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1Quite possibly marking the birth
of fashion?
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Present your solutions neatly. Do not turn in rough unreadable worksheets - learn to
take pride in your presentation. Show the relevant steps, so that partial points can be

awarded. BOX your final answers where applicable. Draw figures wherever necessary.
Always provide the analytical answer before finding numerical values. Please print out
the question sheet(s) and staple to the top of your homework. Write your name,
email address, and date/time the assignment is turned in on the cover. Assignments must
be turned in before class on the due date. The time the assignment is turned in should
be written. There will be a 10% penalty each day of delay, and assignments will not be
accepted beyond 3 days after the due date. There will be no exceptions to this rule. You
are allowed to work with other students in the class on your homeworks. The name(s)
of the student(s) you worked with must be included in your homework. But what you
turn in must be in your own writing, and have your own plots and figures. Turning in
plots/figures/text that are exact replicas of others is considered cheating.

4070.1 HW 1

Posted: 02/04/2017, Due: 02/13/2017

Problem 1: Semiconductor History

Write a short <1-page critique of the paper “The History of Semiconductors” handed out
in class.

Problem 2: Mirror Mirror on the Wall

Believe it or not, coating glass with metal to make make a mirror was a big technological
breakthrough back in the time 1. In this problem, we answer why metals are shiny - why
they reflect most of the visible light incident on them. Not surprisingly, this has to do with
the conduction electrons in the metal. Here is our mode of attack: when the light wave
experiences a mismatch in the refractive index, part of it is transmitted, and part reflected.
So we will ask Maxwell’s equations to give us the reflection coefficient when a light beam
is incident from air on a metal. If we find that this reflection coefficient is very high for
visible wavelengths, we have succeeded in explaining why metals are shiny.

The reflection coefficient Γr will depend on the refractive index
√
ε(ω) of the metal,

which in turn will depend on how the conduction electrons respond to the oscillating electric
field of the light beam. This is where Drude’s free electron model of the metal - the same
model that explained electrical and thermal conductivity - will help us through.

Figure 4070.1 shows the measured reflectance of three common metals as a function of
the wavelength of light incident on it. Your job in this problem is to calculate and make
your own plot by standing on Maxwell, Drude, and Newton’s shoulders. If things go right,

1
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Fig. 4070.2: Electron on a ring

you may even explain the dips and wiggles in figure 4070.1. I will roughly outline the
method and trust you can finish the story:

The electric field of the light beam according to Maxwell oscillates in time as E(t) =
E0e

iωt, where E0 is the amplitude, and ω = 2πf is the radial frequency, f = cλ with c
the speed of light, and the wavelength λ of light is the x−axis in the plot. The reflection

coefficient for light is Γr =
Er
Ei

=

√
ε0 −

√
ε(ω)

√
ε0 +

√
ε(ω)

, where
√
ε is the refractive index of the

media. The reflectance is R = |Γr|2, which can be found for various wavelengths; this is
the y−axis of the plot. Note that all symbols have their usual meanings.

(a) From Maxwell’s equation ∇ ×H = J + iωε0E in material media, show that the

dielectric constant of the metal is ε(ω) = ε0[1 + i
σ(ω)

ωε0
] .

(b) Now if you have the frequency-dependent conductivity σ(ω), you can make your
plot by looking up the properties of the metal! But we have only covered the DC Drude

model for conductivity in class, where we obtained σ(0) = nq2τ
me

. Here you need to use
Newton’s laws again and solve to show the following:

qE0e
iωt = me

dv

dt
− mev

τ
=⇒ σ(ω) =

σ0

1− iωτ
=

σ0

1 + (ωτ)2︸ ︷︷ ︸
Re(σ(ω))

+i
ωτσ0

1 + (ωτ)2︸ ︷︷ ︸
Im(σ(ω))

. (4070.1)

(c) Now you are close to the finish line. Use the above modified Drude ac conductivity,
look up the required properties of the three metals, and plot the reflectances of all the
three metals. Compare with figure 4070.1.

Problem 3: Lord of the Ring

We derived in class that the allowed wavefunctions representing an electron on a cir-
cular ring of circumference L is ψn(x) = 1√

L
eiknx, where kn = 2π

L n are quantized because

n = 0,±1,±2, .... The angular momentum of a particle is defined as L = r× p, where r is
the ‘radius’ of the circle, and p is the linear momentum.

(a) Show that the angular momentum of an electron in state ψn(x) is Ln = n~, where
~ = h

2π is the ‘reduced’ Planck’s constant. This implies that the angular momentum
is quantized to values 0,±~,±2~, .... Compare the quantized angular momentum L1 for
n = +1 with the classical angular momentum Lcl of a mass m = 1 kg being spun by a
string of length R = 1 m with tangential velocity v = 1 m/s to appreciate how ‘nano’ is
the quantum of angular momentum.

(b) By balancing the classical centrifugal force and the electromagnetic Lorentz force,
show that for an electron to be in the quantum state ψn(x) on the ring, we need a magnetic
field Bn such that the magnetic flux is Φn = Bn · A = n× h

2e . Here A is the area of the

ring, e is the electron charge and h = 2π~. Φ0 = h
2e is known as the quantum of magnetic

flux, and has been measured experimentally in nanostructured rings.

(c) Consider the quantum state obtained by the superposition ψ(x) = a[ψn=1(x) +
ψn=−1(x)] from the eigenstates of the electron on the ring. Normalize the state to find the

constant a. You may need the result
∫ L

0
cos2 ( 2π

L x)dx = L
2 . Does this superposition state

have a definite momentum?
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2This may all be very unsettling,
but we will explain later why it
is actually OK to do so - because
with great freedom comes great
responsibility! In fact this prob-
lem could be formulated for any
Fermion - for example the un-
charged neutron - and the ana-
lytical answers will be the same.

Fig. 4070.3: Andre Geim

Fig. 4070.4: Kotsya Novoselov.
Geim and Novoselov were
awarded the Nobel prize in
physics in 2010 for the discovery
of graphene, the thinnest 2D
crystal with remarkable electron
transport properties.

(d) We derived that the quantum expression for current flux is j = 1
2m (ψ?p̂ψ − ψp̂ψ?),

where p̂ = −i~∇ is the momentum operator, which takes the form p̂x = −i~ ∂
∂x for the

particle on the ring. Show that even though the states ψn=1(x) and ψn=−1(x) carry net
currents, their superposition state of part (c) does not. Explain.

Problem 4: Born to be free

We discussed in class that because of the Pauli exclusion principle, Fermions must
follow the Fermi-Dirac distribution, and they have half-integer spins. Now imagine we
have a metal with n = 1023/cm3 electrons in a cubic box of side L, and we know that
electrons are Fermions. Assume the electrons are completely free to move around in the
box, meaning there are no atoms in their way. If that that much freedom is not enough for
you, how about this: completely neglect the Coulomb interactions due the charge of the
electrons!2 Find the following at T = 0K:

(a) The Fermi wavevector kF .

(b) The Fermi momentum pF .

(c) The Fermi energy EF .

(d) The average energy of electrons u = U
N . What is the origin of this energy?

(e) What is the average energy of the electrons if they did not follow quantum mechanics,
but were subject to classical mechanics?

Problem 5: Graphene Density of States, Fermi-Dirac distribution

The electrons in the conduction band of graphene are free to move in 2-dimensions,
forming a 2-dimensional electron gas (2DEG). The energy-momentum dispersion rela-

tionship for the 2DEG electrons in graphene is E(kx, ky) = ~vF
√
k2
x + k2

y, where vF is a

parameter with dimensions of velocity. For graphene, it is vF = 108cm/s.

(a) Make a sketch of the energy as a function of the (kx, ky) points in the 2D k-space
plane, and show that the dispersion results in a conical shape.

(b) Show that the density of states for these electrons is g(E) = gsgv
2π(~vF )2 |E|, where

gs = 2 is the spin degeneracy of each (kx, ky) state, and gv is the number of cones in the
energy dispersion. For graphene, gv = 2.

(c) Show that at thermal equilibrium, when the Fermi level is at Ef = 0, the number
of conduction electrons per unit area in 2D graphene is ni = π

6 ( kT~vF )2. Make a plot of this
density as a function of temperature for 0K ≤ T ≤ 500K. Explain why your plot sets the
bar on the lowest possible density of carriers achievable in graphene at those temperatures.
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Fig. 4070.5: Arnold Sommerfeld
introduced the quantum electron
theory of the metal, and resolved
the discrepancies of the Drude
model. Was the advisor of a large
cohort of Nobel prize winners, but
was never awarded in spite of be-
ing nominated ∼80 times!

3This is somewhat hard, but Som-
merfeld did it ∼100 years ago!

4070.2 HW 2

Posted: 02/18/2017, Due: 02/27/2017

Problem 6: Density of States of Electrons, Photons, and Phonons

(a) Show that for a parabolic bandstructure for electrons E(k) = Ec + ~2k2

2m? with band
edge Ec and effective mass m?, the DOS for electron motion in d dimensions is

gd(E) =
gsgv

2dπ
d
2 Γ(d2 )

(
2m?

~2
)

d
2 (E − Ec)

d
2−1 , (4070.2)

where gs is the spin degeneracy, and gv is the valley degeneracy. Here Γ(...) is the
Gamma function with property Γ(x + 1) = xΓ(x) and Γ( 1

2 ) =
√
π. You may need the

expression for the surface area of a d−dimensional sphere in k−space: Sd = 2π
d
2 kd−1

Γ( d
2 )

.

Check that this reduces to the surface area of a sphere for d = 3 and the circumference of
a circle for d = 2.

(b) Sketch the DOS for 3D, 2D, and 1D electron systems using the expression. Explain
the roles of the valley degeneracy and the effective mass for Silicon and compound semi-
conductors.

(c) Show that the DOS for energy dispersion E(k) = ~vk for 3 dimensions is

gω(ω) =
gpω

2

2π2~v3
, (4070.3)

where ω = vk, and gp is the polarization degeneracy. This is the dispersion for
waves, such as photons and phonons moving with velocity v. The parabolic DOS of
phonons and photons will play an important role in the thermal and photonic properties of
semiconductors.

Problem 7: Sommerfeld’s Coup

(a) Using the DOS you calculated in Problem 4070.6, find the total energy of N electrons in
volume V at T = 0 K for 3D, 2D, and 1D electron gases with parabolic energy dispersion.
Note that you already solved the 3D electron gas problem in Problem 4070.4.

(b) Now for the heat capacity cv = 1
V
dU
dT , we need to find the total energy U at a non-zero

temperature T . To do that, you can still use the fact that heating a bunch of electrons
will not increase or decrease their number. Show3 that for 3D electrons, the Fermi energy
changes with temperature as

EF (T ) = EF (0)[1− 1

3
(
πkBT

2EF (0)
)2], (4070.4)

(c) Show that the heat capacity of 3D ‘quantum’ electrons is then

cv =
π2

2
nkB

kBT

EF (0)
(4070.5)

(d) By comparing this form of the electron heat capacity with Drude’s result cv = 3
2nkB ,

can you explain why the heat capacity of the ‘quantum’ electrons is so much smaller than
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Fig. 4070.6: 2D Electron in a Per-
pendicular Magnetic Field

Fig. 4070.7: 2D Electron k-space

Fig. 4070.8: 2D Electron real
space

the ‘classical’ electrons?

Problem 8: Quantum 2D Free Electrons in a Magnetic Field

Consider a 2D free electron gas confined to the x-y plane. In the Sommerfeld model,

the energy of an electron with wavevector k is E(k) = ~2k2

2me
, and the velocity is v(k) =

1
~∇kE(k) = ~k

me
. Now suppose a DC magnetic field B = B0z is switched on in the

z-direction, as shown in Figure 4070.6.
In the presence of the magnetic field, because of the Lorentz force, the momentum of

the electron satisfies the equation (assuming no electric field and no scattering)

qv(k)×B = ~
dk

dt
, (4070.6)

which is the quantum version of Newton’s law, with the Lorentz force.

(a) In the k-space, if the starting position of the electron (before the magnetic field was
switched on) is at (kx0, 0)) as shown in Figure 4070.7, then find the trajectory of the
electron in the k-space after the magnetic field has been switched on. Plot the trajectory
in the k-space.

(b) Continuation of part (a): If in addition, the starting position of the electron (before the
magnetic field was switched on) in real space is at (x0, 0) as shown in Figure 4070.8, then
find the trajectory of the electron in real-space after the magnetic field has been switched
on and plot it in the real space.

(c) If you did parts (a) and (b) correctly, you would have found that the motion of electron
in both k-space and real space is periodic. Find the time period for the motion (i.e. the
time taken by the electron to complete one period).

(d) Staring from the equation 4070.6, prove that the energy of the electron is conserved
(i.e. does not change) during its motion. Hint: The proof is just 1-2 lines of math.

(e) If instead of one electron, there were many, Before the magnetic field was switched the
total current carrier by the electron gas (summing up contributions from all electrons) was
given by

J = 2q

∫
d2k

(2π)2
f(k)v(k) = 0, (4070.7)

where f(k) was the equilibrium Fermi-Dirac distribution for electrons. Find the total
current carried by the electron gas after the magnetic field has been switched on and
explain your answer.

Problem 9: The Elusive Bloch Oscillator

In a fictitious 2-Dimensional crystal, the bandstructure of the lowest band with a square
lattice (lattice constant a) is given by

E(kx, ky) = −E0 · [cos kxa+ cos kya]. (4070.8)

a) Make a semi-quantitative contour plot of constant energies in the reduced Brillouin
Zone, and highlight energies E = 0,±E0.

b) Make a semi-quantitative plot of the effective mass in the (1,0) or x−direction, and
the (2,1) direction in the reduced Brillouin Zone.
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4If you have done the problem cor-
rectly, you will realize that very
mysteriously, the electron is oscil-
lating in real space in the pres-
ence of an Electric field! A DC
electric field will lead to ac oscil-
lation power - this idea is called
a Bloch oscillator. The actual im-
plementation has remained elusive
in semiconductor quantum struc-
tures. They promise very high fre-
quency (THz) output power, only
if someone can make them!

kx

ky

X

W

1st BZ

Fig. 4070.9: 2D reciprocal lattice.

c) An electron is initially located at k = 0 in k-space, and r = 0 is real space. At t = 0,
a force F (from an electric field) is turned on which points in an oblique direction,
such that Fx = 2Fy. Show the trajectory of the electron through the reduced zone in
the k-space, including umklapp processes, for the time interval 0 ≤ t ≤ 4T , where

T =
π~
aFx

(4070.9)

d) Calculate and plot the x- and y-components of the velocity and the position of the
electron, all functions of time, for 0 ≤ t ≤ 4T .

e) Make a graph of the trajectory of the electron in the x-y plane of real space.

f) Explain the phenomena in words. 4

Problem 10: Electrons get their Bands and Gaps

As shown in Figure 4070.9, in the k-space of a 2D square lattice (lattice constant: a),
denote the points Γ : (kx, ky)=(0,0), X : (π/a, 0), and W : (π/a, π/a). The nearly free
electron bandstructure assumes no crystal potential, but a lattice.

(a) Draw the nearly free-electron bandstructure from the BZ center in the Γ−W direction
slightly beyond the BZ edge. Identify the magnitude of k at the BZ edge, and express the
energy in terms of F = ~2π2/ma2. Include reciprocal lattice vectors smaller than 2× 2π/a.

(b) Label each band with the reciprocal lattice vector it is associated with. Clearly point
out the degeneracies of each band.

Consider now that the basis atoms produce a 2-D potential

V (x, y) = −4V0 cos(
2πx

a
) cos(

2πy

a
). (4070.10)

(c) Find the bandgap at the W point due to this potential. Be judicious in choosing the
basis set.

(d) The lowest energy at the Γ : (kx, ky) = (0, 0) point before the potential was turned on
was EΓ(0, 0) = 0 eV. Give an estimate of the change in this energy eigenvalue due to the
periodic potential.
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Fig. 4070.10: Atomic arrangement
of a fictitious 2-dimensional crys-
tal.

4070.3 HW 3

Posted: 03/02/2017, Due: 03/14/2017

Problem 11: Wigner-Seitz Cells and the Reciprocal Lattice

Figure 4070.10 shows the arrangement of atoms of a fictitious 2-dimensional crystal. All
circles (filled and empty) represent the same atom.

a) Using the filled ‘atom’ shown in black as the origin of the lattice, indicate the
primitive translation vectors of this lattice. (There are several possible choices; use the
simplest one, and explain.) How many atoms are there per lattice point?

b) Determine the reciprocal lattice vectors corresponding to this lattice, and sketch
the reciprocal lattice as accurately as you can. Use the grid lines shown as an unit of measure.

c) Construct and show the ’Wigner-Seitz cell’, or equivalently, the Brillouin zone clearly
in the reciprocal lattice plot.

Problem 12: Energy Gap from a Square Wave Potential

Fig. 4070.11: Square-wave perturbation to the particle in a box problem.

See Fig 4070.11. This problem is from Kroemer’s QM Textbook. Note that the equation
referred to is F = ~2G2/8me, the free-electron unperturbed energy at the Brillouin-zone
edge. The given perturbation potential is applied on the free electron. Also test with the
Rayleigh-Schrodinger (RS) approximation for the 2nd order energy corrections. Is the RS
approximation a good one for this problem?

Problem 13: This crystal has no atoms! The Empty Lattice Band-
structure

a) Impossibility of indirect bandgaps in ideal 1D crystals: Argue why in an
ideal 1D crystal, energy degeneracies (or band crossings) can only occur at k = 0 or at
the Brillouin Zone edges, but never at any other k points. Since degeneracy points lead
to bandgaps, what does this say about ideal 1D semiconductors: will they be direct or
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Fig. 4070.12: Atoms in the
Graphene Crystal.

Fig. 4070.13: Atoms in the Silicon
Crystal.

indirect bandgap? What about 2D and 3D crystals?

b) Now consider the ideal 2D crystal of graphene shown in Figure 4070.12. Identify the
primitive real-space lattice vectors (a1,a2). Find the primitive reciprocal lattice vectors
(b1,b2). The general reciprocal lattice vector may be written as G = nb1 +mb2, written
more compactly as (n,m).

c) Starting from the expression for the energy bandstructure of the empty lattice model

E(k) = ~2(k+G)2

2m0
, draw up a table with expressions of energy bands along the kx and ky

directions. Associate each band with the respective (n,m) reciprocal lattice vector.

d) Plot the empty-lattice bandstructure along (kx, 0) for (n,m): (0,0) through (2, 2)
with all possible (±) combinations. Also make a 2D plot of the energy bandstructure.
Superimpose and compare with the known bandstructure of graphene and comment.

e) Do the same as in the previous problem, but for 3D Silicon (see Figure 4070.13).
Use the diamond cubic crystal structure (you have 3 reciprocal lattice vectors). Plot the
energy bands along the typical high-symmetry directions in the k-space. Superimpose and
compare with the known bandstructure of Silicon and comment.

Problem 14: Energy Bandstructure of 2D Graphene and BN

In this problem, we will quantitatively calculate the electronic bandstructure for 2D
graphene and 2D Boron Nitride as our first ‘elemental’ and ‘compound’ semiconductors
respectively.

a) Show that if the energies allowed for the electron in individual atoms A and B are
EA and EB, and the lowering of energy because of hopping of the electron between the
atoms between the atoms is U , the energies allowed for the electron after the formation

of a chemical bond are E± = EA+EB

2 ±
√

(EA−EB

2 )2 + U2. Because each allowed electron

state can hold two electrons of opposite spins, what is the lowering of energy due to the
formation of the bond?

b) Now consider 2D Boron Nitride (or graphene), whose atomic basis has two atoms:
B & N for BN (and C & C for graphene). We saw in class that the whole 2D crystal
may be generated by repeating this two-atom basis, by translating by the two primi-

tive lattice vectors a1 = a( 3
2 ,
√

3
2 ) and a2 = a( 3

2 ,−
√

3
2 ), where a is the distance between

the A and B atoms. Sketch the basis, the lattice, and these vectors, and show that
the three vectors from any atom to the three nearest neighbors are n1 = a

2 (1,
√

3),

n2 = a
2 (1,−

√
3), and n3 = −a(1, 0). We will look at only the pz orbital bands. For

on-site orbital energies EA and EB and a hopping energy t, show that the off-diagonal
(hopping) term is h(k) = −t(eik·n1 + eik·n2 + eik·n3), and the resulting bandstructure is

E± = A±

√
B2 + t2[1 + 4 cos(

3

2
kxa) cos(

√
3

2
kya) + 4 cos2(

√
3

2
kya)] , where A = EA+EB

2

and B = EA−EB

2 .

c) Using the following parameters, make 2D plots of the bandstructures of BN and
graphene similar to shown in class. For BN: EA = +2.9 eV, EB = −2.9 eV, t = −2.9 eV,
and a = 0.15 nm. For graphene, EA = EB = 0 eV, t = 3.0 eV, a = 0.15 nm. Describe the
differences and similarities between them. Specifically, find the band-edge effective masses
and bandgap for BN, and the Fermi velocity characterizing the slope of the E − k Dirac
cone of Graphene. Relate these analytically to the known parameters.
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Fig. 4070.14: Bandstructure of Sil-
icon.

Fig. 4070.15: Bandstructure of
GaAs.

Problem 15: Energy Bandstructure of Silicon and GaAs

In this problem we extend the ideas of the last problem to calculate the tight-binding
bandstructure of Silicon and GaAs, which are 3D semiconductors. The procedure is the
same, just the matrices are larger. Do not be turned off by the forbidding looking matrix
below-it is simpler than you think, and understanding it will put you in a select league!
Silicon powers the electronics industry today, and GaAs the photonic industry - they to-
gether are the basis of the new information age. And within a month in this course, you are
solving the quantum mechanical problem of both crystals! You will be able to get plots like
the ones shown in Figures 4070.14 and 4070.15. Because the bandstructure is the allowed
electron eigenvalues in the crystal, getting it means you have (almost) completely solved
the full quantum mechanical problem of the two semiconductors. Since the bandstructure
determines all the electronic and photonic properties of the semiconductor, it should be a
memorable event when you get it to work!

Because for graphene and BN we looked at a single |pz〉 orbital and a 2-atom basis, the
matrix was 2×2. For Silicon and GaAs, the basis has two atoms too, but attached to each
atom will be 4 orbitals: |s〉, |px〉, |py〉, |pz〉, and the chemical bonding is sp3. Thus, to get
the energy bandstructure we have to solve a 8x8 matrix numerically.

a) Sketch the crystal structure, the atomic basis, and the nearest neighbor vectors
n1 = a

4 (1, 1, 1), n2 = a
4 (−1,−1, 1), n3 = a

4 (−1, 1,−1), n4 = a
4 (1,−1,−1), where a is the

lattice constant ( 6= nearest neighbor distance!). Sketch the orbitals centered at each site
and identify the overlaps, and the angles between them.

b) Because of various orbital overlaps ss, spσ, ppσ and ppπ, there are multiple hopping
terms. Examine the matrix carefully and explain its structure. Specifically, explain all the
diagonal terms, and the zeroes. Then explain the non-zero off-diagonal terms by invoking
symmetries, geometries, and orbital overlaps.



|sA〉 |pAx 〉 |pAy 〉 |pAz 〉 |sB〉 |pBx 〉 |pBy 〉 |pBz 〉
〈sA| EAs 0 0 0 −V0g0(k) V1g1(k) V1g2(k) V1g3(k)
〈pAx | 0 EAp 0 0 −V1g1(k) V2g0(k) V3g3(k) V3g2(k)

〈pAy | 0 0 EAp 0 −V1g2(k) V3g3(k) V2g0(k) V3g1(k)

〈pAz | 0 0 0 EAp −V1g3(k) V3g2(k) V3g1(k) V2g0(k)

〈sB | c.c. c.c. c.c. c.c. EBs 0 0 0
〈pBx | c.c. c.c. c.c. c.c. 0 EBp 0 0

〈pBy | c.c. c.c. c.c. c.c. 0 0 EBp 0

〈pBz | c.c. c.c. c.c. c.c. 0 0 0 EBp


, (4070.11)

where c.c. stands for the complex conjugate (e.g. H51 = H?
15). The constants in this

matrix are

V0 = Vssσ,
V1 = 1√

3
Vspσ,

V2 = 1
3Vppσ −

2
3Vppπ, and

V3 = 1
3Vppσ + 1

3Vppπ,

and the nearest neighbor ‘hopping’ phases are

g0(k) = eik·n1 + eik·n2 + eik·n3 + eik·n4 ,
g1(k) = eik·n1 − eik·n2 − eik·n3 + eik·n4 ,
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g2(k) = eik·n1 − eik·n2 + eik·n3 − eik·n4 , and
g3(k) = eik·n1 + eik·n2 − eik·n3 − eik·n4

for the 4 nearest neighbors. The eigenvalue spectrum of the 8× 8 matrix above yields
the bandstructure E(k) of Silicon, GaAs, and all 3D semiconductors of the diamond-cubic
or zinc-blende families. The electron wavevector k = (kx, ky, kz) is three dimensional: the
electron energy depends on the direction it moves.

c) Set up the matrix above in Mathematica, Matlab, Python (or any tool you love!)
to plot the energy bandstructure E(k) for k from L↔ Γ↔ X↔ K↔ Γ. For Silicon,
EAs = EBs = −13.55 eV, EAp = EBp = −6.52 eV, Vssσ = +2.03 eV, Vspσ = +2.55 eV,
Vppσ = +4.55 eV, Vppπ = +1.09 eV, and a = 0.543 nm.

d) Repeat the bandstructure plot for our first 3D compound semiconductor: GaAs!
Use EGas = −11.37 eV, EAss = −17.33 eV, EGap = −4.9 eV, EAsp = −7.91 eV, Vssσ = +1.70
eV, Vspσ = +2.15 eV, Vppσ = +3.44 eV, Vppπ = +0.89 eV, and a = 0.565 nm. If you
have worked your way to this stage, congratulations, your early hard work will pay off
handsomely in the course.

e) From the 8×8 LCAO bandstructure matrix of GaAs, show that for the Γ point with
k = 0, the eight eigenvalues can be calculated analytically. Then prove that for GaAs, the

conduction band edge state is at Ec(Γ) =
EGa

s +EAs
s

2 +

√
(
EGa

s −EAs
s

2 )2 + (4Vssσ)2 composed

of |s〉 orbital overlap between the Ga and As atoms, and no |p〉 orbitals are involved.

f) Similarly, show that for the states at the top of the valence band at the Γ point,
only |p〉 orbitals are involved with no |s〉 orbital involvement. Use this property to ar-
gue why holes are anisotropic in most compound semiconductors, but electrons are isotropic.


