
Fig. 4070.1: Reflectance spectra
of three metals from Wikipedia

1Quite possibly marking the birth
of fashion?
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Present your solutions neatly. Do not turn in rough unreadable worksheets - learn to
take pride in your presentation. Show the relevant steps, so that partial points can be

awarded. BOX your final answers where applicable. Draw figures wherever necessary.
Always provide the analytical answer before finding numerical values. Please print out
the question sheet(s) and staple to the top of your homework. Write your name,
email address, and date/time the assignment is turned in on the cover. Assignments must
be turned in before class on the due date. The time the assignment is turned in should
be written. There will be a 10% penalty each day of delay, and assignments will not be
accepted beyond 3 days after the due date. There will be no exceptions to this rule. You
are allowed to work with other students in the class on your homeworks. The name(s)
of the student(s) you worked with must be included in your homework. But what you
turn in must be in your own writing, and have your own plots and figures. Turning in
plots/figures/text that are exact replicas of others is considered cheating.

4070.1 HW 1

Posted: 02/04/2017, Due: 02/13/2017

Problem 1: Semiconductor History

Write a short <1-page critique of the paper “The History of Semiconductors” handed out
in class.

Problem 2: Mirror Mirror on the Wall

Believe it or not, coating glass with metal to make make a mirror was a big technological
breakthrough back in the time 1. In this problem, we answer why metals are shiny - why
they reflect most of the visible light incident on them. Not surprisingly, this has to do with
the conduction electrons in the metal. Here is our mode of attack: when the light wave
experiences a mismatch in the refractive index, part of it is transmitted, and part reflected.
So we will ask Maxwell’s equations to give us the reflection coefficient when a light beam
is incident from air on a metal. If we find that this reflection coefficient is very high for
visible wavelengths, we have succeeded in explaining why metals are shiny.

The reflection coefficient Γr will depend on the refractive index
√
ε(ω) of the metal,

which in turn will depend on how the conduction electrons respond to the oscillating electric
field of the light beam. This is where Drude’s free electron model of the metal - the same
model that explained electrical and thermal conductivity - will help us through.

Figure 4070.1 shows the measured reflectance of three common metals as a function of
the wavelength of light incident on it. Your job in this problem is to calculate and make
your own plot by standing on Maxwell, Drude, and Newton’s shoulders. If things go right,

1
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Fig. 4070.2: Electron on a ring

you may even explain the dips and wiggles in figure 4070.1. I will roughly outline the
method and trust you can finish the story:

The electric field of the light beam according to Maxwell oscillates in time as E(t) =
E0e

iωt, where E0 is the amplitude, and ω = 2πf is the radial frequency, f = cλ with c
the speed of light, and the wavelength λ of light is the x−axis in the plot. The reflection

coefficient for light is Γr =
Er
Ei

=

√
ε0 −

√
ε(ω)

√
ε0 +

√
ε(ω)

, where
√
ε is the refractive index of the

media. The reflectance is R = |Γr|2, which can be found for various wavelengths; this is
the y−axis of the plot. Note that all symbols have their usual meanings.

(a) From Maxwell’s equation ∇ ×H = J + iωε0E in material media, show that the

dielectric constant of the metal is ε(ω) = ε0[1 + i
σ(ω)

ωε0
] .

(b) Now if you have the frequency-dependent conductivity σ(ω), you can make your
plot by looking up the properties of the metal! But we have only covered the DC Drude

model for conductivity in class, where we obtained σ(0) = nq2τ
me

. Here you need to use
Newton’s laws again and solve to show the following:

qE0e
iωt = me

dv

dt
− mev

τ
=⇒ σ(ω) =

σ0

1− iωτ
=

σ0

1 + (ωτ)2︸ ︷︷ ︸
Re(σ(ω))

+i
ωτσ0

1 + (ωτ)2︸ ︷︷ ︸
Im(σ(ω))

. (4070.1)

(c) Now you are close to the finish line. Use the above modified Drude ac conductivity,
look up the required properties of the three metals, and plot the reflectances of all the
three metals. Compare with figure 4070.1.

Problem 3: Lord of the Ring

We derived in class that the allowed wavefunctions representing an electron on a cir-
cular ring of circumference L is ψn(x) = 1√

L
eiknx, where kn = 2π

L n are quantized because

n = 0,±1,±2, .... The angular momentum of a particle is defined as L = r× p, where r is
the ‘radius’ of the circle, and p is the linear momentum.

(a) Show that the angular momentum of an electron in state ψn(x) is Ln = n~, where
~ = h

2π is the ‘reduced’ Planck’s constant. This implies that the angular momentum
is quantized to values 0,±~,±2~, .... Compare the quantized angular momentum L1 for
n = +1 with the classical angular momentum Lcl of a mass m = 1 kg being spun by a
string of length R = 1 m with tangential velocity v = 1 m/s to appreciate how ‘nano’ is
the quantum of angular momentum.

(b) By balancing the classical centrifugal force and the electromagnetic Lorentz force,
show that for an electron to be in the quantum state ψn(x) on the ring, we need a magnetic
field Bn such that the magnetic flux is Φn = Bn · A = n× h

2e . Here A is the area of the

ring, e is the electron charge and h = 2π~. Φ0 = h
2e is known as the quantum of magnetic

flux, and has been measured experimentally in nanostructured rings.

(c) Consider the quantum state obtained by the superposition ψ(x) = a[ψn=1(x) +
ψn=−1(x)] from the eigenstates of the electron on the ring. Normalize the state to find the

constant a. You may need the result
∫ L

0
cos2 ( 2π

L x)dx = L
2 . Does this superposition state

have a definite momentum?
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2This may all be very unsettling,
but we will explain later why it
is actually OK to do so - because
with great freedom comes great
responsibility! In fact this prob-
lem could be formulated for any
Fermion - for example the un-
charged neutron - and the ana-
lytical answers will be the same.

Fig. 4070.3: Andre Geim

Fig. 4070.4: Kotsya Novoselov.
Geim and Novoselov were
awarded the Nobel prize in
physics in 2010 for the discovery
of graphene, the thinnest 2D
crystal with remarkable electron
transport properties.

(d) We derived that the quantum expression for current flux is j = 1
2m (ψ?p̂ψ − ψp̂ψ?),

where p̂ = −i~∇ is the momentum operator, which takes the form p̂x = −i~ ∂
∂x for the

particle on the ring. Show that even though the states ψn=1(x) and ψn=−1(x) carry net
currents, their superposition state of part (c) does not. Explain.

Problem 4: Born to be free

We discussed in class that because of the Pauli exclusion principle, Fermions must
follow the Fermi-Dirac distribution, and they have half-integer spins. Now imagine we
have a metal with n = 1023/cm3 electrons in a cubic box of side L, and we know that
electrons are Fermions. Assume the electrons are completely free to move around in the
box, meaning there are no atoms in their way. If that that much freedom is not enough for
you, how about this: completely neglect the Coulomb interactions due the charge of the
electrons!2 Find the following at T = 0K:

(a) The Fermi wavevector kF .

(b) The Fermi momentum pF .

(c) The Fermi energy EF .

(d) The average energy of electrons u = U
N . What is the origin of this energy?

(e) What is the average energy of the electrons if they did not follow quantum mechanics,
but were subject to classical mechanics?

Problem 5: Graphene Density of States, Fermi-Dirac distribution

The electrons in the conduction band of graphene are free to move in 2-dimensions,
forming a 2-dimensional electron gas (2DEG). The energy-momentum dispersion rela-

tionship for the 2DEG electrons in graphene is E(kx, ky) = ~vF
√
k2
x + k2

y, where vF is a

parameter with dimensions of velocity. For graphene, it is vF = 108cm/s.

(a) Make a sketch of the energy as a function of the (kx, ky) points in the 2D k-space
plane, and show that the dispersion results in a conical shape.

(b) Show that the density of states for these electrons is g(E) = gsgv
2π(~vF )2 |E|, where

gs = 2 is the spin degeneracy of each (kx, ky) state, and gv is the number of cones in the
energy dispersion. For graphene, gv = 2.

(c) Show that at thermal equilibrium, when the Fermi level is at Ef = 0, the number
of conduction electrons per unit area in 2D graphene is ni = π

6 ( kT~vF )2. Make a plot of this
density as a function of temperature for 0K ≤ T ≤ 500K. Explain why your plot sets the
bar on the lowest possible density of carriers achievable in graphene at those temperatures.
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Fig. 4070.5: Arnold Sommerfeld
introduced the quantum electron
theory of the metal, and resolved
the discrepancies of the Drude
model. Was the advisor of a large
cohort of Nobel prize winners, but
was never awarded in spite of be-
ing nominated ∼80 times!

3This is somewhat hard, but Som-
merfeld did it ∼100 years ago!

4070.2 HW 2

Posted: 02/18/2017, Due: 02/27/2017

Problem 6: Density of States of Electrons, Photons, and Phonons

(a) Show that for a parabolic bandstructure for electrons E(k) = Ec + ~2k2

2m? with band
edge Ec and effective mass m?, the DOS for electron motion in d dimensions is

gd(E) =
gsgv

2dπ
d
2 Γ(d2 )

(
2m?

~2
)
d
2 (E − Ec)

d
2−1 , (4070.2)

where gs is the spin degeneracy, and gv is the valley degeneracy. Here Γ(...) is the
Gamma function with property Γ(x + 1) = xΓ(x) and Γ( 1

2 ) =
√
π. You may need the

expression for the surface area of a d−dimensional sphere in k−space: Sd = 2π
d
2 kd−1

Γ( d2 )
.

Check that this reduces to the surface area of a sphere for d = 3 and the circumference of
a circle for d = 2.

(b) Sketch the DOS for 3D, 2D, and 1D electron systems using the expression. Explain
the roles of the valley degeneracy and the effective mass for Silicon and compound semi-
conductors.

(c) Show that the DOS for energy dispersion E(k) = ~vk for 3 dimensions is

gω(ω) =
gpω

2

2π2~v3
, (4070.3)

where ω = vk, and gp is the polarization degeneracy. This is the dispersion for
waves, such as photons and phonons moving with velocity v. The parabolic DOS of
phonons and photons will play an important role in the thermal and photonic properties of
semiconductors.

Problem 7: Sommerfeld’s Coup

(a) Using the DOS you calculated in Problem 4070.6, find the total energy of N electrons in
volume V at T = 0 K for 3D, 2D, and 1D electron gases with parabolic energy dispersion.
Note that you already solved the 3D electron gas problem in Problem 4070.4.

(b) Now for the heat capacity cv = 1
V
dU
dT , we need to find the total energy U at a non-zero

temperature T . To do that, you can still use the fact that heating a bunch of electrons
will not increase or decrease their number. Show3 that for 3D electrons, the Fermi energy
changes with temperature as

EF (T ) = EF (0)[1− 1

3
(
πkBT

2EF (0)
)2], (4070.4)

(c) Show that the heat capacity of 3D ‘quantum’ electrons is then

cv =
π2

2
nkB

kBT

EF (0)
(4070.5)

(d) By comparing this form of the electron heat capacity with Drude’s result cv = 3
2nkB ,

can you explain why the heat capacity of the ‘quantum’ electrons is so much smaller than
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Fig. 4070.6: 2D Electron in a Per-
pendicular Magnetic Field

Fig. 4070.7: 2D Electron k-space

Fig. 4070.8: 2D Electron real
space

the ‘classical’ electrons?

Problem 8: Quantum 2D Free Electrons in a Magnetic Field

Consider a 2D free electron gas confined to the x-y plane. In the Sommerfeld model,

the energy of an electron with wavevector k is E(k) = ~2k2

2me
, and the velocity is v(k) =

1
~∇kE(k) = ~k

me
. Now suppose a DC magnetic field B = B0z is switched on in the

z-direction, as shown in Figure 4070.6.
In the presence of the magnetic field, because of the Lorentz force, the momentum of

the electron satisfies the equation (assuming no electric field and no scattering)

qv(k)×B = ~
dk

dt
, (4070.6)

which is the quantum version of Newton’s law, with the Lorentz force.

(a) In the k-space, if the starting position of the electron (before the magnetic field was
switched on) is at (kx0, 0)) as shown in Figure 4070.7, then find the trajectory of the
electron in the k-space after the magnetic field has been switched on. Plot the trajectory
in the k-space.

(b) Continuation of part (a): If in addition, the starting position of the electron (before the
magnetic field was switched on) in real space is at (x0, 0) as shown in Figure 4070.8, then
find the trajectory of the electron in real-space after the magnetic field has been switched
on and plot it in the real space.

(c) If you did parts (a) and (b) correctly, you would have found that the motion of electron
in both k-space and real space is periodic. Find the time period for the motion (i.e. the
time taken by the electron to complete one period).

(d) Staring from the equation 4070.6, prove that the energy of the electron is conserved
(i.e. does not change) during its motion. Hint: The proof is just 1-2 lines of math.

(e) If instead of one electron, there were many, Before the magnetic field was switched the
total current carrier by the electron gas (summing up contributions from all electrons) was
given by

J = 2q

∫
d2k

(2π)2
f(k)v(k) = 0, (4070.7)

where f(k) was the equilibrium Fermi-Dirac distribution for electrons. Find the total
current carried by the electron gas after the magnetic field has been switched on and
explain your answer.

Problem 9: The Elusive Bloch Oscillator

In a fictitious 2-Dimensional crystal, the bandstructure of the lowest band with a square
lattice (lattice constant a) is given by

E(kx, ky) = −E0 · [cos kxa+ cos kya]. (4070.8)

a) Make a semi-quantitative contour plot of constant energies in the reduced Brillouin
Zone, and highlight energies E = 0,±E0.

b) Make a semi-quantitative plot of the effective mass in the (1,0) or x−direction, and
the (2,1) direction in the reduced Brillouin Zone.
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4If you have done the problem cor-
rectly, you will realize that very
mysteriously, the electron is oscil-
lating in real space in the pres-
ence of an Electric field! A DC
electric field will lead to ac oscil-
lation power - this idea is called
a Bloch oscillator. The actual im-
plementation has remained elusive
in semiconductor quantum struc-
tures. They promise very high fre-
quency (THz) output power, only
if someone can make them!

kx

ky

X

W

1st BZ

Fig. 4070.9: 2D reciprocal lattice.

Fig. 4070.10: Atomic arrangement
of a fictitious 2-dimensional crys-
tal.

c) An electron is initially located at k = 0 in k-space, and r = 0 is real space. At t = 0,
a force F (from an electric field) is turned on which points in an oblique direction,
such that Fx = 2Fy. Show the trajectory of the electron through the reduced zone in
the k-space, including umklapp processes, for the time interval 0 ≤ t ≤ 4T , where

T =
π~
aFx

(4070.9)

d) Calculate and plot the x- and y-components of the velocity and the position of the
electron, all functions of time, for 0 ≤ t ≤ 4T .

e) Make a graph of the trajectory of the electron in the x-y plane of real space.

f) Explain the phenomena in words. 4

Problem 10: Electrons get their Bands and Gaps

As shown in Figure 4070.9, in the k-space of a 2D square lattice (lattice constant: a),
denote the points Γ : (kx, ky)=(0,0), X : (π/a, 0), and W : (π/a, π/a). The nearly free
electron bandstructure assumes no crystal potential, but a lattice.

(a) Draw the nearly free-electron bandstructure from the BZ center in the Γ−W direction
slightly beyond the BZ edge. Identify the magnitude of k at the BZ edge, and express the
energy in terms of F = ~2π2/ma2. Include reciprocal lattice vectors smaller than 2× 2π/a.

(b) Label each band with the reciprocal lattice vector it is associated with. Clearly point
out the degeneracies of each band.

Consider now that the basis atoms produce a 2-D potential

V (x, y) = −4V0 cos(
2πx

a
) cos(

2πy

a
). (4070.10)

(c) Find the bandgap at the W point due to this potential. Be judicious in choosing the
basis set.

(d) The lowest energy at the Γ : (kx, ky) = (0, 0) point before the potential was turned on
was EΓ(0, 0) = 0 eV. Give an estimate of the change in this energy eigenvalue due to the
periodic potential.

4070.3 HW 3

Posted: 03/02/2017, Due: 03/14/2017

Problem 11: Wigner-Seitz Cells and the Reciprocal Lattice

Figure 4070.10 shows the arrangement of atoms of a fictitious 2-dimensional crystal. All
circles (filled and empty) represent the same atom.

a) Using the filled ‘atom’ shown in black as the origin of the lattice, indicate the
primitive translation vectors of this lattice. (There are several possible choices; use the
simplest one, and explain.) How many atoms are there per lattice point?

b) Determine the reciprocal lattice vectors corresponding to this lattice, and sketch
the reciprocal lattice as accurately as you can. Use the grid lines shown as an unit of measure.
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Fig. 4070.12: Atoms in the
Graphene Crystal.

c) Construct and show the ’Wigner-Seitz cell’, or equivalently, the Brillouin zone clearly
in the reciprocal lattice plot.

Problem 12: Energy Gap from a Square Wave Potential

Fig. 4070.11: Square-wave perturbation to the particle in a box problem.

See Fig 4070.11. This problem is from Kroemer’s QM Textbook. Note that the equation
referred to is F = ~2G2/8me, the free-electron unperturbed energy at the Brillouin-zone
edge. The given perturbation potential is applied on the free electron. Also test with the
Rayleigh-Schrodinger (RS) approximation for the 2nd order energy corrections. Is the RS
approximation a good one for this problem?

Problem 13: This crystal has no atoms! The Empty Lattice Band-
structure

a) Impossibility of indirect bandgaps in ideal 1D crystals: Argue why in an
ideal 1D crystal, energy degeneracies (or band crossings) can only occur at k = 0 or at
the Brillouin Zone edges, but never at any other k points. Since degeneracy points lead
to bandgaps, what does this say about ideal 1D semiconductors: will they be direct or
indirect bandgap? What about 2D and 3D crystals?

b) Now consider the ideal 2D crystal of graphene shown in Figure 4070.12. Identify the
primitive real-space lattice vectors (a1,a2). Find the primitive reciprocal lattice vectors
(b1,b2). The general reciprocal lattice vector may be written as G = nb1 +mb2, written
more compactly as (n,m).

c) Starting from the expression for the energy bandstructure of the empty lattice model

E(k) = ~2(k+G)2

2m0
, draw up a table with expressions of energy bands along the kx and ky

directions. Associate each band with the respective (n,m) reciprocal lattice vector.

d) Plot the empty-lattice bandstructure along (kx, 0) for (n,m): (0,0) through (2, 2)
with all possible (±) combinations. Also make a 2D plot of the energy bandstructure.
Superimpose and compare with the known bandstructure of graphene and comment.
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Fig. 4070.13: Atoms in the Silicon
Crystal.

e) Do the same as in the previous problem, but for 3D Silicon (see Figure 4070.13).
Use the diamond cubic crystal structure (you have 3 reciprocal lattice vectors). Plot the
energy bands along the typical high-symmetry directions in the k-space. Superimpose and
compare with the known bandstructure of Silicon and comment.

Problem 14: Energy Bandstructure of 2D Graphene and BN

In this problem, we will quantitatively calculate the electronic bandstructure for 2D
graphene and 2D Boron Nitride as our first ‘elemental’ and ‘compound’ semiconductors
respectively.

a) Show that if the energies allowed for the electron in individual atoms A and B are
EA and EB, and the lowering of energy because of hopping of the electron between the
atoms between the atoms is U , the energies allowed for the electron after the formation

of a chemical bond are E± = EA+EB
2 ±

√
(EA−EB

2 )2 + U2. Because each allowed electron

state can hold two electrons of opposite spins, what is the lowering of energy due to the
formation of the bond?

b) Now consider 2D Boron Nitride (or graphene), whose atomic basis has two atoms:
B & N for BN (and C & C for graphene). We saw in class that the whole 2D crystal
may be generated by repeating this two-atom basis, by translating by the two primi-

tive lattice vectors a1 = a( 3
2 ,
√

3
2 ) and a2 = a( 3

2 ,−
√

3
2 ), where a is the distance between

the A and B atoms. Sketch the basis, the lattice, and these vectors, and show that
the three vectors from any atom to the three nearest neighbors are n1 = a

2 (1,
√

3),

n2 = a
2 (1,−

√
3), and n3 = −a(1, 0). We will look at only the pz orbital bands. For

on-site orbital energies EA and EB and a hopping energy t, show that the off-diagonal
(hopping) term is h(k) = −t(eik·n1 + eik·n2 + eik·n3), and the resulting bandstructure is

E± = A±

√
B2 + t2[1 + 4 cos(

3

2
kxa) cos(

√
3

2
kya) + 4 cos2(

√
3

2
kya)] , where A = EA+EB

2

and B = EA−EB
2 .

c) Using the following parameters, make 2D plots of the bandstructures of BN and
graphene similar to shown in class. For BN: EA = +2.9 eV, EB = −2.9 eV, t = −2.9 eV,
and a = 0.15 nm. For graphene, EA = EB = 0 eV, t = 3.0 eV, a = 0.15 nm. Describe the
differences and similarities between them. Specifically, find the band-edge effective masses
and bandgap for BN, and the Fermi velocity characterizing the slope of the E − k Dirac
cone of Graphene. Relate these analytically to the known parameters.

Problem 15: Energy Bandstructure of Silicon and GaAs

In this problem we extend the ideas of the last problem to calculate the tight-binding
bandstructure of Silicon and GaAs, which are 3D semiconductors. The procedure is the
same, just the matrices are larger. Do not be turned off by the forbidding looking matrix
below-it is simpler than you think, and understanding it will put you in a select league!
Silicon powers the electronics industry today, and GaAs the photonic industry - they to-
gether are the basis of the new information age. And within a month in this course, you are
solving the quantum mechanical problem of both crystals! You will be able to get plots like
the ones shown in Figures 4070.14 and 4070.15. Because the bandstructure is the allowed
electron eigenvalues in the crystal, getting it means you have (almost) completely solved
the full quantum mechanical problem of the two semiconductors. Since the bandstructure
determines all the electronic and photonic properties of the semiconductor, it should be a
memorable event when you get it to work!
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Fig. 4070.14: Bandstructure of Sil-
icon.

Fig. 4070.15: Bandstructure of
GaAs.

Because for graphene and BN we looked at a single |pz〉 orbital and a 2-atom basis, the
matrix was 2×2. For Silicon and GaAs, the basis has two atoms too, but attached to each
atom will be 4 orbitals: |s〉, |px〉, |py〉, |pz〉, and the chemical bonding is sp3. Thus, to get
the energy bandstructure we have to solve a 8x8 matrix numerically.

a) Sketch the crystal structure, the atomic basis, and the nearest neighbor vectors
n1 = a

4 (1, 1, 1), n2 = a
4 (−1,−1, 1), n3 = a

4 (−1, 1,−1), n4 = a
4 (1,−1,−1), where a is the

lattice constant ( 6= nearest neighbor distance!). Sketch the orbitals centered at each site
and identify the overlaps, and the angles between them.

b) Because of various orbital overlaps ss, spσ, ppσ and ppπ, there are multiple hopping
terms. Examine the matrix carefully and explain its structure. Specifically, explain all the
diagonal terms, and the zeroes. Then explain the non-zero off-diagonal terms by invoking
symmetries, geometries, and orbital overlaps.



|sA〉 |pAx 〉 |pAy 〉 |pAz 〉 |sB〉 |pBx 〉 |pBy 〉 |pBz 〉
〈sA| EAs 0 0 0 −V0g0(k) V1g1(k) V1g2(k) V1g3(k)
〈pAx | 0 EAp 0 0 −V1g1(k) V2g0(k) V3g3(k) V3g2(k)

〈pAy | 0 0 EAp 0 −V1g2(k) V3g3(k) V2g0(k) V3g1(k)

〈pAz | 0 0 0 EAp −V1g3(k) V3g2(k) V3g1(k) V2g0(k)

〈sB | c.c. c.c. c.c. c.c. EBs 0 0 0
〈pBx | c.c. c.c. c.c. c.c. 0 EBp 0 0

〈pBy | c.c. c.c. c.c. c.c. 0 0 EBp 0

〈pBz | c.c. c.c. c.c. c.c. 0 0 0 EBp


, (4070.11)

where c.c. stands for the complex conjugate (e.g. H51 = H?
15). The constants in this

matrix are

V0 = Vssσ,
V1 = 1√

3
Vspσ,

V2 = 1
3Vppσ −

2
3Vppπ, and

V3 = 1
3Vppσ + 1

3Vppπ,

and the nearest neighbor ‘hopping’ phases are

g0(k) = eik·n1 + eik·n2 + eik·n3 + eik·n4 ,
g1(k) = eik·n1 − eik·n2 − eik·n3 + eik·n4 ,
g2(k) = eik·n1 − eik·n2 + eik·n3 − eik·n4 , and
g3(k) = eik·n1 + eik·n2 − eik·n3 − eik·n4

for the 4 nearest neighbors. The eigenvalue spectrum of the 8× 8 matrix above yields
the bandstructure E(k) of Silicon, GaAs, and all 3D semiconductors of the diamond-cubic
or zinc-blende families. The electron wavevector k = (kx, ky, kz) is three dimensional: the
electron energy depends on the direction it moves.

c) Set up the matrix above in Mathematica, Matlab, Python (or any tool you love!)
to plot the energy bandstructure E(k) for k from L↔ Γ↔ X↔ K↔ Γ. For Silicon,
EAs = EBs = −13.55 eV, EAp = EBp = −6.52 eV, Vssσ = +2.03 eV, Vspσ = +2.55 eV,
Vppσ = +4.55 eV, Vppπ = +1.09 eV, and a = 0.543 nm.

d) Repeat the bandstructure plot for our first 3D compound semiconductor: GaAs!
Use EGas = −11.37 eV, EAss = −17.33 eV, EGap = −4.9 eV, EAsp = −7.91 eV, Vssσ = +1.70
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Fig. 4070.16: The 2014 Physics
Nobel Prize went to the re-
searchers who solved the p-type
doping problem in GaN. This
work made quantum well blue
LEDs and Lasers and LED light-
ing possible.

Fig. 4070.17: Experimental ev-
idence of conductance quan-
tization measured in an Al-
GaAs/GaAs quantum well struc-
ture with N parallel quantized
conductors from 1998. The num-
ber of 1D conductors or subbands
could be tuned by a gate voltage.

eV, Vspσ = +2.15 eV, Vppσ = +3.44 eV, Vppπ = +0.89 eV, and a = 0.565 nm. If you
have worked your way to this stage, congratulations, your early hard work will pay off
handsomely in the course.

e) From the 8×8 LCAO bandstructure matrix of GaAs, show that for the Γ point with
k = 0, the eight eigenvalues can be calculated analytically. Then prove that for GaAs, the

conduction band edge state is at Ec(Γ) =
EGas +EAss

2 +

√
(
EGas −EAss

2 )2 + (4Vssσ)2 composed

of |s〉 orbital overlap between the Ga and As atoms, and no |p〉 orbitals are involved.

f) Similarly, show that for the states at the top of the valence band at the Γ point,
only |p〉 orbitals are involved with no |s〉 orbital involvement. Use this property to ar-
gue why holes are anisotropic in most compound semiconductors, but electrons are isotropic.

4070.4 HW 4

Posted: 03/19/2017, Due: 03/29/2017

Problem 16: The deep-acceptor problem and the 2014 Physics No-
bel Prize

a) Show that for a homogeneous semiconductor with electron mobility µn and hole
mobility µp, the lowest conductivity that can be achieved at thermal equilibrium is
σmin = 2qni

√
µnµp, irrespective of the donor or acceptor doping.

Magnesium is a relatively deep acceptor in the wide bandgap semiconductor GaN.
The acceptor ionization energy is EA ∼ 160 meV. Consider a GaN sample (Eg = 3.4 eV,
m?
c ∼ 0.2m0, m?

v ∼ 1.4m0) doped with NA = 1018/cm3 Magnesium acceptors. In the pro-
cess of doping this sample with Magnesium, unintentional donors of density ND = 1014/cm3

of donor ionization energy ED = 10 meV also incorporate into the semiconductor.

b) For T=300K, Plot the log of n, p, N−A , N+
D , n+N−A , and p+N+

D as a function of the
Fermi level EF . Remember the Fermi level can be within the gap, or in the conduction or
valence bands. So in your plot vary the values of EF from below Ec to above Ec. Indicate
the donor and acceptor ionization energies and show in the plot where the real Fermi level
at 300K is. Explain.

c) What are the densities and types of mobile carriers in the sample at 300K? Is the
sample n- or p-type? Find the conductivity of the sample at 300K if the electron mobility
is µn ∼ 1000 cm2/V·s and the hole mobility is µp ∼ 10 cm2/V·s.

d) Do an online research of the connection between the p-type doping problem of
wide-bandgap semiconductors and the 2014 Physics Nobel prize and write a short summary
of what you find.

Problem 17: Electric Current Flow in Semiconductor Crystals

In class, we have seen that the quantum mechanical current carried by Bloch states is
found easily by using the concept of the group velocity which is obtained directly from
the bandstructure E(k). The second important concept of current flow is how the k−states
are filled/emptied by metal contacts which are reservoirs of electrons, and determine the
quasi-Fermi levels of the |k〉 states in the semiconductor. In this problem, you will gain
practice in applying these concepts to find the quantum mechanical electric current in
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Fig. 4070.18: Dirac cone band-
structure of graphene.

5Actually this is not fictitious any
more - recently 2D crystal semi-
conductors with a broken symme-
try in the direction perpendicular
to the 2D plane have been dis-
covered such as Silicene and Ger-
manene - atomicaly thin versions
of Silicon and Germanium that
have this sort of a bandstructure.
They have rather interesting top-
logical properties that we are skip-
ping in this course.

various situations.

a) Show that the ballistic conductance G = I/V in any 1D metal or semiconductor at a
low voltage V and at a low temperature qV << kbT is given by the quantum of conductance

G0 = gsgv
q2

h
, where gs is the spin degeneracy and gv the valley degeneracy of the 1D band,

q is the electron charge, and h is Planck’s constant. In your derivation, show that rather
remarkably this result is independent of the exact nature of the bandstructure! If there
are N parallel 1D conductors or N uncoupled 1D bands, then the total conductance is NG0.

b) Electrons sit in the nz state of a heterostructure 2D quantum well of length Lz
and infinite depth in the z−direction and are free to move in an area LxLy in the x− y
directions. The energy bandstructure is E(kx, ky) =

~2(k2x+k2y)

2m? . Show that the probability
current density for state |k〉 = (kx, ky, knz ) is the following:

j(kx, ky, knz ) =
1

LxLy
· [ ~
m?

(kxx̂+ ky ŷ)] · 2

Lz
sin2(knzz). (4070.12)

c) Provide an expression for knz and explain the result. Integrate the z−component
to show that the 2D probability current is in the form j2d(k) = 1

Ld
vg(k), where vg(k) =

1
~∇kE(k) is the group velocity. This is a more general result that applies also for particles
that may appear ‘massless’.

d) Now fill the quantum well (kx, ky) states so that the 2D carrier sheet density is ns.
This defines a Fermi level EF : find how ns is related to EF at any temperature. Also,
what happens to EF if ~→ 0? Why?

e) Find the current per unit width flowing in the +x direction as a function of tem-
perature and ns. Assume a spin degeneracy gs and valley degeneracy gv for each k-state.
This is of course equal to the current flowing in the −x direction. Find the magnitude of
the current density for m? ∼ 0.2m0 and ns ∼ 1013/cm2, gs = 2, and gv = 1 (these values
are typical for GaN transistors; gv is larger for Silicon MOSFETs).

f) In some 2D semiconductors such as graphene, the energy bandstructure is not

parabolic, but conical: E(kx, ky) = ~vF
√
k2
x + k2

y, where vF is a characteristic ‘Fermi’

velocity. Find the +x directed current per unit width for graphene as a function of tempera-
ture. Find the magnitude of the current per unit width for vF ∼ 108 cm/s, ns ∼ 1013/cm2,
and gs = 2, and gv = 2, the values for 2D graphene.

Problem 18: To gap or not to gap, that is the question

A fictitious 2D semiconductor5 has an energy dispersion E(k) = ±~vF
√
|k|2 + k2

0,
where k = (kx, ky), ~ is the reduced Planck’s constant, vF a characteristic velocity, and k0

is a constant. Assume a spin degeneracy gs and valley degeneracy gv.

a) Find the energy bandgap Eg, and show that the effective mass mxx at the band
edge is related to the bandgap by 2mxxv

2
F = Eg. Argue that if k0 is externally tunable

with a gate, the bandstructure of this material can be made to look like graphene and its
gap can be made zero.

b) Find and sketch the density of states.
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Metal
n-type
Semiconductor

depletion
edge
plane

Fig. 4070.19: Schottky Diode

6This problem has been solved
over the last century by Wal-
ter Schottky, Owen Richard-
son, Arnold Sommerfeld, Ralph
Fowler, Lothar Nordheim, Hans
Bethe, Nevill Mott, among others.
The Schottky diode rectifier is an
extremely important semiconduc-
tor device, and the rectifying prop-
erty was one of the earliest to be
used in crystal radios, and the ear-
liest pointers to the existence of
semiconductors - you can imagine
why people have been interested
in it for so long!

Fig. 4070.20: Walter Schottky
was an early investigator of the
metal-semiconductor junction. A
semiconductor research institute
in Munich is named after him.

c) Find the group velocity vg(k) of the state k. Sketch the magnitude and direction of
the group velocities in the k−space.

d) Now the conduction band of this 2D semiconductor sheet is connected by ohmic
contacts to a source and a drain. A voltage V is applied across these two terminals. Set
up the expressions that will give the ballistic current in response to the applied voltage.

e) The temperature is held very low, T → 0 K. Estimate the ballistic current as a
function of voltage if qV >> ~vF k0.

Problem 19: Velocity saturation in Nanotubes and Semiconductors

a) If high energy electrons collide with the lattice and emit optical phonons at a very
fast rate, they come to equilibrium with the lattice rather than the source and drain
electrodes. Assume we have a metallic carbon nanotube that has a 1D energy dispersion
E(k) = ~vF |k| with a spin degeneracy of gs = 2 and a valley degeneracy gv = 2. Show
that if the optical phonon energy is ~ωop and the above ultrafast optical phonon emission
occurs, then the saturation current in the nanotube is given by Isat =

qgsgvωop
2π . Find the

magnitude of this current for ~ωop ∼ 160 meV, and compare with experimental data (give
references).

b) At low electric fields, the velocity v of electrons in a semiconductor increases linearly
with the field F according to v = µF , where µ = qτm/m

? is the mobility, τm is the
momentum scattering time and m? the electron effective mass. But when the electric field
is cranked up, the electron velocity saturates, because the electrons emit optical phonons
each of energy ~ωop every τE seconds, dumping the energy qFv they gain from the electric
field every second. Setting up the equations for the conservation of momentum and energy,
and solving for the steady state yields an estimate of this saturation velocity. Show that

the saturation velocity obtained by this scheme is vsat =
√

~ωop
m? ·

√
τm
τE

. Show that for a

typical semiconductor for which ~ωop ≈ 60 meV, m? ∼ 0.2m0, and τm ∼ τE , the electron
saturation velocity is of the order of ∼ 107 cm/s. This is a good rough number for the
saturation velocity of most semiconductors.

Problem 20: Quantum Current across a Schottky Junction

The energy band diagram in Figure 4070.19 is of a metal/semiconductor junction of
surface barrier height aφb. In this problem you will calculate the ballistic (quantum) current
flow across this junction as a function of the applied voltage. You will discover that the

current is highly rectifying, and is given by J = J0(e
qV
kbT − 1) - the famous rectifier equation

in semiconductor devices. You will solve this problem in its full quantum mechanical glory.6

a) If the work function of the metal is qφM , what is the work-function of the semicon-
ductor? Why is there a depletion region in the semiconductor?

b) Sketch the distribution of electrons in the conduction band at the depletion edge
plane indicated as a function of energy.

c) The semiconductor conduction bandstructure is given by E(kx, kx, kz) = Ec +
~2

2m?c
(k2
x + k2

y + k2
z) where Ec is the band-edge energy, and m?

c is the conduction band

effective mass. Find an expression for the (kx, ky, kz) states at the depletion edge plane
that can make it across the barrier. This defines a restricted volume Ωk in the 3D k−space
of electrons. Only electrons in this volume can make it ballistically to the metal.
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Fig. 4070.21: Owen Richardson
was awarded the 1928 Physics No-
bel prize for thermionic emission;
the Richardson constant is named
after him.

Fig. 4070.22: Walter Kohn with
Joaquin Luttinger developed the
effective mass theory for semi-
conductors. The effective mass
theory arms us with a powerful
method to design semiconductor
nanostructures and enormously
simplifies the design of quantum
wells, wires, and dots. Kohn
was awarded the Nobel Prize in
1998 for the development of Den-
sity Functional Theory (DFT). He
passed away this week last year.

+

Fig. 4070.23: Schematic represen-
tation of a charged donor, its ac-
tivation energy ED and the enve-
lope function of the donor electron
C(r).

d) Now use the expression for the quantum current J = 1
L3

∑
Ωk

vg(k)f(k) to show

that the net current as a function of the applied voltage is J = A?T 2e
− qφb
kbT (e

qV
kbT − 1) ,

where the prefactor A? =
4πqk2bm

?
c

h3 (1 + η) is the famous Richardson constant when η → 0;

here η = qφb−qV−(Ec−EF )
kbT

.

e) The expression for the Schottky diode current is in the form J = J0(e
qV
kbT − 1) if

η → 0. If the carriers suffer scattering and energy loss in the depletion region, only the
carriers closest to the metal-semiconductor junction within a mean-free-path will make it
to the metal. Argue why in this ‘diffusive’ limit, η → 0. It is in this limiting form you will
find the expression of the Schottky diode current in most books.

f) Assuming η → 0, make a linear and a log-scale plot of J/T 2 vs voltage for a GaAs-
metal Schottky diode of barrier height qφb = 1 eV and m?

c ∼ 0.067m0 at T =300K. In the
log-plot, indicate the y-axis intercept. Argue why you can use such a plot to experimentally
measure the conduction band effective mass m?

c . How would you measure φb?

4070.5 HW 5

Posted: 04/11/2017, Due: 04/28/2017

Problem 21: Effective Mass Methods: Doping and Quantum Dots

We derived the effective mass approximation in class, in which the complicated problem
of a free electron in a periodic potential was mapped to a much simpler problem of an
electron with an effective mass in a free potential. The key step was to create a wavepacket
by constructing a linear combination of Bloch eigenstates ψk(r) = uk(r)eikr in the form
φk(r) =

∫
dk
2πC(k)uk(r)eikr, and using Fourier transform properties with the Hamiltonian

operator. The effective mass equation in the presence of perturbations to the periodic
crystal potential then is written as

[En(−i∇) +W ]C(r) = EC(r), (4070.13)

where C(r) is the envelope function, and En(−i∇) is an operator obtained from the
bandstructure En(k) of band n by replacing k → −i∇. W is a time-dependent, or time-
independent perturbation to the periodic potential of the crystal. Instead of the Bloch
functions ψk(r), we can now work with the envelope functions C(r), remembering that the
wavefunction of the wavepacket is the product of the envelope function and the periodic part
of the Bloch-function, i.e., φ(r) = C(r)uk(r). For this problem, consider the conduction
band with a parabolic bandstructure characterized by an effective mass m?

c and band-edge

Ec, such that Ec(k) = Ec + ~2k2

2m?c
.

a) Show that the effective mass equation is then

[− ~2

2m?
c

∇2 +W ]C(r) = (E − Ec)C(r). (4070.14)

Note that this is in the form of a modified Schrodinger equation, and is referred to as
the effective mass Hamiltonian. Show that the solutions in the absence of the perturbation
are simple plane waves, Ck(r) = 1√

V
eikr. Find k.

b) Doping: When we introduce a dopant atom in the semiconductor, the perturbation
due to a single donor atom in a 3-Dimensional crystal semiconductor is a Coulomb potential

W (r) = − e2

4πεsr
with εs the dielectric constant of the semiconductor. Argue that this
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Fig. 4070.24: A quantum dot UV
light-emitting diode realized by
blue-shifting the emission from
GaN by quantum confinement.

Ec0

Ev0

x
y

z∆Ec

∆Ev

AlGaAs GaAs AlGaAs

Fig. 4070.25: A quantum well
Heterostructure realized in an Al-
GaAs/GaAs/AlGaAs semiconduc-
tor system. Electrons are free to
move in 2 dimensions in the (x, y)
plane, but are confined in the z
direction.

effective mass problem maps exactly to the Hydrogen atom problem, and show that the

energy of the shallow donors are En = Ec − Ry?/n2, where Ry? =
(m?c/me)
(εs/ε0)2 Ry

0, where

Ry0 = −13.6 eV is the ground state energy of an electron in the Hydrogen atom. Also
show that the radius of the donor electron is modified from the hydrogen electron radius

to a?B = εs/ε0
m?c/me

a0
B, where a0

B = 0.53 Angstrom is the Bohr radius of the electron in

the Hydrogen atom. Estimate the ionization energy of the donor, and the radius in a
semiconductor with εs = 10ε0 and m?

c = 0.1me. From these considerations, argue why
bands with heavy effective masses may be difficult to dope.

c) Quantum Dots: Suppose we have a narrow bandgap semiconductor quantum dot
of size Lx = Ly = Lz = L embedded in a wide-bandgap semiconductor matrix. Assume
the conduction band offset ∆Ec and the valence band offset ∆Ev are very large, such
that an electron in the conduction band and holes in the valence band of the quantum
dot effectively see infinitely tall barriers. Find the allowed energies of the electrons and
hole states in the quantum dot as a function of the dot size L, and the conduction and
valence band effective masses m?

c and m?
v. If the bulk bandgap of the narrow bandgap

semiconductor is Eg, what is the energy of a photon that will be emitted if an electron
transitions from the CB ground state to the VB ground state? Make a plot of the emitted
photon energy as a function of the quantum dot size from 1 nm ≤ L ≤ 10 nm, for the
following parameters of the narrow bandgap semiconductor: m?

c = m?
v = 0.1me, Eg = 0.8

eV.

Problem 22: Quantum Well Heterostructures

The finite quantum well problem is the basis of all quantized structures based on com-
pound semiconductor heterostuctures. In this problem you evaluate some examples to gain
insight, and collect some very useful formulae for the quantum design of heterostructure
devices.

a) With relevant formulae and sketches, outline the graphical method for identifying
the bound state eigenvalues and eigenfunctions in a finite quantum well of height U0 and
width Lw for a quantum well semiconductor material with effective mass m?. Show that

the solution for allowed k values take the form

√
θ20
θ2 − 1 = tan θ and

√
θ20
θ2 − 1 = − cot θ,

where θ = kLw
2 , and the characteristic constant θ2

0 =
m?L2

wU0

2~2 .

b) Show that in the case of a vanishingly small barrier height U0 → 0, there is
still at least one bound state for the 1D quantum well with a binding energy equal to

U0 − E1 ≈ θ2
0U0 .

c) Show that the number of bound states is N = 1 + Int[
2θ0

π
] , where Int[x] is the largest

integer smaller than x. Show that the numerical value isN = 1+Int[1.63( Lw
1 nm )

√
(m

?

m0
) · ( U0

1 eV )].

d) Now consider the electron states in the conduction band of a heterostructure quan-
tum well shown in Figure 4070.25, with U0 = ∆Ec = 0.3 eV, and m?

c = 0.067me. How
many bound states does a well of thickness Lw = 5 nm hold? Write the effective mass
wavefunctions C(r) for electrons in the ground state of the quantum well, and find its
characteristic penetration depth into the barrier layer.

e) Find the Fermi level in the quantum well if we fill the quantum well with electrons
of 2D density ns = 1012/cm2.
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Problem 23: The Ballistic Field-Effect Transistor

In class, we derived the characteristics of a ballistic field-effect transistor. You are going
to fill in a few steps, and solve a closely related problem.

a) Make log-scale and linear-scale plots of the gate-induced 2D electron gas (2DEG)
carrier density at 300K and 77K vs the gate voltage Vgs of FETs for an insulating barrier
of tb = 2 nm, and εb = 10ε0 for three semiconductor channels: one that has m?

c = 0.2m0,
gs = 2 and gv = 2, the second has m?

c = 0.2m0, gs = 2 and gv = 1, and the third has
m?
c = 0.05m0, gs = 2 and gv = 1. What is the difference? Compare with the figure in the

posted class notes.

b) Show why the ballistic current density is given by J2d = J0[F1/2(ηs)−F1/2(ηs−vd)],
where J0 = q · ~Ncm?c

, and all symbols have their usual meanings as they appear in the

notes/handouts, and Nc is the effective conduction band edge DOS.

c) Make a plot of the ballistic FET currents of the three semiconductors of part (a).
Make the drain current Id vs gate voltage Vgs in the linear and log scales, and the drain
current Id vs drain voltage Vds plots, similar to those shown in the class notes.

d) Describe qualitatively what sorts of changes in the device characteristics would
you expect if instead of the 2DEG channel, you had a 1D channel in the ballistic FET.
Remember you have shown before that the ballistic conductance per 1D channel is limited

to the quantum of conductance G0 = gsgv
q2

h , where h is the Planck’s constant.

Problem 24: Vanishing Act: Tunneling Escape in a Flash Memory
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Fig. 4070.26: Escape and field-emission by tunneling.

Figure 4070.26 shows a 1-dimensional potential for an electron, which is in the state
with energy E0 at t = 0. Since there is a lower potential for x > Lw + Lb, the state |E0〉 is
a quasi-bound state. The electron is destined to leak out.

a) Using WKB tunneling probability, and combining semi-classical arguments, find an
analytical formula that estimates the time it takes for the electron to leak out. Find a
value of this lifetime for Lb ∼ 3 nm, Lw ∼ 2 nm, V0 ∼ 1 eV, E0 ∼ 2 eV, and Eb ∼ 5 eV.
How many years does it take?
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Fig. 4070.27: Electron mobility
in a doped semiconductor at high
temperatures is limited by phonon
scattering, and by impurity and
defect scattering at low tempera-
tures. In this problem, you show
that the ionized-impurity scat-
tering limited mobility goes as
T

3
2 /ND.

b) This feature is at the heart of flash memory, which you use in computers and cell
phones. Find an analytical expression that describes how the lifetime changes if a voltage
Va is applied across the insulator. Estimate the new lifetime for Va ∼ 2.8 V. This is the
readout of the memory.

Problem 25: Boltzmann Transport: Scattering and Mobility

a) We derived the solution to the Boltzmann transport equation in the relaxation-time

approximation for elastic scattering events to be f(k) ≈ f0(k) + τ(k)(−∂f0(k)
∂E(k) )vk · F,

where all symbols have their usual meanings. Use this to show that for transport in d
dimensions in response to a constant electric field E, in a semiconductor with an isotropic

effective mass m?, the current density is J = nq2〈τ〉
m? E, where 〈τ〉 = 2

d ·
∫
dE·τ(E)E

d
2 (− ∂f0(E)

∂E )∫
dE·E

d
2
−1f0(E)

, where the integration variable E = E(k) is the kinetic energy of carriers. You have
now at your disposal the most general form of conductivity and mobility from the Boltz-
mann equation for semiconductors that have a parabolic bandstructure! Hint: You may

need the result that the volume of a d-dimensional sphere in the k-space is Vd = π
d
2 kd

Γ( d2 +1)
,

and some more dimensional and Γ−function information from Problem 6 of the assignments.

b) Scattering from uncorrelated events: Show using Fermi’s golden rule that if the
scattering rate of electrons in a band of a semiconductor due to the presence of ONE scat-
terer of potential W (r) centered at the origin is S(k→ k′) = 2π

~ |〈k
′|W (r)|k〉|2δ(Ek−Ek′),

then the scattering rate due to Ns scatterers distributed randomly and uncorrelated in 3D
space is Ns ·S(k→ k′). In other words, the scattering rate increases linearly with the num-
ber of uncorrelated scatterers, which implies that the mobility limited by such scattering
will decrease as 1/Ns. This argument is subtle, and effects of electron wave interference
should enter your analysis. Hint: Add the potentials of each randomly distributed impurity
for the total potential Wtot(r) =

∑
iW (r−Ri). Use the effective mass equation for the

electron states to show that the matrix element is a Fourier transform. Then invoke the
shifting property of Fourier transforms.

c) Impurity scattering: Using Fermi’s golden rule, calculate the scattering rate for

electrons due to a screened Coulombic charged impurity potential V (r) = − Ze2

4πεsr
e
− r
LD ,

where Ze is the charge of the impurity, εs is the dielectric constant of the semiconductor,

and LD =
√

εskbT
ne2 is the Debye screening length and n is the free carrier density. This

is the scattering rate for just one impurity. Show using the result in parts (a) and (b),
with a 1− cos θ angular factor for mobility that if the charged-impurity density is ND, the

mobility for 3D carriers is µI = 2
7
2 (4πεs)

2(kbT )
3
2

π
3
2 Z2e3

√
m?NDF (β)

∼ T
3
2

ND
. Here β = 2

√
2m?(3kbT )

~2 LD is a

dimensionless parameter, and F (β) = ln[1 + β2]− β2

1+β2 is a weakly varying function. This
famous result is named after Brooks and Herring who derived it first. Estimate the ionized
impurity scattering limited mobility at T = 300 K for m? = 0.2m0, εs = 10ε0, Z = 1 and
ND ∼ 1017, 1018, 1019/cm3. Are your values close to what is experimentally observed for
these conditions as shown in Figure 4070.27?

Problem 26: Experiment I

Please form groups of 5-6 students and sign up for the available lab slots. The first
experiment in the course is to measure the transport properties of semiconductors and
metals. Please read the lab handout for an explanation of the experiment, and for directions
on how to write a joint short report of your measurements.
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Fig. 4070.28: Herbert Kroemer, a
pioneer in semiconductor hetero-
junction based design of transis-
tors and lasers was awarded the
2000 Nobel Prize in physics.

Fig. 4070.29: Various heterojunc-
tions before reaching equilibrium.

4070.6 HW 6

Posted: 05/02/2017, Due: 05/15/2017

Problem 27: Fermi’s Golden Rule: Mobility in Semiconductors

We now explain the complete temperature dependence of the electron mobility in some
(not all!) doped 3D semiconductors. Figure 4070.27 shows the experimental result: at low

temperatures, the electron mobility increases with temperature as µ(T ) ∼ T 3
2 /ND, and at

high temperature it decreases with temperature as µ(T ) ∼ 1/T 3/2. We first connect the

mobility to the scattering times via the Drude-like result µ = q〈tau〉
m?c

where you found how

to calculate the ensemble averaged scattering time 〈τ〉 in Problem 25(a).

a) Phonon scattering: We showed in class that the scattering rate of electrons due
to acoustic phonons in semiconductors is given by Fermis golden rule result for time-
dependent oscillating perturbations 1

τ(k→k′) = 2π
~ |〈k

′|W (r)|k〉|2δ(Ek −Ek′ ± ~ωq), where

the acoustic phonon dispersion for low energy (or long wavelength) is ωq ∼ vsq with vs
the sound velocity, and the scattering potential is W (r) = Dc∇r · u(r). Here Dc is the
deformation potential (units: eV), and u(r) = n̂u0e

iq·r is the spatial part of the phonon
displacement wave, n̂ is the unit vector in the direction of atomic vibration, and the
phonon wavevector q points in the direction of the phonon wave propagation. We also
justified why the amplitude of vibration u0 may be found from 2Mω2

qu
2
0 ≈ Nph × ~ωq,

where Nph = 1/[e
~ωq
kbT − 1] is the Bose-number of phonons, and the mass of a unit cell of

volume Ω is M = ρΩ, where ρ is the mass density (units: kg.m−3). Show that a transverse
acoustic (TA) phonon does not scatter electrons, but longitudinal acoustic (LA) phonons do.

b) By evaluating the scattering rate using Fermi’s golden rule, and using the the
ensemble averaging of Problem 25 (a), show that the electron mobility in three dimensions

due to LA phonon scattering is µLA = 2
√

2π
3

q~4ρv2s

(m?c)
5
2D2

c(kbT )
3
2
∼ T−

3
2 . This is a very useful

result.

c) Now combine your work from parts (c) of problem 25 and (b) of this problem to
explain the experimental dependence of mobility vs temperature and as a function of
impurity density as seen in Figure 4070.27.

Problem 28: Semiconductor Heterojunctions and Band Offsets:
Know what you are talking about

Here is Kroemers [see Fig 4070.28] Lemma of Proven Ignorance: If, in discussing a
semiconductor problem, you cannot draw an Energy-Band-Diagram, this shows that
you don’t know what you are talking about, with the corollary If you can draw one, but
don’t, then your audience won’t know what you are talking about.

In this problem we make sure we don’t fall into this trap!

In Figure 4070.29 (a-f), energy band diagrams of several different semiconductor
heterojunctions are shown (one on the left side and the other on the right side) before
the two materials are put together, with their individual Fermi levels indicated. In each
case sketch the equilibrium energy band diagram when a heterojunction is formed between
the two semiconductors. In each case indicate the depletion and/or accumulation and/or
inversion regions that may exist in equilibrium on either side of the heterointerface. The
alignment shown corresponds to the electron affinity rule as shown explicitly in part (a).
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Fig. 4070.30: Nick Holonyak is a
semiconductor pioneer, who first
demonstrated the semiconductor
light-emitting diode, and one of
the first quantum well lasers.

Fig. 4070.31: Zores Alferov was
awarded the 2000 Nobel Prize in
physics for the demonstration of
the double heterojunction semi-
conductor laser.

All the labels are also shown in more detail in part (a), and which you can use for the
other parts.

Problem 29: Population Inversion, Optical Gain, and Lasing

In class, we derived that the equilibrium optical absorption coefficient of a semicon-
ductor is α0(~ω) = C0|ê · pcv|2ρr(~ω − Eg), where ρr(~ω − Eg) is the joint electron-

photon DOS, C0 = πe2

nrcε0m2
0ω

, and all symbols have their usual meanings. We also dis-

cussed that under non-equilibrium conditions, the optical absorption coefficient becomes
α(~ω) = α0(~ω)[fv(k)− fc(k)], where the electron occupation functions of the bands are
given by the Fermi-Dirac distributions fv(k) = 1

1+e
Ev(k)−Fv

kbT

and fc(k) = 1

1+e
Ec(k)−Fc

kbT

, but

with quasi-Fermi levels Fv for the valence band and Fc for the conduction band as the
mathematical means to capture non-equilibrium conditions. Consider a semiconductor with

parabolic bandstructures for the conduction band Ec(k) = Eg + ~2k2

2m?c
and valence band

Ev(k) = −~2k2

2m?v
for this problem.

a) Make a sketch of the equilibrium absorption coefficients α0(~ω) for a bulk 3D semi-
conductor, and a 2D quantum well vs the photon energy ~ω.

b) Plot the Fermi difference function fv(k)−fc(k) as a function of the photon energy ~ω
for a few choices of the quasi-Fermi levels Fv, Fc of the valence and conduction bands. Specif-
ically, track the photon energy at which the difference function changes sign from ve to +ve.

c) Now combine (a) and (b) to plot the non-equilibrium absorption coefficient α(~ω)
for the choices of Fv, Fc from part (b). Discuss the significance of a negative absorption
coefficient.

d) Show that the requirement for population inversion is Fc−Fv > Ec−Ev = ~ω. This
is the famous Bernard-Duraffourg condition for population inversion in semiconductor lasers.

e) Based on your results above, explain why semiconductor heterostructure quantum
wells have lower injection thresholds for lasing than 3D bulk semiconductors. This idea
and demonstration won Herb Kroemer (Fig 4070.28) and Zhores Alferov (Fig 4070.31) the
2000 Nobel prize in physics.

Problem 30: Gain in Quantum Wells

Instead of bulk semiconductors, if we have a quantum well of thickness Lz, the ab-
sorption coefficient still follows the joint density of states feature. To derive this, do
the following: assume an infinite barrier height (this approximation can be relaxed in a
numerical approach, we keep things analytical here). Then,

a) Write down the wavefunctions of electron states in the nthc subband if the conduction
band |nc,kc〉 as a product of the quantized envelope wavefunction C(nc, z) along the con-
finement (z−)direction, a free electron envelope wavefunction tc(x, y,kc) in the transverse
(x− y−)direction, and a CB Bloch periodic function uc(r). Do the same for the valence
band states |nv,kv〉, choosing the corresponding envelope functions V (nv, z), tv(x, y,kv),
and Bloch periodic function uv(r).

b) Argue why the transverse parts of the enveloped wavefunctions tc(x, y,kc) and
tv(x, y,kv) must be the same for optical transitions.
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Fig. 4070.32: Experimentally
measured optical gain in an
InP/InGaAs/InP quantum well
heterostructure.

c) The optical matrix element is given by Wop = 〈nc,kc| − e
m0

A · p|nv,kv〉. Show that

this can be written as the product Wop = eA0

m0
× ê · 〈uc|p|uv〉︸ ︷︷ ︸

pcv

×δkc,kv × Ic,ncv,nv , where the

optical transition rules are dictated by the integral Ic,ncv,nv =
∫ +∞
−∞ C?(nc, z)V (nv, z)dz.

d) Show that for infinite barrier quantum wells, the selection rule is Ic,ncv,nv = δnv,nc ,
i.e., the only transitions from valence band quantized states to conduction band quantized
states that are allowed follow the selection rule ∆n = nv − nc = 0 (for example, 1 → 1,
2→ 2 ...).

e) Based on part (d), show that the equilibrium absorption coefficient is then given by

α0(~ω) =
πe2

nrcε0m2
0ω
|ê · pcv|2︸ ︷︷ ︸

same−coeff−as−3D

× m?
r

π~2Lz︸ ︷︷ ︸
ρ2Dr

×
∑
n

θ[~ω − (Eg + Ecn + Evn)]︸ ︷︷ ︸
staircase−function

, (4070.15)

where Ecn, E
v
n are the conduction and valence band quantization energies and n = nc =

nv.

f) Figure 4070.32 shows an experimentally measured optical gain spectrum of a lattice-
matched InP/InGaAs/InP quantum well. Use the results of the this problem, and also
figure 4070.33 to explain the gain spectrum.

Problem 31: The Quantum Mechanic

Fig. 4070.33: Bandgaps and Lattice Constants of Compound Semiconductors (From
Schubert’s book on LEDs).

As the CTO of the stealth startup ‘The Quantum Mechanics’ you win a project from
NASA to design an infrared photodetector for the detection of a very weak λ0 = 12.4 µm
radiation from a distant star. Because you have in your team the world’s best group of III-V
compound semiconductor MBE growers who can grow for you layered heterostructures of
any combination of materials you can dream up from Figure 4070.33, you decide the design
will be done using intersubband transitions in III-V quantum wells. Describe your design
in quantitative detail - including plots, choices of materials, thicknesses, etc. Pay attention
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to the selection rules for optical transitions, assume the 75%:25% ∆Ec : ∆Ev band offset
distribution, and use the rule of thumb that you cannot grow a strained layer thicker than
tcr ∼ a0

2ε where ε is the strain. Feel free to use the results of Problem 22. Explain if your
IR photodetector will work at room temperature, or needs to be cooled. Cooling is not a
problem, especially if it goes to space!

Problem 32: Experiment II

In the second experiment of this course, you will measure in the lab

a) the characteristics of a quantum well based semiconductor high electron mobility
transistor (HEMT). You will measure the Id vs Vds and Id vs Vgs, exhibiting on/off switch-
ing, and linear and current saturation regimes of the transistor,

and

b) the I − V characteristics, and the electroluminescence spectrum Rsp(~ω) of a quan-
tum well semiconductor light-emitting diode.

Please read the lab handout for an explanation of the experiment, and for directions on
how to write a joint short report of your measurements.

That is all for this semester!!

Fig. 4070.34: The ‘Traitorous Eight’, who left Bill Shockley’s semiconductor company and
formed Fairchild Semiconductors to make silicon transistors in the San Francisco bay area,
giving birth to the Silicon Valley. See if you can spot Robert Noyce, the inventor of the
Integrated Circuit, and Gordon Moore, known for Moore’s law. A sub group later started
Intel.


