5.149) tells us that for conditions such that w,, is much greater
than 1, 1 + (w.T5)? exhibits a sharp minimum when v = .. Thus the
transport properties, such as charge current density. J, will exhibit a resonant
peak when the applied frequency is equal to the cyclotron frequency. This
effect is referred to as cvclotron resonance. From (5.65) or (5.147) the fre-
quency at which cyclotron resonance occurs can be used to determine ef-
fective mass.

5.6 HIGH ELECTRIC FIELD EFFECTS

Up to now we have limited our analysis of transport properties to small
electric fields. Under these conditions the energy the carrier distribution
gains from the electric field is lost to the lattice through collisions with low-
energy acoustic phonons or impurities. The average energy of the electrons.
therefore, remains close to the thermal equilibrium value, 2kT, and the drift
velocity of the distribution is linearly related to the electric field. However,
because the average electron energy in semiconductors is so small, it is
relatively easy to obtain significant deviations from this ohmic behavior. For
moderate electric fields the collisions with acoustic phonons and impurities,
which serve to maintain the electron distribution and the lattice at the same
temperature, become less effective and the clectrons gain energy from the
field faster than they can lose it to the lattice. In this situation, the electron
distribution can be characterized by an effective temperature, 7.. which is
“hotter’’ than the lattice temperature, T. The relationship between the drift
velocity and electric field is no longer linear and nonohmic electrical be-
havior is observed.

When the electrons have gained sufficient energy from the field, they
can transfer energy to the lattice by the generation of high energy optical
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phonons. Since this process is an efficient energy loss mechanism for the
electrons, the drift velocity of the distribution reaches a limiting value where
it no longer increases with the electric field. This value is referred to as the
saturated drift velocity and is obtained for electron energies of the order of
the optical phonon frequencies given in Table 3.2. Figure 5.7(a) and (b) show
experimental drift velocity—electric field characteristics of electrons and
holes, respectively, for Ge, Si, and GaAs up to the saturated regions. As
can be seen, all of these characteristics, except for electrons in GaAs, ex-
hibit. qualitatively, the nonohmic behavior described above. The negative
resistance region in the GaAs v, versus E curve is due to the transfer of
electrons from the I' to L conduction band minima. This forms the basis of
the Gunn effect.

Since these hot electron effects play an important role in the operation
of several semiconductor devices, let us examine them in more detail. Al-
though there are several approaches to the problem of high electric field
transport in semiconductors [Esther M. Conwell, High Field Transport in
Semiconductors (New York: Academic Press, 1967)], we will use an ap-
proach with which analytical results can readily be obtained. Let us assume
that the electron distribution can be described by

1

f=1% exp [(€ — Q/KT.]

(5.150)

where T, is the effective temperature of the electron distribution. Notice
that this distribution function has the form of the equilibrium distribution

108 T T 108 T T
= GaAs =
E107| E107f =
2 KL
> >
z Ge G Ge
o o
£ 106 - £10°- -
o Si o

GaAs
10° 1 I 10° 1 |
102 10° 10* 108 102 10° 104 10°
Electric field (V/cm) Electric field (V/cm)
(a) (b)

Figure 5.7 Experimental drift velocity—electric field characteristics for (a) elec-
trons and (b) holes in several semiconductors. [After C. B. Norris and J. F. Gib-
bons, IEEE Trans. Electron Devices ED-14, 38 (1967): C. Y. Duk and J. L. Moll,
IEEE Trans. Electron Devices ED-14, 46 (1967); T. E. Seidel and D. L. Scharfetter,
J. Phys. Chem. Solids 28, 2563 (1967); J. G. Ruch and G. S. Kino, Appl. Phys.
Lett. 10, 40 (1967); V. L. Dalal, Appl. Phys. Lett. 16, 489 (1970).]
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function, fo, derived in (4.41), except for T., which is a function of electric
field, E. We will also maintain the form of the low-field relationship between
the drift velocity and the electric field (5.49).

va = —(T.)E (5.151)

where the mobility, ., is now a function of T, or electric field. In a similar
manner,

q("'m( Te ))

m*

WT,) = (5.152)
where

x

TI"( Tl’).f (Iv

-

(tp(T)) = —— (5.153)
f_ fdv

and f is given by (5.150). Under these assumptions. we can proceed with
our examination of high-field transport.

The average over velocity space of the momentum relaxation time in
(5.153) can be simplified to an average over energy

£

fxr™ 12 dx,
0
<Tm(Tr')> = TO( T() = (5]54)
fxi® dx.
or, using (5.59),
2 1\, Friipne)
Tm e ——— r =] T Tr' T e N (5155
(ol T) = = (r + 2) T )
where
€ — ¢ - %
= — .= 5.156
Yo = =y and me =" (5.156)

Equation (5.155) tells us that, in general, the appropriate average is

2 l F,\’ra-lo I/Z(Tll')
S(T)xty = —=|sr+ 1t + =) (T,) ——————  (5.157)
(wm(Te)xe) Vi < 2) 0 Fin(n.)

To proceed further we need to know the dependence of 7o on 7. This
dependence, of course, depends on the particular scattering mechanism. For
several scattering mechanisms, the low-field momentum relaxation time can
be put in the form

Tm = ToX" = CT“x" (5158)
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where C is independent of temperature. If we assume that the high-field
momentum relaxation time has the same form,

Tm(Te) = To(Te)xe = CTexe (5.159)
then
Tc "
Tm(Tc) = To (—) Xe (5.160)
T
From (5.152), (5.155). and (5.160) the field-dependent mobility is
T.\" 2 1\, Fre12(ne)
Ty=—I|=) —F =\ .
w(Te) '"* (T> \/1_1‘ (r * 2) Fi2(n.) (5161
or simply
7‘r "
w(T:) = po (7) (5.162)

Thus if we can determine the dependence of 7. on E, we can obtain the
dependence of w and, from (5.151), the dependence of v, on E.

The gffective electron temperature can be determined from conser-
vation of energy. From (5.4) and (5.6) the time-dependent Boltzmann equa-
tion is

af  + -
¥ _ gy -1 (5.163)
at ] T
If we multiply cach term of this equation by the electron energy. €., and
average it over the electron distribution, we obtain

[edo el ona [Lov

) flfdv flfdv

J::fdv

" v

-0

With (2.109) and (5.38), the first term on the right- hand side can be reduced
to qva-E. Neglecting the diffusion term, (5.164) then reduces to the form

£ @ = (%)

Te

(5.164)

;i-t (®) = (5.165)
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where we have defined an energy relaxation time, 7., by

- (f=f
) —<%O>EL=%(—TO)"
Te J‘_:fdv

Equation (5.165) is the energy balance equation for the hot electron
distribution. It tells us that the net energy gained per unit time is equal to
the power supplied by the electric field minus the energy lost to collisions.
Under steady-state conditions the electron distribution attains a temperature
T. and

(5.166)

Te

= qvsE (5.167

Notice from (5.165) that 7. characterizes the relaxation of the hot electron
distribution to its average thermal equilibrium energy ($o) when the electric
field is turned off. We see from (5.166) that. since 7., is in general a function
of €. 7., and 7, are not equal. That is, the times that characterize the relax-
ation of energy and momentum are different.

From (5.156) and (5.157) the average energy of the hot electron dis-
tribution is

F 1/2(’ﬂe)

(&) = kT, (r,) =z kT Fon(no)

(5.168)

In a similar manner the average energy of the equilibrium distribution is

Fan(n)

(&) = kT(x) = -I\TFl/z(TI)

(5.169)
Using (5.156) and (5.166) yields

@ _ <(—g-> = kT, <x—> (5.170)
Te Tm Tm

The average in this equation can be evaluated with (5.157) and (5.160) as

@ _ 2 (3_ \ (1)"Fm-,(n,) .
Te \/T_l‘ (2 I>' T0 Te FIIZ(‘“() (5 )

and

(5.172)

Te =

IWr 1 (L) Fsn(ne)
4 (3/2 - r)! F!IZ-r(TIe)

Under nondegenerate conditions, we can readily obtain an expression
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relating 7. to E. Using (5.151), (5.161), and (5.171) in (5.167), we have

N\, g% (T.\"
12121 2
(r + 2). P (7‘) E* (5.173)

(G- @) - S
T T. m*kT @ — r)!

(BE)? (5.174)

For hot electrons T. is much greater than T and (5.174) can be solved for
T., with the result

N
[\S J RS}
|
<
N——
3>
N
S~
\{
3
Ny
3
]

or

T,
7= (BE) ~¥@u-1 (5.175)
From (5.162) the mobility is
T.\"
wWTe) = po (—f)
or
LL(E) = M(BE)—ZHIQH-” (5176)

With (5.176) we can examine the dependence of the mobility on electric field
for scattering processes in which the relaxation time approximation can be
used.

The temperature dependence of the momentum relaxation time for

acoustic phonon scattering is # = —3. Using this value in (5.176), the mo-
bility is
T a2
wT) = po (7)
e (5.177)

1 3/4
W(E) = po (B—E)

Thus the mobility for this scattering mechanism decreases as the electric
field increases. From (5.151) and (5.177) the drift velocity.

Vg = —poB ~YE* (5.178)

does not saturate at high electric fields. For ionized impurity scattering «

= +4§ and the mobility is
Te 372
wMTe) = po (‘7‘.)

I 32
WE) = po (Eé)

(5.179)
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Thus, for this scattering mechanism the mobility also decreases with electric
field, and the drift velocity does not saturate. From (5.176) we see that u
must be infinite to obtain a completely saturated drift velocity. This cor-
responds to scattering by optical phonons, where the energy changes are so
large that the use of a momentum relaxation time is a poor approximation.
Under these conditions a reasonable approximation to the saturated
drift velocity can be obtained by assuming that the energy of the hot electron
distribution is dissipated in the generation of longitudinal optical phonons

(€) ~ (80) _ fiwno

Te Te

(5.180)

and that the proportionality factor between drift velocity and electric field
is

po= (5.181)

Using (5.180) and (5.181) in the energy balance equation (5.167). we find
that

172

T = gi“’hg+*)— (5.182)
and the drift velocity is saturated at the value
hoLo 172

v =\ T (5.183)

Values for the longitudinal optical phonon frequencies from Table 3.2 can
be used in (5.183) to obtain saturated drift velocities which are in reasonable
agreement with experimental results.

If the electric field is increased further in the saturated region, at some
point the charge carriers will have sufficient energy to generate an electron—
hole pair in a collision with the lattice. This process is known as impact
ionization. When each of these electron—hole pairs creates an additional pair
by impact ionization, an unstable situation is obtained where, in principle.
the number of charge carriers increases without limit. This situation is re-
ferred to as avalanche breakdown and is readily observed in the reverse-
bias current—voltage characteristics of p-n junctions. These phenomena are
examined in more detail in Chapter 9.

PROBLEMS Do

5.1. Find the nonequilibrium distribution function to second order in E = fE, for
a parabolic band. Assume a Maxwellian equilibrium distribution and that =,
= 7o(8/kT)™ V2,
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. Derive an expression for the Hall factor assuming Fermi statistics and 7, =

Tox". Plot ry versus n(—4 = m < 10) for r =

—4 and r = #. Explain the
dependence on 7.

. Determine the diffusion coefficient (D,) for electrons in a fully degenerate n-

type semiconductor, specifically for Ge with ., = 300 cm*/V-s.n = 10" cm >,
and m,, = 0.2m,.

. Show how all but one of the following secondary effects can be canceled in

a Hall experiment by taking four measurements with B and J reversals: Et-
tinghausen, Nernst. Righi-Leduc, thermoelectric, and IR drop (probe
misalignment).

. Assume that a semiconductor has spherical energy surfaces in both the con-

duction and the valence bands, but with two species of holes. Find an expres-
sion for the Hall coefficient in terms of appropriate averages of 7,1, 7p2, T.
Hpis Bp2s Bent Pro P2. .

. Consider an n-type semiconductor material as shown in Fig. P5.6 of mobility

10* cm*/V:s which is to be used as a fast microwave switch. The device, a
conductive bar, is switched from the more conductive to the less conductive
state, with an applied electric field, by **heating”” electrons from the direct to
the indirect conduction band minima. Estimate the applied field needed.

N(X)

*IN = 0.07m,
m ) m N.D)

= 60

. Consider the Righi-Leduc effect in a uniformly doped nondegenerate n-type

semiconductor with spherical energy surfaces. A thermal gradient is main-

tained in the x direction and a magnetic field in the z direction, with J, = J,

=W, =0.If ,T = Sg.B. V. T:

(a) Find Sg. in terms of appropriate averages of 7°.

(b) For spherical energy surfaces and T = 70€”, express Sg. in terms of gamma
functions.

(¢) For p = =1},

show that Sgi. = —(217/32)(k*T/gx)np2, where « is the

thermal conductivity.

Figure P5.6

Sec. 5

5.8.

5.9.

5.10.

5.11.
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Figure P5.8
Hall meaurements are performed on a sample in the configuration shown in

Fig. P5.8 with I, = SmA. B. = 0.1 T. and T = 77 K. Measured values are
V.=10Vand V, = =5 V. Assuming that m, =.0.lm. my, = 0.5m, and 7,
= 7ox*? (ionized impurities), determine the following:

(a) Type of material

(b) Hall constant

(¢) Carrier concentration

(d) Conductivity

(e) Conductivity mobility

(f) Hall mobility

Calculate the root-mean-square z-directed velocity of conduction band elec-
trons in an isotropic material at equilibrium. Assume that nondcgc_ncrulc sta-
tistics are valid and that the material exhibits spherically symmetric constant
energy surfaces about I'. _
Consider a collection of electrons in an isotropic material which are co.nslr‘amcd
to possess a nonzero z-directed net velocity (e.g.. thrgug.h th.e appllcu.tlon of.
an electric field E = —E,%, J = oE). Show that the distribution function has

the form

|
fe 1 + exp [B(€ — a — yv.)

where v, is the z-directed velocity.
The steady-state distribution function for a nondegenerate material under cer-
tain conditions is

ﬁ:
f = exp [~B(E — D] exp (mf 'ykz>

where B = 1/kT, { and v are constants. The conduction band states near I’



174

Transport Properties Chap. 5
are described by

ﬁzkz
€ =% + —
< 2m*
Delermin.e the concentration of electrons in the conduction band and their
mean z-directed velocity. For the conditions y = 107 m~", T = 300 K, m* =

0.06§5m. and n = 10" cm~*, what are the z-directed velocity and current
density? ’

Scattering
Processes

In Chapter 5 we used the relaxation time approximation to examine the
transport of charge and energy in electric, magnetic, and thermal fields.
There it was assumed that a momentum relaxation time, 7,,. could be defined
for various carrier scattering processes. such that

;n',,, - T().\'r (555)
where x is the electron kinetic energy in units of k7,
_ € - ¢
kT
and 7o and the exponent r are independent of energy. In this chapter we
examine this assumption and discuss the physics of the more important scat-
tering processes. Rather than being all-inclusive, we will derive momentum
relaxation times for ionized and neutral impurity scattering, as examples.

and then show how these can be combined with values for phonon scattering
to model and predict experimental mobility.

x (4.65)

6.1 SCATTERING POTENTIALS

As discussed in Chapter 2, an clectron moving in a perfect periodic crystal
potential with no applied force has a constant velocity and is not scattered
by the atoms of the crystal. When a force is applied to an electron, its
acceleration can be described by a modified Newton's law where the perfect

175
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periodic crystal potential is taken into account by an effective mass. There-
fore. to describe the deceleration or scattering of an electron by a crystal
defect, it is convenient to examine the perturbation that the defect produces
on the perfect crystal potential. This perturbation is referred to as a scat-
tering potential, A U(r). and has units of energy. In the following section we
examine the scattering processes associated with impurities and phonons
and derive their scattering potentials.

6.1.1 Impurities

For an ionized impurity the scattering process is dominated by the
electrical interaction between its charge and the charge of the free carrier.
For an ion with charge Zqg the perturbation on the perfect crystal potential
is simply the Coulomb energy.

+7q°

AU(r) =
) = 4meOr

(6.1
where r is the distance between the ion and the charge carrier. The plus sign
is valid when the charges on the ion and the carrier have the same polarity,
and the minus sign is for charges of opposite polarity. As indicated in Fig.
6.1, the scattering trajectories of the free carriers are described by a hy-
perbola with the ion at a focal point.

In (6.1) the screening of the Coulomb potential by atomic and ionic
polarization of the constituent atoms is described by the use of the static
permittivity of the material, €(0). Because of the long-range nature of the
Coulomb potential. it is also necessary to consider the screening of (6.1) by
other free carriers and ionized impurities. We look at this in Section 6.2.

A nonionized or neutral impurity has a scattering potential which is
much weaker but more complex than for an ionized impurity. For a hydro-
gen-like neutral impurity, Coulombic scattering with the ground-state (1s)
electron cloud occurs. The free carriers, however, can also interact with a
neutral impurity by polarizing it or by changing places with a bound electron

# Electron

Figure 6.1 Trajectories of electrons and
holes in ionized impurity scattering.

)
i
4
{
i
l
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or hole. This raises the possibility of a combination of Coulombic. dipole,
and exchange scattering which is not easy to analyze.

An empirical analysis [C. Erginsoy, Phys. Rev. 79, 1013 (1950)] of
electron scattering by hydrogen atoms indicates that neutral impurity scat-
tering can be approximated by a differential scattering cross section,

_ 20)');
k

where rg is the ground-state Bohr radius of the impurity, and & is the wave-

vector of the free electron. It can be shown (see Sections 6.3 and 6.4) that

this scattering cross section is approximately equivalent to a scattering
potential,

a (6.2)

m* \r

72 = 172
AU =~ — ('—B> (6.3)

where r is the distance between the neutral impurity and the free carrier. It
is interesting to note that this r =¥ dependence is longer ranged than the
r~* dependence expected for dipole scattering.

6.1.2 Acoustic Phonons

The acoustic phonons in a crystal can scatter carriers by two different
and independent processes. These are called deformation potential scatter-
ing and piezoelectric scattering. These scattering mechanisms can be ex-
amined. qualitatively, by means of Fig. 6.2, where the displacements. u(r).
of a chain of atoms from their Bravais lattice sites are shown for the lon-
gitudinal (LA) and transverse (TA) components of (a) zone center and (b)
zone edge acoustic phonons.

As can be seen. the distance between adjacent atoms (the size of the
unit cell) is strongly affected by the LA phonons, and little affected by the
TA phonons. From the tight-binding model of the energy gap variation with
lattice constant (see Fig. 2.14), we see that these LA phonons will produce
a modulation of the conduction and valence band edges, €. and €... This
modulation in space and time disturbs the periodicity of the crystal potential
and produces the so-called deformation potential scattering of the electrons
and holes.

For the long-wavelength acoustic phonons, it is convenient to treat the
material as an elastic continuum. Then we can see in Fig. 6.2 that the max-
imum expansion and contraction of the unit cell produced by LA phonons
occurs in regions where the divergence of the displacement vector (gradient
of the displacement amplitude), or the strain, is maximum. Therefore, the
scattering potential for deformation potential scattering must be proportional
to the strain. Consider the displacement produced by an acoustic phonon
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u(r)

T/\'V"u(r) | mex

LA

(a)

(b)

Figure 6.2 Displacements of a diatomic chain for LA and TA phonons at (a) the
center and (b) the edge of the Brillouin zone. The lighter mass atoms are indicated

by open circles. For zone edge acoustic phonons only the heavier atoms are dis-
placed.

of frequency. w,, and wavevector, q;,
u(r, 1) = au(r, 1) (6.4)
where
u(r, t) = wexp [i(qyr — wyt)] (6.5)

In thcsc.cquations a is the displacement direction, and « is the amplitude.
The strain associated with the displacement is

Veu(r, t) = a-Vu(r, 1) (6.6)
Veu(r, 1)

iqsau(r, 1) (6.7)

Equation (6.7) indicates that for the transverse components of a phonon
where }hg displacement and the wavevector are orthogonal, q,-a = 0, and
no strain is produced. The scattering potential for the longitudinal component
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is, therefore,
AU(r, t) = €,V u(r, 1) (6.8)

where the deformation potential, €., in units of energy, is defined as the
proportionality constant between the scattering potential (units of energy)
and the strain.

For some semiconductors with two or more atoms per unit cell, there
is no crystal inversion symmetry. In these crystals the strain. caused pre-
dominantly by the LA phonons, polarizes the ions and produces internal
electric fields that vary with time and space. The carrier scattering caused
by these electric fields is called piezoelectric scattering. The scattering po-
tential for electrons is simply

AU(r. 1) = —ql(r, 1) (6.9)

where U(r. 1) is the electrostatic potential associated with the internal fields,
Ur, 1) = — jE(r. t)-dr (6.10)

To evaluate (6.9). it is thus necessary to determine the fields produced by
the piezoelectric interaction.

At a given frequency, o, the relationships among the electric flux den-
sity. D, the electric field. E, and the polarization, P. are

D(w) = e(w)E = ¢E + P(w) (6.11)

where ¢ is the free-space pcrfniuivity. In the low-frequency limit (6.11)
become

D(0) = e(0)E = ¢E + P(0) (6.12)

where €(0) = €,(0)eo is the static permittivity. Physically. the source of D(0)
is the “‘true”” charge (i.e., space and surface charges), while the source of
P(0) is the “‘polarization™ charge. usually atomic core and ionic dipoles.
Since measurements of the so-called ‘‘static’” dielectric constant do not in-
clude piezoelectric polarization, it is necessary to add an additional term to
(6.12) to include this effect. [In principle. P(0) should include piezoelectric
polarization.]

From Fig. 6.2 we see that this polarization must be proportional to the
strain induced by the phonons. Ignoring the tensor nature of this interaction,
we have

D) = e(O)E(r, 1) + ep, Vulr, t) (6.13)

where the piezoelectric constant, ey, has units of coulomb per square meter.
With no true charge, the sources of the electric field are piezoelectric, ionic,
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and atomic polarization,

Er, 1) = — % Vu(r, 1) (6.14)

Using (6.9), (6.10), and (6.14), the scattering potential in terms of the dis-
placement is

—(4€pz
<0) u(r, t) (6.15)

With (6.5) and (6.6), equation (6.15) can be expressed in terms of the strain
as

AU(r, 1) =

AU, 1) = Loz gy, 1) (6.16)
€(0)g,

Comparing (6.8) and (6.16), we see that the scattering potentials for
the deformation potential and piezoelectric interactions are separated in
phase by 90°. The two acoustic phonon scattering mechanisms therefore
operate independently.

6.1.3 Optical Phonons

The optical phonons also scatter carriers by two independent pro-
cesses. These are referred to as deformation potential scattering (the same
as for acoustic phonons) and polar mode scattering. The deformation po-
tential scattering by optical phonons is similar to that for acoustic phonons
and the polar mode scattering is due to the polarization of atoms within the
unit cell. The displacements, «(r), of a chain of atoms from their Bravais
lattice sites for longitudinal optical (LO) and transverse optical (TO) phonons
are shown in Fig. 6.3.

In a manner similar to acoustic phonons it can be seen that the ex-
pansion and contraction of the unit cell is dominated by the longitudinal
optical phonons. The main difference in Fig. 6.3 at the zone center is that
the atoms in the unit cell vibrate against one another. Because of this, for
optical phonon deformation potential scattering, it is necessary to consider
the relative displacement between atoms in the unit cell,

du(r, 1) = u(r, 1) — ux(r, 1) (6.17)

where w,(r, 1) and u»(r, 7) have the form given by (6.4) and (6.5). The scat-
tering potential due to modulation of the conduction and valence edges must
then be proportional to this relative displacement and

AU(r,t) = D du(r, 1) (6.18)

where

du(r, 1) = adu(r, 1) (6.19)

!
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Figure 6.3 Displacements of a diatomic chain for LO and TO phonons at (a) the
center and (b) the edge of the Brillouin zone. The lighter mass atoms are indicated
by open circles. For zone edge optical phonons only the lighter atoms are dis-
placed.

for optical phonon deformation potential scattering. In (6.18) the deformation
potential constant, D, has units of energy per unit length. A similar treatment
can be used for intervalley phonon scattering.

The optical phonon polar mode scattering is due to the electric field
caused by the polarization of the ions in the unit cell. This polarization is
caused mainly by the longitudinal component and is equivalent to the ionic
polarization, P;, which is discussed in Chapter 7. The scattering potential is -
obtained from (6.9) and (6.10), where the internal electric field is deduced
from the low- and high-frequency limits of (6.11),

D(0) = e(0)E = ¢cE + P(0) (6.20)
and
D(*) = e(*)E = gE + P(x*) (6.21)

Note that in (6.20) the total low-frequency polarization is due to atomic and
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ionic polarization,

P(0) = P(x) + P; (6.22)
Using (6.22) in (6.20) and subtracting (6.21), we obtain

€(0OE = e(*)E + P; (6.23)
or

D(0) = e(®)E + P; (6.24)

From (6.24) we can determine the internal fields induced by the optical
phonon polarization of the unit cell.

The polarization of a unit cell, P,(r, 1), is determined by the relative
displacement of the ions in a unit cell, du(r, 7), and the effective ionic charge,
¢*. such that

(,*
Pi(r, 1) = ol du(r, 1) (6.25)

In this equation Q = V/N is the volume of the N primitive or Wigner—Seitz
unit cells and ¢* is the Born effective charge given by

. L[ 1"
€T = Q(Ol_()e(:c)p”' [gx—) - mjl (7!74)

where p is the mass density. This equation is derived in Chapter 7. Assuming
no space or surface charges, (6.24) and (6.25) give an internal field,

e*
Qe(x)

Using (6.9). (6.10). and (6.26). the scattering potential for polar mode scat-
tering is

E(r, 1) = — du(r, 1) (6.26)

AU(r 1) = mj&u(r t)-dr (6.27)
or with (6.5) and (6.19),
ige*
AU(r, 1) = LA d ;
(r,1) = Dewoa, u(r, t) (6.28)

A comparison of (6.18) and (6.28) shows that the scattering potentials for
deformation potential and polar mode scattering by optical phonons are out
of phase by 90° and are thus independent.

Equation (6.28) is sometimes written in the form

AU(r,t) =

5
Qeogs )
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where a Callen effective charge, e is used. The relationship to the Born
effective charge is given by

e* = e(®)er (6.30)

6.2 SCREENING

In the derivations of the scattering potentials we assumed, in all cases, that
there were no space charges (also, no surface charges). That is. we assumed
that the charge carriers were uniformly distributed in the material such that

=qn—-—p+ Ns; —Ng)=0 (6.31)

In the vicinity of a crystal potential perturbation caused by an impurity or
phonon, however. charge carriers can be accumulated or depleted by the
scattering potential. This space charge produces an additional potential given
by

p)

Val(r) = — (4.99)

where
—p(r) = g[n(r) — p(r) + Ng(r) = Nj(r)] (6.32)

which screens the effects of the scattering potential.

In (6.32), n(r). p(r), N;(r), and N (r) are the total electron, hole,
ionized acceptor, and ionized donor concentrations as a function of distance,
r, from the center of the perturbing potential. These total concentrations
can be split into two components,

n(r) = n + dn(r) (6.33)
Ni(r) = Nji + 8N;(r), etc.

a uniform concentration and an excess (or deficit) concentration which varies
with r according to the variation of (r). Excess carriers due to built-in
potentials in nonuniform materials are discussed in some detail in Chapter
8. For our purposes here, we assume that ql(r) < kT, so that the excess
concentrations are, approximately,

Bn(r) = = (r)
(6.34)

dN (r) =

kT \b() etc.

With this approximation we can define an effective total electron
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concentration,
n*(r) = n(r) — p(r) + No(r) — Ni(r) (6.35)
which, using (6.33), (6.34), and (6.31), takes the form
iy = I
n*(r) T Wi(r) (6.36)

From (4.99). (6.32), (6.35), and (6.36), Poisson's equation for the potential
is

Dz
V20(r) = "e/:'r W(r) (6.37)

where the effective, uniform electron concentration, n*, is to be determined
later. If we define an effective Debye length,

\ k
i L (6.38)
q-n*
the differential equation for the potential is
V2U(r) = %\b(r) (6.39)
For a spherically symmetric potential, (6.39) is
d? ri(r)
= 4
o [rls(r)] T (6.40)
The physically significant solution to this equation is
c i
U(r) = = exp <—'> (6.41)
r A
where the constant of integration,
Z 2
c=L (6.42)
41re

for ionized impurity scattering. From (6.41) we see that the accumulation
or depletion of charge carriers produces an exponential decay of the scat-
tering potential with a characteristic length A. This characteristic length is
controlled by n*, the effective electron concentration.

6.2.1 Degenerate Statistics
To determine n*(r) and, subsequently, n*, it is necessary to introduce

an energy band formalism for nonuniform materials. This formalism is sum-
marized in Fig. 6.4, where we show the terminology for (a) a semiconductor

|
|
|
|
|
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Figure 6.4 Energy band diagrams and terminology for (a) uniform material and
(b) the same material with potential perturbations.

with uniform charge carrier and ionized impurity distributions, and (b) the
same semiconductor with nonuniform distributions caused by perturbing
potentials.

For a material with uniform doping and band structure as in Fig. 6.4(a).
the Fermi energy is flat in thermal equilibrium and equal to the chemical
potential energy, . For the same material with perturbing potentials due to
impurities and phonons as in Fig. 6.4(b), the Fermi energy is flat, also in
thermal equilibrium, and equal to the electrochemical potential energy,

{ = ur) = qu(r) (6.43)
All the other energies have the form
Eo(r) = E. — qu(r), etc. (6.44)

Since the perturbed material is in thermal equilibrium, we can simply modify
the equilibrium distributions for n. p, N, , and N; derived in Chapter 4
with this formalism to obtain n(r), p(r). N, (r), and N (r).

From (4.68) and (4.65) the total electron concentration is

n(r) = N.Fin[ne(r)] (6.45)
where
_ k. — E. + qu(r)
MNe(r) = —kT (6.46)
Equations (4.78) and (4.76) give the total hole concentration,
p(r) = N,Fy;z[n.(r)] (6.47)
where
E, - -
)= B — D (6.48)

kT
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The total ionized acceptor concentration from (4.98) is

N{l

Ng(r) =
I + gaexp{[E. — n — qu(r)/kT} L)
while the ionized donor concentration from (4.97) is
Ni(r) = i (6.50)

I + gaexp{ln — Eq + qU(r)VkT}

Equations (6.45) and (6.47) for the electron and hole concentrations

“ can be simplified in the following manner. From (4.67) the Fermi-Dirac
integral is

v dx

o) -
st = = [
vzln(e)] VaJo 1 + explx — n(r)]

(6.51)

whex:c m(r) is given by either (6.46) or (6.48). The exponential in the de-
nominator in (6.51) involving qui(r)/kT is then expanded in a Taylor series
and the denominator is divided into the numerator. Neglecting ler£ns in W3(r)
and higher. which is equivalent to the assumption qui(r) < kT. (6.45) and
(6.47) become

_ qli(r) dn
n(r) KT dn. (6.52)
and
qui(r) dp
( o= —_ S
p(r) *T @, (6.53)
From the recurrence relationship (5.83),
dn F_1»(n)
= N.F_in(n.) = L -12ine)
dT]r “ 1.(7] ) # Fl/z('f)c) (6-54)
and
(/p F_ 1/’(1] )
— = N,F_ip(n,) = p——
([T]x,- ¥ Tl p Fl/l(nl') (6.55)

Equations (6.49) and (6.50) for the ionized acceptor and donor concentrations
can be simplified in a similar manner to obtain

NONZ qU(r)

Ni(r) = Ng
r) = N7 + A o

(6.56)

and

NINI qu(r)

Ni(r) = Ni — N, kT
d

(6.57)
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The effective electron concentration, n*, which controls the screening
is obtained as follows: (6.52), (6.53), (6.56), and (6.57) arc substituted into
(6.35). Equation (6.31) for charge neutrality is applied to (6.35) and n* is
then obtained from (6.36) as
dn dp  NON; NON;

# = 4 — =+ —— 49
" dn.  dn. Na Ny =g

Equation (6.58) is valid for screening in degenerately doped semiconductors
under the assumption that the perturbation energy is substantially less than
the thermal energy.

6.2.2 Nondegenerate Statistics

When the doping of the material is such that the Fermi energy is greater
than €, + 4kT and less than €. — 4kT. m is negative, and Fi»(n) =
F _12(n). From (6.54). (6.55). and (6.58) the effective screening concentra-
tion is

0 == 0 +
IVuNn i NzINxI (6,59)

n*=n+p+

/\"u . /‘Vd
where N® = N, — N; and Ny = Ny, — N, . Eliminating the neutral
concentrations,
Na Nai
n*=n+p+N;(1l-—7) +Na |l -— (6.60)
P e ( M.) ! ( N,

For nondegenerate n- or p-type material. (6.60) can be further simpli-
fied. In n-type material, for example, all the acceptors will usually be ionized.
so N; = N,. The acceptors are ionized by electrons from the donors. with
the remaining electrons from the donors contributing to conduction. There-
fore, N7 = n + N,. Using these arguments and space charge neutrality.
in (6.60) the effective electron screening concentration is

(n + NJ)(Ngy — Ny — 1)
+

n* =n N, (6.61)
For p-type material, the effective hole screening concentration is
+ N, a — Na —
B = 5 (p + No)(Na = Na — p) (6.62)

Na

Since N, and N, are usually constant in a material, (6.61) and (6.62) are
useful in examining screening under conditions where n or p vary.
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6.3 COLLISION INTEGRAL

Boltzmann's equation for the time rate of change of the electron distribution
function under the influence of internal and applied forces is

af I af

— = — —F.V,.f — .vr P

at h of = vV.f ot 64

c

In Chapter 5 the first and second terms on the right-hand side of this equation

were evaluated under the assumption that the third term could be put in the
form

of | _ = = fo)

ar |. T

‘m

(5.6)

That is, we assumed that the time rate of change of the distribution function
due to collisions (the collision term) could be described by a momentum
relaxation time, ,,. In this section we examine the conditions under which
this assumption is valid and show how ,, can be obtained from the scattering
potentials derived in Section 6.1. An equation relating the collision term or
momentum relaxation time to the basic scattering process is called a collision
integral. The scattering process itself can be described, quantum mechan-
ically, by a matrix element or, classically, by a differential scattering cross

section. We examine these two treatments and develop the relationship be-
tween them.

6.3.1 Quantum Treatment

The Hamiltonian for an electron undergoing a scattering process is
H = H, + AU (6.63)

where Hy is the unperturbed energy operator and AU is one (or more) of
the scattering potentials, in operator form, derived in Section 6.1. Since the
process evolves in time, Schrédinger’s equation is

(Ho + AUU(r). = ik %(”) (6.64)

Solutions to (6.64) are obtained by constructing time-dependent wavefunc-
tions from a set of time-independent Bloch wavefunctions.

(— %U)]
1

(1) = > Ar(t)y exp [ (7.13)
k

i

where i, are given by (2.10).
This scattering problem is formally equivalent to the optical transition
problem described in Chapter 7. For an electron that is scattered from a
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state with wavevector k to one with wavevector k', the scattering rate is

Si = M (6.65)
Using (7.36) this can be written as
Sk = 27:' | He [P8(6x — €x) (6.66)
where from (7.19) the matrix element is
Hy = iN f Ui AUy dr (6.67)

In (6.67), N is the number of primitive or Wigner-Seitz unit cells and V is
the crystal volume.

For an electron to be scattered from an initial state k to one of the (N
— 1) states k’, the initial state k must be occupied and the final state k" must
be unoccupied. Conversely, an electron in one of the occupied (N — 1)
states k' can be scattered into the unoccupied state k. Considering these

two competing processes and summing over all (N — 1) valpes qf k', the
time rate of increase of the distribution function due to collisions is
af N-1

i = N; D [Serfer(l = f2) = S fu(l = fr)) (6.68)
c e

where N, is the number of scattering centers and fy is the nonequilibrium

distribution function at energy ¢(k). Since the number of unit cells in the

crystal, N, is very large, the summation over the (N — 1) values of k" can
be approximated by an integration over the (N — 1) = N values of k’ in the
Brillouin zone. From (2.30), (1.20), and (1.12), each value of k" occupies a

reciprocal volume,

Ll = 22TL (6.69)

The integral approximation of (6.68) is, therefore,

af | _ N,V
ot . m?la
When (6.70) is used in (5.4), an integrodifferential form of Boltzmann's equa-
tion is obtained which is quite general and valid for arbitrary degeneracy.
It is instructive to examine (6.70) in thermal equilibrium. Under this
condition there is no change in the distribution function and the left-hand
side of (6.70) must equal zero. For this to be true for any value of k',

fok(l =5 fok')
for(l = fox)

[Seafr(l = fr) = Siefiu(l = fr) dk'  (6.70)

Sier = Sia (6.71)
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where the subscript zero denotes the equilibrium Fermi-Dirac distribution

function,
€ — €\]7!
for = [1 + exp (‘,\—Tfﬂ (6.72)
If the material is nondegenerate, €, — €, > kT, and (6.71) reduces to
’ B —
Sk = Swe exp <%> (6.73)

From (6.73) it can be seen that Sy, = Sk only when €, = €, or |k | =
| k |. That is. the scattering rate from a state k to k’ is equal to its inverse
only for elastic collisions. It is only under this condition that a universal
momentum relaxation time can be defined.

Assuming elastic collisions we will now evaluate the nonequilibrium
distribution coefficients for an arbitrary force field. With this we can then
obtain the relationship between the momentum relaxation time and the ma-
trix element, or using (6.67) the scattering potential, for a scattering process
that conserves energy.

Consider an electron with initial wavevector k scattering into a final
state k” under the influence of an arbitrary force, G. This force can include
electric, magnetic. and thermal fields. From (5.18) the nonequilibrium dis-
tribution function in the relaxation time approximation is

fr = for + @ i k-G (6.74)

ac&, m*

For a collision at the origin of the reciprocal-space coordinate system in Fig.

k,  Figure 6.5 Spherical coordinate system
in reciprocal space for an electron with
wavevector k (along the k. axis) scatter-
ing into a state with wavevector k’ in an
arbitrary force field G. The scattering
center is at the origin. For simplicity the
event is rotated so that G has no &, com-

x ponent.
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6.5,

kG = kG cos « (6.75)
and

k'-G = kG cos B (6.76)

he magnitudes of k and k' are equal when energy is conserved.

the Uging (6.74), (6.75). and (6.76), the expression involving distribution
functions in the integrand of (6.70) is
fe(l = fu) = full = fi)

= m—ﬁ— kGlcos B(1 — cos a) — cos a(l — cos B)]  (6.77)

& m*

Eliminating cos § with the equation for a spherical triangle (see Fig. 6.5)
gives

cos B = cos @ cos O + sin a sin 6 cos & (6.78)
Equation (6.77) becomes
fe(l = f) = (1 = fr)
_ifo i

kGsin « sin 6 cos & — cos a(l — cos 0)]  (6.79)
o0& m*
Inserting (6.79) into (6.70). the collision term is

af af() fl 1’\/j %
Al = &0 e
at | & m*  (2w)?

f Sii[cos a(l — cos 0)
QK

— sin « sin 0 cos &lk dk’ (6.80)

Equation (6.80) can be simplified to give an cxprcssjon for 7,, }'n the
following manner: First, note that the differential volume in k-spacc is

dk = k*sin 0 db db dk (6.81)
Then, integrate ¢ from 0 to 2w, which eliminates the &-dependent term.
Finally, from (6.74) and (6.75),

- ——kGcosa = —(f — fo) (6.82)
& m*

Following these steps, (6.80) becomes

1 NV
tm  Qm)2k

Equation (6.66) for the scattering rate, S, shows that the integration over

f fﬂ Sie sin 0(1 — cos 6) do k* dk (6.83)
k JO
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k is zero except at the point where energy is conserved. Using (6.66) and
assuming a parabolic band, the relationship between the momentum relax-
ation time and the matrix element for the scattering process is

I N.Vm'p .
— = '—'"—”L | Hix |2 sin 6(1 — cos 0) db (6.84)

Tm z'ﬂfl‘

6.3.2 Classical Treatment

The classical derivation of the momentum relaxation time proceeds
rather simply. For N,/V scattering centers per unit volume with scattering
cross section, o,,. the mean free time between collisions for an electron with
velocity, v, is

1 Nv

T . m 6.
Tm v & (6.85)

The scattering cross section is determined by setting a scattering center with
differential cross section, o(8). at the origin in Fig. 6.5. The 6-dependence
allows for different scattering mechanisms. An electron scattered by the
center into the solid angle (0, &) loses (1 — cos 0) of its initial momentum

in the incident direction. Taking into account all possible scattering angles
yields

G = f ” f " 5(6) sin 6(1 — cos ) db dd (6.86)
b =0 =(
Using (6.85) and (6.86), the momentum relaxation time is
| 2aN,v (™ .
— = =2 [T o0 sin (1 ~ cos 0) do (6.87)

This is the classical collision integral.

Since the quantum and classical integrals have the same angular de-
pendence, a relationship can be obtained between the differential scattering
cross section, o(0), and the matrix element, Hy, for a given scattering
process. Equating (6.84) and (6.87), we obtain

Py

Vm* -
o(0) = (m | Hixr |> (6.88)

6.4 MATRIX ELEMENTS

In principle the calculation of a matrix element for electron scattering from
a given scattering potential using

1
Hye = ~f Uk AV e dr (6.67)
N Jv
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is relatively straightforward. In detail, however, the procedure is. often quite
laborious, involving a number of approximations and assumptlon:s. Here,
we simply indicate the general procedure and refer the reader to the literature
for the detailed treatment.

6.4.1 General Procedure

The usual procedure for evaluating a matrix element is first to expand
the scattering potential in a Fourier series,

AU(r) = 3, A, exp (ig'T) (6.89)

L

where the Fourier coefficients are
A, = —]— f AU(r) exp (—igr) dr (6.90)
v v

For Bloch wavefunctions,

Ui(r) = exp (fker)ug(r) (2.10)
Hue = Ai/z fv exp (—ik-r)ug(r)A, exp (ig-)
<
x exp (iK' +r)ue(r) dr (6.91)
Hue = /lvz A, f‘ wi(r)ue(r) exp litg + K — krldr (6.92)
P

Since the integral is zero except when
g =k -k (6.93)

(6.92) is
A %
Hye = —ﬁ- f‘ 1 (D) (r) dr (6.94)

For parabolic bands ux(r) = w(r), and the matrix element is simply the
Fourier coefficient that satisfies (6.93)
Hue = Ax—w (6.95)

where A is given by (6.90).
6.4.2 Screening Factor
Since the matrix element for ionized impurity scattering is relatively

easy to obtain, we will derive it as an example of the proc'ed\.lre. {\lso, py
comparing the screened and unscreened matrix elements for ionized impurity
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scattering, the screening factor for a general scattering process can be
deduced.

Inserting the unscreened potential for ionized impurity scatteri
' a ing (6.1
into (6.90) yields P g b

P f s hniitigd 0
* dme(0)V Jv p(~igm) r (6.9)
For the differential volume element
dr = r*sin 0 do dd dr (6.97)
qu = )
Ap = e(O—)VfO rexp (—igr) dr (6.98)
The integral is evaluated with (3.21) to obtain
Zq*
Ay = ——m8—
“ = qOV gl (6.99)
or from (6.95),
Zq*
Hy = ———1
T OV k- kT (100
For the screened potential, (6.41),
Zq* r 1
A, = —— — Z)exp (—ign) =
“ = ImeO)V fvcxp < )\) exp (—igr) - (6.101)
Following the procedures above gives us
A, = i
£ €(0) V(| g !: + 1/}\3) (6]02)
or
Zq?
Ifkk' = (6 103)

COV(k - k' |F + 1Y)

A comp_ari:son of the screened equation (6.103) and the unscreened equation
f6. 100) indicates that the screening factor for a scattering process in general

1S
|k = k2

A=
|k = Kk | + I\?

(6.104)

In Table 6. 1. we have summarized the scattering potentials and matrix
elements fqr various scattering mechanisms. Screening can be accounted
for by multiplying the matrix elements by (6.104).
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TABLE 6.1 Scattering Potentials and Matrix Elements for Various Scattering

Mechanisms®
Scattering Scattering Matrix
Mechanisms Potential Element
Impurities
Zq* Zq*
anize dmel0)r «OVik - kT
#2 12 2wh? (20rs\ "
Neutral 2 (r_‘:) 1;', ( “)
m* \r m*V k )
Acoustic phonons
2 \ 172
Deformation . h 1 P\ME
; V- [ ( - ) (a- .)(n( + -:—)
potential €aVou A \2Vpo,, 4 2T Yy
g 172 172
X . iqep, qep: h ( 1 1 )
y e — =i = Ny -+ =i
Piezoelectric <0)q. u «0) \2Vpw, ¢ T 575
Optical phonons
12 7 12
Deformation h 1 I\
: DY, D ( ) (n, + = * —)
potential Dbu 2VpoLo « T3 F 3
ige™ qe* h )' : ( 1 I‘)":
: ——3 : — ik B
Rolar we(*)q; “ Ne(=)q, (2\"pu)|_o "4 2 2

“ rp = Bohr radius: n, = phonon occupation number: e* = Qo oe()p' [ Ve(=) — 1/e(0)]'"=.

6.5 RELAXATION TIMES

With the matrix elements listed in Table 6.1, momentum relaxation times
can be calculated from (6.84) for the various scattering mechanisms. As-
suming isotropic parabolic energy bands, jionized impurity scattering can be
described by the Brooks-Herring equation [H. Brooks, Adv. Electron. Elec-
tron Phys. 7, 158 (1955)],

2.4173 . W B
- l(\') = ez(OjT'{\//:I g(n*, T, x) <;::—L> x Y second™'  (6.105)
711 (2 ;

where the screening term

(6.106)

gn*, T.x) =In(1 + b) - T3 B

and

2 £
b = 431 x 100 €O <ﬂ> x (6.107)

n* m

In these equations N, is the total ionized impurity concentration in cm ™3

and n* is the effective screening concentration in cm~? given by (6.58).
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For neutral impurity scattering, we use Erginsoy’s result [C. Erginsoy,
Phys. Rev. 79, 1013 (1950)],

L 1.22 x 107 7¢,(0)Nn (%) second ™! (6.108)
TNI m
where Ny is the total neutral impurity concentration in cm~3. Notice that
this momentum relaxation time is independent of the carrier energy, x. Usu-
ally, neutral impurities have an appreciable effect on carrier scattering only
for relatively uncompensated samples at low temperatures.

The momentum relaxation time for deformation potential scattering by
acoustic phonons was first calculated by Bardeen and Shockley (J. Bardeen
and W. Shockley, Phys. Rev. 80, 72 (1950)]. Their result is

! 4.17 x 10"9€3 7132 a2
Tpa(X) - C ‘ (%) x'? second ~! (6.109)
DA\ 1

for €4 in eV and C; in dyn/cm?. C; is the spherically averaged longitudinal
elastic constant indicated by (6.111) below.

For materials with no inversion symmetry, the acoustic phonons also
scatter carriers by means of a piezoelectric interaction. A momentum re-
laxation time for this process was first formulated by Meijer and Polder [H.
I. G. Meijer and D. Polder, Physica 19, 255 (1953)]. With spherical averaging
of the elastic and piezoelectric constants over a cubic crystal structure [J.
D. Zook, Phys. Rev. 136, A849 (1964)]. this is given by

S 1.05 x 107 h3 I + 2 T2 i - x~ "2 second ™!
tpalx) A ¢ G m ’

(6.110)

In (6.110) 11,4 = e,14/€(0) is the piezoelectric constant in V/cm and the average
longitudinal and transverse elastic constants are

C[ €(3C|| + 2C12 + 4C44) (61”)

I

and

C =

I

HCi — Ci2 + 3Cas) (6.112)

in dyn/cm?. For a hexagonal crystal structure the momentum relaxation time
is anisotropic.

For impurities and acoustic phonons the scattering processes are, to
a good approximation, elastic. For optical phonons, however, the phonon
energy is comparable to the thermal energy of the carriers and the scattering
processes are inelastic. Despite this, a momentum relaxation time can still
be defined for deformation potential scattering by optical phonons [W. A.
Harrison, Phys. Rev. 104, 1281 (1956)]. This is given by
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1 2.07 x 10"€37'78 (g)m [(\ . g)”z
o(x)  Cilexp (0/T) — 11 \'m i

9 e 12
= == S =4 Jd
+ exp (T) (.\' T) ] second (6.113)

for €4 in eV and C; in dyn/cm?. 6 in this equation is the longitudinal optical
phonon temperature,

hwro

GEk

(6.114)

%. is the acoustic phonon deformation potential constant, which is related
to the optical phonon deformation potential constant, D, by
¢ = G0 (6.115)

=
pwiLo

For polar scattering of carriers by optical phonons a universal relax-
ation time can be defined only for temperatures much less than or much
greater than the optical phonon temperature. It is thus necessary to use a
variational method to solve the Boltzmann equation and determine the car-
rier scattering. However, Ehrenreich [H. Ehrenreich, J. Appl. Phys. 32, 2155
(1961)] has developed a relaxation time based on a variational calculation
for polar scattering which gives the correct solutions to the Boltzmann equa-
tion at low and high temperatures. This is given by,

1 1.04 X 10" [€,(0) — €,()]0"*(8/T)" (E

172
= > x~"second ™!
Tpo(X) €(0)e () [exp (8/T) — 1]

m

(6.116)

where r varies with (6/T) as shown in Fig. 6.6. -
The results of this section for the momentum relaxation times are sum-
marized in Table 6.2 in the form

Ti(x) = Tix" (6.117)

These expressions are valid only for scattering in isotropic parabolic energy
bands. For scattering in more complex bands, see D. L. Rode, Semicon-
ductors and Semimetals, Vol. 10, Transport Phenomena, ed. R. K. Wil-
lardson and A. C. Beer (New York: Academic Press, 1975) or J. D. Wiley
(ibid.). It should also be noted that the momentum relaxation times were
derived under the assumption that screening can be neglected for phonon
scattering. This is usually a good assumption for samples with nondegenerate
doping.



1.0

0.1 1 10
orT

Figure 6.6 Variation of the parameter r in Equation (6.116) with (8/T) obtained
by equating variational solutions for the mobility. w. thermoelectric power, P,
and Hall coeflicient. Ry. with the corresponding expressions in the relaxation
time approximation. [From H. Ehrenreich. General Electric Research Lab. Rep.
No: 61-RL-(27626), June 1961.]

TABLE 6.2 Momentum Relaxation Times and Reduced Energy Dependence for
Materials with Isotropic Parabolic Bands”

Scattering

Mechanisms 7i (sec) ri
Impurities

lonized 0.414eX(0)T*? (m*)"’

oniz 3 -

onize Z*Nfem ™ Hen*. T, ) \ m !

2

et L6 x 10 ()
veutra ONem ) \m 0

Acoustic phonons
Deformation

2.40 x 10-*°Cy(dyn/cm?) (ﬂ)w:
m*

potential EieV)T™ 4
Pi lectri 9.54 x 10°* (ﬁ)"’ }
iezoelectric TViemICr = 3ICT -

Optical phonons

Deformation 4.83 x 1072C,(dyn/cm®){exp (8/T) — 1} ( m \*?
potential €ieV)T?0 (;) =t
Polar 9.61 X 10~ e (0)e(x)[exp (8/T) — 1] (ﬂ)"’ (g)
[€(0) — e(=)]0"2(8/T) m* "\T

“ N; = concentration of ionized.impurities: g(n*, 7, x) = In(1 + b) — b1 + b); b = 431
x 10" [0 T/n*(cm ™ H)(m*/m)x; Ny = concentration of neutral impurities: C; = 4(3Cy,
+ 2Ci2 + 4C4): C; = MCiy — Ciz + 3Caa)i 8 = hwy olk.
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6.6 COMBINED SCATTERING

In most calculations of transport properties it is necessary to consider several
scattering processes at the same time. If these scattering mechanisms are
independent of one another, the matrix elements or differential scattering
cross sections for each process can be added to obtain the total scattering.
In the relaxation time approximation we see from (6.84) or (6.87) that this
is equivalent to adding the reciprocal times for each process,

1 1
o - 2w
where the 7;(x) are given by (6.105), (6.108). (6.109), (6.110). (6.113), and/
or (6.116). The desired transport property is then obtained by averaging the
appropriate expression involving T1,,(x) over the electron distribution. From
(5.54) this procedure is

(6.118)

2 L‘ 5, (X)( — f ofax)x' ¥2 dx

= (6.119)

Ffox'? dx
(4]

(Tm(x)x) =

W |

For some combinations of scattering mechanisms it is possible to evalu-
ate (6.119) analytically. The usual procedure is to integrate the numerator
by parts and obtain a solution in terms of Fermi-Dirac integrals of order j.
which are tabulated in Appendix B. For problems involving ionized impurity
scattering this procedure is complicated by the energy or x dependence of
the screening term. g(n*. T. x). given by (6.106) and (6.107). Since it is a
slowly varying function of x, however, reasonablc approximations can be
made. The usual procedure is to evaluate g(n*, T, x) at a constant energy.
X = X,.. and remove it from the integral. The value of x,, is determined by
the condition that the integrand remaining after the removal of g(n*, T, x,,)
be a maximum [E. M. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388
(1950)]. Typically, x,. has a value of about 3 or so.

For most combinations of scattering mechanisms it is necessary to
evaluate (6.119) numerically. As an example of this, the temperature de-
pendence of the mobility,

q{Tm)
m*

M= (5.50)
for high-purity n-type GaAs is shown in Fig. 6.7. Here the mobility for each
relevant scattering mechanism was calculated separately from (5.50),
(6.105), (6.108), (6.109), (6.110), (6.116). and (6.119) and then combined to
compare with experimental data.

As can be seen, the mobility of this GaAs sample is dominated by
ionized impurity scattering at low temperatures and by polar optical phonon
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Figure 6.7 Temperature dependence of the mobility for n-type GaAs showing
the separate and combined scattering processes. [From C. M. Wolfe, G. E. Still-
man, and W. T. Lindley, J. Appl. Phys. 41. 3088 (1970).]

scattering at high temperatures. Deformation potential optical phonon scat-
tering is not important for I' conduction bands [H. Ehrenreich and A. W.
Overhauser, Phys. Rev. 104, 331 (1956)]. This mobility behavior is typical
for polar semiconductors. In these calculations the singly ionized N; in
(6.105) is given by

N; = n + 2N, (6.120)
n*in (6.107) by (6.61), and Ny in (6.108) by
Ny =Ny— N, —n (6.121)

N, and N, were obtained by analyzing the experimental temperature de-
pendence of n with (4.90). For n-type material this equation is

n(n + N,) N, <—A‘é§d>
—_—— = —eXp

= 6.122

Ni—No—n  ga kt ( )
The other parameters required in the analysis are typically obtained from
other, independent measurements. These are listed for GaAs in Table 6.3

together with the appropriate parameters for other materials for which the
analysis above is valid.
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TABLE 6.3 Parameters for Calculating the Transport Properties of n-Type
-'Semiconductors with Isotropic Parabolic Bands
s 3 4 )
Bo(= + =
e (C, c

ﬂ 0 €a C
Material m €(0) €,() (K) (eV) (10" dyn/cm®)  (10° V¥dyn)
» GaN 0.218 9.87 5.80 1044 8.4 2.65 18.32
GaP 0.13 11.10 9.11 580 13.0 1.66 1.15
> GaAs 0.067 12.53 10.90 423 6.3 1.44 2.04

GaSb 0.042 15.69 14.44 346 8.3 1.04

InP 0.082 12.38 9.55 497 6.8 1.21 0.137
InAs 0.025 14.54 11.74 337 5.8 1.0 0.192
InSb 0.0125 17.64 15.75 274 72 0.79 0.409
ZnS 0.312 8.32 S.13 506 4.9 1.28 6.87
ZnSe 0.183 9.20 6.20 360 4.2 1.03 0.620
ZnTe 0.159 9.67 7.28 297 35 0.84 0.218
CdS 0.208 8.58 5.26 428 3.3 0.85 32.5
CdSe 0.130 9.40 6.10 303 5 0 0.74 16.7
CdTe 0.096 10.76 7.21 246 4.0 0.70 (.445
HgSe 0.0265 25.6 12.0 268 4 0.80 0.445
HgTe 0.0244 20.0 14.0 199 4 0.61 0.445
PbS 175 17 300 20

PbSe 250 24 190 24 0.71

PbTe 400 33 160 25

PROBLEMS

6.1. In a collision with an acoustic phonon, show that an electron with initial ve-
locity »; will gain or lose at most only

of its initial energy, where u, is the sound velocity.

6.2. An acoustic wave of the form A exp [i(q'r — )] propagates through an n-
type semiconductor with a parabolic band where it produces a variation in the
energy of the electrons

€ = €,A exp [i(g'r — )]

Since the force exerted on an electronis F = —V,%€, show that in the relaxation
time approximation, a good approximation to the electron distribution is

(”f() i v-q‘é

= + =
f=fot g1+ TmVq

Does this distribution provide conduction?
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6.3. (a) Evaluatc ry for ionized impurity scattering using the momentum relaxation
time determined in the Brooks—Herring approximation.
(b) Plot the temperature variation of 1 using parameters appropriate to GaAs.
6.4. pse tf}e Rutherford scattering cross section to derive the mobility for ionized
impurity scattering in the Conwell-Weisskopf approximation.
(a) DI%CUSS the validity of the Born approximation for ionized impurity scat-
tering.
(b) !)iscuss the differences between C-W and B-H approximation, particularly
in the temperature range where there is carrier freeze-out. ’

Optical
Properties

When light is incident on a semiconductor, the optical phenomena of ab-
sorption, reflection, and transmission are observed. From these optical ef-
fects. we obtain much of the information we have concerning the energy
band structure and electronic processes in semiconductors. Figure 7.1 shows
a hypothetical absorption spectrum as a function of photon energy for a
typical semiconductor. As can be seen, a number of processes can contribute
to absorption. At high energies photons are absorbed by the transitions of
electrons from filled valence band states to empty conduction band states.
For energies just below the lowest forbidden energy gap, radiation is ab-
sorbed due to the formation of excitons and electron transitions between
band and impurity states. The transitions of free carriers within energy bands
produce an absorption continuum which increases with decreasing photon
energy. Also, the crystalline lattice itself can absorb radiation, with the en-
ergy being given off in optical phonons. Finally, at low energies. or long
wavelengths, electronic transitions can be observed between impurities and
their associated bands.

Many of these processes have important technological applications.
For example, intrinsic photodetectors utilize band-to-band absorption, while
semiconductor lasers generally operate by means of transitions between im-
purity and band states. In this chapter we examine these optical processes
in detail.
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