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Science Fiction turns to Reality
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Scaling of Transistor Sizes: How much longer?
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It all began with Light…

• 3 Pillars of Information systems are: “Computation, Memory, and Communication”
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It all began with Light…

• 3 Pillars of Information systems are: “Computation, 
Memory, and Communication”
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Course Outline: 4 Modules

• Module I: Fundamentals

• Chapters 1 - 7

• Module 2: Semiconductor Bands, Doping, and Heterostructures

• Chapters 8-14

• Module 3: Quantum Electrostatics and Transport in Semiconductors & Devices
• Chapters 15-24

• Module 4: Photonics with Semiconductors
• Chapters 25-30
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The Electron
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The Electron

Electron mass

Electron charge
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Classical Physics
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Electrons in the Classical World

Newton

F = �rV (r) =
dp

dt

Path is deterministic

Lorentz

Path is deterministic

Electron paths in vacuum tubes 
subject to E and B fields
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Properties of Metals
Metals are:

Metals
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Properties of Metals

Data compiled by Rusen Yan
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Properties of Metals
Metals are:

Conductivity

Mobility
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Properties of Metals

From: Solid State Physics, Ashcroft and Mermin
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Properties of Metals
Metals are:

“Optical” Conductivity

From Wikipedia

Oscillating electric field

Dielectric value 
depends on the 
frequency

Optical Reflectivity
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The classical Drude model

Paul Drude 
(1900)

dc conductivity

ac conductivity

Oscillating field:

dc field:

Electrons move and scatter every tau seconds
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Properties of Metals
Metals are:

Thermal Conductivity
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The Weidemann-Franz Law for metals

Data compiled by Rusen Yan

Ratio of Boltzmann Constant and Electron Charge, which are 
fundamental constants and do not depend on the metal.
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Electronic specific heat is much smaller than nkB

• Classical Mechanics and Thermodynamics is not adequate to explain electron statistics.  
• Electrons must follow the Pauli Exclusion principle, and are subject to the laws of quantum mechanics. 
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Planck’s Blackbody Radiation: Birth of ‘Quantum’
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Classical physics unable to explain light spectrum
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Einstein explains the Photoelectric effect
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Experiment: Light is a wave… or a particle?
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Experiment: Light is a wave… or a particle?

Planck’s hypothesis for photons to explain expts:

Einstein: look downstairs! • The only way an object of mass m=0 can have momentum is if 
its speed v=c, or the speed of light.

• A photon is exactly such an object.  No mass, all energy, and 
a finite momentum!
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Bohr’s Quantum Theory for Electrons
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Particle… or wave?
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Particle… or wave?
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Particle… or wave?
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An electron is a particle… or a wave?
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An electron is a particle… or a wave?

Electron beam incident on 
a crystal (RHEED)

Atomic structure of a 
crystal (grating!)

Electron diffraction 
pattern on a screen

Guowang Li (Results from our lab!)

de Broglie:
For both waves, 
and particles!
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Wave and particle à need for a wavefunction

• The state of the free quantum particle cannot be 
represented by independent ‘numbers’ (x, px).

• We need a function whose amplitude oscillates in 
space, yet its magnitude never goes to zero.

• The complex exponential eikx satisfies these 
requirements, and respects the uncertainty relation.

Quantum states (electrons, photons) behave as waves AND particles.  How do we describe them quantitatively?
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Constructing wavefunctions: superposition

• Drawing on Fourier series, we realize that we can create any wavefunction shape to capture the 
correct physics of the problem.  Note the corresponding reciprocal space weight distribution.

By linear superposition of complex exponentials, we can create ‘particle’ like or ‘wave’ like states as desired for the problem.
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Math preliminaries before the physics…
Wavefunction ties x and p together.
Must respect the uncertainty principle.

Obervables are mathematical operators.
They act on the wavefunction to extract info.

The states of definite value of an operator are 
called the eigenstates of that operator.

Unlike classical mechanics, some operators fail 
to commute!

Non-commuting actions…
Ref: Gamow, Thirty years that shook physics.
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Definite momentum, and definite location states

x x0(x) = x0 x0(x) =)  x0(x) = �(x� x0)

A state of definite location x0:
Must be an eigenstate of operator x, with eigenvalue x0:

A state of definite momentum p:
Must be an eigenstate of operator –ih(d/dx), with eigenvalue p:

Definite in momentum à spread out in real space

Definite in real space à spread out in momentum

p̂x p(x) = px p(x) =) �i~ d

dx
 p(x) = px p(x)

 p(x) = Aei
pxx
~ = Aeikxx

States of definite location and definite momentum are unique in quantum mechanics.
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States of definite energy: Schrodinger equation
States of definite energy are not unique, because they depend on the ‘potential’ V(x)

The Schrodinger equation gives us the prescription to 
find the states of definite energy.

[
p̂2

2m
+ V (r)

| {z }
Ĥ

]| i = E| iSchrodinger

In classical mechanics, the energy of a particle is: Ecl =
p2

2m
+ V (r)

In quantum mechanics, r & p cannot be simultaneously determined because [x,p]=ih.  
Thus, we must solve an equation to obtain the energy.
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Quantum states are vectors in the Hilbert space
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By projecting states, get various representations

• We can think of the states as vectors.  
• The ‘inner product’ is a complex number generated by projection to the appropriate space.
• This number is the wavefunction – it can be found in real space, momentum space, etc…
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The particle in a box

Energy spectrum is discrete, 
zero energy NOT allowed!
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The harmonic oscillator

Energy levels equally spaced
Zero energy NOT allowed!

Can solve the problem 
using raising and 
lowering operators
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The hydrogen atom
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Time-evolution of states: Time-dep. Schr. Eqn.

Newton Schrodinger

F = �rV (r) =
dp

dt

Path is deterministic Path respects uncertainty relation
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States of definite energy are stationary states

• The energy eigenvalues of the time-independent Schrodinger equation are states of definite energy.
• Their probability density does not change with time à they are called stationary states.
• This is analogous to the 1st law of classical mechanics: quantum states of definite energy will continue 

to remain in those states unless perturbed by a potential.

Try set of solutions that allow 
the separation of x and t.

This means that the amplitude of states of 
definite energy oscillate with time with 
frequency E/h

But observables relate to the probability, 
which is time independent à this is why 
they care called stationary states.

Ehrenfrest’s theorem for the 
time evolution of an operator.
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The classical Drude model

Paul Drude 
(1900)

dc conductivity

ac conductivity

Oscillating field:

dc field:

Electrons move and scatter every tau seconds
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Quantum mechanical current
Probability density in space and time

Change in probability density with time

Use time-dependent 
Schrodinger equation

Continuity equation

In the form of a continuity 
equation à read off the 
current density!

Quantum mechanical probability 
current density

Satisfies the conservation of number of particles



47Debdeep Jena (djena@cornell.edu) 

Electric current of quantum states

For most semiconductors we know the bandstructure, but not the Bloch 
functions.  Go through the derivation to recast the current in terms of the 
bandstructure, or the group-velocity (see notes).

General expression for charge current density in d-dimensions

• Group velocity of electron in state |k>

VERY useful result: current in 
d-dimensions!



48Debdeep Jena (djena@cornell.edu) 

Identity crisis: Indistinguishable particles

This is OK for distinguishable particles such as a proton and an electron.
But NOT OK for indistinguishable particles such as two electrons!
For example, |psi|2 should not change on swapping x1ßà x2.
How must we then write the wavefunction for two identical particles?
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• The restriction that we cannot put two electrons in the same energy state leads to the elements 
• The same restriction leads to a periodic variation of the physical properties of the elements.

Pauli Exclusion Explains the Periodic Table
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• Note: Why not                                           ? Majorana particles à later…

Resolution of identity crisis: Bosons & Fermions
This is necessary for indistinguishable particles.

The Pauli exclusion principle!

The Fermi-Dirac distribution!
Particles are called Fermions.
Examples: Electrons, Protons

The Bose-Einstein distribution!
Particles are called Bosons.
Examples: Photons, Phonons FermiBose
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Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann

• The Fermi-Dirac and Bose-Einstein distributions asymptotically approach the classical limit at high 
energies 

• Fermi-Dirac occupation function for any energy orbital is less than 1.
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Some properties of the Fermi-Dirac Function

• The Fermi-function at T=0 K is a step function that is 1 below the Fermi energy, and 0 above.
• The derivative of the Fermi function is of central importance in transport phenomena.  Because of the 

exclusion principle, it defines the energy states that can participate in transport.
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The Fermi-Difference Function

• Two electrodes with different Fermi levels cause a difference in the Fermi functions for electrons that 
are in equilibrium with them.

• The Fermi difference function is rectangular, and defines the effect of voltages on transport properties.
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Fermi-Dirac Integrals

• Fermi-Dirac integrals are of central importance in the physics of semiconductors and nanostructures
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Quantum Equipartition of Energy

• The equipartition of energy relation is modified from the Maxwell-Boltzmann form
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Quantum version of the Equipartition of Energy

• Fermi-Dirac integrals are of central importance in the physics of semiconductors and nanostructures
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Electrons in the quantum world

• We will now apply quantum statistics (e.g. the Fermi-Dirac distribution) and quantum mechanics (the 
Schrodinger equation) to electrons and investigate how properties alien to classical mechanics 
emerge from these monumental changes.
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Free electron in 1 dimension

• The free electron has a parabolic energy distribution.  All energies and all momenta are allowed.
• The quantum mechanical current has direct analogy to the classical current.
• We have defined a group velocity for a state as the slope of the energy/momentum curve.

V(x)=0 for the free electron

Superposition state of a right-and a 
left-going electron wave.

De-Broglie relation in action for the 
free electron.

Energy is momentum squared by 
twice mass, all kinetic, no potential.
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Particle on a Ring: Quantum Confinement

• Particle on a ring has a parabolic energy distribution.  
• Discrete energies and momenta are allowed.
• The quantum mechanical current has direct analogy to the classical current.

Boundary conditions force quantized values of k

Normalization
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Quantum Confinement & Density of States

• Quantum confinement can be used to engineer the energy levels of 
nanostructures.

• The Density of states can be expressed in momentum or in energy space.

The Density of States is the number of quantum 
states allowed between energies E and E + dE
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Fermi Energy, Fermi velocity & their quantum origin

• Because of the Pauli exclusion principle and the Fermi-Dirac distribution, the 
presence of many electrons in a metal gain significant energy and velocity even 
at T=0 K.  This is a most remarkable consequence of quantum theory!

The Fermi energy is a 
remarkable consequence 
of the exclusion principle!

Typical values for metals

Many-Electron Effect:
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Temperature-dependence of Carrier Density
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From Ballistic conductance to Ohm’s Law
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�Ballistic� Transport & Quantized Conductance
Experiments:
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‘Ohmic’ Contacts as Fermi Fillers
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�Ballistic� Transport & Quantized Conductance
Most general expression for

‘Current Density’ in ‘d’ dimensions:

Jd = q � gsgv

Ld

�
k vg(k)f(k), where

gs = spin degeneracy

gv = valley degeneracy

vg = 1
�⇥E(k) is the group velocity

f(k) is the Fermi-Dirac function

Example: 1D current flow at T = 0 K :
J1 = I = I⇥ � I�

I⇥ = 2q
h EF1

I� = 2q
h EF2

⇥ I = I⇥ � I� = 2q2

h VD

Quantum of
conductance

F = �dk/dtMany electrons:
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Ballistic Transport in 1 Dimension
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Ballistic Transport in 1 Dimension
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Generalizing Ballistic Transport in d-Dimensions
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Electrons in 2D
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Electrons in 2D

Quantum Mechanical Current
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Electrons in 2D
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Electrons in 2D
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Electrons in 3D

3D Fermi Wavevector
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Electrons in 3D

Average energy density of a 3D Fermi Gas
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Electrons in 3D
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Ballistic Transport in 1, 2, and 3 Dimensions
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Semiconductor Physics Summary
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Physics of Semiconductor Nanostructures Summary
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Prelim 1 for ECE 4070 / MSE 6050
• Tuesday March 5th 2019
• Time: 7:30 – 9:00 pm
• In Phillips Hall 219 (Note: different from class location!)

• No restrictions on books/notes/calculators/computers etc.
• Bring pen/pencil – exam books will be provided.
• Questions: conceptual, no heavy number crunching will be needed.
• Previous year questions fairly representative of what to expect.
• Topics covered: Chapters 1-5 from the Notes.



81Debdeep Jena (djena@cornell.edu) 

Tight-Binding Bandstructure
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Semiconductors: Quantum Energy Eigenvalues

• Calculated by the Empirical 
Pseudopotential Method
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The Nearly Free Electron Model for Any FCC Lattice
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Electrons in a Crystal are not Exactly Free…

• The Periodic Potential for electrons in a crystal
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Electrons in a Crystal are not Exactly Free…

• The Periodic Potential in a crystal causes standing waves for electrons.
• It splits the allowed energies into bands separated by gaps
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Electrons in a Crystal are not Exactly Free…

• The Periodic Potential in a crystal causes standing waves for electrons.
• It splits the allowed energies into bands separated by gaps
• To explain the quantitative details, we must learn perturbation theory of quantum mechanics
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Background: The expansion principle

Be sure to understand and appreciate this powerful statement!

Fourier
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Background: Operators = Matrices

State vector Conjugate vector Normalization of state vector

orthogonality Completeness (discrete) Completeness (continuous)
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Background: Operators = Matrices

Traditional
Optics

State vector Conjugate vector Normalization of state vector

orthogonality Completeness (discrete) Completeness (continuous)

Matrix representation of any 
operator in a basis
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Background: Hamiltonian Operator as a Matrix

Matrix form of Schrodinger eqn.

For eigenstates

not an eigenstate
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Background: Spectral decomposition of H

Spectral decomposition of the Hamiltonian operator (diagonalization)

Map to equivalent problem in 
matrix algebra

Eigenvalue problem of a matrix

Solve, form diagonal matrix with e’vals

Form unitary transformation matrix with e’vectors

Spectral decomposition of 
matrix A

Property of Traces of matrices

Trace of the Hamiltonian matrix = Sum 
of the eigenvalues
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Background: Spectral decomposition enables…

eA = 1 +A+
1

2!
A2 + . . . = UeDU�1 = U

2

6664

e�1 0 0 . . .
0 e�2 0 . . .
0 0 e�3 . . .
...

...
...

. . .

3

7775
U�1

eAeB = e(B+[A,B]+ 1
2! [A,[A,B]]+. . . )eA 6= eBeA

eABe�A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + ...

Det[eA] = eTrace[A]

Jacobi formula

Baker-Hausdorff
formulae

Functions of matrices

Outer product is the density matrix

Inner product is a number Trace is invariant!

Co
ns

id
er

 2
 s

ta
te

 v
ec

to
rs
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Evaluation of Matrices
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Background: Green’s Function Matrices

Definition of the Green’s function operator
En is the eigenvalue of state |n>

Action of G(E) on a state |m>

Action of G(E) on the Schrodinger 
equation yields identity

Green’s function operator is the 
inverse operator of (E-H0)

Time independent 
Schrodinger equation

Ĥ
0 ! Ĥ

0 + Ŵ (E � Ĥ
0 � Ŵ )|�i = 0

| i ! |�i
(E � Ĥ

0)| {z }
Ĝ�1(E)

[1� (E � Ĥ
0)�1

| {z }
Ĝ(E)

Ŵ ]|�i = Ĝ
�1[1� ĜŴ ]|�i = 0 Ĝ�1(1� ĜŴ )|�i = Ĝ�1| i =) |�i = (1� ĜŴ )�1| i

|�i = (1 + ĜŴ + ĜŴ ĜŴ + ĜŴ ĜŴ ĜŴ + ...)| i

Formal solution of the perturbation problem using Green’s functions: elegant, but analytically not too useful…

Lippmann-Schwinger equation, or Dyson 
equation

Eigenstates have changed because of the perturbation W
Perturbation W changes 
the Hamiltonian

Using G(E), we can write the new eigenstate in terms of the old (known) eigenstates and eigenvalues
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Time-independent perturbation theory

H0|n⇥ = E0
n|n⇥

H = H0 + W

(H0 + W )|�⇥ = E|�⇥
|�⇥ =

�

n

an|n⇥

an = �n|�⇥

|�� =
n=N�

n=1

an|n�

Hmn = �m|H|n⇥

�

⇧⇧⇧⇤

H11 H12 . . . H1N

H21 H22 . . . H2N
...

...
...

HN1 HN2 . . . HNN

⇥

⌃⌃⌃⌅
�

�

⇧⇧⇧⇤

a1

a2
...

aN

⇥

⌃⌃⌃⌅
= E

�

⇧⇧⇧⇤

a1

a2
...

aN

⇥

⌃⌃⌃⌅

Perturbed Hamiltonian, 
new eigenstates

Unperturbed (solved) problem: We 
know the eigenvalues & eigenstates

Matrix elements include 
the perturbation

Expansion 
principle!

Matrix solution of the perturbation problem: diagonalize & get solns.

The central problem of time-independent perturbation theory
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Degenerate perturbation theory
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Time-independent perturbation theory

|m⌅ ⇥ |n⌅
|Em � En|

Wmn = ⇤m|W |n⌅

�Eix =
|Wix|2

Ex � Ei

�

⇧⇧⇧⇤

H11 H12 . . . H1N

H21 H22 . . . H2N
...

...
...

HN1 HN2 . . . HNN

⇥

⌃⌃⌃⌅
�

�

⇧⇧⇧⇤

a1

a2
...

aN

⇥

⌃⌃⌃⌅
= E

�

⇧⇧⇧⇤

a1

a2
...

aN

⇥

⌃⌃⌃⌅

���������

H11 � E H12 . . . H1N

H21 H22 � E . . . H2N
...

...
...

HN1 HN2 . . . HNN � E

���������

= 0

Solve these for solutions to the perturbation problem.  Exact solution is an infinite matrix!  How to truncate?
Strength of interaction between states depends on:

• Their energy separation

• The matrix element between them

• (Matrix element)2/Energy difference

����
H11 � E H12

H21 H22 � E

���� = 0

E± =
1
2
(H11 + H22) ±

⇤
1
4
(H11 �H22)2 + |H12|2

a1 =
H12⇥

|H12|2 + (E �H11)2

a2 =
E �H11⇥

|H12|2 + (E �H11)2

Example: 2-Level system

Matrix to be diagonalized

Eigenvalues

Eigenstate
coefficients

| i = a1|1i+ a2|2i
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Analytical time-independent perturbation theory
H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥

[H0 + HD + W �
⌅ ⇤⇥ ⇧

perturbation,W

]|⇥⌅ = E|⇥⌅

|⇥⌅ = |u⌅+
�

m⇥=u

�

n ⇥=m

|m⌅ ⇤m|W |n⌅
E � E �

m

⇤n|⇥⌅

⌅ ⇤⇥ ⇧
|�⇤

E ⇥ Eu + ⇤u|W |u⌅⌅ ⇤⇥ ⇧
�E(1)

+
�

m⇥=u

|⇤m|W |u⌅|2

E � E �
m

⌅ ⇤⇥ ⇧
�E(2)

|�⌅ ⇥
�

m⇥=u

⇤m|W |u⌅
E � E �

m

|m⌅

H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥

H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥

...

...

|m� E
�

m

H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥

H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥

Select out an unperturbed 
state u

Eigenvalues and eigenstates 
after perturbation

E
�

u = Eu + �u|W |u⇥

E
�

m = Em + �m|W |m⇥

E ⇥ E
�

u +
�

m�=u

|⇤m|W |u⌅|2

E � E �
m

recursive

|�E(1) + �E(2)| ⇥ |E � E
�

u| << |Em � Eu|

E
�

u = Eu + �u|W |u⇥

E
�

m = Em + �m|W |m⇥

Define…

Brillouin-Wigner (BW) Perturbation theory Rayleigh-Schrodinger (RS) Perturbation theory

E ⇡ E
0

u +
X

m 6=u

|hm|W |ui|2

Eu � E 0
m

Iff this condition holds, in rhs… E � Eu
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Level repulsion and Avoided Crossing

H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥

H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥

...

...

|m� Em

H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥

H0|u⇥ = Eu|u⇥

|u⇥ � |u⇥+ |�⇥ = |⇥⇥

...

...

|m� Em

E ⇥ E
�

u +
�

m�=u

|⇤m|W |u⌅|2

Eu � Em

E ⇥ E
�

u +
�

m�=u

|⇤m|W |u⌅|2

Eu � Em

< 0

> 0

E ⇡ E
0

u +
X

m 6=u

|hm|W |ui|2

Eu � E 0
m

“Level repulsion”: Perturbative
energy interactions between 
different states is repulsive

“Avoided Crossing”: 
Two unperturbed states that are not degenerate cannot be made degenerate (cross) by 
perturbation.  This is because the interaction is repulsive in energy eigenvalues.

This observation holds independent of the sign of the perturbation, because the 2nd order 
energy correction has the square of the matrix element.

Perturbation strength

Responsible for “curvature” of bands, and 
effective masses of band-edge electron 
states.  Small bandgap semiconductors have 
small band-edge effective masses.
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Perturbation Theory Example: Particle in a Box

Introduce a small 
perturbation to the 
particle in a box.

States with maximum wavefunction at the center will be perturbed the most.
States with low energy will be perturbed more than states of high energy.

Ground state

1st excited state

Perturbation
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Perturbation Theory Example: Particle in a Box
Original eigenvalues

1st order perturbation

2nd order perturbation

Matrix Elements

Perturbed ground 
state wavefunction

Perturbation pushes out 
wavefunction probability

Direct Matrix Method for 
perturbation solution
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A Periodic Potential for the Electron on a Ring

• The central problem of the physics of semiconductors is that of an electron in a crystal.  
• A crystal is a periodic array of atoms.
• The quantum mechanical electron experiences a periodic potential V(x+a) = V(x).
• What are the allowed eigenvalues and eigenfunctions?
• All answers to semiconductor physics are hidden in the solution of this problem.  
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Example: Opening of a bandgap in a crystal

Solve to get the eigenvalues and the eigenfunctions

Unperturbed problem is the ‘electron on a ring’: E’states, E’Vals:

unperturbed E’states are orthogonal

Perturbation 
potential

Perturbing potential only couples state k with k+G, k-G with strength -UG
States most strongly perturbed: +G/2, -G/2.  
F= E0(G/2) is their unperturbed energy.

Form the 2-state Hamiltonian
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Bandgap, band-edge states, effective masses

Bandgap at +/- G/2
Perturbed eigenstates

Band-edge states

Near band-edge states

2-state Hamiltonian for states 
near +G/2 and –G/2

Conduction band
Valence band
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Bandgap, band-edge states, effective masses

• The effective mass at any k is proportional to the curvature of the energy band at that k
• States at the Brillouin Zone edges 1=2 and 3=4.
• After the opening of the bandgap, E(k+G) = E(k), the allowed energies are periodic in k-space.
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Bands, Gaps, Metals vs Insulators
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Bandgap, band-edge states, effective masses
Group velocity of state k =  slope of the band at that k

Quantum current carried by electrons in a band

Current carried by a filled (or empty) band is zero

• Current is carried in an almost filled band by HOLES.  
• Holes behave as POSITIVE charges. 
• Hole conduction causes a POSITIVE sign in the Hall Effect. 
• Holes behave as POSITIVE charges in Field Effect.
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Metals, Insulators and Semimetals
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Higher order interactions and Bloch Theorem

Perturbation strength

3-level intxn
E’vals

BW 

BW 

RS

|�G/2i $ |+G/2i

Same gap at 
matrix method

sa
m

e 
e’

va
ls!

Limited 
applicability

 k(x) ⇡ eikxuk(x)

The wavefunction in a periodic potential: Is in 
the form of a Bloch function!

However, note that the Bloch function is an 
EXACT result, meaning a non-perturbative one.  
But it is useful to see that perturbation theory 
hints at its existence.
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Bloch Functions of Electrons in Periodic Potentials
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Bloch Functions of Electrons in Periodic Potentials

The most general Matrix Element for Bloch States of Electrons in Crystals
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The Nearly Free Electron Bandstructure Model
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Bandgap, band-edge states, effective masses
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Bandgap, band-edge states, effective masses
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Bandgap, band-edge states, effective masses
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Some consequences of symmetry on E(k)
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Electron group velocity
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Bloch Functions of Electrons in Periodic Potentials

Real Space Reciprocal Space or k-space
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Crystals in 1D, 2D, and 3D
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2D Bravais Lattices
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3D Bravais Lattices

Si, Ge, GaAs

GaN, AlN
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The first measured crystal structure: FCC!
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TEM images of semiconductor crystals

Silicon Crystal
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TEM images of semiconductor crystals

GaN/AlN Quantum Well
Grown/Imaged @ Cornell
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Face-Centered Cubic Lattice
1st step in bandstructure 
calculation: Determine

FCC Primitive 
cell volume

2nd step in 
bandstruct

ure 
calculation: 

Convert 
real space 
points to 
reciprocal 

space
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The Nearly Free Electron Model for Any FCC Lattice

3rd step in 
bandstructure 
calculation: 
Calculate the 
Nearly Free 
Electron 
Bandstructure 
for various 
reciprocal 
lattice vector 
bands (typical 
Gmax<4).
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The Nearly Free Electron Model for Any HCP Lattice

3rd step in 
bandstructure 
calculation: 
Calculate the 
Nearly Free 
Electron 
Bandstructure 
for various 
reciprocal 
lattice vector 
bands (typical 
Gmax<4).
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Semiconductors, Semimetals, Metals, Insulators
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Bloch State: Current with Scattering
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Tight-Binding Bandstructure
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The elements that form semiconductors
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Metals and the Fermi-Surface Database
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Semiconductor Orbital Structures
Group IV

C:[1s2](2s22p2)� 4

Si:[1s2][2s2][2p6](3s23p2)� 4

Ge:[1s2][2s2][2p6][3s2][3p6][3d10](4s24p2)� 4

Group III

B:[1s2](2s22p1)� 3

Al: [1s2][2s2][2p6](3s23p1)� 3

Ga:[1s2][2s2][2p6][3s2][3p6][3d10](4s24p1)� 3

Group V

N:[1s2](2s22p3)� 5

P: [1s2][2s2][2p6](3s23p3)� 5

As:[1s2][2s2][2p6][3s2][3p6][3d10](4s24p3)� 5

[Core electrons] (Valence electrons)
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Semiconductor Crystal Structures

(Denninger)
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Semiconductor Crystal Structures

(Denninger)
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Tight-Binding (or LCAO) Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure



141Debdeep Jena (djena@cornell.edu) 

Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Atomic Orbitals and their Overlaps



146Debdeep Jena (djena@cornell.edu) 

Atomic Orbitals and their Overlaps
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Atomic Orbitals and their Overlaps
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Atomic Orbitals and their Overlaps
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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A Simple Example: 2D Graphene and Boron Nitride

x

y

sigma-orbital
pi-orbital

Real-space picture

Hopping energy:

• Sigma-orbitals hold the atoms together.
(3 electrons/carbon atom, one left over)

• Pi-orbitals are responsible for conduction.
(1 electron/carbon atom)

sp2 hybridization
Orbital figs from Pulfrey

�0 � 3 eV
acc=1.24 Angstrom

a =
�

3acc = 2.15 Angstrom (lattice constant)
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A Simple Example: 2D Graphene and Boron Nitride

a1 = (

p
3

2
,
3

2
) a2 = (�

p
3

2
,
3

2
)

hopping energy to 
each neighbor with 
phase factor

Find the real space lattice vectors

Write down the tight-binding Hamiltonian Matrix

on-site energies of 
each atom in basis

Find the eigenvalues of the Hamiltonian to get the bandstructure
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A Simple Example: 2D Graphene and Boron Nitride

a1 = (

p
3

2
,
3

2
) a2 = (�

p
3

2
,
3

2
)

hopping energy to 
each neighbor with 
phase factor

Find the real space lattice vectors

Write down the tight-binding Hamiltonian Matrix

on-site energies of 
each atom in basis

Find the eigenvalues of the Hamiltonian to get the bandstructure
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A Simple Example: 2D Graphene and Boron Nitride

m? =
2~2Eg

9a2t2
⇠ 0.6m0

Eg=5.8 eV, t=2.92 eV, a ⇠0.15 nm

✏B ⇠ +2.9 eV, ✏N ⇠ �2.9 eV

Find the eigenvalues of the Hamiltonian to get the bandstructure

Find the conduction and valence band structures and effective masses

��0

CB

VB

E

k
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A Simple Example: 2D Graphene Bonds and Bands

E(kx, ky) ⇥ �vF

�
k2

x + k2
y

vF � 108cm/s
gspin = 2

gvalley = 2

• Reviews of Modern Physics, 79 677 (2007).

E(kx, ky) = EF ± �0

�

1 + 4 cos(
�

3kxa

2
) cos(

kya

2
) + 4 cos2(

kya

2
)

• Expand around
the Dirac point

�0 � 3 eV

Conical!
Linear dispersion

For 2D Graphene, because the on-
site energies are the SAME, the gap 
is ZERO!

BN is the compound semiconductor 
counterpart of Graphene; the broken 
symmetry opens a very large 
bandgap.
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A Simple Example: 2D Graphene Bonds and Bands

E(kx, ky) = EF ± �0

�

1 + 4 cos(
�

3kxa

2
) cos(

kya

2
) + 4 cos2(

kya

2
)

-20 -10 0 10 20

-20

-15

-10

-5

0

5

10

(M---Γ) k (Γ---K)

E
ne
rg
y(
eV

)
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A Simple Example: 2D Graphene Bonds and Bands

E(kx, ky) = EF ± �0

�

1 + 4 cos(
�

3kxa

2
) cos(

kya

2
) + 4 cos2(

kya

2
)

-20 -10 0 10 20

-20

-15

-10

-5

0

5

10

(M---Γ) k (Γ---K)

E
ne
rg
y(
eV

)
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Comparison of NFE, Tight-Binding, and True Bands
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Atoms to Crystals

Crystal Bandstructure

DirectIndirect
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Typical 3D semiconductor crystal structures

(Denninger,Oda)
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Nearly free electron bandstructure, k-space points

(Rockett)
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Orbital overlaps and bonds in semiconductors

(Cardona/Yu)
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Orbital overlaps and bonds in semiconductors

(Cardona/Yu)
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Tight-Binding Bandstructure Matrix
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Tight-Binding Bandstructure
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Semiconductor Bandstructures

Origin of s and p �contents� in semiconductor bandstructure
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Semiconductor Bandstructures
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Semiconductor Bandstructures



173Debdeep Jena (djena@cornell.edu) 

Semiconductor Bandstructures
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Semiconductor Bandstructures

Origin of s and p �contents� in semiconductor bandstructure (Rockett)
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Semiconductor Bandstructures

Silicon GaAs

(Rockett)
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Semiconductor Bandstructures

Chemical bonding, Lattice Constants, Band edges, and Band Gaps for various Semiconductors
(Rockett)
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Semiconductor Bandstructures

Bandstructures of 
Elemental and Compound Semiconductors
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Semiconductor Bandstructures

Bandstructures and Density of States
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Electron clouds in semiconductors

Electron wavefunction squared = probability density of finding electrons
(Rockett)



180Debdeep Jena (djena@cornell.edu) 

Measurement of Semiconductor Bandstructures

Angle-Resolved Photo-Emission Spectroscopy (ARPES)
(Rockett)
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Semiconductor Bandstructures
Free electron vs. real bandstructure
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Tight-Binding Bandstructure
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A Timely Note About This Course!
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Prelim 2 for ECE 4070 / MSE 6050
• Thursday April 11th 2019
• Time: 7:30 – 9:00 pm
• In Phillips Hall 219 (Note: different from class location!)
• No restrictions on books/notes/calculators/computers etc.
• Bring pen/pencil – exam books will be provided.
• The questions will be conceptual, no heavy number crunching will 

be needed.
• Questions from previous years are fairly representative of what to 

expect.
• Topics: Chapters 1-9 from the Notes, and suggested Slides.
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Tight-Binding Bandstructure
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Compound Semiconductor Heterostructures: Strain
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Compound semiconductors: Heterostructures
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Compound semiconductor heterostructure band offsets

(Rockett)

Transitivity of band offsets
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Quasi electric fields in semiconductor heterostructures

Equal force on electrons and holes

Forces different for electrons and 
holes
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GaN based Visible LEDs and Lasers

• Science of light
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How to make a Semiconductor Light Emitter
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How to make white light with semiconductors
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Solid state lighting: The lighting of the future
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Effect of Defects and Quantum Wells on Efficiency
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Lasers outperform LEDs in efficiency!
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Lasers outperform LEDs in efficiency!
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Compound semiconductors: Heterostructures
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Effective Mass Approximation
• Effective Mass Approximation MAPS the complicated problem of 
•Electrons in a complicated crystal + heterostructure potential … to … 
the simplest of all quantum mech problems: The particle in a box

• Developed by Luttinger & Kohn and refined since then…
• Real power of the EMA is exercised in understanding the electronic properties 
of Quantum Heterostructures.
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Effective Mass Approximation

• Effective Mass Approximation MAPS the complicated problem of 
Electrons in a complicated crystal + heterostructure potential … to … 
the simplest of all quantum mech problems: The particle in a box

Wave packet

Over small number of k-states
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Effective Mass Approximation

En(k) =
�

amkm Energy �operator�
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Density of States

kx

ky

2�/Lx2�/Ly

E E

g(E)

DOS: g(E) = gs ·
�

k �[E � E(k)]
Valid for electrons, photons, phonons...

Important result:
�

k(...)⇥
⇥

ddk
(2�)d (...)

If we know the energy dispersion
E(k), we can find the DOS using this prescription.

Free Electron: E(k) = �2|k|2
2m0

Free electron in 3D: g(E) = gs · 1
(2�)2 ( 2m0

�2 ) 3
2
⇤

E
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Effective Mass Approximation
• 3D (Bulk)Application: Bulk Semiconductors

✗



205Debdeep Jena (djena@cornell.edu) 

Effective Mass Approximation

Example: Shallow donor states

Central Result of Effective 
Mass Approximation

�Particle-in-a-box� problem with: 
Real mass -> Effective mass,
Real wavefunction -> Envelope function
Crystal potential -> Band-edge potential + Impurity potentials, etc
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Semiconductor carrier statistics
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Semiconductor carrier statistics
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Semiconductor carrier statistics
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Semiconductor carrier statistics
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Semiconductor carrier statistics
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Semiconductor doping
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Semiconductor carrier statistics
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Semiconductor doping
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Semiconductor carrier statistics
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Semiconductor doping
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Semiconductor doping
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Effect of Doping and Temperature
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Band Diagrams
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Band Alignments: 3D semiconductors



220Debdeep Jena (djena@cornell.edu) 

Band Alignments: 2D semiconductors
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The Schottky Diode

Richardson constant
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The Schottky Diode
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The Schottky Diode Rectifier
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Various kinds of Metal-Semiconductor Junctions
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Energy Band Diagrams

Homojunction Energy Band Diagrams
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Energy Band Diagrams
Heterojunction 
Energy Band 
Diagrams
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Energy Band Diagrams
Heterojunction 
Energy Band 
Diagrams
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Energy Band Diagrams
Graded Heterojunction 
Energy Band Diagrams
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Band Diagrams for Polar Heterostructures
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Mobility and Transport
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High-Field Transport: Electron Velocity Saturation
Hot-electron
temperature

Energy balance 
eqn.

Hot-electron temperature: 
models non-equilibrium

Ensemble saturation 
velocity ~ (Eop/m*)1/2

Momentum 
balance eqn.

Steady state
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Effective Mass Approximation
• 2D (Quantum Wells)

�nz (z) =
r

2
W

sin
⇡nzz

W
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Effective Mass Approximation
• 1D (Quantum Wires)
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Effective Mass Approximation
• 0D (Quantum Dots)
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Effective Mass Approximation @ Heterojunctions

Proof presented in:
Burt, APL 65 717 (1994)

• Effective Mass Theory works even at sharp heterojunctions, 
and it works amazingly well!  Quantum cascade lasers are 
designed using this theory.
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Example: Exciton in an InN Nanowire

Nano Letters (2014)
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Infinitely Deep Quantum Wells

(Rockett)The particle in a box problem

even
odd

even

odd
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Finite Quantum Wells

(Rockett/Davies)The particle in a box problem

Bound states: Atomic-like

Density of states for a 1D quantum well

“Continuum” states: Free-electron-like
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Transitions in Semiconductor Quantum Wells

(Davies)

Quasi-2D systems: Quantum Wells

Photoluminescence spectra of quantum wells
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Designing the Transitions in Quantum Wells

(Davies)

Rectangular quantum wells

Parabolic quantum wells: Harmonic Oscillator States!
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Multiple Coupled Quantum Wells

(Rockett)

Note the ‘zero-states’ 
for odd number of wells

States merge into minibands
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Designer Quantum Structures

(Weisbuch/Vinter)
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Heterostructure Superlattices

(Weisbuch/Vinter)
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Heterostructure Superlattices

(Weisbuch/Vinter)

DOS of uncoupled 2D wells

Density of states of a superlattice



245Debdeep Jena (djena@cornell.edu) 

Semiconductor Physics Summary
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Semiconductor Physics Summary
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Physics of Semiconductor Nanostructures Summary
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Ballistic Transport in 1 Dimension
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Ballistic Transport in 1, 2, and 3 Dimensions
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Ballistic Current in 2 Dimensions

• The physics of a Ballistic FET can be understood by inspecting the carrier distribution in k-space at the source-injection Point.
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Ballistic FET
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Id
W

⇠ J0(
Vgs � VT

Vth
)

3
2

Id
W

⇠ J0e
Vgs�VT

Vth

Subthreshold (off) On-state

Ballistic FET
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• Note the on-off ratio, and the sharper switching at low temperatures.  The subthreshold slope is ~(kT/q)ln(10).
• This calculation neglects the contact resistance incurred in injecting carriers from 3D source to 2D channel.

Id
W

⇠ J0(
Vgs � VT

Vth
)

3
2

Id
W

⇠ J0e
Vgs�VT

Vth

Subthreshold (off)

On-state

Ballistic FET
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Ballistic FET Limits
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Transistor Applications

Memory

Flash
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Transistor Applications

Memory

Flash
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It all began with Light…

• 3 Pillars of Information systems are: “Computation, 
Memory, and Communication”
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The “humble” transistor: Many Avatars…
S D

G

ID ⇠ e
qVgs
kT

! SS ⇠ kT

q
ln 10

⇠ 60
mV

decade

• The transistor is an electronic switch
• It is also an amplifier: it has gain
• Gain @ high speed: RF electronics
• Switching @ high voltages: Power electronics
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The “humble” transistor: Many Avatars…
S D

< 60
mV

decade
possible• The transistor is an electronic switch

• It is also an amplifier: it has gain
• Gain @ high speed: RF electronics
• Switching @ high voltages: Power electronics
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Careful what you wish for: you may get it!

• The “fat” in Boolean logic switching buys us 
robustness against errors.

• Low power switches will have to figure out a 
way to be robust to fluctuations.
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Transistors old and new
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Can Transistors beat the Boltzmann Limit?

Tunneling FETs (or TFETs) Negative Capacitance FETs (NCFETs)
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The Energy-Delay Switching Bottleneck

 (x1, x2) = � (x2, x1) Fmag ⇠ Fel ·
v2

c2
f(E) =

1

1 + e
E�EF

kT
e

qV
kT vs. ei� logic

2015

Physics hiding ‘under the hood’

Preferred 
Corner
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New Devices Promise to Do Better

 (x1, x2) = � (x2, x1) Fmag ⇠ Fel ·
v2

c2
f(E) =

1

1 + e
E�EF

kT
e

qV
kT vs. ei� logic

2015

Preferred 
Corner

Cornell contributions 
as new device 
technologies

Physics hiding ‘under the hood’
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Tunneling in Semiconductors
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Why can electrons tunnel through barriers?

Total internal reflection

photons
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Why can electrons tunnel through barriers?

Total internal reflection

photons
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Why can electrons tunnel through barriers?

Total internal reflection

photons

“tunneling of photons”
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Why can electrons tunnel through barriers?

Total internal reflection

photons

“tunneling of photons”

qV

Ec

Ev

electrons

De Broglie

� =
h

mv
Reflection of electron wave
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Why can electrons tunnel through barriers?

Total internal reflection

photons

“tunneling of photons”

qV

Ec

Ev

electrons

De Broglie

� =
h

mv
Reflection of electron wave

“tunneling of electrons”
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Tunneling in Semiconductors

en
er
gy

0 L

V(x) x

EL

EH
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Tunneling in Semiconductors
Kinetic energy
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Electron Quantum Transport in Smooth Potentials

The WKB approximationThe Effective Mass Approximation
For Bands in Semiconductors

Effective Mass 
Equation for Electron 
Wavepackets
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Electron Quantum Transport in Smooth Potentials

Quantum Current carried by an electron wavepacket in arbitrary potentials
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Tunneling of Electrons Through Arbitrary Barriers

The WKB Tunneling Probability for tunneling in semiconductors
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Tunneling in Homojunctions
Reverse-bias tunneling current

T0 = exp[��
p
m�E3/2

g

2
p
2qF~

]

Ēk =

p
2qF~

2�
p
m�

p
Eg

If qV >> 2Êk,

J ⇡ q2m?T0Êk
2�2~3 V

=) ⇠linear I � V .

Tunneling current depends exponentially on the 
• Bandgap
• Effective mass
• Electric field
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Tunneling in Homojunctions
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Tunneling in Semiconductor Homojunctions

Ge

InN

GaN

Si

Increasing doping in 
the pn junction

Peak electric 
field increases

Doping: 1019, 5x1019, 1020/cm3

@0.3 V
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Tunneling in Semiconductor Homojunctions

Ge

InN

GaN

Si

Increasing doping in 
the pn junction

Peak electric 
field increases

Doping: 1019, 5x1019, 1020/cm3

@0.3 V

Solar cells
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Tunneling in Semiconductor Homojunctions

Ge

InN

GaN

Si

Increasing doping in 
the pn junction

Peak electric 
field increases

Doping: 1019, 5x1019, 1020/cm3

@0.3 V

Solar cells

LEDs
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Tunneling in Semiconductor Homojunctions

Ge

InN

GaN

Si

Increasing doping in 
the pn junction

Peak electric 
field increases

Doping: 1019, 5x1019, 1020/cm3

@0.3 V

Solar cells

LEDs

Lasers
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Tunneling in Semiconductor Homojunctions

Ge

InN

GaN

Si

Increasing doping in 
the pn junction

Peak electric 
field increases

Doping: 1019, 5x1019, 1020/cm3

@0.3 V

Solar cells

LEDs

Lasers

TFETs



283Debdeep Jena (djena@cornell.edu) 

Tunneling in Semiconductor Homojunctions

Ge

InN

GaN
Si

Increasing doping in 
the pn junction

Peak electric 
field increases

Doping: 1019, 5x1019, 1020/cm3

3x1020/cm3 + Donor delta spikes

0.3 V

0.5 V

1.0 V

Solar cells

LEDs

Lasers

TFETs
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Tunneling in Semiconductors
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Resonant Tunneling in Semiconductor Nanostructures
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The idea behind “Scattering”

Continuous, all weights

Discrete, specific frequencies “Bands” and “Gaps”

States mixed; extended states may not be 
allowed à localization, but gaps still possible
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How to find f(k) in the presence of scattering
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How to find the quantum current with scattering
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The Boltzmann Transport Equation gives f(k)
equilibrium perturbation

Boltzmann Transport Equation

Particle number conserved

equilibrium scattering

bandstructure applied forces conc. gradients

Relaxation time approximation

The Boltzmann transport equation gives a full-
blown treatment of transport properties, and can 
be solved in several levels of approximation.
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Formalism for diffusive charge transport
• Find the perturbation potential due to the defect.
• Use Fermi�s Golden rule to evaluate the single-particle scattering rate
• Add up for all allowed states
• Use the solution of Boltzmann equation to find the mobility/conductivity.

1
⇤kk�

=
2⇥

� |V (q)|2�[Ek� � (Ek ± �⌅)]Fermi�s golden rule

Distribution function: Solution of 
Boltzmann Transport Equation

Current density: Sum over all group 
velocities `v� in k-space

V (q) = ⇤k⇥|W (r)|k⌅

=
⌅

V
[
e�ik�·r
⇧

V
u�
K(r)]�W (r)� [

e+ik·r
⇧

V
uK(r)]d3r

=
⌅

V
[
ei(k�k�)·r

V
]W (r)� [u�

K(r)uK(r)]d3r

⇥
� ⌅

V
eiq·rW (r)

d3r
V⌥ ⌃⇧ �

crystal

⇥
�

� ⌅

�
u�
K(r)uK(r)

d3r
�⌥ ⌃⇧ �

=1

⇥

V (q) ⇥
⇤

V eiq·rW (r)d3r
V

Ec

Ev

Ec(r) = E0
c + W (r)
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The Boltzmann Transport Equation

Fermi�s Golden Rule gives: 
Scattering rate from state k 
à k� by perturbation DEc

Most general expression for
‘Current Density’ in ‘d’ dimensions:

Jd = q � gsgv

Ld

�
k vg(k)f(k), where

gs = spin degeneracy

gv = valley degeneracy

vg = 1
�⇥E(k) is the group velocity

f(k) is the Fermi-Dirac function

charge current density (general case)

qvg may be replaced by other physical quantities:

qvgà charge current density (electrical cond.)
1 à carrier density
E (k) à heat current density (thermal cond.)
…
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Time-dependent perturbation theory

Unperturbed problem Time-dependent perturbation

Perturbation

transformation

Time-dependent evolution in the Interaction picture

If W=0, the state vector does 
not rotate in time in the 
interaction picture.

Starting point for time-dependent perturbation theory
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Time-dependent perturbation theory

Fermi’s golden rule for 
time-varying potentials

Fermi’s golden rule for 
oscillating potentials

✓(!) =

Z 1

0
dtei!t = lim

⌘!0+

Z 1

0
dte�⌘tei!t

= lim
⌘!0+

i

! + i⌘
=

i

!+

1

!+
= P [

1

!
]� i⇡�(!) !

Z +1

�1
d!
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!+
= P [

Z +1

�1
d!

f(!)

!
]� i⇡f(0)

✓(!) =

Z 1

0
dtei!t = lim

⌘!0+

Z 1

0
dte�⌘tei!t

= lim
⌘!0+

i

! + i⌘
=

i

!+

1

!+
= P [

1

!
]� i⇡�(!) !

Z +1

�1
d!

f(!)

!+
= P [

Z +1

�1
d!

f(!)

!
]� i⇡f(0)

Two useful results to be used extensively later!

Here P[…] is the “principal part” of a function

⌘ #
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Scattering rate due to point scatterers
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Scattering of Bloch Electron States
1

⇤kk�
=

2⇥

� |V (q)|2�[Ek� � (Ek ± �⌅)]

q = k� k�

V (q) = ⇤k⇥|W (r)|k⌅

=
⌅

V
[
e�ik�·r
⇧

V
u�
K(r)]�W (r)� [

e+ik·r
⇧

V
uK(r)]d3r

=
⌅

V
[
ei(k�k�)·r

V
]W (r)� [u�

K(r)uK(r)]d3r

⇥
� ⌅

V
eiq·rW (r)

d3r
V⌥ ⌃⇧ �

crystal

⇥
�

� ⌅

�
u�
K(r)uK(r)

d3r
�⌥ ⌃⇧ �

=1

⇥

V (q) ⇥
⇤

V eiq·rW (r)d3r
V

Fermi�s Golden Rule tells us that the 
scattering potential is the SUM of ALL 
the scatterers in the macroscopic 
crystal.

How do multiple scattering centers add 
up and contribute to the total scattering 
rate?

Fourier Transform of real-space scattering potential!
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Wtotal(r) = W (r) +W (r�R1) +W (r�R2) + ...| {z }
‘N 0

impimpurities

V0(q) ⇤
Z

V
eiq·rW (r)

d3r

V

Vtotal(q) = V0(q) +

Z

V
eiq·rW (r�R1)

d3r

V
+ ...

Vtotal(q) = V0(q) + V0(q)e
iq·R1 + V0(q)e

iq·R2 ...

Vtotal(q) = V0(q)[1 + eiq·R1 + eiq·R2 ...| {z }
‘N 0terms

]

|Vtotal(q)|2 = |V0(q)|2[(1 + eiq·R1 + eiq·R2 ...| {z }
‘N 0

impterms

)⇥ (1 + e�iq·R1 + e�iq·R2 ...| {z }
‘N 0

impterms

)]

|Vtotal(q)|2 = |V0(q)|2[Nimp + (eiq·(R1�R2) + eiq·(R1�R3)...| {z }
⇥0(RPA)

)]

|Vtotal(q)|2 = Nimp|V0(q)|2

1

⇤kk0(total)
=

2⇥

~ Nimp ⇥ |V0(q)|2�[Ek0 � (Ek ± ~⌅)]

Scattering by many impurities

�
eiqxf(x)dx⇥ F (q)

�
eiqxf(x + a)dx⇥ F (q)� eiqa

Impurity locations are R1, R2, …
They are �uncorrelated�

Fourier Transform property:

Effect of multiple scattering

Scattering rate is linearly proportional to impurity density in the dilute uncorrelated limit!



297Debdeep Jena (djena@cornell.edu) 

Scattering events in semiconductors

A static periodic potential causes no scattering à every other potential causes scattering!

Periodic �non-static� potentials: Phonons.
Static non-periodic potentials: Defects & Impurities.
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General Nature of Scattering Rates

From Lundstrom: Fundamentals of Carrier Transport

Scattering rates are typically proportional to the density of states
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Scattering events in semiconductors

Scattering by each type of impurity affects the net electron mobility.

• Mobility in a ultra-clean (defect-free) semiconductor is limited by phonon (optical+acoustic) scattering.
• If the scattering rate of defects/impurities exceed that of phonons, then they determine the mobility.
• Method: find the scattering rate due to each type of defect.  The total scattering rate is the sum of all.  
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Scattering by a neutral impurity

1
⇤kk�

=
2⇥

� |V (q)|2�[Ek� � (Ek ± �⌅)]
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V

Ec(r) = E0
c + W (r) W (r) = W0�(r � r0)

This & next few slides: material from 
- Wolfe/Holonyak/Stillman
- Seeger

From Seeger: Derive your own expression!
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Scattering by charged impurities

Screened coulomb scattering potential

Brooks-Herring dimensionless factor
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Phonons in Semiconductors

Newton’s law for mass-spring chain

Vibrations form a wave

Acoustic phonon dispersion
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Phonons in Semiconductors

Acoustic and optical phonon dispersion
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Phonons in Semiconductors

Typical phonon spectra of semiconductors

Difference in energies of 
longitudinal and optical 
acoustic phonons
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Electron-Def. Pot. Acoustic Phonon interaction
Deformation Potential Acoustic Phonon 
Scattering Potential



306Debdeep Jena (djena@cornell.edu) 

Electron-Piezoelectric Acoustic Phonon interaction
Piezoelectric Acoustic Phonon Scattering Potential

Piezo charge
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Electron-Def. Pot. Optical Phonon interaction

Optical Deformation Potential 
scattering potential D~108 eV/cm

Typical phonon spectra of semiconductors
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Electron-Polar Optical Phonon interaction

Polar optical phonon 
scattering potential

Optical phonon absorption 
and emission processes

Frohlich interaction
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Amplitude of Phonon Vibrations

Typical phonon spectra of 
semiconductors

Vibration amplitude as a function of the 
temperature: Quantum-Classical connection 
of the phonon harmonic oscillator

us(x, t) = u0e
i(�x�!t) + u0e

�i(�x�!t)

|us|2 = 4u2
0 cos(�x� !t)

KE =
1

2
M(

dus

dt
)2 = 2M!2u2

0 sin
2(�x� !t)

PE =
1

2
Ku2

s = 2Ku2
0 cos

2(�x� !t)

but. . .!2 =
K

M
!

KE + PE = 2M!2u2
0 = N! · ~! !
since...M = ⇢V,

u2
0 =

~
2!⇢V

·N!

N!(T ) =
1

e
~!
kT � 1
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Electron-Phonon Scattering Rates
S(k ! k0) =

2⇡

~ |W (qs)|2
~

2⇢⌦!qs

[N(!qs) +
1

2
⌥ 1

2
]�[± cos(✓) +

qs
2k

⌥ !qs

vqs
]

Momentum conservation

Energy conservation

Energy conservation

Allowed angles for acoustic 
phonon scattering events

Allowed angles for optical phonon 
scattering events
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Electron-Acoustic Phonon interaction: Mobility

Ec

Ev

Acoustic phonon scattering

Deformation potential Piezoelectric

Coupling K ~10-3

SHO: |amplitude|2 ~ number of phonons

absorption~emission

2M�2u2
0 ⇡ Nph ⇥ ~�

cl = �v2s
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Electron-Optical Phonon Scattering Rates, Mobility

Deformation potential Optical Phonon Polar Optical Phonon Scattering
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Electron-Photon Interactions
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Electron-Photon Interactions
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How to make white light with semiconductors
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Electron-Photon Interactions
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Absorption Coefficient of Compound Semiconductors

• Incident photon number per unit area per second: |Poynting vector|/  photon energy
• Goes as square of the amplitude of vector potential (or electric field, or magnetic field)

�(�⇥) = Number of photons absorbed per unit volume per second
Number of photons incident per unit area per second

�(�⇥) = R
S/��

Number of photons incident per unit area per second:

Vector potential:

Electric Field:

Magnetic Field:

Poynting Vector:

Incident energy per unit area per 
second:
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Absorption Spectra of Compound Semiconductors

This and next few slides: 
From: S. L. Chuang (Photonic Devices)

Optical absorption coeff. of bulk semiconductor
(general form applicable to quantum wells, etc…)

“Joint” density of states of (VB,CB)

first assume 
fv(k)=1, fc(k)=0

Fermi’s Golden Rule
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Electron-Photon Interactions
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Optical Matrix Elements for Transitions

Absorption spectrum of a general III-V semiconductor at equilibrium

�0(~⇥) = 2.64⇥105

�r
· 2|ê · pcv|2/m0

~⇥| {z }
‘oscillatorstrength0

· (2m
⇥
r

m0
)

3
2 ·

p
~⇥ � Eg

| {z }
/reducedDOS

cm�1

Momentum matrix elements for bulk & quantum well structures
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Optical Gain in Semiconductors

Non-equilibrium 
absorption coefficient

• We have looked at light absorption by a semiconductor (useful for photodetectors & solar cells)
• But LEDs and LASERs are electrically injected light emitters
• The same theory that explains absorption explains emission under electrical injection as well

Fundamental result for 
understanding LEDs and LASERs

Non-equilibrium Fermi-Dirac functions with 
electron quasi-Fermi levels (note: not 
necessary to talk about holes here) 
Fc: Conduction Band quasi-Fermi level
Fv: Valence Band quasi-Fermi level
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Optical Gain in Non-Equilibrium Conditions

Bernard-Duraffourg inversion condition

Optical Gain!!

Optical 
transparency!!

The inversion conditions can be achieved by
• Optical pumping (gas lasers), or
• Electrical pumping (semiconductor LEDs & Lasers)

A laser requires a light emitter to be placed in a high-
finesse (hi-Q) optical cavity to amplify  a specific mode.
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Absorption Coefficient/Optical Gain in Quantum Wells

⇥v(r) = uv(r)� [
1⇧
A

eikt·�]� V (nv, z)

⇥c(r) = uc(r)� [
1⇧
A

eik
�
t·�]� C(nc, z)

pba = ⇤⇥c|p|⇥v⌅ ⇥ ⇤ uc|p|uv⌅ � �kt,k
�
t
� Ic,nc

v,nv

Ien
hm =

� +�

�
dzC⇥(nc, z)V (nv, z) Determines selection rules

General form of absorption coefficient:

Effective-mass functions!!
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Interband and Intersubband Optical Transitions in QWs

Using effective-mass theory, optical matrix elements in quantum wells:

For INTERBAND transitions:

For INTERSUBBAND (intra-band) transitions:

Minterband ⇠ a0, dipole length ⇠ lattice constant

Mintersubband ⇠ Lwell, dipole length ⇠ Quantum Well Width
(giant dipole e�ect!!)
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Optical Gain in Quantum Wells

Equilibrium absorption coefficient in QW is proportional to 
the joint DOS and has 2D subband features
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Compound Semiconductor Heterojunction LEDs

(Rockett)
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Measured Gain Spectra in III-V Quantum Wells

Gain spectrum in QWs follows the equilibrium JDOS 
modulated by the Fermi Dirac functions in 
accordance with the Bernard-Duraffourg condition.
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Compound Semiconductor Heterojunction Devices

(Rockett)
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Compound Semiconductor Heterojunction Devices

(Rockett)
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Applications: The Double-Heterostructure Laser
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Compound Semiconductor Laser Designs

(Weisbuch/Vinter)
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Compound Semiconductor Laser Designs

(Weisbuch/Vinter)
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Reduction of lasing threshold current density

Alferov Nobel Lecture 2000
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Intersubband Optical Transitions

Optical transitions for intersubband
processes
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For INTERSUBBBAND (intra-band) transitions:

Mintersubband ⇠ Lwell, dipole length ⇠ Quantum Well Width
(giant dipole e�ect!!)
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Intersubband Optical Transitions

Applications of ISB transitions: In Quantum Cascade Lasers
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Electron-Photon Interactions
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Electron-Photon Interactions
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Electron-Photon Interactions
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Electron-Photon Interactions
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End


