Physics of Semiconductors and Nanostructures

ECE 4070 / MSE 6050 Spring, 2019

Debdeep Jena (djena@cornell.edu) ECE \& MSE, Cornell University

Course Poster

ECE 4070/MSE 6050, Physics of Semiconductors and Nanostructures: The Physics Enabling Big Data

Cornell University, Spring 2019

You probably cannnot stop hearing that we are living in the age of "Big Data". But what exactly is this data? How and where is it created? How and where is it stored? How is it manipulated to create meaning? And how are massive churks of deta moved around at the soved of light?

This course is the red pill that will show you how deep the physics of "Big Duts" goes. Acrswers to al these questions are tied to the physics of electrons in semiconductor materials.

COURSE CONTENTS:

Sold state phyics for sensicondacior ranoetuctues and efectionic and photone devices

+ Ouirtur mactirica of elactrons in aybien

+ Littoe drumiks and phonors in to. 20, and 30 mutrits

4 Eedren ahoton repration actical Featerd and resiband processes Wcelcation LEDd

+Quathem wols, wres, and dots /Apetowion: Sempondector Lasern)

Classes: IR $11.40 \mathrm{~mm}+12.55 \mathrm{pm}$. Pwilips $\mathrm{HM} / 46 \mathrm{~s}$

Science Fiction turns to Reality

Microsoft Plumbs Ocean's Depths to Test Underwater Data Center

© O O © ద

Ben Cutler, left, and Norman Whitaker, both of Microsoft Research, with the "Leona Philpot," a prototype underwater data center, at the company's headquarters in Redmond, Wash. Matt Lutton for The New York Times

Scaling of Transistor Sizes: How much longer?

Transistors Will Stop Shrinking in 2021, Moore's Law Roadmap Predicts

By Rachel Courtland
Posted 22 Jul 2016|16:00 GMT
f붕ㅁ뭄+

Illustration: Erik Vrielink
The trajectory of transistor feature sizes (the physical gate length of transistors in highperformance logic is shown here) could take a sharp turn in 2021.

Logic I
 Memory

 Tr/Rx

Outside

Computer

~Today

Course Outline: 4 Modules

Module I: Fundamentals

- Chapters 1-7

Module 2: Semiconductor Bands, Doping, and Heterostructures

- Chapters 8-14

Module 3: Quantum Electrostatics and Transport in Semiconductors \& Devices

- Chapters 15-24

Module 4: Photonics with Semiconductors

- Chapters 25-30

Course Outline: 4 Modules

Module I: Fundamentals

- Chapters 1-7

Module 2: Semiconductor Bands, Doping, and Heterostructures

- Chapters 8-14

Module 3: Quantum Electrostatics and Transport in Semiconductors \& Devices

- Chapters 15-24

Module 4: Photonics with Semiconductors

- Chapters 25-30

The Electron

The Electron

Electron mass	$m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$
Electron charge	$q=1.6 \times 10^{-19}$ Coulomb

Fig. 1.2 J. J. Thomson discovered the electron in 1896 @ the Cavendish Laboratory. He was awarded the 1906 Nobel prize in Physics. Seven of his students went on to win Nobel prizes.

Classical Physics
(3) (Thery)

Classical Physin

Electrons in the Classical World

$$
\mathbf{F}=-\nabla V(r)=\frac{d \mathbf{p}}{d t}
$$

Path is deterministic

Electron paths in vacuum tubes subject to E and B fields

Lorentz

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Path is deterministic

Properties of Metals

Periodic Table of Elements

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Metals are:

- good conductors of electricity,
- good conductors of heat, and
- reflective and shiny.

Fig. 2.3 Ohm's law is $V=I R$, or equivalently $J=\sigma E$.

Properties of Metals

Data compiled by Rusen Yan

Properties of Metals

Fig. 2.4 Electron gas moving in response to an electric field in a metal.

$$
\begin{gathered}
J=q n v=\frac{n q^{2} \tau}{m_{e}} E=\sigma E \Longrightarrow \sigma=\frac{n q^{2} \tau}{m_{e}} \\
q \tau
\end{gathered}
$$

$$
\mu=\frac{q \tau}{m_{e}}
$$

Metals are:

- good conductors of electricity,
- good conductors of heat, and
- reflective and shiny.

Fig. 2.3 Ohm's law is $V=I R$, or equivalently $J=\sigma E$.

Properties of Metals

Table 1.1
FREE ELECTRON DENSITIES OF SELECTED METALLIC ELEMENTS*

ELEMENT	Z	$n\left(10^{22} / \mathrm{cm}^{3}\right)$	$r_{s}(\AA)$	r_{s} / a_{0}
$\mathrm{Li}(78 \mathrm{~K})$	1	4.70	1.72	3.25
$\mathrm{Na}(5 \mathrm{~K})$	1	2.65	2.08	3.93
$\mathrm{~K}(5 \mathrm{~K})$	1	1.40	2.57	4.86
$\mathrm{Rb}(5 \mathrm{~K})$	1	1.15	2.75	5.20
$\mathrm{Cs}(5 \mathrm{~K})$	1	0.91	2.88	5.62
Cu	1	8.47	1.41	2.67
Ag	1	5.86	1.60	3.02
Au	1	5.90	1.59	3.01
Be	2	24.7	0.99	87
Mg	2	8.61	1.41	2.80
Ca	2	4.61	1.73	3.27
Sr	2	3.55	1.89	3.57
Ba	2	3.15	1.96	3.71
Nb	1	5.56	1.63	3.07
Fe	2	17.0	1.12	2.12
$\mathrm{Mn}(\alpha)$	2	16.5	1.13	2.14
Zn	2	13.2	1.22	2.30
Cd	2	9.27	1.37	2.59
$\mathrm{Hg}(78 \mathrm{~K})$	2	18.1	1.40	2.65
Al	3	15.4	1.10	2.07
Ga	3	11.5	1.16	2.19
In	3	10.5	1.27	2.41
Tl	3	14.8	1.31	2.48
Sn	4	14.1	1.17	2.22
Pb	4	16.5	1.22	2.30
Bi	5	1.19	2.25	
Sb	5	1.13	2.14	

*At room temperature (about 300 K) and atmospheric pressure, unless otherwise noted. The radius r_{3} of the free electron sphere is defined in Eq (1.2) We have arbitrarily selected one value of Z for those elements that display more than one chernical valence. The Drude model gives no theoretical basis for the choice. Values of n are based on data from R. W. G. Wyckoff, Crystal Structures, 2nd ed., Interscience, New York, 1963

Table 1.3
DRUDE RELAXATION TIMES IN UNITS OF 10^{-14} SECOND

ELEMENT	77 K	273 K	373 K
Li	7.3	0.88	0.61
Na	17	3.2	
K	18	4.1	
Rb	14	$2 .$	
Cs	8.6	2.1	
Cu	21	2.7	1.9
Ag		4.0	2.8
Au		3.0	2.1
Be		0.51	0.27
Mg	6.7	1.1	0.74
Cy		2.2	1.5
Sr	1.4	0.44	
Ba	0.66	0.19	
$: \mathrm{Nb}$	2.1	0.42	0.33
Fe	3.2	0.24	0.14
Zn	2.4	0.49	0.34
Cd	2.4	0.56	
Hg	0.71		
AI	6.5	0.80	0.55
Ga	0.84	0.17	
In	1.7	0.38	0.25
7	0.91	0.22	0.15
Sn	1.1	0.23	0.15
Pb	0.57	0.14	0.099
Bi	0.072	0.023	0.016
Sb	0.27	0.055	0.036

" Relaxation times are calculated from the data in Tables 1.1 and 1.2. and Eq. (1.8). The slight temperature dependence of n is ignored.

Properties of Metals

Spectral reflectance curves for aluminium (Al), silver (Ag), and gold (Au) metal mirrors at normal incidence. From Wikipedia

Metals are:

- good conductors of electricity,
- good conductors of heat, and
- reflective and shiny.

The classical Drude model

Properties of Metals

Metals are:

- good conductors of electricity,
- good conductors of heat, and
- reflective and shiny.

Thermal Conductivity

The Weidemann-Franz Law for metals

Ratio of Boltzmann Constant and Electron Charge, which are fundamental constants and do not depend on the metal.

Electronic specific heat is much smaller than $n k_{B}$

- Classical Mechanics and Thermodynamics is not adequate to explain electron statistics.
- Electrons must follow the Pauli Exclusion principle, and are subject to the laws of quantum mechanics.

Planck's Blackbody Radiation: Birth of 'Quantum'

Classical physics unable to explain light spectrum

Einstein explains the Photoelectric effect

Fig. 3.35 The photoelectric effect.

Experiment: Light is a wave ... or a particle?

Experiment: Light is a wave ... or a particle?

Einstein: look downstairs!

$$
p=m v / \sqrt{1-(v / c)^{2}}
$$

- The only way an object of mass $\mathrm{m}=0$ can have momentum is if its speed $v=c$, or the speed of light.
- A photon is exactly such an object. No mass, all energy, and a finite momentum!

Bohr's Quantum Theory for Electrons

$$
E=\frac{p^{2}}{2 m_{e}}-\frac{q^{2}}{4 \pi \epsilon_{0} R}
$$

$$
\oint p d x=n h \quad p_{n} 2 \pi R_{n}=n h \Longrightarrow p_{n} R_{n}=n \hbar .
$$

$$
\frac{m_{e} v_{n}^{2}}{R_{n}}=\frac{q^{2}}{4 \pi \epsilon_{0} R_{n}^{2}} \Longrightarrow p_{n}=\frac{q^{2} m_{e}}{4 \pi \epsilon_{0} \hbar} \cdot \frac{1}{n}=\frac{\hbar}{a_{B}} \cdot \frac{1}{n}
$$

$$
R_{n}=n^{2}(\underbrace{\frac{4 \pi \epsilon_{0} \hbar^{2}}{q^{2} m_{e}}}_{a_{B}})=n^{2} a_{B}
$$

$$
E_{n}=\frac{p_{n}^{2}}{2 m_{e}}-\frac{q^{2}}{4 \pi \epsilon_{0} R_{n}}=\frac{1}{2} \frac{\hbar^{2}}{m_{e} a_{B}^{2}} \frac{1}{n^{2}}-\frac{\hbar^{2}}{m_{e} a_{B}^{2}} \frac{1}{n^{2}}=-\frac{\hbar^{2}}{2 m_{e} a_{B}^{2}} \frac{1}{n^{2}}
$$

$$
E_{n_{2}}-E_{n_{1}}=\underbrace{\frac{m_{e} q^{4}}{2\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}}}_{\mathrm{Ry}=13.6 \mathrm{eV}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

Particle... or wave?

de Broglie'e hypothesis:
$\lambda=\frac{h}{|\mathbf{p}|}$ holds for objects
with mass too, not just photons.

> When electrons are waves:
> $q V=E=\frac{p^{2}}{2 m_{0}}$, but $\lambda=\frac{h}{p}$, which
> $\Longrightarrow \lambda=\frac{h}{\sqrt{2 m E}}=\frac{h}{\sqrt{2 m q V}}$
> You can change the wavelength of electrons with voltage.

Particle... or wave?

de Broglie'e hypothesis: $\lambda=\frac{h}{|\mathbf{p}|}$ holds for objects with mass too, not just photons.
When electrons are waves:
$q V=E=\frac{p^{2}}{2 m_{0}}$, but $\lambda=\frac{h}{p}$, which
$\Longrightarrow \lambda=\frac{h}{\sqrt{2 m E}}=\frac{h}{\sqrt{2 m q V}}$
You can change the wavelength
of electrons with voltage.

Eledron Diffraction pattern

- Screen

Vacuum

Electron
gun Nickel
Crystal

The Davisson-Germer Experiment

Particle... or wave?

The Diffraction of Electrons by a Crystal of Nickel

de Broglie'e hypothesis: $\lambda=\frac{h}{|\mathbf{p}|}$ holds for objects with mass too, not just photons.

$$
\begin{gathered}
\text { When electrons are waves: } \\
q V=E=\frac{p^{2}}{2 m_{0}} \text {, but } \lambda=\frac{h}{p} \text {, which } \\
\Longrightarrow \lambda=\frac{h}{\sqrt{2 m E}}=\frac{h}{\sqrt{2 m q V}}
\end{gathered}
$$

By C. J. DAVISSON

Fig. 3-Curves showing development of diffraction beam in the A-azimuth . . . and variation of intensity with the azimuth at colat. 50° for which beam is strongest in the A-azimuth

An electron is a particle. . . or a wave?

An electron is a particle... or a wave?

Wave and particle \rightarrow need for a wavefunction

Constructing wavefunctions: superposition
By linear superposition of complex exponentials, we can create 'particle' like or 'wave' like states as desired for the problem.

The best we can do to locate a "particle" \Rightarrow a 'wave packet'.
$\Rightarrow \psi(x)=\sum_{p} A_{p} e^{i \frac{p x}{\hbar}}$ is an allowed "wanefanction".

Drawing on Fourier series, we realize that we can create any wavefunction shape to capture the correct physics of the problem. Note the corresponding reciprocal space weight distribution.

Math preliminaries before the physics...

$$
\begin{aligned}
& \psi_{p}(x)=A e^{i p x / \hbar} \\
& \hat{p}=-i \hbar \partial / \partial x \\
& \hat{p} \psi_{p}(x)=(\hbar k) \psi_{p}(x) \\
& x \hat{p}-\hat{p} x=[x, \hat{p}]=i \hbar .
\end{aligned}
$$

Wavefunction ties \times and p together.
Must respect the uncertainty principle.

Obervables are mathematical operators.
They act on the wavefunction to extract info.

The states of definite value of an operator are called the eigenstates of that operator.

Unlike classical mechanics, some operators fail to commute!

Definite momentum, and definite location states

A state of definite location x_{0} :

$$
x \psi_{x_{0}}(x)=x_{0} \psi_{x_{0}}(x) \Longrightarrow \psi_{x_{0}}(x)=\delta\left(x-x_{0}\right)
$$

A state of definite momentum p :

Must be an eigenstate of operator -ih(d/dx), with eigenvalue p :

$$
\begin{array}{r}
\hat{p}_{x} \psi_{p}(x)=p_{x} \psi_{p}(x) \Longrightarrow-i \hbar \frac{d}{d x} \psi_{p}(x)=p_{x} \psi_{p}(x) \\
\psi_{p}(x)=A e^{i \frac{p_{x} x}{\hbar}}=A e^{i k_{x} x}
\end{array}
$$

Definite in momentum \rightarrow spread out in real space

States of definite location and definite momentum are unique in quantum mechanics.

States of definite energy: Schrodinger equation

States of definite energy are not unique, because they depend on the 'potential' $V(x)$
In classical mechanics, the energy of a particle is:

$$
E_{c l}=\frac{p^{2}}{2 m}+V(r)
$$

In quantum mechanics, r \& p cannot be simultaneously determined because [x, p]=ih.
Thus, we must solve an equation to obtain the energy.

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \psi_{E}(x)=E \psi_{E}(x)
$$

The Schrodinger equation gives us the prescription to find the states of definite energy.

$$
[\underbrace{\frac{\hat{p}^{2}}{2 m}+V(r)}_{\hat{H}}]|\psi\rangle=E|\psi\rangle
$$

Quantum states are vectors in the Hilbert space
Any wavefunction $\psi(x)=\sum_{n} A_{n} \psi_{n}(x)$ is an allowed state.

$|\psi\rangle$. is an abstract "State Vector". Sis an ∞-dimensional vector $s_{\phi} a c$,

- it lives in the Hildat Space. For a Hilbert space!,

It is useful here to draw an analogy to the decomposition of a vector into specific coordinates. The 'hybrid' state function $\psi(x)$ is pictured as a vector $|\psi\rangle$ in an abstract space. The definite momentum wavefunctions $\psi_{n}(x)$ are pictured as the 'coordinate' vectors $|n\rangle$ in that space of vectors. This set of vectors is called the basis. Since there are an infinite set of integers $n=0, \pm 1, \pm 2, \ldots$, the vector space is infinite dimensional. It is called the Hilbert space. One may then consider the coefficients A_{n} as the length of the projections of the state on the basis states. The abstract picture allows great economy of expression by writing $|\psi\rangle=\sum_{n} A_{n}|n\rangle$. The orthogonality of the basis states

$$
\begin{array}{ll}
|\psi\rangle=\sum_{n} A_{n}|n\rangle & \langle m \mid n\rangle=\delta_{m n} \\
A_{n}=\langle n \mid \psi\rangle & \\
|\psi\rangle=\sum_{n}\langle n \mid \psi\rangle|n\rangle=\sum_{n}|n\rangle\langle n \mid \psi\rangle \\
& \sum_{n}|n\rangle\langle n|=1
\end{array}
$$

By projecting states, get various representations

- We can think of the states as vectors.
- The 'inner product' is a complex number generated by projection to the appropriate space.
- This number is the wavefunction - it can be found in real space, momentum space, etc...

The particle in a box

$$
\begin{gathered}
V(x)=0, \quad 0 \leq x \leq L \\
V(x)=\infty, \quad x<0, x>L
\end{gathered}
$$

$$
V(x)=0
$$

Particle in a box

$$
\psi(x)=A e^{i k x}+B e^{-i k x} \rightarrow \psi(0)=0=A+B, \psi(L)=A e^{i k L}+B e^{-i k L}=0
$$

$$
\frac{A}{B}=-e^{-i 2 k L}=-1 \rightarrow 2 k L=2 n \pi \rightarrow k_{n}=n \frac{\pi}{L}, n= \pm 1, \pm 2, \pm 3, \ldots
$$

Note that $n=0$ is not allowed, because then $\psi(x)=0$ and there is no particle wavefunction after normalization over the length L is

$$
\psi(n, x)=\sqrt{\frac{2}{L}} \sin \left(n \frac{\pi}{L} x\right)=\sqrt{\frac{2}{L}} \sin \left(k_{n} x\right)
$$

Energy spectrum is discrete, zero energy NOT allowed!

$$
E_{n}=n^{2} \frac{(\pi \hbar)^{2}}{2 m_{e} L^{2}}=n^{2} \frac{h^{2}}{8 m_{e} L^{2}}
$$

The harmonic oscillator

Harmonic Oscillator

$$
\psi_{n}(x)=\frac{1}{\sqrt{2^{n} n!}} \cdot\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \cdot e^{-\frac{m \omega x^{2}}{2 \hbar}} \cdot H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right), \quad n=0,1,2, \ldots
$$

The functions H_{n} are the Hermite polynomials,

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

Energy levels equally spaced Zero energy NOT allowed!
The corresponding energy levels are

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

$$
\begin{aligned}
a & =\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{i}{m \omega} \hat{p}\right) \\
a^{\dagger} & =\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}-\frac{i}{m \omega} \hat{p}\right) \\
\hat{x} & =\sqrt{\frac{\hbar}{2 m \omega}}\left(a^{\dagger}+a\right) \\
\hat{p} & =i \sqrt{\frac{m \omega \hbar}{2}}\left(a^{\dagger}-a\right)
\end{aligned}
$$

Can solve the problem using raising and lowering operators

The hydrogen atom

Energy levels [edit source I edit beva]

The energy levels of hydrogen, including fine structure, are given by the Sommerfeld expression:

$$
\begin{aligned}
E_{j n} & =-m_{e} c^{2}\left[\left(1+\left[\frac{a}{\left.n-j-\frac{1}{2}+\sqrt{\left(j+\frac{1}{2}\right)^{2}-\alpha^{2}}\right]^{2}}\right]^{-1 / 2}\right)^{2 n^{2}}\left[1+\frac{m_{e} c^{2} \alpha^{2}}{n^{2}}\left(\frac{n}{j+\frac{1}{2}}-\frac{3}{4}\right)\right]\right.
\end{aligned}
$$

where a is the fine-structure constant and j is the "total angular momentum" quantum numbor, which is equal tol $/ \pm 1 / 2$ depending on the direction of the electron spin. The factor in square brackets in the last expression is nearly one; the extra term arises from relativistic effects (for details, see \#Features going beyond the Schrodinger solution).

The value

$$
\frac{m_{\mathrm{e}} \mathrm{c}^{2} \alpha^{2}}{2}=\frac{0.51 \mathrm{MeV}}{2 \cdot 137^{2}}=13.6 \mathrm{eV}
$$

Wavefunction [edit source I edit befa]

The normalized position wavefunctions, given in spherical coordinates are:

$$
\psi_{n \ell m}(r, \vartheta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-\ell-1)!}{2 n(n+\ell)!}} e^{-\rho / 2} \rho^{\ell} L_{n-\ell-1}^{2 \ell+1}(\rho) Y_{\ell}^{m}(\vartheta, \varphi)
$$

where:

Hydrogen Atom

$$
\rho=\frac{2 r}{n a_{0}}
$$

a_{0} is the Bohr radius,
$L_{n-\ell-1}^{2 \ell+1}(\rho)$ is a generalized Laguerre polynomial of degree $n-\ell-1$, and
$Y_{\ell}^{m}(\vartheta, \varphi)$ is a spherical harmonic function of degree ℓ and order m. Note that the generalized Laguerre polynomials are defined differently by different authors. The usage here is consistent with the definitions used by Messiah, ${ }^{[8]}$ and Mathematica. ${ }^{[9]}$ In other places, the Laguerre polynomial includes a factor of $(n+\ell)!^{[10]}$ or the generalized Laguerre polynomial appearing in the hydrogen wave function is $L_{n+\ell}^{2 \ell+1}(\rho)$ instead. [11]
The quantum numbers can take the following values:

$$
\begin{aligned}
& n=1,2,3, \ldots \\
& \ell=0,1,2, \ldots, n-1 \\
& m=-\ell, \ldots, \ell
\end{aligned}
$$

Time-evolution of states: Time-dep. Schr. Eqn.

$$
\mathbf{F}=-\nabla V(r)=\frac{d \mathbf{p}}{d t}
$$

Path is deterministic

Quantum Mechanics

$$
i \hbar \frac{\partial|\psi\rangle}{\partial t}=\left[\frac{\hat{\mathbf{p}}^{2}}{2 m}+V(\mathbf{r}, t)\right]|\psi\rangle
$$

Path respects uncertainty relation

States of definite energy are stationary states

$$
\begin{aligned}
& i \hbar \frac{\partial \Psi(x, t)}{\partial t}=\underbrace{\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right]}_{\tilde{H}} \Psi(x, t) \text {. }
\end{aligned}
$$

$\frac{d\langle\hat{A}\rangle}{d t}=-\frac{i}{\hbar}\langle[\hat{A}, \hat{H}]\rangle$
Ehrenfrest's theorem for the time evolution of an operator.

$$
i \hbar \frac{\chi \dot{\overline{(} t)}}{\chi(t)}=\frac{\hat{H} \psi(x)}{\psi(x)}=E .
$$

$$
\Psi_{E}(x, t)=\psi_{E}(x) e^{-i \frac{E}{\hbar} t}
$$

This means that the amplitude of states of definite energy oscillate with time with frequency E / h

$$
\left|\Psi_{E}(x, t)\right|^{2}=\left|\psi_{E}(x)\right|^{2}
$$

But observables relate to the probability, which is time independent \rightarrow this is why they care called stationary states.

- The energy eigenvalues of the time-independent Schrodinger equation are states of definite energy.
- Their probability density does not change with time \rightarrow they are called stationary states.
- This is analogous to the $1^{\text {st }}$ law of classical mechanics: quantum states of definite energy will continue to remain in those states unless perturbed by a potential.

The classical Drude model

Quantum mechanical current

$$
\begin{aligned}
& |\Psi(x, t)|^{2}=\Psi^{\star} \Psi \quad \text { Probability density in space and time } \\
& \frac{\partial|\Psi(x, t)|^{2}}{\partial t}=\Psi^{\star} \frac{\partial \Psi}{\partial t}+\frac{\partial \Psi^{\star}}{\partial t} \Psi \quad \text { Change in probability density with time } \\
& \frac{\partial|\Psi(x, t)|^{2}}{\partial t}=\Psi^{\star} \frac{\left(\hat{p}^{2} / 2 m+V\right) \Psi}{i \hbar}+\Psi \frac{\left(\hat{p}^{2} / 2 m+V\right) \Psi^{\star}}{-i \hbar} \begin{array}{c}
\text { Use time-dependent } \\
\text { Schrodinger equation }
\end{array} \\
& \frac{\partial|\Psi(x, t)|^{2}}{\partial t}=\frac{1}{2 m i \hbar}\left(\Psi^{\star} \hat{p}^{2} \Psi-\Psi \hat{p}^{2} \Psi^{\star}\right)
\end{aligned}
$$

Since $\hat{p}=-i \hbar \nabla_{\mathbf{r}} \quad \frac{\partial|\Psi(x, t)|^{2}}{\partial t}=-\nabla_{\mathbf{r}} \cdot\left[\frac{1}{2 m}\left(\Psi^{\star} \hat{p} \Psi-\Psi \hat{p} \Psi^{\star}\right)\right]$
In the form of a continuity equation \rightarrow read off the current density!

Continuity equation $\quad \partial \rho / \partial t=-\nabla_{\mathbf{r}} \cdot \mathbf{j}$ $\mathbf{j}=\frac{1}{2 m}\left(\Psi^{\star} \hat{\mathbf{p}} \Psi-\Psi \hat{\mathbf{p}} \Psi^{\star}\right)$

$$
\frac{d}{d t}\left(\int_{\text {space }} d^{3} r|\Psi|^{2}\right)=-\int_{\text {space }} d^{3} r \nabla \cdot \mathbf{j}=-\oint \mathbf{j} \cdot d \mathbf{S}=0
$$

Quantum mechanical probability current density

Electric current of quantum states

$$
\mathbf{J}=\frac{q}{2 m_{e}}\left(\Psi^{\star} \hat{\mathbf{p}} \Psi-\Psi \hat{\mathbf{p}} \Psi^{\star}\right)
$$

For most semiconductors we know the bandstructure, but not the Bloch functions. Go through the derivation to recast the current in terms of the bandstructure, or the group-velocity (see notes).

$$
\mathbf{v}_{g}(\mathbf{k})=\nabla_{\mathbf{k}} E(\mathbf{k}) / \hbar
$$

$$
\mathbf{J}_{d}=\frac{q}{L^{d}} \sum_{\mathbf{k}} \mathbf{v}_{g}(\mathbf{k}) f(\mathbf{k})
$$

- Group velocity of electron in state |k>

VERY useful result: current in d-dimensions!
 d-dimensions!

$\mathbf{J}_{d}=\frac{q g_{s} g_{v}}{L d} \sum_{\mathbf{k}} \mathbf{v}_{g}(\mathbf{k}) T(\mathbf{k})\left[f_{L}(\mathbf{k})-f_{R}(\mathbf{k})\right]$
General expression for charge current density in d-dimensions
$\mathbf{J}_{d}=\frac{q g_{s} g_{v}}{(2 \pi)^{d}} \int d^{d} \mathbf{k} \times \mathbf{v}_{g}(\mathbf{k}) T(\mathbf{k})\left[f_{L}(\mathbf{k})-f_{R}(\mathbf{k})\right]$

Identity crisis: Indistinguishable particles

2 partides: total energy: $E_{1}+E_{2} \Rightarrow$ time evolution ~ $\sim e^{i\left(\frac{E_{1}+E_{2}}{\hbar} y t\right.}$ Since $i \hbar \frac{\partial}{\partial t} \psi=E \psi, \psi \sim \psi_{1} \cdot \psi_{2}$

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)
$$

This is OK for distinguishable particles such as a proton and an electron. But NOT OK for indistinguishable particles such as two electrons! For example, \mid psi $\left.\right|^{2}$ should not change on swapping $x_{1} \leftrightarrow \rightarrow x_{2}$. How must we then write the wavefunction for two identical particles?

Pauli Exclusion Explains the Periodic Table

- The restriction that we cannot put two electrons in the same energy state leads to the elements
- The same restriction leads to a periodic variation of the physical properties of the elements.

Debdeep Jena (djena@cornell.edu)

Resolution of identity crisis: Bosons \& Fermions

This is necessary for indistinguishable particles.

$$
P\left(x_{2}, x_{1}\right)=P\left(x_{1}, x_{2}\right) \rightarrow\left|\psi\left(x_{2}, x_{1}\right)\right|^{2}=\left|\psi\left(x_{1}, x_{2}\right)\right|^{2}
$$

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)
$$

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right) \mp \psi_{a}\left(x_{2}\right) \psi_{b}\left(x_{1}\right)
$$

$$
\psi\left(x_{2}, x_{1}\right)=\square \psi\left(x_{1}, x_{2}\right)
$$

$$
\psi\left(x_{1}, x_{1}\right)=+\psi\left(x_{1}, x_{1}\right)
$$

$$
f_{B E}(E)=\frac{1}{e^{\frac{E-\mu}{k T}}-\square 1}
$$

The Bose-Einstein distribution! Particles are called Bosons. Examples: Photons, Phonons

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right) \square \psi_{a}\left(x_{2}\right) \psi_{b}\left(x_{1}\right)
$$

$$
\psi\left(x_{2}, x_{1}\right)=\square \psi\left(x_{1}, x_{2}\right)
$$

$$
\psi\left(x_{1}, x_{1}\right)=-\psi\left(x_{1}, x_{1}\right) \rightarrow \psi\left(x_{1}, x_{1}\right)=0
$$

The Pauli exclusion principle!

$$
f_{F D}(E)=\frac{1}{1 母 e^{\frac{E-E_{F}}{k T}}}
$$

The Fermi-Dirac distribution! Particles are called Fermions. Examples: Electrons, Protons

- Note: Why not $\quad \psi\left(x_{2}, x_{1}\right)=e^{i \phi} \psi\left(x_{1}, x_{2}\right)$? Majorana particles \rightarrow later...

Debdeep Jena (djena@cornell.edu)

Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann

- The Fermi-Dirac and Bose-Einstein distributions asymptotically approach the classical limit at high energies
- Fermi-Dirac occupation function for any energy orbital is less than 1.

Some properties of the Fermi-Dirac Function

Fig. 4.6 Illustration of the temperature dependence of the Fermi-Dirac distribution, and its derivative.

- The Fermi-function at $\mathrm{T}=0 \mathrm{~K}$ is a step function that is 1 below the Fermi energy, and 0 above.
- The derivative of the Fermi function is of central importance in transport phenomena. Because of the exclusion principle, it defines the energy states that can participate in transport.

The Fermi-Difference Function

Fig. 4.7 Illustration of the temperature dependence of the Fermi-difference distribution. The difference is a window between $\mu_{2}-\mu_{1}$ that becomes increasingly rectangular as the temperature drops.

$$
\int_{0}^{\infty} d E\left[f_{0}\left(\mu_{1}\right)-f_{0}\left(\mu_{2}\right)\right] \approx\left(\mu_{1}-\mu_{2}\right)
$$

$$
f(u)-f(v)=[\underbrace{f(u)+f(v)-2 f(u) f(v)}_{\geq 0}] \times \tanh \left(\frac{v-u}{2}\right)
$$

- Two electrodes with different Fermi levels cause a difference in the Fermi functions for electrons that are in equilibrium with them.
- The Fermi difference function is rectangular, and defines the effect of voltages on transport properties. Debdeep Jena (djena@cornell.edu)

Fermi-Dirac Integrals

$$
\begin{aligned}
& F_{j}(\eta)=\frac{1}{\Gamma(j+1)} \int_{0}^{\infty} d u \frac{u^{j}}{1+e^{u-\eta}} . \\
& \int_{0}^{\infty}{ }_{d E f_{0}(E-\mu)=\int_{0}^{\infty} \frac{d E}{1+e^{\beta(E-\mu)}}=\frac{1}{\beta} \ln \left(1+e^{\beta \mu}\right),}
\end{aligned}
$$

$$
F_{j}(\eta)=\frac{1}{\Gamma(j+1)} \int_{0}^{\infty} d u \frac{u^{j}}{1+e^{u-\eta}}, F_{j}(\eta) \underset{\eta \ll-1}{\approx} e^{\eta}, F_{j}(\eta) \underset{\eta \gg 1}{\approx} \frac{\eta^{j+1}}{\Gamma(j+2)}
$$

- Fermi-Dirac integrals are of central importance in the physics of semiconductors and nanostructures

Quantum Equipartition of Energy

$$
\langle E\rangle_{1 d}=\frac{\int_{-\infty}^{+\infty} d v_{x} \cdot\left(\frac{1}{2} m v_{x}^{2}\right) \cdot \frac{1}{\frac{1}{\frac{1}{2} m v_{x}^{2}-\mu}}}{\int_{-\infty}^{+\infty} d v_{x} \cdot \frac{e^{\frac{1}{k_{B} T}}+1}{e^{\frac{1}{\frac{1}{2} m v_{x}^{2}-\mu}}}}=\frac{1}{2} k_{B} T \cdot \frac{F_{1 / 2}(\eta)}{F_{-1 / 2}(\eta)} .
$$

- The equipartition of energy relation is modified from the Maxwell-Boltzmann form

Quantum version of the Equipartition of Energy

$$
\begin{align*}
& \langle E\rangle_{1 d}=\frac{\int_{-\infty}^{+\infty} d v_{x} \cdot\left(\frac{1}{2} m v_{x}^{2}\right) \cdot e^{-\frac{\frac{1}{2} m v_{x}^{2}}{k_{B} T}}}{\int_{-\infty}^{+\infty} d v_{x} \cdot e^{-\frac{1}{2} m v_{x}^{2}} k_{B} T}=\frac{1}{2} k_{B} T . \\
& \langle E\rangle_{3 d}=\frac{\int_{-\infty}^{+\infty} d v_{x} \int_{-\infty}^{+\infty} d v_{y} \int_{-\infty}^{+\infty} d v_{z} \cdot\left(\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)\right) \cdot e^{-\frac{\frac{1}{2} m\left(v_{z}^{2}+v_{y}^{2}+v_{z}^{2}\right)}{k_{B} T}}}{\int_{-\infty}^{+\infty} d v_{x} \int_{-\infty}^{+\infty} d v_{y} \int_{-\infty}^{+\infty} d v_{z} \cdot e^{-\frac{\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)}{k_{B} T}}} \tag{4.22}\\
& \langle E\rangle_{3 d}=\frac{1}{2} k_{B} T+\frac{1}{2} k_{B} T+\frac{1}{2} k_{B} T=\frac{3}{2} k_{B} T . \tag{4.23}\\
& \left.\begin{array}{rr}
\langle E\rangle_{1 d}=\frac{\int_{-\infty}^{+\infty} d v_{x} \cdot\left(\frac{1}{2} m v_{x}^{2}\right) \cdot \frac{1}{\frac{1}{\frac{1}{2} m v_{x}^{2}-\mu}}}{\int_{-\infty}^{+\infty} d v_{x} \cdot \frac{1}{k_{B} T}}+1 \\
e^{\frac{1}{2} m v_{x}^{2}-\mu} k_{B} T \\
k_{B}
\end{array}\right]=\frac{1}{2} k_{B} T \cdot \frac{F_{1 / 2}(\eta)}{F_{-1 / 2}(\eta)} \quad\langle E\rangle_{3 d}=\frac{3}{2} k_{B} T \cdot \frac{F_{3 / 2}(\eta)}{F_{1 / 2}(\eta)}
\end{align*}
$$

- Fermi-Dirac integrals are of central importance in the physics of semiconductors and nanostructures

Electrons in the quantum world

$$
\left[\begin{array}{l}
-\frac{\hbar^{2}}{2 m_{e}} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x) \\
f_{F D}(E)=\frac{1}{1+e^{\frac{E-E_{F}}{k T}}}
\end{array}\right.
$$

- solve the Schrodinger equation exactly to obtain the wavefunction $\psi(x)^{1}$,
- the allowed momentum p_{x},
- the allowed energy eigenvalues E,
- the quantum current J,
- the Density of States $g(E)$, and
- the total energy \mathcal{U}, average energy u, and energy density u_{v} of many electrons.
- We will now apply quantum statistics (e.g. the Fermi-Dirac distribution) and quantum mechanics (the Schrodinger equation) to electrons and investigate how properties alien to classical mechanics emerge from these monumental changes.

Free electron in 1 dimension

$$
V(x)=0
$$

Free Electron

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m_{e}} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x) \\
& \psi(x)=A e^{i k x}+B e^{-i k x}
\end{aligned}
$$

$$
k=\sqrt{\frac{2 m_{e} E}{\hbar^{2}}}=\frac{2 \pi}{\lambda}
$$

$$
E(k)=\frac{\hbar^{2} k^{2}}{2 m_{e}} \text {. }
$$

$$
J(+k)=\frac{q}{2 m_{e}}\left(\psi^{\star} \hat{p}_{x} \psi-\psi \hat{p}_{x} \psi^{\star}\right) \Longrightarrow J(+k)=q|A|^{2} \frac{\hbar k}{m_{e}} .
$$

$$
\mathbf{v}_{g}(\mathbf{k})=\nabla_{\mathbf{p}} E(\mathbf{p})=\frac{1}{\hbar} \nabla_{\mathbf{k}} E(\mathbf{k})
$$

- The free electron has a parabolic energy distribution. All energies and all momenta are allowed.
- The quantum mechanical current has direct analogy to the classical current.
- We have defined a group velocity for a state as the slope of the energy/momentum curve.

Particle on a Ring: Quantum Confinement

$$
\psi(x+L)=\psi(x) \rightarrow e^{i k(x+L)}=e^{i k x} \rightarrow e^{i k L}=1 \rightarrow k L=2 n \pi
$$

$$
\psi_{n}(x)=A e^{i k_{n} x}
$$

Normalization

$$
k_{n}=\frac{2 \pi}{L} n, n=0, \pm 1, \pm 2, \ldots
$$

$$
\psi_{n}(x)=\frac{1}{\sqrt{L}} e^{i k_{n} x}
$$

$$
p_{n}=\hbar k_{n}=\frac{h}{2 \pi} \frac{2 \pi}{L} n=n \frac{h}{L}
$$

Particle on a ring

$$
\begin{aligned}
& \mathbf{L}_{n}=\mathbf{r} \times \mathbf{p}=\hbar k_{n} \times \frac{L}{2 \pi} \hat{\mathbf{z}}=\frac{2 \pi \hbar}{L} n \times \frac{L}{2 \pi} \hat{\mathbf{z}} \Longrightarrow L_{n}=n \hbar \\
& E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m_{e}}=n^{2} \frac{(2 \pi \hbar)^{2}}{2 m_{e} L^{2}}=n^{2} \frac{h^{2}}{2 m_{e} L^{2}}
\end{aligned}
$$

- Particle on a ring has a parabolic energy distribution.
- Discrete energies and momenta are allowed.
- The quantum mechanical current has direct analogy to the classical current.

Quantum Confinement \& Density of States

Particle on a ring

$$
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m_{e}}=n^{2} \frac{(2 \pi \hbar)^{2}}{2 m_{e} L^{2}}=n^{2} \frac{h^{2}}{2 m_{e} L^{2}}
$$

- The smaller the circle, the larger the allowed energies ($L \downarrow \Longrightarrow$ $E_{n} \uparrow$), and
- The smaller the mass, the larger the allowed energies ($m \downarrow \Longrightarrow$ $E_{n} \uparrow$).

$$
g_{s} g_{v} \frac{2 d k}{\frac{2 \pi}{L}}=G_{1 d}(E) d E \Longrightarrow g_{1 d}(E)=\frac{G_{1 d}}{L}=\frac{2 g_{s} g_{v}}{2 \pi \frac{d E}{d k}} \Longrightarrow
$$

$$
g_{1 d}(E)=\frac{g_{s} g_{v}}{2 \pi}\left(\frac{2 m_{e}}{\hbar^{2}}\right)^{\frac{1}{2}} \frac{1}{\sqrt{E}}
$$

The Density of States is the number of quantum states allowed between energies E and $E+d E$

- Quantum confinement can be used to engineer the energy levels of nanostructures.
- The Density of states can be expressed in momentum or in energy space.

Fermi Energy, Fermi velocity \& their quantum origin

$$
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m_{e}}=n^{2} \frac{(2 \pi \hbar)^{2}}{2 m_{e} L^{2}}=n^{2} \frac{h^{2}}{2 m_{e} L^{2}}
$$

The Fermi energy is a
remarkable consequence of the exclusion principle!

$$
\frac{g_{s} g_{v} \times 2 k_{F}}{\frac{2 \pi}{L}}=N \Longrightarrow k_{F}=\frac{\pi}{2} n \Longrightarrow E_{F}=\frac{\hbar^{2} \pi^{2} n^{2}}{8 m_{e}}
$$

$$
\begin{array}{ll}
\hline n \sim 10^{8} / \mathrm{cm} & E_{F} \sim 10 \mathrm{eV} \quad T \sim 10^{5} \mathrm{~K} \\
\lambda_{F} \sim 0.4 \mathrm{~nm} & v_{F}=\frac{\hbar k_{F}}{m_{e}}=\frac{h n}{4 m_{e}} \sim 5 \times 10^{7} \mathrm{~cm} / \mathrm{s} \\
\hline
\end{array}
$$

Typical values for metals

$$
\begin{array}{r}
\mathcal{U}=\int_{0}^{E_{F}} d E \cdot E \cdot G_{1 d}(E) \Longrightarrow u_{1 d}=\frac{\mathcal{U}}{N}=\frac{\int_{0}^{E_{F}} d E \cdot E \cdot G_{1 d}(E)}{\int_{0}^{E_{F}} d E \cdot G_{1 d}(E)}=\frac{1}{3} E_{F} \\
u_{v}(1 d)=\frac{1}{3} n E_{F}
\end{array}
$$

- Because of the Pauli exclusion principle and the Fermi-Dirac distribution, the presence of many electrons in a metal gain significant energy and velocity even at $\mathrm{T}=0 \mathrm{~K}$. This is a most remarkable consequence of quantum theory!

Temperature-dependence of Carrier Density

The dimensionless variables $u=\left(\frac{\hbar^{2} k^{2}}{2 m_{e}}\right) / k_{b} T$ and $\eta=E_{F}^{1 d}(T) / k_{b} T$ convert the carrier density at any temperature to

$$
\begin{equation*}
n_{1 d}(T)=\underbrace{g_{s} g_{v}\left(\frac{2 \pi m_{e} k_{b} T}{h^{2}}\right)^{\frac{1}{2}}}_{N_{c}^{1 d}} F_{-\frac{1}{2}}\left(\frac{E_{F}}{k_{b} T}\right)=N_{c}^{1 d} F_{-\frac{1}{2}}(\eta), \tag{5.23}
\end{equation*}
$$

From Ballistic conductance to Ohm's Law

For $L \gg \lambda_{m f p}$ and 3D: $M \sim k_{F}^{2} A$

$$
R=\frac{h}{2 q^{2}} \cdot \frac{1}{M} \cdot\left(1+\frac{L}{\lambda_{m f p}}\right)
$$

$\rightarrow R \sim \frac{h}{2 q^{2}} \cdot \frac{1}{k_{F}^{2} A} \cdot \frac{L}{\lambda_{m f p}}$ (Ohm's Law)
For $L \ll \lambda_{m f p}$ and 3D: $M \sim k_{F}^{2} A$
$\rightarrow R \sim \frac{h}{2 q^{2}} \cdot \frac{1}{k_{F}^{2} A}$ (Sharvin resistance)

"Ballistic" Transport \& Quantized Conductance

Experiments:

FIG. 44 Point contact conductance as a function of gate voltage at 0.6 K , demonstrating the conductance quantization in units of $2 e^{2} / h$. The data are obtained from the two-terminal resistance after subtraction of a background resistance. The constriction width increases with increasing voltage on the gate (see inset). Taken from B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988).

FIG. 1. (a) Schematic layer structure of the heterostructure. (b) improvement of plateau quantization with the application of a small magnetic field. Linear conductance $G\left(V_{g}\right)$ is plotted at magnetic field $B=0.1 \mathrm{~T}, 0.2 \mathrm{~T}$, 0.5 T , and 1 T . Traces are shifted vertically for clarity. Inset: micrograph of the QPC. The gap between the two split gates is 80 nm at its narrowest point. All experimental data shown in this letter were measured at 300 mK .

Appl. Phys. Lett. 86, 073108 (2005)
'Ohmic' Contacts as Fermi Fillers

"Ballistic" Transport \& Quantized Conductance

Many electrons:

$\mathbf{F}=\hbar d \mathbf{k} / d t$
'Current Density' in 'd' dimensions:

$$
\mathbf{J}_{\mathbf{d}}=q \times \frac{g_{s} g_{v}}{L^{d}} \sum_{k} \mathbf{v}_{\mathbf{g}}(k) f(k), \text { where }
$$

$$
g_{s}=\text { spin degeneracy }
$$

$$
g_{v}=\text { valley degeneracy }
$$

$$
\mathbf{v}_{\mathbf{g}}=\frac{1}{\hbar} \nabla \mathcal{E}(\mathbf{k}) \text { is the group velocity }
$$

$f(k)$ is the Fermi-Dirac function
Example: 1D current flow at $T=0 \mathrm{~K}$
$J_{1}=I=I^{\rightarrow}-I^{\leftarrow}$
$I^{\rightarrow}=\frac{2 q}{h} E_{F 1}$
$I \leftarrow=\frac{2 q}{h} E_{F 2}$
$\rightarrow I=I^{\rightarrow-}-I^{\leftarrow}=\frac{2 q^{2}}{h} V_{D}$

Quantum of conductance

Ballistic Transport in 1 Dimension

Fig. 5.5 Quantum picture of current flow in the 1D k-space due to a difference in the occupation functions of right-going and left-going eigenstates. The left contact is called the source, and the right contact the drain.

$$
\begin{equation*}
n_{1 d}(T)=\frac{g_{s} g_{v}}{L} \sum_{k} f(k)=\frac{g_{s} g_{v}}{L} \int_{-\infty}^{+\infty} \frac{d k}{\frac{2 \pi}{L}} \frac{1}{1+e^{\frac{\hbar^{2} k^{2}}{2 m_{e}}-E_{F}^{1 d}(T)} k_{b} T} \tag{5.22}
\end{equation*}
$$

The dimensionless variables $u=\left(\frac{\hbar^{2} k^{2}}{2 m_{e}}\right) / k_{b} T$ and $\eta=E_{F}^{1 d}(T) / k_{b} T$ convert the carrier density at any temperature to

$$
\begin{equation*}
n_{1 d}(T)=\underbrace{g_{s} g_{v}\left(\frac{2 \pi m_{e} k_{b} T}{h^{2}}\right)^{\frac{1}{2}}}_{N_{c}^{1 d}} F_{-\frac{1}{2}}\left(\frac{E_{F}}{k_{b} T}\right)=N_{c}^{1 d} F_{-\frac{1}{2}}(\eta), \tag{5.23}
\end{equation*}
$$

$$
\begin{aligned}
& \eta_{s}=\frac{E_{F S}}{k_{b} T}, \eta_{d}=\frac{E_{F d}}{k_{b} T}, \text { and } v_{d}=\frac{q V}{k_{b} T} \\
& E_{F s}-E_{F d}=q V \\
& \eta_{s}-\eta_{d}=v_{d}
\end{aligned}
$$

$J^{1 d}=J_{R}^{1 d}-J_{L}^{1 d}=\frac{q g_{s} g_{v}}{2 \pi \hbar}\left(k_{B} T\right) \ln \left(\frac{1+e^{\eta_{s}}}{1+e^{\eta_{d}}}\right)$.

Ballistic Transport in 1 Dimension

Fig. 5.5 Quantum picture of current flow in the 1D k-space due to a difference in the occupation functions of right-going and left-going eigenstates. The left contact is called the source, and the right contact the drain.

Fig. 5.8 The left plot shows the calcuated normalized Fermi level $\eta_{F}=E_{F} / k_{B} T$ at $V=0$, and the split normalized Fermi levels η_{*} and η_{d} for nonzero normalized voltages $v_{d}=q V / k_{B} T$ for two values of 1 D electron density at 300 K . The red curves are for $n_{1 d}=5 \times 10^{7} / \mathrm{cm}$, and the blue for $n_{1 d}=10^{6} / \mathrm{cm}$. The right plot shows the resulting quantum mechanical current flowing in response to the voltage for six values of 1D electron densities ranging from $0.1-5.0 \times 10^{7} / \mathrm{cm}$. For example, at a 1D electron density of $n_{1 d}=10^{7} / \mathrm{cm}$, the maximum (or saturation) current is $\sim 70 \mu \mathrm{~A}$. The middle $E(\mathrm{k})$ figures show the changes in the corresponding occupied electron states for $n_{1 d}=5 \times 10^{7} / \mathrm{cm}$ for three different voltages.

$$
\eta_{s}-\eta_{d}=v_{d}, \text { and } n_{1 d}=\frac{1}{2} N_{c}^{1 d}(T)\left[F_{-\frac{1}{2}}\left(\eta_{s}\right)+F_{-\frac{1}{2}}\left(\eta_{d}\right)\right]
$$

$$
J^{1 d}=J_{R}^{1 d}-J_{L}^{1 d}=\frac{q g_{s} g_{v}}{2 \pi \hbar}\left(k_{B} T\right) \ln \left(\frac{1+e^{\eta_{s}}}{1+e^{\eta_{d}}}\right)
$$

Generalizing Ballistic Transport in d-Dimensions

$$
\eta_{s}-\eta_{d}=v_{d}, \text { and } n_{1 d}=\frac{1}{2} N_{c}^{1 d}(T)\left[F_{-\frac{1}{2}}\left(\eta_{s}\right)+F_{-\frac{1}{2}}\left(\eta_{d}\right)\right]
$$

$$
J^{1 d}=J_{R}^{1 d}-J_{L}^{1 d}=\frac{q g_{s} g_{v}}{2 \pi \hbar}\left(k_{B} T\right) \ln \left(\frac{1+e^{\eta_{s}}}{1+e^{\eta_{d}}}\right)
$$

$$
J_{1 d}=\frac{q^{2}}{h} \cdot N_{c}^{0 d} \cdot \frac{k_{b} T}{q} \cdot\left[F_{0}\left(\frac{E_{F s}-E_{c}}{k_{b} T}\right)-F_{0}\left(\frac{E_{F s}-E_{c}-q V}{k_{b} T}\right)\right]
$$

$$
\text { where } N_{c}^{0 d}=g_{s} g_{v}=g_{s} g_{v}\left(\frac{2 \pi m_{e} k_{k} T}{h^{2}}\right)^{0}
$$

$$
J_{d}=\frac{q^{2}}{h} \cdot N_{c}^{d-1} \cdot \frac{k_{b} T}{q} \cdot\left[F_{\frac{d-1}{2}}\left(\frac{E_{F s}-E_{c}}{k_{b} T}\right)-F_{\frac{d-1}{2}}\left(\frac{E_{F s}-E_{c}-q V}{k_{b} T}\right)\right] .
$$

$$
n_{d}=N_{c}^{d} F_{\frac{d-2}{2}}(\eta) \text {, where } N_{c}^{d}=g_{s} g_{v}\left(\frac{2 \pi m_{e} k_{b} T}{h^{2}}\right)^{\frac{d}{2}}
$$

Fig. 5.5 The free electron band edge DOS N_{c}^{d} for $d=1,2,3$ in units of $1 / \mathrm{cm}$ for $1 \mathrm{~d}, 1 / \mathrm{cm}^{2}$ for 2 d , and $1 / \mathrm{cm}^{3}$ for 3 d .

Electrons in 2D

$$
\psi(\mathbf{r})=\frac{1}{\sqrt{L^{2}}} e^{i\left(k_{x} x+k_{y} y\right)}=\frac{1}{\sqrt{A}} e^{i \mathbf{k} \cdot \mathbf{r}}
$$

Fig. 5.5 Periodic boundary conditions in 2D leads to a Torus.

$$
\begin{aligned}
& \mathbf{k}=\left(k_{n_{x}}, k_{n_{y}}\right)=\frac{2 \pi}{L}\left(n_{x}, n_{y}\right) \Longrightarrow \mathbf{p}=\hbar \mathbf{k},|\mathbf{p}|=\frac{h}{L} \sqrt{n_{x}^{2}+n_{y}^{2}} \\
& E\left(k_{x}, k_{y}\right)=\frac{\hbar^{2}}{2 m_{e}}\left(k_{n_{x}}^{2}+k_{n_{y}}^{2}\right)=E\left(n_{x}, n_{y}\right)=\left(n_{x}^{2}+n_{y}^{2}\right) \frac{h^{2}}{2 m_{e} L^{2}}=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m_{e}} \\
& g_{s} g_{v} \frac{2 \pi k d k}{\left(\frac{2 \pi}{L}\right)^{2}}=G_{2 d}(E) d E \Longrightarrow \frac{G_{2 d}(E)}{L^{2}}=g_{2 d}(E)=\frac{g_{s} g_{v} m_{e}}{2 \pi \hbar^{2}} \Theta(E) \\
& g_{s} g_{v} \frac{\pi k_{F}^{2}}{\left(\frac{2 \pi}{L}\right)^{2}}=N \Longrightarrow k_{F}=\sqrt{\frac{4 \pi n}{g_{s} g_{v}}} \quad \begin{array}{ll}
\text { If } g_{s}=2 \text { and } g_{v}=1 \\
k_{F}=\sqrt{2 \pi n}
\end{array} \\
& n \sim 10^{12} / \mathrm{cm}^{2} \quad k_{F} \sim 2.5 \times 10^{8} / \mathrm{m} \\
& \lambda_{F}=\frac{2 \pi}{k_{F}} \sim 25 \mathrm{~nm} \\
& n \sim 10^{16} / \mathrm{cm}^{2} \\
& \lambda_{F} \sim 0.25 \mathrm{~nm}
\end{aligned}
$$

Electrons in 2D

Fig. 5.5 Periodic boundary conditions
in 2D leads to a Torus.

$$
n=\int_{0}^{\infty} d E \cdot g_{2 d}(E) \cdot f(E)=\frac{g_{s} g_{v} m_{e} k_{B} T}{2 \pi \hbar^{2}} \ln \left(1+e^{\frac{E_{F}}{k_{B} T}}\right) \Longrightarrow E_{F}=k_{B} T \ln \left(e^{\frac{n}{n_{q}}}-1\right)
$$

$$
\mathcal{U}=\int_{0}^{\infty} d E \cdot E \cdot G_{2 d}(E) \cdot f(E) \Longrightarrow u_{2 d}=\frac{U}{N}=\frac{\int_{0}^{\infty} d E \cdot E \cdot G_{2 d}(E) \cdot f(E)}{\int_{0}^{\infty} d E \cdot G_{2 d}(E) \cdot f(E)}=\frac{1}{2} E_{F}
$$

$$
u_{v}(2 d)=\frac{1}{2} n E_{F}
$$

$$
\mathbf{J}(\mathbf{k})=\frac{q}{2 m_{e}}\left(\psi^{\star} \hat{\mathbf{p}} \psi-\psi \hat{\mathbf{p}} \psi^{*}\right)=q \cdot \frac{1}{A} \cdot \frac{\hbar \mathbf{k}}{m_{e}}=q\left(\frac{1}{A}\right) \mathbf{v}_{g}(\mathbf{k})
$$

Electrons in 2D

Fig. 5-9 Periodic boundary conditions in 2D leads to a Torus

Fig. 5.13 Group velocity of 2D electrons in the \mathbf{k}-space, and its relation to transport in real space.

Electrons in 2D

Fig. 5.13 Group velocity of 2D electrons in the \mathbf{k}-space, and its relation to transport in real space.

Electrons in 3D

$\psi(\mathbf{r})=\frac{1}{\sqrt{L^{3}}} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)}=\frac{1}{\sqrt{V}} e^{i \mathbf{k} \cdot \mathbf{r}}$
$\mathbf{k}=\left(k_{n_{x}}, k_{n_{y}}, k_{n_{z}}\right)=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right) \Longrightarrow \mathbf{p}=\hbar \mathbf{k},|\mathbf{p}|=\frac{h}{L} \sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}}$
$E\left(k_{x}, k_{y}, k_{z}\right)=\frac{\hbar^{2}}{2 m_{e}}\left(k_{n_{x}}^{2}+k_{n_{y}}^{2}+k_{n_{z}}^{2}\right)=\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \frac{h^{2}}{2 m_{e} L^{2}}=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m_{e}}$

$$
g_{s} g_{v} \frac{4 \pi k^{2} d k}{\left(\frac{2 \pi}{L}\right)^{3}}=G_{3 d}(E) d E \Longrightarrow \frac{G_{3 d}(E)}{L^{3}}=g_{3 d}(E)=\frac{g_{s} g_{v}}{4 \pi^{2}}\left(\frac{2 m_{e}}{\hbar^{2}}\right)^{\frac{3}{2}} \sqrt{E}
$$

$$
g_{s} g_{v} \frac{\frac{4}{3} \pi k_{F}^{3}}{\left(\frac{2 \pi}{L}\right)^{3}}=N \Longrightarrow k_{F}=\left(\frac{6 \pi^{2} n}{g_{s} g_{v}}\right)^{\frac{1}{3}} . \quad \begin{aligned}
& \text { If } g_{s}=2 \text { and } g_{v}=1 \\
& k_{F}=\left(3 \pi^{2} n\right)^{\frac{1}{3}} \\
& \text { 3D Fermi Wavevector }
\end{aligned}
$$

$n \sim 10^{24} / \mathrm{cm}^{3} \quad k_{F} \sim 3 \times 10^{10} / \mathrm{m} \quad \lambda_{F} \sim 0.2 \mathrm{~nm}$

Electrons in 3D

$$
\begin{aligned}
& n=\int_{0}^{\infty} d E \cdot g_{3 d}(E) \cdot f(E)=\frac{g_{s} g_{v}}{4 \pi^{2}}\left(\frac{2 m_{e}}{\hbar^{2}}\right)^{\frac{3}{2}} \int_{0}^{\infty} d E \cdot \sqrt{E} \cdot f(E)=n_{3 d} F_{\frac{1}{2}}(\eta) \\
& u=\int_{0}^{\infty} d E \cdot E \cdot G_{3 d}(E) \cdot f(E) \Longrightarrow u_{3 d}=\frac{U}{N}=\frac{\int_{0}^{\infty} d E \cdot E \cdot G_{3 d}(E) \cdot f(E)}{\int_{0}^{\infty} d E \cdot G_{3 d}(E) \cdot f(E)}=\frac{3}{5} E_{F} \\
& u_{v}(3 d)=\frac{3}{5} n E_{F}
\end{aligned}
$$

Average energy density of a 3D Fermi Gas

Electrons in 3D

Fig. 5.15 An electron in a 3D box of side $L_{\text {can }}$ have wavevectors $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)=$ $\frac{2 \pi}{L}\left(n_{z}, n_{y}, n_{z}\right)$ which form a discrete grid in the 3D k-space. When N electrons are filled in the box, the k-states are filled inside the Fermi sphere such that the states on the Fermi sphere surface have energy E_{F}. The density of states for free electrons in 3 dimensions showing the \sqrt{E} dependence, the Fermi level, and the average energy of the electron distribution.

Ballistic Transport in 1, 2, and 3 Dimensions

$$
m_{c}^{\star}=0.2 m_{e}, g_{s}=2, g_{v}=1
$$

Semiconductor Physics Summary

	athenem	1 tementer	1 temente	304nat	AREnatm
4 (enterive Hendinetian	5	5.8		$5,-8 \mid 4+45$	
$\frac{\text { Cindathellied Iax }}{\text { (i) }}$	aedial	W-5it \%			$\frac{14}{25 n} 1 \text { 空ifur-4.14 }$
Cumilatam Banality inemallesen	M		+esilingal	molighay	sel ingal)
Baten Rasers\%	=		$x-4 y+1$		Meryaly
Sunallane livedfin anter KimF	-				
Dilistibutus cueserntist live "heyl	$=$				
Nidertintaran	E.				
nher Reefies (in)	is-dit - in)				
Natran Timblite inetertow	-				
Hebonetry	-	$\mathrm{x}^{-1} a^{\prime} \mathbf{y}^{5}$		$\mathrm{Na}_{4} \mathrm{~L}^{[4+5]}$	$\mathrm{Ser}_{\text {y }}$ (ly)
uner liev V	$=$				
	-				

Physics of Semiconductor Nanostructures Summany

	stenes	1tenter	1tanem	300－2－	103nat
（reeteren tindirevtan	5	5×8	2．6at +6	5．$+56+450$	4，Exath
comantinalixe	A0，	4次年亦			
	H0	sel $\log _{5} \mathrm{~m}_{1} 1$	asel ${ }^{\text {（mat }}$ ）	saremat	sel magat，
	－		大⿹丁口欠4 4		N（Tycisf
tentionilmetin nerviry	\sim				
	－				
neimertinuter	＊	5－${ }^{4}$	E－$-8 x+0$	2－Eal＋－＋6	2－Eat 0^{2}
$\underset{\sin }{\operatorname{tin}}$	ALAF－6a）				
Niva findilder 	－	soblogaly	asingal	soblogat	sedimalit
H＝10m\％	＊	x－ratic）	NPFMC		serymitiol
Sentloniludin －	－				$n-1 \times t r y y^{\prime}$
Blicistines Thewhy	－				
	边 - －		5a		
Butue Dence tity Oquily Ater Hipe	－	$\mathrm{NeV}^{\prime 2} 1^{14}+3$	¢04y）		$\mathrm{NCV}_{4 \times 14}$
tt＋t then mit quady Anec liper	＊	Nerat ${ }^{\text {（2）}}$		Ne\％．4 ter	
Dinothonsithe for inuily	－				
	－		A 捒（\％）		
	－				
Nopertmize	＊	3 a			
	＊		A．		

Table 1：Quantum Electronic，Photonk，and Statistical Properties of Conduction and Valence Band Electrons in Semicondactor Nanostructures． ＊Er is the band edge，and m＂the effective mass of the conduction band．E_{F} is the band edge，and w＂the effective mass of the valence band．
＊For low dimensions，E_{c} and $E_{v r}$ and the bandgap $E_{I}=E_{c}-E_{q}$ inclode the quantum continement energies if present．
e his Planck＇s constant，$t=\frac{b}{2}, 4$ ，is the Boltemann constant，and q the electron charge．
＊δ ，is the spin degeneracy，and δ ．the valley degeneracy．
e $F_{f}(\eta)=\frac{1}{\mid(\mid+1)} \int_{0}^{\infty} d u \frac{v^{\prime}}{\mid+v^{2}}$ is the Fermi－Dirac integral of order j ，and $T(\ldots)$ is the Gamma function．
＊Ef is the Fermi level at equilibriam．Ef，is the sounce quasi－Fermi level and E_{p} the drain qaasi－Fermi level．
－Similarly，F_{n} is the condaction band quasi－Fermi level and F_{p} is the valence band quasi－Fermi level．
＊lov is the photon energy of frequency $v_{\text {，and }} L_{2}, L_{5}, L_{4}$ are the dimensions of the semicondactor nanostructure．
＊A and B are the Einstein A and B coefficients，$\lambda_{0}=c / v$ the wavelength of the phofoen in vacuum，and n the refractive index of the sembiconductor．

－$E_{2}-E_{1}=h y=E_{g}+\frac{L_{1}^{2}}{2 n_{5}^{2}}$ is the energy of the photon emitied when the electron transitions froen $E_{2} \rightarrow E_{1}$ radiatively．
－The Einstein A and B coefficients ase related by $\frac{f}{8}=\operatorname{krg}^{2}{ }^{2} h$.
 with electric field amplitude Σ_{0} and wave impedance of．

Prelim 1 for ECE 4070 / MSE 6050

- Tuesday March $5^{\text {th }} 2019$
- Time: 7:30 - 9:00 pm
- In Phillips Hall 219 (Note: different from class location!)
- No restrictions on books/notes/calculators/computers etc.
- Bring pen/pencil - exam books will be provided.
- Questions: conceptual, no heavy number crunching will be needed.
- Previous year questions fairly representative of what to expect.
- Topics covered: Chapters 1-5 from the Notes.

Exams and Grades:

An assignment every 1.5 weeks. Total of 6-8 homework assignments per semester. Exams: 2 Evening Prelim Exams and 1 Final Exam. Here is the approximate breakup of scores that will go towards your final grade: 35\% Assignments
15% Prelim 1 [Tuesday March 5th, 2019]
20\% Prelim 2 [Thursday April 11th, 2019]
30\% Final [Wednesday May 15th, 2019]

Tight-Binding Bandstructure

Energy Bands of $\mathbf{S i}, \mathrm{Ge}$, and $\mathbf{G a A s}$ for Reference

ECE 4070/MSE 6050

Energy Bandstructures of the most common Semiconductors

Semiconductors: Quantum Energy Eigenvalues

- Calculated by the Empirical Pseudopotential Method
${ }^{2 \pi} \frac{2 \pi}{9}$,
$\times \frac{2 \pi}{9}$
$x \frac{2 \pi}{9}$
$k=\frac{2 \pi}{a}$

The Nearly Free Electron Model for Any FCC Lattice

Fig. 9.5 Nearly Free Electron Bandstructure for the FCC Lattice. Silicon, Ge, GaAs, Diamond, and many semiconductors have a FCC real-space lattice with 2-atom bases. The nearly free electron bandstructure shown here is representative of all semiconductors that share the same real-space lattice.

Electrons in a Crystal are not Exactly Free. . .

- The Periodic Potential for electrons in a crystal

Electrons in a Crystal are not Exactly Free...

- The Periodic Potential in a crystal causes standing waves for electrons.
- It splits the allowed energies into bands separated by gaps

Electrons in a Crystal are not Exactly Free...

Fig. 8.3 Bandgap opening in the energy spectrum of a free electron upon perturbation by a periodic potential.

- The Periodic Potential in a crystal causes standing waves for electrons.
- It splits the allowed energies into bands separated by gaps
- To explain the quantitative details, we must learn perturbation theory of quantum mechanics

Background: The expansion principle

We learn early on that any well-behaved ${ }^{1}$ function $f(x)$ can be expressed as a sum over a complete set of trigonometric functions (or complex exponentials) by the Fourier theorem $f(x)=\sum_{k} a_{k} e^{i k x}$. Note that any complete set of eigenfunctions $\left[\ldots, e^{i k x}, \ldots\right]$ works! To find the Fourier coefficients, we use the 'filtering' property of complex exponentials $a_{k_{\mathrm{n}}}=\int d x f(x) e^{-i k_{n} x}$. If we tweak the function $f(x) \rightarrow f(x)+\delta(x)=h(x)$, then $h(x)=\sum_{k} a_{k}^{\prime} e^{i k x}$ is still a valid expansion; the Fourier coefficients will be tweaked from $a_{k} \rightarrow a_{k}^{\prime}$. But note that the perturbed function can still be expanded in terms of the original complete set of eigenfunctions. This idea leads to the Expansion Principle in quantum mechanics.

Be sure to understand and appreciate this powerful statement!
In quantum mechanics, any quantum state 'vector' $|\Psi\rangle$ may be expanded as a linear superposition of the eigenvectors of any Hermitian operator $|\Psi\rangle=\sum_{n} a_{n}|n\rangle$. This is the Expansion Principle of quantum mechanics. For most problems, the Hermitian operator of choice is the Hamiltonian operator $\hat{H}=\left(\hat{\mathbf{p}}^{2} / 2 m_{0}\right)+V(\mathbf{r})$, but it need not be. We choose the Hamiltonian operator since there exist a few problems for which we know the set of exact eigenvectors $[\ldots,|n-1\rangle,|n\rangle,|n+1\rangle, \ldots]$. These sets of eigenvectors are complete. We also discussed in chapter 2 that this choice of eigenstates are stationary, which makes life easier.

Background: Operators = Matrices

$$
\begin{aligned}
& \hat{A}|=| \begin{array}{l}
\text { Fig. 6.3 Three ways of saying the same } \\
\text { thing. The operator } \hat{A} \text { rotates a state } \\
\text { vector }|\Psi\rangle \text { into }|\Phi\rangle . \text { The pictorial depic- } \\
\text { tion is equivalent to the algebraic opera- } \\
\text { tor equation, which in turn is equivalent } \\
\text { to the matrix form }[A][\Psi]=[\Phi] .
\end{array}
\end{aligned}
$$

$$
[A][\Psi]=[\Phi]
$$

Background: Operators = Matrices

Consider now an operator \hat{A} acts on the state vector $|\Psi\rangle$. It will try to 'rotate' the state $\quad \hat{A} \underbrace{|\uparrow\rangle}_{|\psi\rangle}=\underbrace{\left|\begin{array}{l}i\end{array}\right\rangle}_{|\phi\rangle}$
vector in the Hilbert state to a state $|\Phi\rangle$, which is written as
By the expansion principle, we can expand the new state $|\Phi\rangle=\sum_{m} b_{m}|m\rangle$. Then, if we

Matrix representation of any operator in a basis project this state on $|m\rangle$, we have

$$
\begin{equation*}
\langle m \mid \Phi\rangle=\langle m| \hat{A}|\Psi\rangle \rightarrow b_{m}=\sum_{n} a_{n}\langle m| \hat{A}|n\rangle=\sum_{n} A_{m n} a_{n} \tag{11.6}
\end{equation*}
$$

We see that the operator is equivalent to a matrix $\hat{A} \equiv A_{m n}$. The elements of the equivalent matrix are the terms $A_{m n}=\langle m| \hat{A}|n\rangle$, obtained by the operator acting on eigenstates on both sides. They are called matrix elements for this reason.

Background: Hamiltonian Operator as a Matrix

$$
\hat{H}|n\rangle=E_{n}|n\rangle
$$

For eigenstates

$$
\begin{aligned}
& |\Psi\rangle=\sum_{n} a_{n}|n\rangle \\
& \downarrow \text { not an eigenstate } \\
& \hat{H} \sum_{n} a_{n}|n\rangle=E \sum_{n} a_{n}|n\rangle \\
& \text { eigenvector }|n\rangle \text { unaffected. } \\
& H_{11} a_{1}+H_{12} a_{2}+H_{13} a_{3} \ldots=E a_{1} \\
& \sum_{n}\langle m| \hat{H}|n\rangle a_{n}=E a_{m} \\
& H_{21} a_{1}+H_{22} a_{2}+H_{23} a_{3} \ldots=E a_{2} \\
& H_{31} a_{1}+H_{32} a_{2}+H_{33} a_{3} \ldots=E a_{3} \\
& =\quad \vdots
\end{aligned}
$$

The most important operator is the Hamiltonian operator, which 'extracts' the energy of the state it is acting on. If the state happens to be an eigenstate, the Hamiltonian operator extracts its energy eigenvalue: $\hat{H}|n\rangle=E_{n}|n\rangle$. Visualize $\hat{H}|n\rangle$ as a new vector whose 'direction' is the same as the eigenvector $|n\rangle$, but the length determined by the eigenvalue E_{n}. So the action of the Hamiltonian operator leaves the 'direction' of the

$$
\left[\begin{array}{cccc}
H_{11} & H_{12} & H_{13} & \ldots \\
H_{21} & H_{22} & H_{23} & \ldots \\
H_{31} & H_{32} & H_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots
\end{array}\right]=E\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots
\end{array}\right]
$$

Matrix form of Schrodinger eqn.

The strangest property of matrices is that they do not necessarily commute. Which is to say that in general for square matrices, $A B \neq B A$. As a mathematical object, therefore they are quite distinct from real or complex numbers. Matrices thus form the natural objects for non-commutative algebra. Therefore they are central to the tenets of quantum mechanics, which is built upon the non-commutativity of operators.

Background: Spectral decomposition of H

$\left[\begin{array}{ccccc}H_{11} & H_{12} & H_{13} & \ldots & H_{1 N} \\ H_{21} & H_{22} & H_{23} & \ldots & H_{2 N} \\ H_{31} & H_{32} & H_{33} & \ldots & H_{3 N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ H_{N 1} & H_{N 2} & H_{N 3} & \ldots & H_{N N}\end{array}\right]=U\left[\begin{array}{ccccc}E_{1} & 0 & 0 & \ldots & 0 \\ 0 & E_{2} & 0 & \ldots & 0 \\ 0 & 0 & E_{3} & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & E_{N}\end{array}\right] U^{-1}$

[^0]Spectral decomposition of matrix A

Property of Traces of matrices
$\operatorname{Tr}[A B]=\operatorname{Tr}[B A]$
$\operatorname{Tr}\left[U^{-1} U D\right]=\operatorname{Tr}[D]=\sum_{n} E_{n}$
Trace of the Hamiltonian matrix $=$ Sum of the eigenvalues

Background: Spectral decomposition enables.

$A=U D U^{-1} \xrightarrow{A}=U D^{N} U^{-1}$
$A^{N} A^{2}=U D\left(U^{-1} U\right) D U^{-1}=U D^{2} U^{-1}=U\left[\begin{array}{ccc}\lambda_{1}^{2} & 0 & \cdots \\ 0 & \lambda_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right] U^{-1}$.
$e^{A}=1+A+\frac{1}{2!} A^{2}+\ldots=U e^{D} U^{-1}=U\left[\begin{array}{cccc}e^{\lambda_{1}} & 0 & 0 & \cdots \\ 0 & e^{\lambda_{2}} & 0 & \cdots \\ 0 & 0 & e^{\lambda_{3}} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right] U^{-1}$
Functions of matrices
$e^{A} e^{B}=e^{\left(B+[A, B]+\frac{1}{2!}[A,[A, B]]+\cdots\right)} e^{A} \neq e^{B} e^{A}$

Baker-Hausdorff formulae

Jacobi formula

$\operatorname{Det}\left[e^{A}\right]=e^{\operatorname{Trace}[A]}$ $e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3!}[A,[A,[A, B]]]+\ldots$

$$
\begin{aligned}
& \text { Trace is invariant! } \\
& \operatorname{Tr}[|\Psi\rangle\langle\Phi|]=\operatorname{Tr}[\langle\Phi \mid \Psi\rangle]=\sum_{n} a_{n} b_{n}^{\star}
\end{aligned}
$$

$$
\begin{array}{|l}
\text { Outer product is the density matrix } \\
|\Psi\rangle\langle\Phi|=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right]\left[\begin{array}{llll}
b_{1}^{\star} & b_{2}^{\star} & \ldots & b_{N}^{\star}
\end{array}\right]=\left[\begin{array}{ccccc}
a_{1} b_{1}^{\star} & a_{1} b_{2}^{\star} & a_{1} b_{3}^{\star} & \ldots & a_{1} b_{N}^{\star} \\
a_{2} b_{1}^{\star} & a_{2} b_{2}^{\star} & a_{2} b_{3}^{\star} & \ldots & a_{2} b_{N}^{\star} \\
a_{3} b_{1}^{\star} & a_{3} b_{2}^{\star} & a_{3} b_{3}^{\star} & \ldots & a_{3} b_{N}^{\star} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{N} b_{1}^{\star} & a_{N} b_{2}^{\star} & a_{N} b_{3}^{\star} & \ldots & a_{N} b_{N}^{\star}
\end{array}\right]
\end{array}
$$

Evaluation of Matrices


```
82 = ({3\3a b\a)a [b32, ka3)) 
Prist|"*2*** MelriaMere|{211
```



```
m={{1, 1, 0), {1, 2, 0}, {0, 1, 1)};
Priat["M-", Matrin:wern [M])
```



```
4-- [\begin{array}{lll}{1}&{1}&{1}\\{0}&{2}&{8}\\{0}&{1}&{4}\end{array})
41
```



```
Priat|"是 ** WetrinForn[WS]]
```



```
mb- (cccccc
```


Fig. 6.4 Examples of $2 \times 2,3 \times 3$, and 5×5 Matrix eigenvalue and eigenfunction calculations in Mathematica. The 2×2 Hamiltonian is general and one of the most important in all of quantum mechanics. The 3×3 matrix is a numerical example, and the 5×5 matrix of a 5 -site circular ring tight-binding Hamiltonian model. Note that the eigenvectors (or eigenfunction coefficients a_{n} are evaluated for each eigenvalue, which is very nice.

Background: Green's Function Matrices

construct operators of the form $\hat{A}=\sum a_{n}|n\rangle\langle n|$

$$
\hat{G}(E)=\sum_{n} \frac{|n\rangle\langle n|}{E-E_{n}} \left\lvert\, \begin{aligned}
& \text { Definition of the Green's function operator } \\
& E_{n} \text { is the eigenvalue of state }|n\rangle
\end{aligned}\right.
$$

$\left(E-\hat{H}^{0}\right)|\psi\rangle=0$
Time independent Schrodinger equation
$\hat{G}(E)|m\rangle=\sum_{n} \frac{|n\rangle\langle n|}{E-E_{n}}|m\rangle=\sum_{n} \frac{|n\rangle}{E-E_{n}}\langle n \mid m\rangle=\frac{1}{E-E_{m}}|m\rangle \quad$ Action of $\mathrm{G}(\mathrm{E})$ on a state $|\mathrm{m}\rangle$

$$
\hat{G}(E)\left(E-\hat{H}^{0}\right)|\psi\rangle=\sum_{n} \frac{|n\rangle\langle n|}{E-E_{n}}\left(E-\hat{H}^{0}\right)|\psi\rangle=\sum_{n}|n\rangle\langle n \mid \psi\rangle=|\psi\rangle
$$

Action of $\mathrm{G}(\mathrm{E})$ on the Schrodinger equation yields identity

$$
\hat{G}(E)=\left(E-\hat{H}^{0}\right)^{-1}
$$

Green's function operator is the inverse operator of (E-H0)

Formal solution of the perturbation problem using Green's functions: elegant, but analytically not too useful...

Time-independent perturbation theory

$$
\begin{aligned}
& \text { Matrix elements include } \\
& \text { the perturbation }
\end{aligned} \longrightarrow H_{m n}=\langle m| H|n\rangle
$$

Degenerate perturbation theory

Time-independent perturbation theory

$\left[\begin{array}{cccc}H_{11} & H_{12} & \ldots & H_{1 N} \\ H_{21} & H_{22} & \ldots & H_{2 N} \\ \vdots & \vdots & & \vdots \\ H_{N 1} & H_{N 2} & \ldots & H_{N N}\end{array}\right] \times\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{N}\end{array}\right]=\mathcal{E}\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{N}\end{array}\right] \Rightarrow\left|\begin{array}{cccc}H_{11}-\mathcal{E} & H_{12} & \ldots & H_{1 N} \\ H_{21} & H_{22}-\mathcal{E} & \ldots & H_{2 N} \\ \vdots & \vdots & & \vdots \\ H_{N 1} & H_{N 2} & \ldots & H_{N N}-\mathcal{E}\end{array}\right|=0$

Solve these for solutions to the perturbation problem. Exact solution is an infinite matrix! How to truncate?

	$\|m\rangle \leftrightarrow\|n\rangle$
$\left\|\mathcal{E}_{m}-\mathcal{E}_{n}\right\|$	
$W_{m n}=$	$\langle m\| W\|n\rangle$
$\Delta \mathcal{E}_{i x}=$	$\left\|W_{i x}\right\|^{2}$
$\mathcal{E}_{x}-\mathcal{E}_{i}$	

Example: 2-Level system

Matrix to be diagonalized	$\left\|\begin{array}{cc}H_{11}-\mathcal{E} & H_{12} \\ H_{21} & H_{22}-\mathcal{E}\end{array}\right\|=0$	
Eigenvalues	$\mathcal{E}_{ \pm}=\frac{1}{2}\left(H_{11}+H_{22}\right) \pm \sqrt{\frac{1}{4}\left(H_{11}-H_{22}\right)^{2}+\left\|H_{12}\right\|^{2}}$	
	$a_{1}=\frac{H_{12}}{\sqrt{\left\|H_{12}\right\|^{2}+\left(\mathcal{E}-H_{11}\right)^{2}}}$	
Eigenstate coefficients	$\|\psi\rangle=a_{1}\|1\rangle+a_{2}\|2\rangle$	$a_{2}=\frac{\mathcal{E}-H_{11}}{\sqrt{\left\|H_{12}\right\|^{2}+\left(\mathcal{E}-H_{11}\right)^{2}}}$

Analytical time-independent perturbation theory

Level repulsion and Avoided Crossing

Perturbation Theory Example: Particle in a Box

States with maximum wavefunction at the center will be perturbed the most. States with low energy will be perturbed more than states of high energy.

Perturbation Theory Example: Particle in a Box

$$
|\psi\rangle=|1\rangle+\sum_{m=3,5 \ldots} \frac{E_{0}}{E_{1}\left(1-m^{2}-\frac{E_{0}}{E_{1}}\right)}|m\rangle
$$

$$
\Longrightarrow \psi(x)=\psi_{1}(x)+\sum_{m=3,5, \ldots} \frac{E_{0}}{E_{1}\left(1-m^{2}-\frac{E_{0}}{E_{1}}\right)} \psi_{m}(x)
$$

$$
\left(\begin{array}{ccc}
E_{1}+E_{0} & |2\rangle & |3\rangle \\
0 & E_{2} & E_{0} \\
E_{0} & 0 & E_{3}+E_{0}
\end{array}\right)
$$

Debdeep Jena (djena@cornell.edu)

A Periodic Potential for the Electron on a Ring

Fig. 8.2 The electron on a ring experiences a periodic potential.

Fig. 8.5 Rudolph Peierls while working with Heisenberg was the first to produce the famous energy dispersion of a free electron perturbed by a periodic potential. His plot is reproduced in Figure 8.6

Energiewerte erster Naherung

- The central problem of the physics of semiconductors is that of an electron in a crystal.
- A crystal is a periodic array of atoms.
- \quad The quantum mechanical electron experiences a periodic potential $V(x+a)=V(x)$.
- What are the allowed eigenvalues and eigenfunctions?
- All answers to semiconductor physics are hidden in the solution of this problem.

Fig. 8.6 Rudy Peierls' iconic plot of the energy dispersion of a free electron in a periodic potential from his 1930 paper.

Example: Opening of a bandgap in a crystal

Unperturbed problem is the 'electron on a ring': E'states, E'Vals:

$$
\begin{array}{r}
\langle x \mid k\rangle=\psi(x, k)=\frac{1}{\sqrt{L}} e^{i k x} \quad E_{0}(k)=\frac{\hbar^{2} k^{2}}{2 m_{0}} \\
\left\langle k_{m} \mid k_{n}\right\rangle=\int d x\left\langle k_{m} \mid x\right\rangle\left\langle x \mid k_{n}\right\rangle=\int d x \psi^{\star}\left(x, k_{m}\right) \psi\left(x, k_{n}\right)=\frac{1}{L} \int_{0}^{L} d x e^{i 2 \pi(n-m) x}=\delta_{n, m}
\end{array}
$$

unperturbed E'states are orthogonal

$$
W(x)=-2 U_{G} \cos (G x)=-U_{G}\left(e^{i G x}+e^{-i G x}\right)
$$

Figure 13.1: A periodic potential $W(x)=-2 U_{G} \cos (G x)$ acts as a perturbation to the free electron.

States most strongly perturbed: $+\mathrm{G} / 2,-\mathrm{G} / 2$.
$\mathrm{F}=\mathrm{E}_{0}(\mathrm{G} / 2)$ is their unperturbed energy.

$$
\left\langle k_{2}\right| W(x)\left|k_{1}\right\rangle=-\frac{U_{G}}{L} \int_{0}^{L} d x e^{i\left(k_{1}-k_{2}\right) x}\left(e^{i G x}+e^{-i G x}\right)=-U_{G} \delta_{k_{1}-k_{2}, \pm G}
$$

Perturbing potential only couples state k with $k+G, k-G$ with strength $-U_{G}$

$$
E_{0}(G / 2)=\hbar^{2} G^{2} / 8 m_{0}=F
$$

Solve to get the eigenvalues and the eigenfunctions

Debdeep Jena (djena@cornell.edu)

Bandgap, band-edge states, effective masses

Bandgap, band-edge states, effective masses

Fig. 8.17 1D bandstructure plotted in a periodic k space.

- The effective mass at any k is proportional to the curvature of the energy band at that k
- States at the Brillouin Zone edges $1=2$ and $3=4$.
- After the opening of the bandgap, $E(k+G)=E(k)$, the allowed energies are periodic in k-space.

Bands, Gaps, Metals vs Insulators

Fig. 8.10 Energy gaps open at $k=$ $n \cdot \frac{G}{2}$, which is identical to the conditions when the electron wavelengths become resonant with twice the lattice constant, i.e. $n \lambda=2 a$. This is analogous to Bragg's law of diffraction for a wave incident at an angle θ on a crystal of period d, when the law reads $n \lambda=2 d \sin \theta$.

Because the width of each band in the k-space is $G=\frac{2 \pi}{a}$, and the separation between two allowed states is $\frac{2 \pi}{L}$ where L is the macroscopic length, the number of states in each band is $N=L / a$, equal to the number of atoms in the crystal. Since each allowed state can hold 2 electrons of opposite spin, each band can hold $2 \mathbf{N}$ electrons. We can plot all energies within $-\frac{G}{2} \leq k \leq+\frac{G}{2}$ and index them as $E_{n}(k)$ where n indicates a reciprocal lattice vector. Because of the opening of the bandgaps, when an electron in an allowed band moves in response to $F=\hbar \frac{d k}{d t}$, it cannot jump to the higher band when its $k \rightarrow \pm \frac{G}{2}$ under moderate forces ${ }^{5}$. In that case, the electron remains in the same band, but enters it from $k=-\frac{G}{2}$. This is because they are actually the same point in the reduced zone scheme.

Fig. 8.1 Alan Wilson in 1930s explained how the number of electrons and periodic arrangement of atoms de-
cides if a solid is a metal, a semiconductor, or an insulator. The idea is similar to the formation of open and closed shells for electrons in atoms periodically as the electron number increases.

Bandgap, band-edge states, effective masses

Fig. 8.11 The band theory developed by Peierls for the first time offered an explanation for a positive measured Hall coefficient. Though the particles conducting the electric current are all electrons, the Hall effect shows a positive sign for some metals and doped semiconductors. This is because the Fermi level is near the top of a band, the effective mass is negative, and the transport can be thought of as due to the superposition of a filled band with zero conductivity, with positively charged holes at the top of the band.

$$
v_{g}=\frac{1}{\hbar} \frac{\partial E(k)}{\partial k}
$$

$$
J=q \frac{g_{s}}{L} \sum_{k} v_{g}(k) f(k) \quad \text { Quantum current carried by electrons in a band }
$$

$$
J_{\text {filled }}=q \frac{g_{s}}{L} \sum_{k} v_{g}(k) f(k)=0 \text { Current carried by a filled (or empty) band is zero }
$$

Filled bands carry no net current.

$$
J=\underbrace{(-q)}_{\text {hole charge }} \frac{g_{s}}{L} \sum_{k} v_{g}(k) \underbrace{[1-f(k)]}_{\text {hole occupation probability }}
$$

- Current is carried in an almost filled band by HOLES.
- Holes behave as POSITIVE charges.
- Hole conduction causes a POSITIVE sign in the Hall Effect.
- Holes behave as POSITIVE charges in Field Effect.

Metals, Insulators and Semimetals

Fig. 8.17 Impossibility of band overlaps in 1D, and possible overlaps in 2 and 3D crystals.

Higher order interactions and Bloch Theorem

Figure 13.4: Indirect coupling via intermediate states. Each coupling has a strength $-U_{G}$.
$-G / 2\rangle \leftrightarrow|+G / 2\rangle$

BW $\quad E \approx F+\frac{U_{G}^{2}}{E-F} \Longrightarrow E \approx F \pm U_{G}$
Same gap at matrix method

$|-G\rangle \leftrightarrow|0\rangle \leftrightarrow|+G\rangle$

$|-G\rangle \leftrightarrow|0\rangle \leftrightarrow|+G\rangle$
RS $\quad E \approx 0+0+\frac{U_{G}^{2}}{0-4 F}+\frac{U_{G}^{2}}{0-4 F}=-\frac{U_{G}^{2}}{2 F} \quad \begin{aligned} & \text { Linited } \\ & \text { applidility }\end{aligned}$

Glimpses of the Bloch Theorem Perturbation strength

$$
\psi_{k^{\prime}}(x)=\left\langle x \mid k^{\prime}\right\rangle \approx \frac{e^{i k x}}{\sqrt{L}}-\frac{U_{G}}{E(k)-E(k+G)} \frac{e^{i(k+G) x}}{\sqrt{L}}-\frac{U_{G}}{E(k)-E(k-G)} \frac{e^{i(k-G) x}}{\sqrt{L}}
$$

$$
\psi_{k^{\prime}}(x) \approx e^{i k x} \cdot \underbrace{\left[\frac{1}{\sqrt{L}}-\left(\frac{U_{G}}{E(k)-E(k+G)}\right) \frac{e^{i G x}}{\sqrt{L}}-\left(\frac{U_{G}}{E(k)-E(k-G)}\right) \frac{e^{-i G x}}{\sqrt{L}}\right]}_{u_{k}(x)}
$$

The wavefunction in a periodic potential: Is in the form of a Bloch function!

$$
\begin{array}{r}
\psi_{k}(x) \approx e^{i k x} u_{k}(x) \\
u_{k}(x+a)=u_{k}(x) \\
\text { because } e^{ \pm i G a}=1
\end{array}
$$

However, note that the Bloch function is an EXACT result, meaning a non-perturbative one. But it is useful to see that perturbation theory hints at its existence.

Debdeep Jena (djena@comell.edu)

Bloch Functions of Electrons in Periodic Potentials

Fig. 9.2 The Bloch function is a plane wave modulated by a function periodic in the lattice constant.

Fig. 9.1 Bloch functions

$$
\psi_{k}(x)=e^{i k x} u_{k}(x), \text { where } u_{k}(x+a)=u_{k}(x)
$$

Bloch Functions of Electrons in Periodic Potentials

$$
\psi_{k}(x)=e^{i k x} u_{k}(x), \text { where } u_{k}(x+a)=u_{k}(x)
$$

$$
e^{i k x} \rightarrow e^{i k x}(\underbrace{1+\sum c_{G}(k) e^{i G x}}_{u_{k}(x)})
$$

$$
\left\langle k^{\prime}\right| V(x)|k\rangle=\int_{0}^{L} d x \cdot e^{i\left(k^{\prime}-k\right) x} \cdot[\underbrace{V(x) u_{k^{\prime}}^{\star}(x) u_{k}(x)}_{\sum_{G} c_{G} e^{i G x}}]=\sum_{G} c_{G} \delta_{k^{\prime}-k, G}
$$

The most general Matrix Element for Bloch States of Electrons in Crystals

1 "When I started to think about it, I felt that the main problem was to explain how the electrons could sneak by all the ions in a metal so as to avoid a mean free path of the order of atomic distances. Such a distance was much too short to explain the observed resistances... To make my life easy, I began by considering wave functions in a one-dimensional periodic potential. By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation $\left[\psi_{k}(x)=e^{i k x} u_{k}(x)\right]$. This was so simple that I didn't think it could be much of a discovery, but when I showed it to Heisenberg he said right away: 'That's it!' Well that wasn't quite it yet, and my calculations were only completed in the summer when I wrote my thesis on The Quantum Mechanics of Electrons in Crystal Lattices." [F. Bloch 1976]

Fig. 8.12 Felix Bloch showed mathematically that electron waves can propagate in a crystal with no scattering, by introducing a wavefunction that electrons experiencing a periodic potential must satisfy. Bloch was awarded the Nobel Prize in physics in 1952 for his work on nuclear magnetic resonance.

The Nearly Free Electron Bandstructure Model

nearly free electron model

the periodic potential $V(x)=0$ is turned off, but the lattice periodicity remains.

Bloch functions $\psi(x)=e^{i k x} \sum_{G} c_{G} e^{i G x}$

$$
-\frac{\hbar^{2}}{2 m_{e}} \frac{\partial^{2}}{\partial x^{2}} \psi(x)=E \psi(x)
$$

$\sum_{G} c_{G} e^{i G x} \frac{\hbar^{2}(k+G)^{2}}{2 m_{e}}=E \sum_{G} c_{G} e^{i G x}$
the nearly free electron (NFE) bandstructure

$$
E_{n}(k)=\frac{\hbar^{2}}{2 m_{e}}(k-n G)^{2} \text { where } n=0, \pm 1, \pm 2, \ldots
$$

Fig. 8.13 The nearly free electron bandstructure. The model is where there is a lattice, but no crystal potential. Bloch theorem ensures that the allowed energy bands are exactly the same of a free electron, but repeated in the k-space by reciprocal lattice vectors, $E_{n}(k)=\frac{\hbar^{2}}{2 m}(k-n G)^{2}$ where $n=0, \pm 1, \pm 2, \ldots$. Note the points of degeneracies: these points can be split to open gaps by a periodic potential.

As shown in Figure 8.13, the NFE bandstructure consists of copies of the free electron bandstructure translated by $n G$ in the k-axis, where $G=\frac{2 \pi}{a}$ and $n=0, \pm 1, \pm 2, \ldots$. This is a direct consequence of periodicity of the lattice.

Bandgap, band-edge states, effective masses

$\mathbf{F}=\hbar \frac{d \mathbf{k}}{d t} . \mathbf{F}$ is an external force, \mathbf{k} is the crystal momentum.

Fig. 9.7 Classical vs. Quantum pictures of a particle in a periodic potential. The Bloch state maintains the same velocity in spite of a rapidly varying periodic potential of the crystal - this is impossible in classical mechanics.

Bandgap, band-edge states, effective masses

Fig. 8.14 Mixing of electronic signals produces sum and difference frequencis. The problem of electron wave propagation in a crystal is an analogous problem.

Fig. 8.15 Periodic potentials only scatter states separated by specific G values, and thus open bandgaps at specific k values because they have spectral weight only for specific $k^{\prime} s$. Non-periodic potentials on the other hand can scatter a state $|k\rangle$ into several states depending on the weight of the potential in the $k-s p a c e$.

Bandgap, band-edge states, effective masses

$$
\frac{\hbar^{2}}{2 m_{e}}(k+G)^{2} c_{G}+\sum_{G^{\prime}} \mathcal{V}_{G-G^{\prime}} c_{G^{\prime}}=E_{G}(k) c_{G} .
$$

\rightarrow Exact Bandstructure, Chapter 12

$$
E_{G}(k)=\frac{\hbar^{2}}{2 m_{e}}(k+G)^{2} \text {, and } \psi_{G}(x)=\frac{1}{\sqrt{L}} e^{i(k+G) x}=e^{i k x} \cdot \underbrace{\left(\frac{1}{\sqrt{L}} e^{i G x}\right)}_{u(x)}(9.9)
$$

\rightarrow Empty lattice bandstructure, Brillouin zones, this Chapter

$$
\begin{equation*}
\psi_{k}(x)=\sum_{n=1}^{N} \frac{e^{i k n a}}{\sqrt{N}} \phi(x-n a) \Longrightarrow \psi_{k}(x+a)=e^{i k a} \psi_{k}(x) . \tag{9.10}
\end{equation*}
$$

\rightarrow The tight binding model, Chapter 10 .

$$
\begin{aligned}
& {\left[\frac{(\hat{\mathbf{p}}+\hbar \mathbf{k})^{2}}{2 m_{e}}+V\right] u_{\mathbf{k}}=E(\mathbf{k}) u_{\mathbf{k}} .} \\
& {\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}+V\right] u_{\mathbf{k}}+\left(\frac{\hbar}{m_{e}} \mathbf{k} \cdot \hat{\mathbf{p}}\right) u_{\mathbf{k}}=\left[E(\mathbf{k})-\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 m_{e}}\right] u_{\mathbf{k}} .}
\end{aligned}
$$

$$
\rightarrow \text { The ' } \mathbf{k} \cdot \mathbf{p} \text { ' approximation, Chapter } \mid 11 .
$$

Some consequences of symmetry on E(k)

Table 9.2 Symmetries of Bloch Eigenvalues.

Time Reversal $(t \rightarrow-t)$
$E_{n, \uparrow}(\mathbf{k}) \rightarrow E_{n, \downarrow}(-\mathbf{k})$
$E_{n, \downarrow}(\mathbf{k}) \rightarrow E_{n, \uparrow}(-\mathbf{k})$
Inversion ($\mathbf{r} \rightarrow-\mathbf{r}$)
$E_{n, \uparrow}(\mathbf{k}) \rightarrow E_{n, \uparrow}(-\mathbf{k})$
$E_{n, \downarrow}(\mathbf{k}) \rightarrow E_{n, \downarrow}(-\mathbf{k})$
TR \& Inversion
$E_{n}(\mathbf{k})=E_{n}(-\mathbf{k})$
Lattice periodicity
$E_{n}(\mathbf{k}+\mathbf{G})=E_{n}(\mathbf{k})$
Fig. 9.14 Properties energy bands must satisfy for Bloch states in crystals.

Electron group velocity

$\mathbf{F}=\hbar \frac{d \mathbf{k}}{d t} . \mathbf{F}$ is an external force, \mathbf{k} is the crystal momentum.

$$
\left\langle\psi_{\mathbf{k}}\right| \frac{\hat{\mathbf{p}}}{m_{e}}\left|\psi_{\mathbf{k}}\right\rangle=\mathbf{v}(\mathbf{k})=\frac{1}{\hbar} \nabla_{\mathbf{k}} E(\mathbf{k})
$$

$$
\mathbf{v}(\mathbf{k})=\frac{1}{\hbar} \nabla_{\mathbf{k}} E(\mathbf{k})-\frac{\mathbf{F}}{\hbar} \times \mathbf{\Omega}_{\mathbf{k}}
$$

$$
\vec{v}_{g}(k)=\frac{1}{\hbar} \nabla_{k} E(k) \Rightarrow \vec{v}_{g}(k)=\frac{1}{\hbar} \nabla_{k} E(k)+\frac{d \vec{k}}{d t} \times \underbrace{\nabla_{k} \times\left\langle u_{k}\right| i \nabla_{k}\left|u_{k}\right\rangle}_{\substack{\Omega(k), \text { Berry } \\ \text { Curvature }}}]
$$

Bloch Functions of Electrons in Periodic Potentials

$\Omega_{r}=\mathbf{a} \cdot \mathbf{a}_{\mathbf{2}} \times \mathbf{a}_{3}$
$\mathbf{R}=n_{1} \mathbf{a}_{\mathbf{1}}+n_{2} \mathbf{a}_{\mathbf{2}}+n_{3} \mathbf{a}_{\mathbf{3}}$

Wigner-Seitz cell

Reciprocal Space or k-space

Fig. 9.12 The crystal potential in the \mathbf{k}-space is concentrated at the reciprocal lattice points \mathbf{G}

$$
\mathbf{b}_{1}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3}}, \mathbf{b}_{2}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3}}, \mathbf{b}_{3}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3}} .
$$

$$
\mathbf{G}=m_{1} \mathbf{b}_{\mathbf{1}}+m_{2} \mathbf{b}_{\mathbf{2}}+m_{3} \mathbf{b}_{\mathbf{3}}
$$

Brillouin Zone

Cnstalis in 1D, 2D, and 3D

Fig. 9.10 Crystal $=$ Lattice + Basis

Fig. 9.13 A 2D crystal (top) and its reciprocal lattice points (middle), defining the Brillouin Zones of a 2 D square lattice. The bottom figure indicates that the $1 s t \mathrm{BZ}$ is filled up to the dashed line constant-energy contour for monovalent constant-energy with $N=1$ and spills over to and BZ shown as solid line constant the 2nd BZ shown as solid line constant energy contours for divalent atoms with $N=2$.

Crystal structure of Silicon, Diamond, GaAs, etc.

2D Bravais Lattices

2D Bravais Lattices

1 - oblique (monoclinic), 2 - rectangular (orthorhombic), 3 - centered rectangular (orthorhombic), 4 - hexagonal, 5 and 5 - square (tetragonal).

Crystal tamily	Point group (Schbetlies notation)	5 Brwais lattices		Crystal family	Area	Axial distances (edge lengths)	Axial angle
		Primitive	Centered	Monoclinile	$a b \sin \theta$	$a * b$	$\theta \pm 90^{\circ}$
Monoclinic	C_{2}	Oelique		Orthorhomble	$a b$	$a \neq b$	$\theta=90^{\circ}$
Orthorhomble	D_{2}	Aectangular	Centered rectangular	Hexaponal		$a=b$	$\theta=120$
Hexagonal	D_{6}	Hexagonal		Hexagonal		$a=b$	0×120
Tetragonal	D_{4}	Square		Tetragonal	a^{2}	$a=b$	$\theta=90^{\circ}$

Fig. 9.21 Bravais Lattices in 2D from Wikipedia.

3D Bravais Lattices

The first measured crystal structure: FCC!

Fig. 9.16 The famous 'Fig 5', showing the diffraction spots observed by Max von Laue in Munich due to Roentgen's X-Rays bouncing off a crystal of ZnS , a semiconductor.

Fig. 9.18 Bragg Law for diffraction of XRays from a crystal.

TEM images of semiconductor crystals

Silicon Crystal

TEM images of semiconductor crystals

GaN/AIN Quantum Well Grown/lmaged @ Cornell

Face-Centered Cubic Lattice

Crystal structure of Silicon, Diamond, GaAs, etc..
$1^{\text {st }}$ step in bandstructure primitive lattice vectors, $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ calculation: Determine
primitive lattice vectors for Silicon-like crystals are $\mathbf{a}_{1}=a\left(\frac{1}{\eta}, \frac{1}{\eta}, 0\right)$, $\mathbf{a}_{2}=a\left(0, \frac{1}{2}, \frac{1}{2}\right)$, and $\mathbf{a}_{3}=a\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.

$$
\begin{array}{r}
\Omega_{u}=\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3}=a\left(\frac{1}{2}, \frac{1}{2}, 0\right) \cdot a\left(0, \frac{1}{2}, \frac{1}{2}\right) \times a\left(\frac{1}{2}, 0, \frac{1}{2}\right) \\
=a\left(\frac{1}{2}, \frac{1}{2}, 0\right) \cdot a^{2}\left(\frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)=a^{3}\left(\frac{1}{8}+\frac{1}{8}\right)=\frac{a^{3}}{4} .
\end{array}
$$

FCC Primitive cell volume

Now the greatest importance of the Wigner-Seitz cell is recognized when we move from the real space to the wavevector, or \mathbf{k}-space. Corresponding to the three real space primitive lattice vectors are the three primitive reciprocal lattice vectors given by

$$
\begin{equation*}
\mathbf{b}_{1}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3}}, \mathbf{b}_{2}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3}}, \mathbf{b}_{3}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3}} \tag{9.43}
\end{equation*}
$$

With an integer triplet $\left(m_{1}, m_{2}, m_{3}\right)$, the vectors

$$
\begin{equation*}
\mathbf{G}=m_{1} \mathbf{b}_{\mathbf{1}}+m_{2} \mathbf{b}_{\mathbf{2}}+m_{3} \mathbf{b}_{\mathbf{3}} \tag{9.44}
\end{equation*}
$$

define the reciprocal space lattice, just as the real-space lattice of the crystal.

The Nearly Free Electron Model for Any FCC Lattice

3rd step in bandstructure calculation: Calculate the Nearly Free Electron Bandstructure for various reciprocal lattice vector bands (typical Gmax <4).

Nearly Free Electron

Bandstructure for the FCC Lattice (Si, Ge, GaAs, Diamond, ...)
\longrightarrow Join

The Nearly Free Electron Model for Any HCP Lattice

3rd step in
bandstructure calculation:
Calculate the Nearly Free Electron
Bandstructure for various reciprocal lattice vector bands (typical Gmax<4).

Nearly Free Electron
Bandstructure for the HCP Lattice (GaN, AIN, $\operatorname{InN}, \mathrm{ZnO}, \mathrm{ZnS}, \ldots$)

Semiconductors, Semimetals, Metals, Insulators

Fig. 9.26 Semiconductors, Metals, and Semimetals differ primarily by the density of states at their Fermi level, $g\left(E_{F}\right)$. The Fermi level is determined by counting the total valence electrons/basis of a crystal and using the rule that each filled band holds 2 N electrons.

Bloch State: Current with Scattering

$$
\begin{aligned}
& \mathbf{F}=\hbar \frac{d \mathbf{k}}{d t}-\frac{\hbar \Delta \mathbf{k}}{\tau_{\mathbf{k}}} \\
& J=q \frac{g_{s} g_{v}}{L} \sum_{k} v_{g}(k) f(k)=q \frac{g_{s} g_{v}}{L} \sum_{k} v_{g}(k) f\left(\mathbf{k}(0)-\frac{\mathbf{F} \tau_{\mathbf{k}}}{\hbar}\right) \\
& f\left(\mathbf{k}(0)-\frac{\mathbf{F} \tau_{\mathbf{k}}}{\hbar}\right) \approx f(\mathbf{k}(0))-\frac{\mathbf{F} \tau_{\mathbf{k}}}{\hbar} \cdot \nabla_{\mathbf{k}} f(\mathbf{k}(0))
\end{aligned}
$$

$$
J=q \frac{g_{s} g_{v}}{L} \sum_{k} v_{g}(k) f\left(\mathbf{k}(0)-\frac{\mathbf{F} \tau_{\mathbf{k}}}{\hbar}\right)
$$

Fig. 9.25 The occupation function shifts

$$
\approx \underbrace{q \frac{g_{s} g_{v}}{L} \sum_{k} v_{g}(k) f(\mathbf{k}(0))}_{0}+q \frac{g_{s} g_{v}}{L} \frac{\mathbf{F}}{\hbar} \cdot \sum_{k} v_{g}(k) \tau_{\mathbf{k}}\left(-\nabla_{\mathbf{k}} f(\mathbf{k}(0))\right)
$$ from the equilibrium Fermi-Dirac value upon the application of an external force. The sketch indicates $f(\mathbf{k}), f\left(\mathbf{k}-\frac{\mathrm{F}}{\hbar} \tau\right)$, and $\nabla_{\mathbf{k}} f(\mathbf{k})$.

$n=\frac{g_{s} g_{v}}{L^{d}} \sum_{k} f(k)$

$$
\mathcal{L}_{q}=\frac{\kappa}{\sigma T}=\frac{g_{s g_{v}} \ln \left(\frac{N_{c}}{n}\right) k_{b} \int \frac{d^{d} k}{(2 \pi)^{d}} v^{2} \tau E \frac{\partial f}{\partial E}}{T \cdot q^{2} \cdot g_{s} g_{v} \int \frac{d^{d} k}{(2 \pi)^{d}} v^{2} \tau \frac{\partial f}{\partial E}}
$$

$$
J \approx \frac{n q^{2}}{m^{\star}} \underbrace{\left(\frac{2}{d} \frac{\sum_{k} E_{\mathbf{k}} \tau_{\mathbf{k}}\left(-\frac{\partial f(k)}{\partial E_{\mathbf{k}}}\right)}{\sum_{k} f(k)}\right)}_{\langle\tau\rangle} E=\underbrace{\frac{n q^{2}\langle\tau\rangle}{m^{\star}}}_{\sigma} E=q n \underbrace{\frac{q\langle\tau\rangle}{m^{\star}}}_{\mu} E,
$$

Tight-Binding Bandstructure

Energy Bands of $\mathbf{S i}, \mathrm{Ge}$, and $\mathbf{G a A s}$ for Reference

ECE 4070/MSE 6050

Energy Bandstructures of the most common Semiconductors

The elements that form semiconductors

Periodic Table of Elements

For elements with no stable isctopes, the mass number of the isctope with the longest haflife is in parentheses

ECE $4070 /$ MSE 6050

5	Ce	Pr Prem	Nd	Pm	$\frac{5 m}{8 m}$	Eu En	$0 \mathrm{~d}$	$\stackrel{T b}{\square}$	Dy	Ho	$\begin{aligned} & \mathrm{Er} \\ & \mathrm{Er} \\ & \hline \end{aligned}$	Tm	$\begin{aligned} & 70 \\ & \mathrm{Yb} \\ & \hline \end{aligned}$	Lu
$A C$	Th	$\begin{aligned} & \mathrm{r} \\ & \mathrm{~Pa} \end{aligned}$	U	N	Pu	Am	Cm	$\begin{aligned} & \text { Bk } \\ & \hline \end{aligned}$	Ct	E_{s}	Fm	Md	No	\% 8

Some common Semiconductor Families:

- Group IV: Diamond, Silicon, Ge, ...
- Group III-V: GaAs, InP, InSb,GaN, ...
- Group II-VI: $\mathrm{ZnO}, \mathrm{MgO}, \mathrm{CdSe}, \mathrm{HgTe} .$.
- 2D Materials: Graphene, MoS_{2}, $\mathrm{GaSe}, .$.

Metals and the Fermi-Surface Database

Semiconductor Orbital Structures

Group IV

C: $\left[1 s^{2}\right]\left(2 s^{2} 2 p^{2}\right) \leftarrow 4$
Si: $\left[1 s^{2}\right]\left[2 s^{2}\right]\left[2 p^{6}\right]\left(3 s^{2} 3 p^{2}\right) \leftarrow 4$

p_{x} - orbital

Ge: $\left[1 s^{2}\right]\left[2 s^{2}\right]\left[2 p^{6}\right]\left[3 s^{2}\right]\left[3 p^{6}\right]\left[3 d^{10}\right]\left(4 s^{2} 4 p^{2}\right) \leftarrow 4$

Group III

B: $\left[1 s^{2}\right]\left(2 s^{2} 2 p^{1}\right) \leftarrow 3$
$\mathrm{Al}: \quad\left[1 s^{2}\right]\left[2 s^{2}\right]\left[2 p^{6}\right]\left(3 s^{2} 3 p^{1}\right) \leftarrow 3$
Ga: $\left[1 s^{2}\right]\left[2 s^{2}\right]\left[2 p^{6}\right]\left[3 s^{2}\right]\left[3 p^{6}\right]\left[3 d^{10}\right]\left(4 s^{2} 4 p^{1}\right) \leftarrow 3$
Group $\mathbf{V}^{[\text {Core electrons] } \text { (Valence electrons) }}$
$\mathrm{N}:\left[1 s^{2}\right]\left(2 s^{2} 2 p^{3}\right) \leftarrow 5$
P: $\left[1 s^{2}\right]\left[2 s^{2}\right]\left[2 p^{6}\right]\left(3 s^{2} 3 p^{3}\right) \leftarrow 5$
As: $\left[1 s^{2}\right]\left[2 s^{2}\right]\left[2 p^{6}\right]\left[3 s^{2}\right]\left[3 p^{6}\right]\left[3 d^{10}\right]\left(4 s^{2} 4 p^{3}\right) \leftarrow 5$

Semiconductor Crystal Structures

Which electrons have to be included in band structure calculations?
In principle all, but the inner core electrons are strongly bound and their spatial extension is so small, that no significant overlap of the wavefunctions occur.

In silicon (Si), the $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p electrons are inner core electrons.

Semiconductor Crystal Structures

Each band can hold 2 electrons per unit cell.

The factor 2 is the spin-multiplicity.

Valence band area

Valence bands: 4 bands
2 atoms per unit cell 4 electrons per atom 8 electrons in 4 bands

Tight-Binding (or LCAO) Bandstructure

$$
|\psi\rangle=\sum_{m=1}^{N} \frac{e^{i \mathbf{k} \cdot \mathbf{R}_{m}}}{\sqrt{N}}|m\rangle \quad \hat{H} \sum_{m=1}^{N} e^{i \mathbf{k} \cdot \mathbf{R}_{m}}|m\rangle=E(\mathbf{k}) \sum_{m=1}^{N} e^{i \mathbf{k} \cdot \mathbf{R}_{m}}|m\rangle
$$

$$
E(\mathbf{k})=\frac{\sum_{n, m=1}^{N} e^{i \mathbf{k} \cdot\left(\mathbf{R}_{m}-\mathbf{R}_{n}\right)}\langle n| \hat{H}|m\rangle}{\sum_{n, m=1}^{N} e^{i \mathbf{k} \cdot\left(\mathbf{R}_{m}-\mathbf{R}_{n}\right)}\langle n \mid m\rangle}
$$

$$
E(k)=\frac{E_{0}-2 t_{1} \cos (k a)-2 t_{2} \cos (2 k a)-2 t_{3} \cos (3 k a) \ldots}{1+2 s_{1} \cos (k a)+2 s_{2} \cos (2 k a)+2 s_{3} \cos (3 k a) \ldots} \approx E_{0}-2 t_{1} \cos (k a)
$$

Tight-Binding Bandstructure

Example: A 1D Crystal with 1 Orbital per Primitive Cell

Consider a 1D lattice of atoms:

Each atom has the energy levels as shown

- The electrons in the lowest energy level(s) are well localized and do not take part in bonding with neighboring atoms
- The electrons in the outermost s-orbital
 participate in bonding

The crystal has the Hamiltonian: $\quad \hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+\sum_{m} V_{a}\left(\vec{r}-\vec{R}_{m}\right)$ $V(\vec{r}) \uparrow$ Potential in a crystal

促
ECE 4970 - Spring 2010 - Fartan Rana - Coenell University

Tight Binding Approach for a 1D Crystal

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+\sum_{m} V_{a}\left(\vec{r}-\vec{R}_{m}\right)
$$

We assume that the solution is of the LCAO form: $\psi(\vec{r})=\sum_{m} c_{m} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)$
And assume that orbitals on different atoms are approx. orthogonal:

$$
\left\langle\phi_{s}\left(\vec{r}-\vec{R}_{n}\right) \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle=\delta_{n m}
$$

- If we have N atoms in the lattice, then our solution is made up of N different sorbitals that are sitting on the N atoms
- In principle one can take the assumed solution, as written above, plug it in the Schrodinger equation, get an $N \times N$ matrix and solve it (just as we did in the case of molecules). But one can do better \qquad
We know from Bloch's theorem that the solution must satisfy the following:

$$
\begin{gathered}
\psi(\vec{r}+\vec{R})^{2}=\psi(\vec{r})^{2} \\
\psi(\vec{r}+\vec{R})=e^{i \vec{k} \cdot R} \psi(\vec{r})
\end{gathered}
$$

Tight-Binding Bandstructure

Tight Binding Approach for a 1D Crystal

Consideration 1:
For the solution: $\psi(\vec{r})=\sum_{m} c_{m} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)$
to satisfy:

$$
\psi(\vec{r}+\vec{R})^{2}=\psi(\vec{r})^{2}
$$

one must have the same value of $\left|c_{m}\right|^{2}$ for all \boldsymbol{m} (i.e. all coefficients must have the same weight).
So we can write without loosing generality: $\quad c_{m}=\frac{e^{i \theta_{m}}}{\sqrt{N}} \longrightarrow \int \psi(\vec{r})^{2} d^{3} \vec{r}=1$

Consideration 2:
For the solution: $\quad \psi(\vec{r})=\sum_{m} \frac{e^{i \theta_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)$
to satisfy:
to satisfy:

$$
\psi(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}} \psi(\vec{r})
$$

one must have the phase value equal to: $\theta_{m}=\overrightarrow{\boldsymbol{k}} \cdot \overrightarrow{\boldsymbol{R}}_{m}$

Tight-Binding Bandstructure

Tight Binding Approach for a 1D Crystal

Consideration 2 (contd...):
Proof:

$$
\psi(\vec{r})=\sum_{m} \frac{e^{i \theta_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)=\sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)
$$

For the Bloch condition we get:

$$
\psi(\vec{r}+\vec{R})=\sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}+\vec{R}-\vec{R}_{m}\right)=\sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\left(\vec{R}_{m}-\vec{R}\right)\right)
$$

Let:

$$
\begin{aligned}
\vec{R}_{m}-\vec{R} & =\vec{R}_{p} \\
\Rightarrow \psi(\vec{r}+\vec{R}) & =\sum_{\rho} \frac{e^{i k \cdot\left(\vec{R}_{p}+\vec{R}\right)}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{p}\right)=e^{i \vec{k} \cdot \vec{R}} \sum_{p} \frac{e^{i \vec{k} \cdot \vec{R}_{p}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{p}\right) \\
& =e^{i \vec{k} \cdot \vec{R}} \psi(\vec{r})
\end{aligned}
$$

Tight-Binding Bandstructure

Tight Binding Approach for a 1D Crystal

So we can write the solution as:

$$
\psi_{\bar{k}}(\vec{r})=\sum_{m} \frac{e^{i \vec{k} \cdot \hat{R}_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)
$$

And we know that it is a Bloch function because:

$$
\psi_{\vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \bar{R}_{2}} \psi_{\bar{k}}(\vec{r})
$$

All that remains to be found is the energy of this solution - so we plug it into the Schrodinger equation:

$$
\begin{gathered}
\hat{H}\left|\psi_{\vec{k}}(\vec{r})\right\rangle=E(\vec{k})\left|\psi_{\vec{k}}(\vec{r})\right\rangle \\
\Rightarrow \sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle=E(\vec{k}) \sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}}\left|\phi_{s}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle
\end{gathered}
$$

Tight Binding Approach for a 1D Crystal $\quad \vec{R}_{m}=\boldsymbol{m} \vec{a}_{1}$

$$
\left.\Rightarrow \sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle=E(\vec{k}) \sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \right\rvert\, \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)
$$

Multiply this equation with $\left\langle\phi_{s}(\vec{r})\right.$ and:

- keep the energy matrix elements for orbitals that are nearest neighbors and
- assume that the orbitals on different atoms are orthogonal

$$
\begin{aligned}
& {\frac{e^{i \vec{k}} \cdot \vec{R}_{1}}{\sqrt{N}}\left\langle\phi_{s}(\vec{r}) \hat{H}\right| \phi_{s}\left(\vec{r}-\vec{R}_{1}\right)+\frac{1}{\sqrt{N}}\left\langle\phi_{s}(\vec{r}) \hat{H} \mid \phi_{s}(\vec{r})\right\rangle+\frac{e^{i \vec{k} \cdot R_{-1}}}{\sqrt{N}}\left\langle\phi_{s}(\vec{r}) \hat{H} \mid \phi_{s}\left(\vec{r}-\vec{R}_{-1}\right)\right\rangle}_{=E(\vec{k}) \frac{1}{\sqrt{N}}\left\langle\phi_{s}(\vec{r}) \mid \phi_{s}(\vec{r})\right\rangle}^{\Rightarrow-V_{s s \sigma} \frac{e^{i \vec{k} \cdot \vec{a}_{1}}}{\sqrt{N}}+\frac{1}{\sqrt{N}} E_{s}-\frac{e^{-i \vec{k} \cdot \vec{a}_{1}}}{\sqrt{N}} V_{s s \sigma}=E(\vec{k}) \frac{1}{\sqrt{N}}} \\
& \Rightarrow E(\vec{k})=E_{s}-2 V_{s s \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)
\end{aligned}
$$

Tight-Binding Bandstructure

Tight Binding Approach for a 1D Crystal

Energy levels in an isolated atom

Tight-Binding Bandstructure

Tight Binding Approach for a 1D Crystal

$E(\vec{k})=E_{s}-2 V_{s s \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)$

- Number of quantum states at the starting point $=2 \times$ number of orbitals used in the LCAO solution $=2 \mathrm{~N}$
- Number of quantum states at the ending point $=2 \times$ energy levels per band for an N atom crystal $=2 N$
\Rightarrow Initial number of quantum states $=$ Final number of quantum states

A band of N energy levels $2 N$ quantum states

ECE 4070 - Spring 2010 - Farhan Rasa - Consell University

Atomic Orbitals and their Overlaps

Atomic Orbitals

- Wavefunction amplitudes of the atomic s and \mathbf{p} orbitals in the angular directions are plotted
- The s-orbital is spherically symmetric
- The p-orbitals have +ve and -ve lobes and are oriented along x -axis, y -axis, and z -axis

ECE 4070 - Spring 2010-Farhan Rana - Cornell University

Atomic Orbitals and their Overlaps

Orbitals and Bonding
There are two main types of co-valent bonds: sigma bonds (or σ-bonds) and pi-bonds (or π-bonds)
(1) Sigma bonds (or σ-bonds):

s-s σ-bond
(Example: Hydrogen molecule, semiconductors)
$\left\langle\phi_{s}\left(\vec{r}-\vec{r}_{1}\right)\right| \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{r}_{2}\right)\right\rangle \approx V_{s s \sigma}$
p-p σ-bond
(Example: Semiconductors)
$\left\langle\phi_{p}\left(\vec{r}-\vec{r}_{1}\right)\right| \hat{H}\left|\phi_{p}\left(\vec{r}-\vec{r}_{2}\right)\right\rangle \approx V_{p p \sigma}$
s-p σ-bond
(Example: Semiconductors)

$$
\left\langle\phi_{p}\left(\vec{r}-\vec{r}_{1}\right)\right| \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{r}_{2}\right)\right\rangle \approx-V_{s p \sigma}
$$

s-p σ-bond
(Example: Semiconductors)

$$
\left\langle\phi_{p}\left(\vec{r}-\vec{r}_{1}\right)\right| \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{r}_{2}\right)\right\rangle \approx V_{s p \sigma}
$$

Atomic Orbitals and their Overlaps

Orbitals and Bonding

What about this situation?

$$
\left\langle\phi_{p}\left(\vec{r}-\vec{r}_{1}\right)\right| \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{r}_{2}\right)\right\rangle \approx 0
$$

The Hamiltonian is up-down symmetric The s-orbital is up-down symmetric
The p-orbital is up-down anti-symmetric \Rightarrow The matrix element is zero! No bonding possible

What about this situation? What should be the matrix element?

$$
\begin{aligned}
& \begin{aligned}
\left.\phi_{p}\left(\vec{r}-\vec{r}_{1}\right)|\hat{H}| \phi_{s}\left(\vec{r}-\vec{r}_{2}\right)\right\rangle & \approx 0 \cdot \sin (\theta)+\left(-V_{s p \sigma}\right) \cdot \cos (\theta) \\
& =-V_{s p \sigma} \cos (\theta)
\end{aligned}
\end{aligned}
$$

Atomic Orbitals and their Overlaps

Orbitals and Bonding

(2) Pi bonds (or π-bonds):

p-p π-bond
(Example: graphene, carbon nanotubes, conjugated conducting molecules)

$$
\left\langle\phi_{p}\left(\vec{r}-\vec{r}_{1}\right)\right| \hat{H}\left|\phi_{p}\left(\vec{r}-\vec{r}_{2}\right)\right\rangle \approx-V_{p p \pi}
$$

What about this situation? What should be the matrix element?

$$
\begin{aligned}
\left\langle\phi_{p}\left(\vec{r}-\vec{r}_{1}\right)\right| \hat{H}\left|\phi_{p}\left(\vec{r}-\vec{r}_{2}\right)\right\rangle & \approx\left(-V_{p p \pi}\right) \cdot \sin (\theta)+0 \cdot \cos (\theta) \\
& =-V_{p p \pi} \sin (\theta)
\end{aligned}
$$

ECE 4070 - Spring 2016 - Farkan Rana - Cersell University

Tight-Binding Bandstructure

Tight Binding vs NFEA for a 1D Crystal

LCAO - Tight Binding $E(\vec{k})=E_{s}-2 V_{s s \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)$

Nearly Free Electron Approach (NFEA)

The energy matrix elements are of the order of: $V_{s s \sigma} \sim \frac{\hbar^{2}}{m} \frac{1}{a^{2}}$

Tight-Binding Bandstructure

Example: A 1D Crystal with 2 Orbitals per Primitive Cell

Each atoms now has a s-orbital and a p-orbital that contributes to energy band formation

$$
\begin{aligned}
& \phi_{s}(\vec{r}) \rightarrow E_{s} \\
& \phi_{p}(\vec{r}) \rightarrow E_{p}
\end{aligned}
$$

We write the solution in the form:

$$
\psi_{\bar{k}}(\vec{r})=\sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}}\left[c_{s}(\bar{k}) \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)+c_{p}(\vec{k}) \phi_{p}\left(\vec{r}-\vec{R}_{m}\right)\right]
$$

Verify that it satisfies: $\quad \psi_{\vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}^{\prime}} \psi_{\vec{k}}(\vec{r})$
And plug it into the Schrodinger equation:

$$
\hat{H}\left|\psi_{\vec{k}}(\vec{r})\right\rangle=E(\vec{k})\left|\psi_{\vec{k}}(\vec{r})\right\rangle
$$

Tight-Binding Bandstructure

Tight Binding Approach for a 1D Crystal

Step 1:
Multiply the equation with $\left\langle\phi_{S}(\vec{r})\right.$ and:

- keep the energy matrix elements for orbitals that are nearest neighbors and
- assume that the orbitals on different atoms are orthogonal

$$
\left[E_{s}-2 V_{s s \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)\right] c_{s}(\bar{k})+2 i V_{s p \sigma} \sin \left(\vec{k} \cdot \vec{a}_{1}\right) c_{p}(\bar{k})=E(\bar{k}) c_{s}(\bar{k})
$$

Step 2:

Multiply the equation with $\left\langle\phi_{p}(\vec{r})\right.$ and:

- keep the energy matrix elements for orbitals that are nearest neighbors and
- assume that the orbitals on different atoms are orthogonal

$$
\left[E_{p}+2 V_{p p \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)\right] c_{p}(\vec{k})-2 i V_{s p \sigma} \sin \left(\vec{k} \cdot \vec{a}_{1}\right) c_{s}(\bar{k})=E(\bar{k}) c_{p}(\bar{k})
$$

Tight Binding Approach for a 1D Crystal

We can write the two equations in matrix form:

$$
\left[\begin{array}{cc}
E_{s}-2 V_{s s \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right) & 2 i V_{s p \sigma} \sin \left(\vec{k} \cdot \vec{a}_{1}\right) \\
-2 i V_{s p \sigma} \sin \left(\vec{k} \cdot \vec{a}_{1}\right) & E_{p}+2 V_{p p \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)
\end{array}\right]\left[\begin{array}{l}
c_{s}(\vec{k}) \\
c_{p}(\vec{k})
\end{array}\right]=E(\vec{k})\left[\begin{array}{l}
c_{s}(\vec{k}) \\
c_{p}(\vec{k})
\end{array}\right]
$$

For each value of wavevector one obtains two eigenvalues - corresponding to two energy bands

For $\overrightarrow{\boldsymbol{k}}=\mathbf{0}$ we get:

$$
\begin{aligned}
& E(\vec{k}=0)=E_{p}+2 V_{p p \sigma} \\
& {\left[\begin{array}{l}
c_{s}(\vec{k}=0) \\
c_{p}(\vec{k}=0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
\end{aligned}
$$

$$
E(\vec{k}=0)=E_{s}-2 V_{s s \sigma}
$$

$$
\left[\begin{array}{l}
c_{s}(\vec{k}=0) \\
c_{p}(\vec{k}=0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Bloch function is made of only p-orbitals

Bloch function is made of only s-orbitals

CE 4070 - Spring 2050 - Farhan Rana - Cornell University

Tight-Binding Bandstructure

Tight Binding Approach for a 1D Crystal

For $\overrightarrow{\boldsymbol{k}}=\frac{\pi}{\mathbf{2 a}} \hat{\boldsymbol{x}}$ we get:
$E\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right)=?$
$\left[\begin{array}{l}c_{s}\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right) \\ c_{p}\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right)\end{array}\right]=\left[\begin{array}{l}? \\ ?\end{array}\right]$

$$
E\left(\vec{k}=\frac{\pi}{2 a}\right)=?
$$

$$
\left[\begin{array}{l}
c_{s}\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right) \\
c_{p}\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right)
\end{array}\right]=\left[\begin{array}{l}
? \\
?
\end{array}\right] \begin{aligned}
& \text { Bloch function is made } \\
& \text { of both } s \text { - and } p \text {-orbitals }
\end{aligned}
$$

Tight-Binding Bandstructure

Tight Binding Approach for a 1D Crystal

For $\overrightarrow{\boldsymbol{k}}=\frac{\pi}{a} \hat{\boldsymbol{x}}$ we get:

$$
\begin{aligned}
& E\left(\vec{k}=\frac{\pi}{a} \hat{x}\right)=E_{p}-2 V_{p p \sigma} \\
& {\left[\begin{array}{l}
c_{s}\left(\vec{k}=\frac{\pi}{a} \hat{x}\right) \\
c_{p}\left(\vec{k}=\frac{\pi}{a} \hat{x}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \begin{array}{l}
\text { Bloch function is made } \\
\text { of only p-orbitals }
\end{array}} \\
& E\left(\vec{k}=\frac{\pi}{a} \hat{x}\right)=E_{s}+2 V_{s s \sigma} \\
& {\left[\begin{array}{ll}
c_{s}\left(\vec{k}=\frac{\pi}{a} \hat{x}\right) \\
c_{p}\left(\vec{k}=\frac{\pi}{a} \hat{x}\right)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \begin{array}{l}
\text { Bloch function is made } \\
\text { of only s-orbitals }
\end{array}}
\end{aligned}
$$

A Simple Example: 2D Graphene and Boron Nitride

sp² hybridization
Orbital figs from Pulfrey

Hopping energy: $\quad \gamma_{0} \approx 3 \mathrm{eV}$

Real-space picture

- Pi-orbitals are responsible for conduction.
(1 electron/carbon atom)

A Simple Example: 2D Graphene and Boron Nitride

Find the real space lattice vectors

$$
\mathbf{a}_{1}=\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right) \quad \mathbf{a}_{2}=\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}\right)
$$

Write down the tight-binding Hamiltonian Matrix

Find the eigenvalues of the Hamiltonian to get the bandstructure
$\mathcal{E}_{ \pm}\left(k_{x}, k_{y}\right)=A \pm \sqrt{B^{2}+t^{2}\left[1+4 \cos \left(3 k_{x} a / 2\right) \cos \left(\sqrt{3} k_{y} a / 2\right)+4 \cos ^{2}\left(\sqrt{3} k_{y} a / 2\right)\right]}$

$$
A=\left(\epsilon_{B}+\epsilon_{N}\right) / 2 \quad B=\left(\epsilon_{B}-\epsilon_{N}\right) / 2
$$

A Simple Example: 2D Graphene and Boron Nitride

Find the real space lattice vectors

$$
\mathbf{a}_{\mathbf{1}}=\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right) \quad \mathbf{a}_{2}=\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}\right)
$$

Write down the tight-binding Hamiltonian Matrix

hopping energy to each neighbor with phase factor
$h(k)=-t\left[1+e^{i \mathbf{k} \cdot \mathbf{a}_{1}}+e^{i \mathbf{k} \cdot \mathbf{a}_{2}}\right]$

ind the eigenvalues of the Hamiltonian to get the bandstructure

$\mathcal{E}_{ \pm}\left(k_{x}, k_{y}\right)=A \pm \sqrt{B^{2}+t^{2}\left[1+4 \cos \left(3 k_{x} a / 2\right) \cos \left(\sqrt{3} k_{y} a / 2\right)+4 \cos ^{2}\left(\sqrt{3} k_{y} a / 2\right)\right]}$

$$
A=\left(\epsilon_{B}+\epsilon_{N}\right) / 2 \quad B=\left(\epsilon_{B}-\epsilon_{N}\right) / 2
$$

A Simple Example: 2D Graphene and Boron Nitride

Find the eigenvalues of the Hamiltonian to get the bandstructure
$\mathcal{E}_{ \pm}\left(k_{x}, k_{y}\right)=A \pm \sqrt{B^{2}+t^{2}\left[1+4 \cos \left(3 k_{x} a / 2\right) \cos \left(\sqrt{3} k_{y} a / 2\right)+4 \cos ^{2}\left(\sqrt{3} k_{y} a / 2\right)\right]}$

$$
\begin{gathered}
A=\left(\epsilon_{B}+\epsilon_{N}\right) / 2 \quad B=\left(\epsilon_{B}-\epsilon_{N}\right) / 2 \\
E_{g}=\mathcal{E}_{+}-\mathcal{E}_{-}=2 B=5.8 \mathrm{eV} \\
\epsilon_{B} \sim+2.9 \mathrm{eV}, \epsilon_{N} \sim-2.9 \mathrm{eV} \\
E_{g}=5.8 \mathrm{eV}, t=2.92 \mathrm{eV}, a \sim 0.15 \mathrm{~nm}
\end{gathered}
$$

Find the conduction and valence band structures and effective masses
$\mathcal{E}_{c}(k)=E_{g}+\frac{\hbar^{2} k^{2}}{2 m^{\star}}$,
(conduction band)
$\mathcal{E}_{v}(k)=-\frac{\hbar^{2} k^{2}}{2 m^{\star}}, \quad$ (valence band)
$m^{\star}=\frac{2 \hbar^{2} E_{g}}{9 a^{2} t^{2}} \sim 0.6 m_{0}$

A Simple Example: 2D Graphene Bonds and Bands

- Reviews of Modern Physics, 79677 (2007).

A Simple Example: 2D Graphene Bonds and Bands

Debdeep Jena (djena@cornell.edu)

A Simple Example: 2D Graphene Bonds and Bands

Debdeep Jena (djena@cornell.edu)

Comparison of NFE, Tight-Binding, and True Bands

Fig. 225. A comparisce between the band structure of Ge calculated by (a) the tight-binding method, (b) the empirical preudopotential method, and (e) the nearly free electron model [Ref. 2.24, p. 79]

From Cardona and Yu

ECE 4070/MSE 6050
Comparison of Bandstructures NFE, Tight-Binding (LCAO) \& EPM (Germanium, representative of $\mathrm{Si}_{\mathrm{i}}^{\mathrm{m}}$...)

Atoms to Crystals

Typical 3D semiconductor crystal structures

Due to the covalent bond structure (the bonding orbitals are s-p hybrids), most common semiconductors are found in three distinct structures:

| i) The diamond lattice type: | e.g. Si, Ge |
| :--- | :--- | :--- |
| ii) The zinkblende type: | e.g. $\mathrm{GaAs}, \mathrm{InP}$ |
| iii) The wurtzite type (hexagonal): | e.g. $\mathrm{GaN}, \mathrm{ZnO}$ |

Fig. 1.2 Diamond lattice structure.

(a)

(b)

Fig. 1.3 (s) Zincblende lattice structure and (b)Wurtzite lattice structure. (O) A atom, ($) \mathrm{B}$ atom.

Nearly free electron bandstructure, k-space points

FCC Free Electron Energies
Degeneracy of the curve:

Electron Momentum

Orbital overlaps and bonds in semiconductors

(a)
(b)

Fig. 2.17a,b. Overlap of two s orbitals to form bonding and antibonding σ orbitals
(a)
(b)

$V_{p p \sigma}$

Fig. 2.18a,b. Overlap of two p_{x} orbitals along the x axis to form bonding and antibonding σ orbitals

Fig. 2.19a,b. Overlap of two p_{y} orbitals to form bonding and antibonding π orbitals

Orbital overlaps and bonds in semiconductors

(Cardona/Yu)

$$
\mathbf{a}_{1}=\frac{a}{4}(1,1,1), \mathbf{a}_{2}=\frac{a}{4}(-1,-1,1), \mathbf{a}_{3}=\frac{a}{4}(-1,1,-1), \mathbf{a}_{4}=\frac{a}{4}(1,-1,-1)
$$

| $\left\|s^{A}\right\rangle$ | $\left\|p_{x}^{A}\right\rangle$ | $\left\|p_{y}^{A}\right\rangle$ | $\left\|p_{z}^{A}\right\rangle$ | $\left\|s^{B}\right\rangle$ | $\left\|p_{x}^{B}\right\rangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: |$\left|p_{y}^{B}\right\rangle \quad\left|p_{z}^{B}\right\rangle$

$\left\langle s^{A}\right|$
$\left\langle p_{x}^{A}\right|$
$\left\langle p_{y}^{A}\right|$
$\left\langle p_{z}^{A}\right|$
$\left\langle s^{B}\right|$
$\left\langle p_{x}^{B}\right|$
$\left\langle p_{y}^{B}\right|$
$\left\langle p_{z}^{B}\right|$$\left(\begin{array}{cccccccc}E_{s}^{A} & 0 & 0 & 0 & -V_{0} g_{0}(\mathbf{k}) & V_{1} g_{1}(\mathbf{k}) & V_{1} g_{2}(\mathbf{k}) & V_{1} g_{3}(\mathbf{k}) \\ 0 & E_{p}^{A} & 0 & 0 & -V_{1} g_{1}(\mathbf{k}) & V_{2} g_{0}(\mathbf{k}) & V_{3} g_{3}(\mathbf{k}) & V_{3} g_{2}(\mathbf{k}) \\ 0 & 0 & E_{p}^{A} & 0 & -V_{1} g_{2}(\mathbf{k}) & V_{3} g_{3}(\mathbf{k}) & V_{2} g_{0}(\mathbf{k}) & V_{3} g_{1}(\mathbf{k}) \\ 0 & 0 & 0 & E_{p}^{A} & -V_{1} g_{3}(\mathbf{k}) & V_{3} g_{2}(\mathbf{k}) & V_{3} g_{1}(\mathbf{k}) & V_{2} g_{0}(\mathbf{k}) \\ \text { c.c. } & E_{s}^{B} & 0 & 0 & 0 \\ \text { c.c. } & 0 & E_{p}^{B} & 0 & 0 \\ \text { c.c. } & 0 & 0 & E_{p}^{B} & 0 \\ \text { c.c. } & 0 & 0 & 0 & E_{p}^{B}\end{array}\right)$

Tight-Binding Bandstructure

Solid State Table of the Elements

3

THANSITION METALS

COVALENT SOUDS

- NONMETALS-

Sr- =-2-2

ECE 4070 / MSE 6050

The Solid-State Table for Elements.
Provides the tight-binding
parameters for chemical bonds.

Semiconductor Bandstructures

Semiconductor Bandstructures

Tight Binding Solution for GaAs

Parameter values for GaAs:
$E_{S G}=-11.37 \mathrm{eV}$
$E_{P G}=-4.90 \mathrm{eV}$
$V_{s s \sigma}=1.70 \mathrm{eV}$
$V_{\text {sp } \sigma}=2.15 \mathrm{eV}$
$V_{p p \sigma}=3.44 \mathrm{eV}$
$E_{S A}=-17.33 \mathrm{eV}$
$E_{P A}=-7.91 \mathrm{eV}$
$V_{p \rho \pi}=0.89 \mathrm{eV}$

Tight Binding Solution

Semiconductor Bandstructures

Tight Binding Solution for GaAs: States at the Γ-Point

At the Γ-point:

$$
\begin{aligned}
& g_{0}(\vec{k}=0)=4 \\
& g_{1}(\vec{k})=g_{2}(\vec{k})=g_{3}(\vec{k})=0
\end{aligned}
$$

\Rightarrow Energy eigenvalues can be found analytically

Two of the eigenvalues at the Γ-point are:

The Bloch function of the lowest energy band and of the conduction band at Γ-point are made up of ONLY s-orbitals from the Ga and As atoms

$$
\psi_{c, \bar{k}=0}(\vec{r})=\sum_{m} \frac{1}{\sqrt{N}}\left[c_{1}\left|\phi_{1}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle+c_{5}\left|\phi_{5}\left(\vec{r}-\vec{R}_{m}-\vec{d}_{2}\right)\right\rangle\right]
$$

Semiconductor Bandstructures

Tight Binding Solution for GaAs: States at the Γ-Point

Six remaining eigenvalues at the Γ-point are:

Each eignevalue above is triply degenerate

The Bloch function of the highest three energy bands and of the three valence bands at Γ-point are made up of ONLY p-orbitals from the Ga and As atoms
$\psi_{v, \bar{k}=0}(\vec{r})=\sum_{m} \frac{1}{\sqrt{N}}\left[\begin{array}{l}\sum_{j=2}^{4} c_{j}\left|\phi_{j}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle \\ +\sum_{j=6}^{8} c_{j}\left|\phi_{j}\left(\vec{r}-\vec{R}_{m}-\vec{d}_{2}\right)\right\rangle\end{array}\right]$

Semiconductor Bandstructures

s orbital

$$
\psi_{\mathrm{s}}=\frac{2 a_{0}^{-3 / 2}}{\sqrt{\pi}}\left(1-\frac{r}{2 a_{0}}\right) e^{-r / 2 a_{0}}
$$

p_{x} orbital $\psi_{\mathrm{px}}=\frac{2 a_{0}^{-3 / 2}}{\sqrt{\pi / 3}}\left(1-\frac{r}{2 a_{0}}\right) e^{-r / 2 a_{0}} \cos \theta$

Figure 5.1: Shows the shape of the s and p_{x} orbitals and the equations that describe them. a_{0} is the atomic orbital size, r is the radius from the nucleus, and θ is the angle in the x, y plane.

Wave function amplitudes (probability of finding an electron)

Non-bonding

Bonding

Positive ions drawn toward the electrons

Figure 5.2: Shows the symmetry of the hybridized sp^{3} and sp^{2} molecular orbitals. The sp_{3}^{2} orbitals lie in a plane perpendicular to the p_{z} orbitals and are equal lengths. The sp^{3} orbitals are all equivalent to each other and stretch to corners of a tetrahedron.

Figure 5.3: A schematic diagram illustrating the basis of cohesion in solids resulting from symmetric and antisymmetric combinations of atomic orbitals. The center of electron charge lies between the positive ions for a symmetric bonding orbital and outside of the positive ions for an antisymmetric orbital combination.

Semiconductor Bandstructures

Figure 5.4: A schematic diagram of the evolution of bonding of Si atoms. The filled 3 s and partially filled 3 p atomic orbitals of two atoms combine to form half-filled sp^{3} hybrid molecular orbitals. These combine to form bonding and antibonding orbtials. As more atoms collect atoms collect to create a bulk solid, bands form.

Silicon

Figure 5.5: Shows the evolution of atomic orbital energies to form bonds and ultimately bands. The geometries of the atomic and hybrid orbitals are shown schematically as insets.

GaAs

Semiconductor Bandstructures

First-nearest neighbor

Figure 5.6: A schematic diagram showing the interactions of selected atomic orbitals and the geometry of these orbitals with respect to the crystal lattice in a zincblende or diamond structure material.

Table 5.3: Energy Gaps and Lattice Parameters

Semiconductor Class	Semiconductor	Lattice Parameter	$\begin{aligned} & \text { Energy Gap, eV } \\ & \left(\text { at } 20^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \mathbf{E}_{\mathrm{e}} \\ (\mathrm{eV}) \end{gathered}$	$\underset{(\mathrm{eV})}{\mathbf{E}_{\mathrm{v}}}$
Cubic		nm			
IV	C (diamond)	0.35597	5.5		
IV	Si	0.54307	1.12 (indirect)	4.05	5.17
IV	Ge	0.56754	0.67 (indirect)	4.0	4.67
IV	a-Sn	0.64912	0.08		
III-V	GaP	0.54505	2.26 (indirect)	3.8	6.1
III-V	GaAs	0.56532	1.42	4.07	5.49
III-V	GaSb	0.609593	0.726	4.06	4.79
III-V	InP	0.58687	1.344	4.38	5.72
III-V	InAs	0.60583	0.354	4.9	5.25
III-V	InSb	0.6479	0.17	4.59	4.76
II-VI	ZnSe (cubic)	0.567	2.58	4.1	6.7
I-VII	CuBr	5.69	2.94	4.35	7.29
I-III-VI2	CuInSe 2	0.578	0.98	4.0	5.0
II-IV-V 2	ZnGeAs_{2}	0.567	0.85		
Hexagonal					
III-V	AlN	$\begin{aligned} & 0.3111 \text { (a) } \\ & 0.4978 \text { (c) } \end{aligned}$	5.9	0.6	6.5
III-V	GaN	$\begin{aligned} & 0.3190 \text { (a) } \\ & 0.5189 \text { (c) } \end{aligned}$	3.45	4.0	7.4
III-V	InN	$\begin{aligned} & 0.3533 \text { (a) } \\ & 0.5693 \text { (c) } \end{aligned}$	0.7 (note values vary greatly)		
II-VI	ZnS	$\begin{aligned} & 0.3814 \text { (a) } \\ & 0.6258 \text { (c) } \end{aligned}$	3.911		
II-VI	CdSe	$\begin{aligned} & 0.4299 \text { (a) } \\ & 0.7010 \text { (c) } \end{aligned}$	1.751 eV		

E_{c} (the electron affinity) and E_{v} (electron affinity + energy gap) measured with respect to the vacuum level. Lattice parameters in nm.

Chemical bonding, Lattice Constants, Band edges, and Band Gaps for various Semiconductors

Semiconductor Bandstructures

Bandstructures of
Elemental and Compound Semiconductors
Debdeep Jena (djena@cornell.edu)

Semiconductor Bandstructures

(a) LCAO Bands

(b) True bands

(e) Free-electron bands

Fig. 225. A comparison between the band structure of Ge calculated by (a) the tipht-bindine method. (b) the empirical pseudopotential method, and (c) the nearly free electron model [Ref. 2.24, p. 79]

Fig. 2.24. The valence band structure and density of states (see Sect. 4.3 .1 for definition) of Si calculated by the tight-binding method (broken curves) and by the empirical pseudopotential method (solid lines) [2.25]

Electron clouds in semiconductors

Measurement of Semiconductor Bandstructures

Tunable

UV Photon Source

 Crystal

Semiconductor Bandstructures

Free electron vs. real bandstructure

FIGURE 2.16. Band vructure of fou common vemiconductors: salicun, germanium. gallum "- widk alld aluminium ar enode. The calculations do nut inclede the spin-orbit coupling. |Revults thally wuppled by Ihot © P Srivastava. Univenity of Exeter.]
FIGURE 2.15. (a) Brillouin zone for a face-centred cubic crystal, showing the notation for special points and directions. Solid lines are on the surface with broken lines inside the zone. (b) Band structure in the free-electron model, showing the effect of folding back the parabola into the reduced zone.

Tight-Binding Bandstructure

Energy Bands of $\mathbf{S i}, \mathrm{Ge}$, and $\mathbf{G a A s}$ for Reference

ECE 4070/MSE 6050

Energy Bandstructures of the most common Semiconductors

A Timely Note About This Course!

Semiconductor

 electronics requires for its foundation primarily wave mechanics and statistics. However, crystallography, thermodynamics, and chemistry also have a share in it and, quite generally, "it is incredible what miserable quantities of thought and mathematics are needed to provide even the simplest tools for daily use in semiconductor physics" (from a conversation of W. Schottky with the author).
ECE 4070/MSE 6050

- If you are finding the course tough at this point, you are in hallowed company.
- That is the nature of the subject - solve problems and think about them (do not let go), you will learn it.
- We have developed a rich range of powerful tools, but the only way to learn their power is to apply them.
- The transition from "no idea" to "completely understand" is very quick in this subject (if you put in the effort) - I am here to help.

Walter Schottky

Eberhard Spenke

Prelim 2 for ECE 4070 / MSE 6050

- Thursday April $11^{\text {th }} 2019$
- Time: 7:30 - 9:00 pm
- In Phillips Hall 219 (Note: different from class location!)
- No restrictions on books/notes/calculators/computers etc.
- Bring pen/pencil - exam books will be provided.
- The questions will be conceptual, no heavy number crunching will be needed.
- Questions from previous years are fairly representative of what to expect.
- Topics: Chapters 1-9 from the Notes, and suggested Slides.

Exams and Grades:

An assignment every 1.5 weeks. Total of 6-8 homework assignments per semester. Exams: 2 Evening Prelim Exams and 1 Final Exam. Here is the approximate breakup of scores that will go towards your final grade: 35\% Assignments
15% Prelim 1 [Tuesday March 5th, 2019]
20\% Prelim 2 [Thursday April 11th, 2019]
30\% Final [Wednesday May 15th, 2019]

Tight-Binding Bandstructure

Periodic Table of Elements

For elements with no stable isotoces, the mass number of the isotope with fle longest halfllfe is in parentheses.

Some common Semiconductor Families:

- Group IV: Diamond, Silicon, Ge, ..
- Group III-V: GaAs, InP, InSb,GaN,
- Group II-VI: $\mathrm{ZnO}, \mathrm{MgO}, \mathrm{CdSe}, \mathrm{HgTe}$.
- 2D Materials: Graphene, MoS ${ }_{2}, \mathrm{GaSe}_{1}, \ldots$

Tight-Binding Bandstructure

Fig. 7.6. Bandgap energy and lattice constant of various III-V semiconductors at room temperature (adopted from Tien, 1988).

ECE 4070 / MSE 6050

- A wide variety of bandgaps and lattice constant semiconductors are available.

Tight-Binding Bandstructure

 icmperatere (asopeod froen Ties, 1988,

ECE 4070 / MSE 6050

- Semiconductors can be grown on top of each other.

Compound Semiconductor Heterostructures: Strain

Lattice-Matching, Strain

HG. 1. (Color online) AFM imapes showing $2 \times 2 \mu \mathrm{~m}^{1}$ sans of the AIN surfices ater grosch.

APPLIED PHYSICS LETTERS 90, 182112 (2007)

Compound semiconductors: Heterostructures

Semiconductor Heterostructures

Semiconductor bands line up with each other in 3 ways.
Based on the lineups, one can create

- Barriers
- Wells
- Quasi-Electric fields

For both electrons and holes independently with suitable material choices.

Compound semiconductor heterostructure band offsets

The Common Anion Rule: When the anion (the electron accepting atom such as As in GaAs and InAs) is in common across a semiconductor heterojunction, the change in the conduction band edge is greater than the change in the valence band edge across the semiconductor heterojunction. Mathematically, $\Delta \mathrm{E}_{\mathrm{V}}<\Delta \mathrm{E}_{\mathrm{C}}$.

The Common Cation Rule: When the cation (e.g. Ga in GaAs or GaSb) is in common across the junction, the valence band edge energies scale with the anion electronegativities. For example, the valence band edge of phosphide semiconductors will lie below those for arsenides which will lie below those of antimonides. Mathematically, $\mathrm{E}_{\mathrm{V}}\left(\mathrm{CA}_{1}\right)<\mathrm{E}_{\mathrm{V}}\left(\mathrm{CA}_{2}\right)<\mathrm{E}_{\mathrm{V}}\left(\mathrm{CA}_{3}\right)$, where C designates a cation, and $\mathrm{A}_{1}, \mathrm{~A}_{2}$, and A_{3} designate three anions with decreasing electronegativities.

(Rockett)

Quasi electric fields in semiconductor heterostructures

Semiconductor Heterostructures \& Quasi-Electric Fields

The Nobel Prize in Physics 2000
"for basic work on information and communication technology"
"for developing semiconductor heterostructures used in high-speed and opto-electronics"

Zhores I. Alferov © $1 / 4$ of the prize
Russia
A.F. Loffe Physico-
Technical Institute Technical Institute St. Petersburg, Russia
b. 1930

Herbert Kroemer © $1 / 4$ of the prize
Federal Republic of Germany

University of California Santa Barbara, CA, USA
b. 1928
"for his part in the invention of the integrated circuit"

Forces different for electrons and holes

Rev. Mod. Phy., vol 73, p 783 (2001)
...a drift field may also be generated through a variation of the energy gap itself, by making the base region from a nonstoichiometric mixed crystal of different semiconductors with different energy gaps (for example, $\mathrm{Ge}-\mathrm{Si}$), with a composition that varies continuously through the base. (Translated from Krömer, 1954)

FIG. 1. Quasielectric fields: (a) A true electric field simply tilts the bands: (b) quasielectric fields, with no foree on electrons, but a force on holes; (c) quasielectric fields forcing electrons and holes in the same direction. From Kroemer, 1957a.

GaN based Visible LEDs and Lasers

The Nobel Prize in Physics 2014
Isamu Akasaki, Hiroshi Amano, Shuji Nakamura

Share this: $\mathrm{fl} \mathrm{G} \cdot \mathrm{V}+2.5 \mathrm{~K} \square$

The Nobel Prize in Physics 2014

Photo: A. Mahmoud Isamu Akasaki
Prize share: $1 / 3$

Photo: A. Mahmoud Hiroshi Amano
Prize share: $1 / 3$

Photo: A. Mahmoud Shuji Nakamura Prize share: $1 / 3$

The Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura "for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources".

- Science of light

How to make a Semiconductor Light Emitter

REVIEWS OF MODERN PHYSICS, VOLUME 87, OCTOBER-DECEMBER 2015
Nobel Lecture: Background story of the invention of efficient blue InGaN light emitting diodes*

Shuji Nakamura
University of California, Santa Barbara, Califormia, USA
(published 5 October 2015)

(a)

(b)

FIG. 2 (color). (a) Image of a blue GaN LED with attached gold wire contacts (size of diode $0.4 \times 0.4 \mathrm{~mm}^{2}$) and (b) the same LED packaged as a commercial product. From Nakamura, Mukai, and Senoh, 1994.

How to make white light with semiconductors

(a)

Homojunction LED

Holes $\quad n$-type
(b)

Double Heterostructure LED

p-type
Active
Layer
n-type

$$
\mathrm{IQE}=\frac{\text { Light generated }}{\text { Electrons injected }}
$$

$$
=\frac{R_{\text {radiative }}}{R_{\text {radiative }}+R_{\text {nonradiative }}}
$$

$$
=\frac{B n^{2}}{A n+B n^{2}+C n^{3}}
$$

Solid state lighting: The lighting of the future

FIG. 13 (color). Dependence of LED efficiency on dislocation density for various semiconductor materials. From Lester et al., 1995, Chichibu et al., 1996, and Nakamura, 1998.

Lasers outperform LEDs in efficiency!

FIG. 17 (color). Comparison of external quantum efficiency (EQE) of a commercial LED and laser with increasing current density. From Pourhashemi et al., 2013.

Lasers outperform LEDs in efficiency!

Compound semiconductors: Heterostructures

Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks*

Herbert Kroemer
Electrical and Computer Engineering Department, University of Callfornia, Santa Barbara, Callfornia 93106-9560

(Published 22 October 2001)

I. INTRODUCTION

Heterostructures, as I use the word here, may be defined as heterogeneous semiconductor structures built from two or more different semiconductors, in such a way that the transition region or interface between the different materials plays an essential role in any device action. Often, it may be said that the interface is the device.

The participating semiconductors all involve elements from the central portion of the periodic table of the elements (Table 1). In the center is silicon, the backbone of modern electronics. Below Si is germanium. Although Ge is rarely used by itself. $\mathrm{Ge}-\mathrm{Si}$ alloys with a composition-dependent position play an increasingly important role in today's heterostructure technology. In fact, historically this was the first heterostructure device system proposed, although it was also the system that took longest to bring to practical maturity, largely because of the 4% mismatch between the lattice constants of Si and Ge .

Silicon plays the same central role in electronic metallurev that steel nlavs in structural metallurov Rut iust

Similar to the III-V compounds, every element shown in column II may be used together with every element in column VI to create II-VI compounds, and again alloying is possible to create a continuous range of the latter.

II. BAND DIAGRAMS AND QUASIELECTRIC FORCES

Whenever I teach my semiconductor device physics course, one of the central messages I try to get across early is the importance of energy-band diagrams. I often put this in the form of "Kroemer's Lemma of Proven Ignorance":

If, in discussing a semiconductor problem, you cannot draw an Energy-Band-Diagram, this shows that you don't know what you are talking about,
with the corollary
If you can draw one, but don't, then your audience won't know what you are talking about.
Nowhere is this more true than in the discussion of heterostructures, and much of the understanding of the latter is based on one's ability to draw their band diagrams-and knowing what they mean.

- Rev. Mod. Phys., vol 73, pg. 783 (2001)

Effective Mass Approximation

- Effective Mass Approximation MAPS the complicated problem of
-Electrons in a complicated crystal + heterostructure potential ... to
the simplest of all quantum mech problems: The particle in a box

Motion of Electrons and Holes in Perturbed Periodic Fields

J. M. Letrnoak ${ }^{*}$ And W. Konst
Bell Telephone Laborateries, Marray Hill, New Jersey
(Received October 13, 1954)

Abstract

A new method of developing an "eflective-mass" equation for electrons moving is a perturbed periodic stracture is discussed. This method is particularly adapted to sach problems as arise in connection with imparity states and cyclotroe resonance in semiconductors such as Si and Ge. The resulting theory generalizes the usal effective-mass treatment to the case where a band minimum is not at the center of the Brillowin zone, asd also to the case wbere the band is degenerate. The latter is particularly striking, the usual Wannier equation being replaced by a set of coaspled differential equations.

- Developed by Luttinger \& Kohn and refined since then...
- Real power of the EMA is exercised in understanding the electronic properties of Quantum Heterostructures.

University of California Santa Barbara, CA, USA

Effective Mass Approximation

- Effective Mass Approximation MAPS the complicated problem of Electrons in a complicated crystal + heterostructure potential ... to the simplest of all quantum mech problems: The particle in a box

Wave packet

$$
\psi(x)=\sum_{n} \sum_{k} C(k) \phi_{n k}(x)=\sum_{n} \int \frac{d k}{2 \pi} C(k) \phi_{n k}(x)
$$

Over small number of k-states

$$
\psi(x) \approx \phi_{n 0}(x) \int \frac{d k}{2 \pi} C(k) e^{i k x}=\underbrace{\phi_{n 0}}_{\text {Bloch }} \cdot \underbrace{C(x)}_{\text {envelope }} .
$$

Effective Mass Approximation

$$
\psi(x) \approx \phi_{n 0}(x) \int \frac{d k}{2 \pi} C(k) e^{i k x}=\underbrace{\phi_{n 0}}_{\text {Bloch }} \cdot \underbrace{C(x)}_{\text {envelope }} .
$$

$$
H_{0} \psi(x)=\int \frac{d k}{2 \pi} C(k) E_{n}(k) \phi_{n k}(x) \approx \phi_{n 0}(x) \int \frac{d k}{2 \pi} C(k) E_{n}(k) e^{i k x}
$$

$$
E_{n}(k)=\sum a_{m} k^{m} \quad \text { Energy "operator" }
$$

Density of States

DOS: $g(\mathcal{E})=g_{s} \cdot \sum_{\mathbf{k}} \delta[\mathcal{E}-\mathcal{E}(\mathbf{k})]$
Valid for electrons, photons, phonons...

Important result: $\sum_{\mathbf{k}}(\ldots) \rightarrow \int \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}}(\ldots)$

If we know the energy dispersion $\mathcal{E}(\mathbf{k})$, we can find the DOS using this prescription.

Free Electron: $\mathcal{E}(\mathbf{k})=\frac{\hbar^{2}|\mathbf{k}|^{2}}{2 \mathbf{m}_{0}}$
Free electron in 3D: $g(\mathcal{E})=g_{s} \cdot \frac{1}{(2 \pi)^{2}}\left(\frac{2 m_{0}}{\hbar^{2}}\right)^{\frac{3}{2}} \sqrt{\mathcal{E}}$

Effective Mass Approximation

Application: Bulk Semiconductors
-3D (Bulk)

$$
\left[-\frac{\hbar^{2}}{2 m^{\star}} \nabla^{2}+V_{i}(r)\right] C(r)=\left[E-E_{c}(r)\right] C(r)
$$

$$
C(r)=\frac{1}{\sqrt{V}} e^{i \vec{k} \cdot \vec{r}}
$$

$\hbar^{2} k^{2} \hbar^{2} k^{2} k^{2}$
$E(k)=E_{c 0}(r)+\frac{\hbar^{2} k^{2}}{2 m^{\star}}=E_{c 0}(r)+\frac{\hbar^{2}}{2}\left(\frac{k_{x}^{2}}{m_{x x}^{\star}}+\frac{k_{y}^{2}}{m_{y y}^{\star}}+\frac{k_{z}^{2}}{m_{z z}^{\star}}\right)$
$g_{3 D}(E)=\frac{1}{2 \pi^{2}}\left(\frac{2 m^{\star}}{\hbar^{2}}\right)^{3 / 2} \sqrt{E-E_{c 0}}$
$n=\int_{0}^{\infty} d E f_{F D}(E) g_{3 D}(E)=N_{C}^{3 D} F_{1 / 2}\left(\frac{E_{C}-E_{F}}{k_{B} T}\right) \approx N_{C}^{3 D} e^{-\frac{E_{C}-E_{F}}{k_{B} T}}$

Effective Mass Approximation

$$
E_{n}(k) \approx E_{c}(r)+\frac{\hbar^{2} k^{2}}{2 m^{\star}} \rightarrow E_{n}(-i \nabla) \approx E_{c}(r)-\frac{\hbar^{2}}{2 m^{\star}} \nabla^{2}
$$

Example: Shallow donor states $\quad E_{n}=-\frac{m_{e} q^{4}}{2\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}} \frac{1}{n^{2}}$

$$
\left[-\frac{\hbar^{2}}{2 m^{\star}} \nabla^{2}-\frac{e^{2}}{4 \pi \epsilon r}\right] C(r)=\left(E-E_{c}\right) C(r)
$$

$$
\begin{aligned}
& E-E_{c}=E_{\infty} \frac{m^{\star}}{\epsilon_{r}^{2}} \\
& a_{B}^{\star}=a_{B} \frac{\epsilon_{r}}{m^{\star}} \\
& C(r) \sim e^{-r / r_{0}}
\end{aligned}
$$

Semiconductor carrier statistics

Enessy dotaization of destrow :
atermed by che fersi- Dike Dispivitiar in.

Carrier Statistics (Electrons/Holes)

ELFCTRON dewoity in the condruction bcmd:

$$
n=\int_{E_{c}}^{\omega} d \varepsilon g_{e}(t) f(c)
$$

$$
n=N_{c} \quad F_{1}(\eta)
$$

Fermi-Danc Interrel
$N_{C}=2\left(\frac{n^{+} k T}{2 \pi k^{2}}\right)^{1 / 2}$

$$
F_{j}(\eta)=\frac{1}{\Gamma(j+1)} \int_{0}^{J} d x \frac{x^{j}}{1+e^{x-\eta}} d \operatorname{den} j^{\prime}
$$

$$
F_{y}(\eta)=\frac{2}{\sqrt{\pi}} \int_{0}^{0} d x \frac{x^{1 / 2}}{1+e^{x-2}}
$$

$$
\eta=\frac{E_{F}-E_{c}}{\lambda T}
$$

For Non- Degenelate somicodubibrs, $\eta \ll-1 \rightarrow$ Bolzroner apmeer.

Carrier Statistics (Electrons/Holes)

$$
p=N_{v} \exp \left(\frac{G_{u}-E_{F}}{k T}\right)
$$

$$
\Rightarrow \quad n p=n_{i}^{2}=(\underbrace{\sqrt[n_{i}]{N_{c} N_{i}} \exp \left(-\frac{E_{i}}{2 k T}\right.}_{i}))^{2}
$$

Semiconductor Intrinsic Carrier Countration.

Where is the Fermi Level E_{F} ? \longrightarrow Basic Fermi Level E_{F} ?

Will Determine the fermi level Eq! - More LATE .
Intrinsic Semiconductor:

$$
\begin{array}{r}
n=p=\eta_{i}=\sqrt{N_{c} N_{v}} \exp \left(-\frac{E_{g}}{2 k T}\right) \\
E_{F}=E_{i}=\frac{E_{c}+E_{v}}{2}+\frac{k T}{2} \ln \left(\frac{N_{v}}{N_{c}}\right)
\end{array}
$$

"Intrinsic" Fermi-Level.

Semiconductor carrier statistics

Semiconductor carrier statistics

Fig. 14.3 Conduction band minima of Silicon showing the $g_{v}=6$ valleys along the six $\Gamma-X$ directions, and the origin of the DOS effective mass $\left(m_{L} m_{T}^{2}\right)^{\frac{1}{3}}$.

$$
E_{F}=\frac{1}{2}\left(E_{c}+E_{v}\right)+k_{b} T \ln \left(\frac{n}{N_{c}} \cdot \frac{N_{v}}{p}\right)
$$

Semiconductor carrier statistics

Fig. 14.3 Conduction band minima of Silicon showing the $g_{v}=6$ valleys along the six $\Gamma-X$ directions, and the origin of the DOS effective mass $\left(m_{L} m_{T}^{2}\right)^{\frac{1}{3}}$.

$$
E_{F}=\frac{1}{2}\left(E_{c}+E_{v}\right)+k_{b} T \ln \left(\frac{n}{N_{c}} \cdot \frac{N_{v}}{p}\right)
$$

Semiconductor doping
DOANT: ATOH fate replaces an otom of the intrissic Semicenductor

Semiconductor

INTRINSIC - purE

 the entre elector Com Le'Donnes' to be bod. Geed.

- Acceptor: Aow with one bso dectron Han Ale atom it
 Valoure band (Some so froring a hels to VD).

One clocove blues froes thy vilosor hosi no voeplose the bosding of the boven ibver \rightarrow hole

Effectione bobe radion'

'Shalbu' boner peopto ionization onngy

Fippically: $\alpha_{0}^{*} \gg a_{s} 0$.
Shetho drow $\Rightarrow N_{D}^{+}=N \Rightarrow n \approx \frac{\sqrt{\left(N_{d}\right)^{2}+\Delta v^{2}}+N_{d}}{2}$ If $N_{d} \gg n_{i}, \underline{n \approx N_{p}} \Rightarrow$ tion dechens incB as it of

Semiconductor carrier statistics

mobile electron.

$$
\frac{N_{D}^{+}}{N_{D}}=\frac{1}{1+2 \cdot e^{\frac{E_{F}-E_{d}}{k_{b} T}}}, \frac{N_{A}^{-}}{N_{A}}=\frac{1}{1+2 \cdot e^{\frac{E_{a}-E_{F}}{k_{b} T}}}
$$

$$
\underbrace{\left.N_{v} F_{\frac{1}{2}} \frac{E_{v}-E_{F}}{k_{b} T}\right)}_{p}+\underbrace{\frac{N_{D}}{1+2 \cdot e^{\frac{E_{F}-E_{d}}{k_{b} T}}}}_{N_{D}^{+}}=\underbrace{N_{c} F_{\frac{1}{2}}\left(\frac{E_{c}-E_{F}}{k_{b} T}\right)}_{n}+\underbrace{\frac{N_{A}}{1+2 \cdot e^{\frac{E_{a}-E_{b} T}{k_{b} T}}} 1}_{N_{A}^{-}}
$$

Semiconductor doping

Carrier Statistics in Doped Semiconductors

Consider a semiconductor that is doped with both donor and acceptor impurity atoms

- The total charge must be zero:

$$
N_{d}^{+}-N_{a}^{-}+p-n=0
$$

The above equation can be used to find the position of the equilibrium Fermi level since every term depends on the Fermi level position (one equation in one unknown)

$$
\begin{aligned}
& N_{d}^{+}=\frac{N_{d}}{1+2 \mathrm{e}^{-\left(E_{d}-E_{f}\right) / K T}} \\
& N_{a}^{-}=\frac{N_{a}}{1+2 \mathrm{e}^{\left(E_{a}-E_{f}\right) / K T}}
\end{aligned}
$$

Semiconductor carrier statistics

Semiconductor doping

Graphical Solution for Locating the Fermi Level

Charge Neutrality: $n+N_{A}^{-}=p+N_{D}^{+}$

Solve to find the Fermi Level

Example for $\operatorname{GaN}\left(\mathrm{N}_{\mathrm{A}}=10^{18} / \mathrm{cm}^{3}, \mathrm{~N}_{\mathrm{D}}=10^{14} / \mathrm{cm}^{3}\right)$

Temperature dependence of mobile carrier density in doped Silicon

Semiconductor doping

Controlling resistivity of semiconductors by doping

Resistivity of

- Metals $\sim 10^{-6} \mathrm{Ohm}-\mathrm{cm}$
- SiO_{2} (insulator) $\sim 10^{14} \mathrm{Ohm}-\mathrm{cm}$

Various methods of "Doping"

Traditional Bulk Semiconductors -

- Impurity doping (bulk, uniform)
- Impurity doping (graded, delta-doping) (Since '50s)

Impurity + Heterostructures -

- Modulation Doping
(Since '80s)
Polar Semiconductor Heterostructures -
- Polarization-induced doping
(Since late '90s)
Other "Dynamic" methods -
- Electrostatic gating
- Optical excitation
- Thermal excitation

These are the various methods for Creating mobile carriers in the conduction \& valence bands

Effect of Doping and Temperature

Fig. 14.7 Location of the Fermi level E_{F} in Silicon and GaN as a function of temperature for various donor and acceptor doping densities.

Band Diagrams

Band Alignments: 3D semiconductors

Fig, 14.13 Bandgaps vs lattice constants, and band alignments of 3D semiconductors.

Band Alignments: 2D semiconductors

Fig. 14.14 Bandgaps vs lattice constants, and band alignments of 2 D semiconductors. From J. Mater. Res. 31, 900 (2016).

The Schottky Diode

Fig. 16.1 Schottky Diode.

Fig. 16.2 Walter Schottky was an early investigator of the metal-semiconductor junction. A semiconductor research institute in Munich is named after him.

Fig. 16.3 Owen Richardson was awarded the 1928 Physics Nobel prize for thermionic emission; the Richardson constant is named after him.

$$
\begin{aligned}
& J=A^{\star} T^{2} e^{-\frac{q \phi_{b}}{k_{b} T}}\left(e^{\frac{q V}{k_{b} T}}-1\right) \\
& A^{\star}=\frac{4 \pi q k_{b}^{2} m_{c}^{\star}}{h^{3}} \text { Richardson constant } \\
& J=J_{0}\left(e^{\frac{q V}{k_{b} T}}-1\right)
\end{aligned}
$$

Metal-Semiconductor

 Junctions: Current Flow
 verus voluge for as abritum stion Schoctivy barrier. Vives for $h_{1}=\frac{5}{5}$ and n are ctained from an ampincif fe of be dasa to Equasion 331 .

$$
S=\frac{k T}{q} \ln (10)
$$

$=60 \mathrm{mV} /$ decade at 300 K

This is a FUNDAMENTAL limit of voltage control of currents that are limited by Thermionic Emission over barriers
$q \times$ Voltage $==$ Energy of electrons. Therefore, this is also the fundamental limit Of 'energy efficiency' of switching devices That operate using
Thermionic Emission currents

The Schottky Diode

Filled states are colored blue

The Schottky Diode Rectifier

Metal-Semiconductor

Junctions: Current Flow

Various kinds of Metal-Semiconductor Junctions

Metal-Semiconductor Junctions: Various Kinds

Energy Band Diagrams

Energy Band Diagrams

Heterojunction
 Energy Band
 Diagrams

Energy Band Diagrams

Heterojunction
Energy Band
Diagrams

(a)

(b)

Energy Band Diagrams

Graded Heterojunction

 Energy Band Diagrams

Band Diagrams for Polar Heterostructures

Fig. 14.15 Energy band diagrams of polar heterostructures such as $\mathrm{GaN} / \mathrm{AlGaN}$ heterjunctions. because of the presence of internal electric charges due to spontaneous and piezoelectric polarization, electric fields and band bending happens even in the absence of donor or acceptor doping.

Mobility and Transport

Charge Transport: Drift

Charee Temstreat - Dair + Dimosion

y -F not diag hem; y.F pes staude.

Material		Effective Mass			Mobility	
		m^{*}	$\mathrm{m}_{\mathrm{p}} \mathrm{h}^{\text { }}$	$m_{p} \mathrm{l}^{*}$	μ 。	μ,
IV	Si	0.26	0.55	0.24	1350	475
	Ge	0.56	0.37	-	3800	1900
III-V	Gap	0.12	0.86	0.14	200	120
	GaAs	0.065	0.45	0.082	8500	420
	GaSb	0.049	0.33	0.056	7700	1400
	InP	0.077	0.56	0.12	6060	150
	InAs	0.027	0.41	0.024	33000	460
	InSb	0.0135	0.438	0.016	78000	1700
II-VI	ZnS	0.28	1.4		140	5
	ZnSe	0.17	~ 0.7		530	28
	ZnTe	0.122	0.42	0.17	340	110
	CdS	0.171	~ 5		350	15
	CdSe	0.112	>1.0		650	
	CdTe	0.0963	0.62	0.092	1050	80

High-Field Transport: Electron Velocity Saturation

Effective Mass Approximation

- 2D (Quantum Wells)

$$
\begin{array}{r}
V(x, y, z)=0, z<0 \\
V(x, y, z)=0, z>W \\
V(x, y, z)=-\Delta E_{c}, 0 \leq z \leq W
\end{array}
$$

$$
k_{n_{z}}=\frac{\pi}{W} n_{z}
$$

Figure 2: Bandstructure, and DOS of realistic heterostructure quantum wells

$$
C_{n_{z}}(x, y, z)=\phi(x, y) \chi_{n_{z}}(z)=\left[\frac{1}{\sqrt{A}} e^{i\left(k_{x} x+k_{y} y\right)}\right] \cdot\left[\chi_{n_{z}}(z)\right]
$$

$$
\chi_{n_{z}}(z)=\sqrt{\frac{2}{W}} \sin \frac{\pi n_{z} z}{W}
$$

$$
g_{Q W}(E)=\frac{m^{\star}}{\pi \hbar^{2}} \sum_{n_{z}} \theta\left(E-E_{n_{z}}\right)
$$

$$
\begin{aligned}
& n_{2 D}=\int_{0}^{\infty} d E f_{F D}(E) g_{2 D}(E)=\underbrace{\frac{m^{\star} k_{B} T}{\pi \hbar^{2}}}_{N_{C}^{2 D}} \ln \left(1+e^{\frac{E_{F}-E_{1}}{k_{B} T}}\right) \\
& n_{2 D}=\sum_{j} n_{j}=N_{c}^{2 D} \sum_{j} \ln \left(1+e^{\frac{E_{F}-E_{j}}{k_{B} T}}\right)
\end{aligned}
$$

Effective Mass Approximation

- 1D (Quantum Wires)

$$
\begin{aligned}
& k_{n_{x}}=\frac{\pi}{L_{x}} n_{x}, \\
& \quad k_{n_{y}}=\frac{\pi}{L_{y}} n_{y}, \\
& C(x, y, z)=\chi_{n_{x}}(x) \cdot \chi_{n_{y}}(y) \cdot\left(\frac{1}{\sqrt{L_{z}}} e^{i k_{x} x}\right) \\
& E\left(n_{x}, n_{y}, k_{z}\right)=E\left(n_{x}, n_{y}\right)+\frac{\hbar^{2} k_{k}^{2}}{2 m_{z z}^{\star}}
\end{aligned}
$$

Figure 3: Bandstructure, and DOS of realistic quantum wires.

$$
\begin{aligned}
& C_{n_{x}, n_{y}}(x, y, z)=\left[\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{\pi n_{x}}{L_{x}} x\right)\right] \cdot\left[\sqrt{\frac{2}{L_{y}}} \sin \left(\frac{\pi n_{y}}{L_{y}} y\right)\right] \cdot\left[\frac{1}{\sqrt{L_{z}}} e^{i k_{x} x}\right] \\
& E\left(n_{x}, n_{y}, k_{z}\right)=\underbrace{g_{1 D}(E)=\frac{1}{\pi} \sqrt{\frac{2 m^{\star}}{\hbar^{2}} \frac{1}{\sqrt{E-E_{1}}}}}_{\underbrace{\left[\frac{\hbar^{2}}{2 m_{x x}}\left(\frac{\pi n_{x}}{L_{x}}\right)^{2}\right]+\left[\frac{\hbar^{2}}{2 m_{y y}}\left(\frac{\pi n_{y}}{L_{y}}\right)^{2}\right]}+\frac{\hbar^{2} k_{z}^{2}}{2 m_{z z}^{\star}}} \begin{array}{l}
g_{Q W \text { ire }}(E)=\frac{1}{\pi} \sqrt{\frac{2 m^{\star}}{\hbar^{2}}} \sum_{n_{x}, n_{y}} \frac{1}{\sqrt{E-E\left(n_{x}, n_{y}\right)}}
\end{array}
\end{aligned}
$$

Effective Mass Approximation

- OD (Quantum Dots)

$$
\begin{aligned}
& C(x, y, z)=\left[\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{\pi n_{x}}{L_{x}}\right)\right] \cdot\left[\sqrt{\frac{2}{L_{y}}} \sin \left(\frac{\pi n_{y}}{L_{y}}\right)\right] \cdot\left[\sqrt{\frac{2}{L_{z}}} \sin \left(\frac{\pi n_{z}}{L_{z}}\right)\right] \\
& E\left(n_{x}, n_{y}, n_{z}\right)=\frac{\hbar^{2}}{2 m_{x x}}\left(\frac{\pi n_{x}}{L_{x}}\right)^{2}+\frac{\hbar^{2}}{2 m_{y y}}\left(\frac{\pi n_{y}}{L_{y}}\right)^{2}+\frac{\hbar^{2}}{2 m_{z z}}\left(\frac{\pi n_{z}}{L_{z}}\right)^{2}
\end{aligned}
$$

Figure 4: Energy levels and DOS of quantum dots.

Effective Mass Approximation @ Heterojunctions

FIGURE 3.22. Wave function for the lowevt tate in a 6 nm quantuin well in a heterostructure. indadag the Bloch functions. The thin curve is an approximate envelope function joining the Peak of the full wave function. [Redrawn from Burt (1994).|

- Effective Mass Theory works even at sharp heterojunctions, and it works amazingly well! Quantum cascade lasers are designed using this theory.

On the validity and range of applicability of the particle in a box model
M. G. Burt

BT Laboratories, Martlesham Heath, Ipswich IP5 7RE, United Kingdom
(Received 24 February 1994; accepted for publication 27 May 1994)

$$
\begin{align*}
& \left(E_{q}^{A}-\frac{s^{2}}{2 m_{A} m_{5}} \frac{d^{2}}{d z^{2}}\right) x(z)=E_{X}(z) . \tag{3.16}\\
& \left(E_{c}^{\prime}-\frac{s^{2}}{2 m_{g} m_{5}} \frac{d^{2}}{d z^{2}}\right) x(z)=E_{X}(z) . \tag{3.17}
\end{align*}
$$

The difference in the bottoms of the condaction bands bechaves like a step potential with material B higher by $\Delta E_{\mathrm{q}}=E_{6}^{J}-E_{q}^{A}$. If the moterials were the same we woold simply mach the value and deriative of the wave function at the interface, giving the usual contitions

$$
\begin{equation*}
x\left(0_{3}\right)=x\left(0_{3}\right) .\left.\quad \frac{d x(z)}{d z}\right|_{,=t}=\left.\frac{d x(z)}{d z}\right|_{z=t} \tag{3.18}
\end{equation*}
$$

wherc 0_{A} means the side of the interfice in material A and so on. This simple coedinion is sot correct for a heterojunction whese the rao effective masser art dieferent, and we shall see in Section 5.8 that equation (3.18) does not conserve current. A correct set of maxching conditions is

$$
\begin{equation*}
x\left(0_{A}\right)=x\left(0_{y}\right),\left.\quad \frac{1}{m_{A}} \frac{d x(t)}{d z}\right|_{t=0}=\left.\frac{1}{m_{t}} \frac{d x(z)}{d z}\right|_{t a \xi} . \tag{3.18}
\end{equation*}
$$

The conditios for eanching the derivative now includes the effective mass. Siscet the derivative is essentially the momentum operator, cquation (3.19) requires the velocity to be the same oa both sides to conserve ciarreat. The esvelope functiof gaiss a kink at the interface if $\pi_{A} \neq \pi_{g}$.

$$
|C(r)|^{2} \quad|\Psi(r)|^{2}=|C(r)|^{2} \times|u(r)|^{2}
$$

envelope function
exciton
Bloch function

Position relative to hole (nm)
E. Kioupakis et al. (Michigan)

Infinitely Deep Quantum Wells

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m^{\star}} \frac{d^{2}}{d x^{2}}+V(x)\right] \psi(x)=E \psi(x)} \\
& V(x)=0 \text { for }-L \leq x \leq+L \\
& V(x)=\infty \text { for }|x| \geq L \\
& \psi(x)=A e^{i k x}+B e^{-i k x} \\
& k=\frac{2 \pi}{\lambda}=\sqrt{\frac{2 m^{\star}(E-V)}{\hbar^{2}}} \\
& \psi(+L)=\psi(-L)=0 \rightarrow k_{n}=\frac{n \pi}{2 L} \\
& \psi_{\text {even }}(x)=A_{n} \cos \left(\frac{n \pi}{2 L} x\right) \text { for } n= \pm 1, \pm 2, \ldots \\
& \psi_{\text {odd }}(x)=A_{n} \sin \left(\frac{n \pi}{2 L} x\right) \text { for } n= \pm 2, \pm 4, \ldots \\
& E_{1}^{\infty}=\frac{\pi^{2} \hbar^{2}}{8 m^{\star} L^{2}}=\frac{\pi^{2} \hbar^{2}}{2 m^{\star} L_{w}^{2}} \\
& E_{1}^{\infty}=\frac{3.76}{\left(\frac{m^{\star}}{m_{0}}\right)\left(\frac{L_{w}}{10 \mathrm{~nm}}\right)^{2}} \mathrm{meV} \\
& E_{n}=n^{2} E_{1}^{\infty}
\end{aligned}
$$

Finite Quantum Wells

Transitions in Semiconductor Quantum Wells

(a)

FIGURE 1.3. Optical absorption in a quantum well formed by a layer of GaAs surrounded by AlGaAs. (a) Potential well in conduction and valence band, showing two bound states in each; the energy gap of GaAs is really much larger than this diagram implies. (b) Transitions between states in the quantum well produce absorption lines between the band gaps of the GaAs well and AlGaAs barrier.

Quasi-2D systems: Quantum Wells

FIGURE 1.4. Photoluminescence as a function of wavelength for a sample with four quantum wells of different widths, whose conduction and valence bands are shown on the right. The barriers between the wells are much thicker than drawn. [Data kindly supplied by Prof. E. L. Hu, University of California at Santa Barbara.]

Photoluminescence spectra of quantum wells

Designing the Transitions in Quantum Wells

FIGURE 4.9. Quasi-two-dimensional system in a potential well of finite depth. Electrons with the higher value $E_{\mathrm{F}}^{(2)}$ same total energy can be bound in the well (A) or free (B).

Rectangular quantum wells

FIGURE 4.4. Potential well $V(z)$, energy levels, and wave functions of a harmonic oscillator. The potential is generated by a magnetic field of 1 T acting on electrons in GaAs .

Parabolic quantum wells: Harmonic Oscillator States!
FIGURE 4.5. (a) Parabolic potential in both conduction and valence bands grown into GaAs by a graded composition of $\mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}$. The band gap has been reduced in this sketch, and only heavy holes are shown. (b) Photoluminescence in parabolic wells. [From Miller et al. (1984).]

Multiple Coupled Quantum Wells

Note the 'zero-states'
for odd number of wells

Designer Quantum Structures

FIG. 3. (a) TEM characterization of a test sample grown by MOCVD. The growth sequence and the structure are shown in (b). The remarkable features are the sharpness of the very narrow GaAs layers (minimum $\approx 25 \dot{A}$) appearing at the lower right-hand side corner, the interface roughness showing up at the uppermost interface of the AlAs layer, and the subsequent smoothing of this roughness by the multilayer growth (upper left-hand side corner) (after Leys et al. ${ }^{61}$).

(a) SINGLE TYPE I INTERFACE

(e) SINGLE BARRIER TUNNELING STRUCTURE

(b) SINGLE TYPE II INTERFACE

c) single quantum WEL

(d) MuLTIPLE QUANTUM WELL

(h) TYPE I SUPERLATTICE

(1)TYPE II SUPERLATTICE

Heterostructure Superlattices

SUPERLATTICES

N WELLS
N-DEGENERATE GROUND STATE
TIGHT-BINDING APPROXIMATION

$$
\Psi_{q}(z)=\frac{1}{N^{1 / 2}} \Sigma e^{\text {lqnd }} X_{\text {loc }}(z-n d)
$$

$$
E=E_{1}+S+2 T \cos q d
$$

$$
S=\int X_{10 c}(z-d) V(z) X_{10 c}(z-d) d z
$$

$$
T=\int X_{\text {loc }}(z-d) V(z) X_{\text {loc }}(z) d z
$$

Fig. 16. Tight-binding model of GaAs/GaAlAs superlattices: Variation of the fundamental state bandwidth [$4 t_{\text {; }}$ of Eq. (30)] in the tight-binding model as a function of barrier thickness for three different well thicknesses. $X=0.2 ; V_{0}=212 \mathrm{meV}$ (after Bastard ${ }^{125}$).

Fig. 15. Tight-binding model of superlattices.

Heterostructure Superlattices

SUPERLATTICES

$$
\mathrm{E}=\mathrm{E}_{1}+\mathrm{S}+2 \mathrm{Tcosqd}
$$

Fig. 15. Tight-binding model of superlattices.

Fig. 18c. Allowed energy bands E_{1}, E_{2}, E_{3}, and E_{4} (hatched) calculated as a function of well or barrier width $\left(L_{x}=L_{\mathrm{p}}=a\right)$ in a superlattice with a barrier potential $V=0.4 \mathrm{~V}$. Note the existence of forbidden gaps even above the barrier potential (Reprinted with permission
from World Scientific Pub. Co., L. Esaki, "Recent Topics in Semiconductor Physics" (H. Kamimura and Y. Toyozawce, eds.), 1983.)

$$
\begin{aligned}
& \varepsilon_{n} *\left(q, k_{\perp}\right)=\hbar^{2} k_{\perp}^{2} / 2 m+\varepsilon_{n}(q) \\
& \rho_{n}(\varepsilon)=N \frac{m^{*}}{\pi \hbar^{2}} \arccos \left(\frac{\varepsilon_{i}-E_{i}-S_{i}}{2 t_{i}}\right)
\end{aligned}
$$

FIg. 17. Comparison of the DOS of a superlattice with that of a 2D system (--) and a 3D isotropic system. Note the broadening of the superlattice band with band index as the overlap of wave functions increases with energy E in the tight-binding description, increasing the transfer matrix element t_{i} (Reprinted with permission from World Scientific Pub. Co., L. Esaki, "Recent Topics in Semiconductor Physics" (H. Kamimura and Y. Toyozawa, eds.), 1983.)

Semiconductor Physics Summary

Band Stavture

Fig. 2.24. The valence band structure and density of states (see Sect. 4.3.1 for definition) of Si calculated by the tight-binding method (broken curves) and by the empirical pseudopotential method (solid lines) [2.25]

Density on States (boss)

For a stmicmarbr (alk, 3D).

Semiconductor Physics Summary

	athenem	1 tementer	1termen	30neres	Aranatm
(fenteren Hinharetias	8	5.8	$5+\frac{1}{6}+4$		
$\frac{\text { cindathellied Iax }}{\text { (i) }}$	aeditac)				
Camilatam Ranali4y 	0			asingal	sel ingal $^{2} 1$
Ruvene Reneris	-		$\mathrm{N} \times 4.451$		Meralitil
Sunaliras levif ${ }_{n}$ antront	-				
	$=$				
Redertintarene	5.	5.- 管			
nhen Reefios (in)					
Nation Arelitip thetwallens	-				aplegictic
Hebinet y	-	$\mathrm{n}^{-1} \mathrm{I}^{\prime \prime}+3$		$\mathrm{N}^{*} \mathrm{E}_{1} 1^{[4+3}$	Sersisti
underliev	$=$				
$\begin{gathered} \text { Ballisent Cumet } \\ \text { Paenty } \end{gathered}$	*				

Physics of Semiconductor Nanostructures Summany

	stenes	1tenter	1tanem	300－2－	103nat
（reeteren tindirevtan	5	5×8	2．6at +6	5．$+56+450$	4，Exath
comantinalixe	A0，	4次年亦			
	H0	sel $\log _{5} \mathrm{~m}_{1} 1$	asel ${ }^{\text {（mat }}$ ）	saremat	sel magat，
	－		大⿹丁口欠4 4		N（Tycisf
tentionilmetin nerviry	\sim				
	－				
neimertinuter	＊	5－${ }^{4}$	E－$-8 x+0$	2－Eal＋－＋6	2－Eat 0^{2}
$\underset{\sin }{\operatorname{tin}}$	ALAF－6a）				
Niva findilder 	－	soblogaly	asingal	soblogat	sedimalit
H＝10m\％	＊	x－ratic）	NPFMC		serymitiol
Sentloniludin －	－				$n-1 \times t r y y^{\prime}$
Blicistines Thewhy	－				
	边 - －		5a		
Butue Dence tity Oquily Ater Hipe	－	$\mathrm{NeV}^{\prime 2} 1^{14}+3$	¢04y）		$\mathrm{NCV}_{4 \times 14}$
tt＋t then mit quady Anec liper	＊	Nerat ${ }^{\text {（2）}}$		Ne\％．4 ter	
Dinothonsithe for inuily	－				
	－		A 捒（\％）		
	－				
Nopertmize	＊	3 a			
	＊		A．		

Table 1：Quantum Electronic，Photonk，and Statistical Properties of Conduction and Valence Band Electrons in Semicondactor Nanostructures． ＊Er is the band edge，and m＂the effective mass of the conduction band．E_{F} is the band edge，and w＂the effective mass of the valence band．
＊For low dimensions，E_{c} and $E_{v r}$ and the bandgap $E_{I}=E_{c}-E_{q}$ inclode the quantum continement energies if present．
e his Planck＇s constant，$t=\frac{b}{2}, 4$ ，is the Boltemann constant，and q the electron charge．
＊δ ，is the spin degeneracy，and δ ．the valley degeneracy．

＊Ef is the Fermi level at equilibriam．Ef，is the sounce quasi－Fermi level and E_{p} the drain qaasi－Fermi level．
－Similarly，F_{n} is the condaction band quasi－Fermi level and F_{p} is the valence band quasi－Fermi level．
＊lov is the photon energy of frequency $v_{\text {，and }} L_{2}, L_{5}, L_{4}$ are the dimensions of the semicondactor nanostructure．
＊A and B are the Einstein A and B coefficients，$\lambda_{0}=c / v$ the wavelength of the phofoen in vacuum，and n the refractive index of the sembiconductor．

－$E_{2}-E_{1}=h y=E_{g}+\frac{L_{1}^{2}}{2 n_{5}^{2}}$ is the energy of the photon emitied when the electron transitions froen $E_{2} \rightarrow E_{1}$ radiatively．
－The Einstein A and B coefficients ase related by $\frac{f}{8}=\operatorname{krg}^{2}{ }^{2} h$.
 with electric field amplitude Σ_{0} and wave impedance of．

Ballistic Transport in 1 Dimension

Fig. 5.5 Quantum picture of current flow in the 1D k-space due to a difference in the occupation functions of right-going and left-going eigenstates. The left contact is called the source, and the right contact the drain.

Fig. 5.8 The left plot shows the calcuated normalized Fermi level $\eta_{F}=E_{F} / k_{B} T$ at $V=0$, and the split normalized Fermi levels η_{*} and η_{d} for nonzero normalized voltages $v_{d}=q V / k_{B} T$ for two values of 1 D electron density at 300 K . The red curves are for $n_{1 d}=5 \times 10^{7} / \mathrm{cm}$, and the blue for $n_{1 d}=10^{6} / \mathrm{cm}$. The right plot shows the resulting quantum mechanical current flowing in response to the voltage for six values of 1D electron densities ranging from $0.1-5.0 \times 10^{7} / \mathrm{cm}$. For example, at a 1D electron density of $n_{1 d}=10^{7} / \mathrm{cm}$, the maximum (or saturation) current is $\sim 70 \mu \mathrm{~A}$. The middle $E(\mathrm{k})$ figures show the changes in the corresponding occupied electron states for $n_{1 d}=5 \times 10^{7} / \mathrm{cm}$ for three different voltages.

$$
\eta_{s}-\eta_{d}=v_{d}, \text { and } n_{1 d}=\frac{1}{2} N_{c}^{1 d}(T)\left[F_{-\frac{1}{2}}\left(\eta_{s}\right)+F_{-\frac{1}{2}}\left(\eta_{d}\right)\right]
$$

$$
J^{1 d}=J_{R}^{1 d}-J_{L}^{1 d}=\frac{q g_{s} g_{v}}{2 \pi \hbar}\left(k_{B} T\right) \ln \left(\frac{1+e^{\eta_{s}}}{1+e^{\eta_{d}}}\right)
$$

Ballistic Transport in 1, 2, and 3 Dimensions

$$
m_{c}^{\star}=0.2 m_{e}, g_{s}=2, g_{v}=1
$$

Ballistic Current in 2 Dimensions

Ballistic metal-oxide-semiconductor field effect transistor

Kenji Natori

Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
(Received 14 March 1994; accepted for publication 6 July 1994)
J. Appl. Phys. 76 (8), 15 October 1994

0021-8979/94/76(8)/4879/12/\$6.00
© 1994 American Institute of Physics

	2 Dimensions
Conduction Bandstructure	$E_{c}+\frac{\hbar^{2}}{2 m_{c}^{2}}\left(k_{x}^{2}+k_{y}^{2}\right)$
Conduction Band DOS $g_{c}^{d}(E)$	$\frac{8 s 80}{2 \pi}\left(\frac{2 m^{*}}{n^{2}}\right) \theta\left(E-E_{c}\right)$
Conduction Band-Edge Effective DOS N_{c}^{d}	$g_{s} g_{v}\left(\frac{2 \pi m * k_{k} T}{h^{2}}\right)$
Electron Density n_{d}	$N_{c}^{2 d} F_{0}\left(\frac{E_{F}-E_{c}}{k_{b} T}\right)$
Source Fermi Level $E_{F s}$ under bias V	$n_{2 d}=\frac{1}{2} N_{c}^{2 d}\left[F_{0}\left(\frac{E_{c_{g}}-E_{c}}{k_{b} T}\right)+F_{0}\left(\frac{\left(E_{E_{s}}-q V\right)-E_{c}}{k_{b} T}\right)\right]$
Ballistic Electron Current Density J_{d} at voltage V	$\frac{q^{2}}{h} \cdot N_{c}^{1 d} \cdot \frac{k_{b} T}{q} \cdot\left[F_{\frac{1}{2}}\left(\frac{E_{5_{s}}-E_{c}}{k_{b} T}\right)-F_{\frac{1}{2}}\left(\frac{\left(E_{F_{s}}-q V\right)-E_{c}}{k_{b} T}\right)\right]$

- The physics of a Ballistic FET can be understood by inspecting the carrier distribution in k-space at the source-injection Point.

Ballistic FEI

2 Dimensions	
$E_{c}+\frac{\nu^{2}}{2 \pi}\left(k_{x}^{2}+k_{y}^{2}\right)$	
$\frac{8585}{2 \pi}\left(\frac{2 m i d}{n^{2}}\right) \theta\left(E-E_{\text {c }}\right)$	
$8.880\left(\frac{2 \pi m b s}{h^{2}}\right)$	
$\frac{q^{2} n_{s}}{C_{b}}+k T \ln \left(e^{\frac{q_{s}}{C_{q} V_{t h}}}-1\right)=q\left(V_{g s}-V_{T}\right)$	
$e^{e^{\frac{q n_{s}}{C_{b} t_{t h}}}\left(e^{\frac{q n_{s}}{C_{q_{t h}}}}-1\right)=e^{\frac{V_{g s}-V_{T}}{V_{t h}}}}$	

Ballistic FEI

Ballistic FET

Figure 10.4: Ballistic Silicon FET. The device dimensions are $t_{b}=1 \mathrm{~nm}, \epsilon_{b}=10 \epsilon_{0}$, and for Silicon, $m^{*}=0.2 m_{0}$ and $g_{v}=2.5$ are used.

- Note the on-off ratio, and the sharper switching at low temperatures. The subthreshold slope is $\sim(\mathrm{kT} / \mathrm{q}) \ln (10)$.
- This calculation neglects the contact resistance incurred in injecting carriers from 3D source to 2D channel.

Ballistic FET Limits

Transistor Applications

CMOS Inverter

DRAM Cell (1 Transistor and one capacitor)

Transistor Applications

- Vacumutabe 4

- Mechenical rely ${ }^{\text {I }}$
- Charge-bsed
- Spin-besed
- Corradated/Phase travitions.

Quantume
Zimits?

DRAM Cell (1 Transistor and one capacitor)

~Today

The "humble" transistor: Many Avatars. . .

$$
V_{\mathrm{ds}}(\text { volt })
$$

- The transistor is an electronic switch
- It is also an amplifier: it has gain
- Gain @ high speed: RF electronics
- Switching @ high voltages: Power electronics

$$
\begin{aligned}
\rightarrow & S S \sim \frac{k T}{q} \ln 10 \\
& \sim 60 \frac{\mathrm{mV}}{\text { decade }}
\end{aligned}
$$

The "humble" transistor: Many Avatars. . .

- The transistor is an electronic switch
- It is also an amplifier: it has gain
- Gain @ high speed: RF electronics
- Switching @ high voltages: Power electronics

Careful what you wish for: you may get it!

Implications of Scales in Processing of Information

The physical form of information processing employing electronics is as a collection of small devices-memories included - beholden to the physics of operation of device and its assembly in achieving desired objectives. This paper reviews and explores these scale connections-of transistors, materials, and the variety of device proposals-internally and in their integration.
By Sandip Tiwari, Fellow IEEE

Fig. 2. Error-energy relationship for an idealized CMOS gate according to (4) for an ensemble of $10^{10} \mathrm{~g}=-10$ CMOS switches operating at 10% activity factor. For every decade of error improvement, $\approx 15 k_{B} T$ of energy is required in the low error limit.

- The "fat" in Boolean logic switching buys us robustness against errors.
- Low power switches will have to figure out a way to be robust to fluctuations.

Transistors old and new

Can Transistors beat the Boltzmann Limit?

Negative Capacitance FETs (NCFETs)

The Energy-Delay Switching Bottleneck

Physios hiding iunder the hood

$$
\psi\left(x_{1}, x_{2}\right)=-\psi\left(x_{2}, x_{1}\right)
$$

$$
f(E)=\frac{1}{1+e^{\frac{E-E_{F}}{k T}}}
$$

$$
F_{m a g} \sim F_{e l} \cdot \frac{v^{2}}{c^{2}}
$$

New Devices Promise to Do Better

Debdeep Jena (djena@cornell.edu)

Tunneling in Semiconductors

TKice: Lastmarks in fe fimen of Thaviling

Na.	Renerea	linmigutas	Yer
1	Churvolise if tillentwion fon Enent	INeter	tet2
1	llmirates if hoboges atrin by divtion hiveliyy	Oquelairer	-35\%
3		Nolar ind Noplleile'	208
\star	A/fu-deng Theny	Gamat, Oprny nal Conls?	158
5	Thery af linghest Tumetling it will	Tene ${ }^{\text {a }}$	1304
4	Fedf feledis Marowge (TMM)	Milm ${ }^{11}$	159
\pm	Onemerise of Zener linellios	$\begin{aligned} & \text { Clowerd eat } \\ & \text { Mrlay } \end{aligned}$	205
3	Thesellise is Degranisy po Dinalien	Deke ${ }^{\text {a }}$	1585
9	Dranke if Teert Thery ie Thenal Diolen	Caldeb ${ }^{\text {m }}$, Exare, Nive ande	2664-1901
\%	Mewnemer af magy ped Apernatiokns	Clemer ${ }^{\text {P }}$	tive
11	Toterlatis Thuarnes if tankeliy	Rendem ${ }^{3}$	181
12	Tanetly of Coxper heride	Saphase	1762
15	Trevitented Veilfotise of Jmphes ERet		183)-134
34	Ilelarin Tineviligy Spentomery (2T5)	Malloly inal Lamh!	INS
15	Onernelise of Thaveliyy fell	Las und Civenr". Colnat and Thaner	1907-291
54	Dendrpeine if Samily Theselly Mennope (9TM)	Avning ${ }^{\text {a }}$	161

©
The Nobbel Pries in Ptysices 1373

"eninen Anevtemos
influn
verlmer
ana netar

Applicotions:

- SEMs
- TEMs
- STMs
- Tunnel diodes
- Ohmic contocts
- RTDs
- Quantum Cascade Lasers
- TFETs.

Why can electrons tunnel through barriers?

photons

Total internal reflection

Why can electrons tunnel through barriers?

photons

Total internal reflection

ξ

Why can electrons tunnel through barriers?

photons

Total internal reflection ξ

Why can electrons tunnel through barriers?

De Broglie

$$
\lambda=\frac{h}{m v}
$$

m
"tunneling of photons"

Why can electrons tunnel through barriers?


```
electrons
```


"tunneling of photons"

Tunneling in Semiconductors

Tunneling in Semiconductors

$$
\begin{array}{r}
T(E)=\frac{1}{1+\frac{V_{0}^{2}}{4 E\left(E-V_{0}\right)} \sin ^{2}\left(k_{b} a\right)} \\
k_{b}=\sqrt{\frac{2 m_{c}}{\hbar^{2}}\left(E-V_{0}\right)}
\end{array}
$$

Kinetic energy

$$
\begin{aligned}
& \sin (i y)=i \sinh (y) \\
& T(E)=\frac{1}{1+\frac{V_{0}^{2}}{4 E\left(V_{0}-E\right)} \sinh ^{2}\left(k_{b} a\right)}
\end{aligned}
$$

$$
\approx \frac{16 E\left(V_{0}-E\right)}{V_{0}^{2}} e^{-2 k_{b} \alpha}
$$

Electron Quantum Transport in Smooth Potentials

Effective Mass

Equation for Electron Wavepackets

$$
\left[E_{n}(-i \nabla)\right] C(x)=\left[E-E_{c}(x)\right] C(x) \Longrightarrow \frac{d^{2}}{d x^{2}} C(x)=\underbrace{-\frac{2 m_{c}^{\star}}{\hbar^{2}}\left[E-E_{c}(x)\right]}_{Q(x)} C(x)
$$

The WKB approximation

$$
C(x) \approx \frac{K}{Q(x)^{\frac{1}{4}}} e^{ \pm \int_{a}^{x} d u \sqrt{Q(u)}}
$$

$$
\begin{aligned}
& E>E_{c}(x), Q(x)<0 \\
& k(x)=\sqrt{\frac{2 m_{c}^{\star}}{\hbar^{2}}\left(E-E_{c}(x)\right)} \\
& C(x) \approx \frac{K^{\prime}}{\sqrt{k(x)}} e^{ \pm i \int_{a}^{x} d u k(u)}
\end{aligned}
$$

$$
|C(x)|^{2} \propto \frac{1}{k(x)}
$$

Fig. 18.3 Electron transport and approximate wavefunction in smoothly varying potentials.

Electron Quantum Transport in Smooth Potentials

Fig. 18.4 Transport of an effective mass electron wavepacket in the conduction band in a smoothly varying potential. The group velocity $v(x) \sim k(x)$ increases as the kinetic energy increases, but the carrier density $n(x)=|C(x)|^{2} \sim$ $1 / k(x)$ decreases, keeping the net current $J(x) \sim n(x) v(x)$ constant.

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m_{e}} \frac{d^{2}}{d x^{2}}+V(x)\right] \psi(x, t)=i \hbar \frac{\partial}{\partial t} \psi(x, t) \Longrightarrow j=\frac{\psi^{\star} \hat{p} \psi-\psi \hat{p} \psi^{\star}}{2 m_{e}}} \\
& {\left[-\frac{\hbar^{2}}{2 m_{c}^{\star}} \frac{d^{2}}{d x^{2}}+E_{c}(x)\right] C(x, t)=i \hbar \frac{\partial}{\partial t} C(x, t) \Longrightarrow j=-\frac{i \hbar}{2 m_{c}^{\star}}\left[C^{\star} \frac{\partial C}{\partial x}-C \frac{\partial C^{\star}}{\partial x}\right]} \\
& C(x) \approx \frac{K^{\prime}}{\sqrt{k(x)}} e^{ \pm i \int_{a}^{x} d u k(u)}, \quad|C(x)|^{2} \propto \frac{1}{k(x)} \\
& n(x)=C^{\star}(x) C(x)=\frac{|K|^{2}}{k(x)} \\
& J=\sum_{k} j_{k}=q g_{s} g_{v} \sum_{k} v_{g}(k)|C(x)|^{2} \quad E_{c}(k)=E_{\mathcal{C}}(x)+\frac{\hbar^{2} k(x)^{2}}{2 m_{\hat{c}}}, \\
& v_{g}(k)=\frac{1}{\hbar} \frac{\partial E_{c}(k)}{\partial k}=\frac{\hbar k(x)}{m_{c}^{\star}} \\
& J=q g_{s} g_{v} \underbrace{\frac{\hbar k(x)}{m_{c}^{\star}}}_{v(x)} \underbrace{|C(x)|^{2}}_{n(x)}=q g_{s} g_{v} \frac{\hbar k(x)}{m_{c}^{\star}} \frac{|K|^{2}}{k(x)}=q g_{s} g_{v} \frac{\hbar|K|^{2}}{m_{c}^{\star}}
\end{aligned}
$$

Quantum Current carried by an electron wavepacket in arbitrary potentials

Tunneling of Electrons Through Arbitrary Barriers

$$
\xrightarrow{x}
$$

$$
\begin{aligned}
& C(x) \approx \frac{K^{\prime}}{\sqrt{k(x)}} e^{ \pm i \int_{a}^{x} d u k(u)}, \\
& k(x)=\sqrt{\frac{2 m_{c}^{\star}}{\hbar^{2}}\left(E-E_{c}(x)\right)} \\
& \kappa(x)=-\frac{2 m_{c}^{\star}}{\hbar^{2}}\left(E-E_{c}(\bar{x})\right)>0 \\
& C(x) \approx \frac{K}{\sqrt{\kappa(x)}} e^{ \pm \int_{a}^{x} \kappa(u) d u} .
\end{aligned}
$$

$$
\frac{C\left(x_{2}\right)}{C\left(x_{1}\right)} \approx \frac{e^{-\int_{a}^{x_{2}} \kappa(u) d u}}{e^{-\int_{a}^{x_{1}} \kappa(u) d u}} \approx e^{i \phi} e^{-\int_{x_{1}}^{x_{2}} \kappa(u) d u}
$$

$$
\begin{aligned}
&\left|\frac{C\left(x_{2}\right)}{C\left(x_{1}\right)}\right|^{2} \approx e^{-2 \int_{x_{1}}^{x_{2}} \kappa(u) d u} \Longrightarrow T_{w k b} \approx e^{-2 \int_{x_{1}}^{x_{2}} d x \sqrt{\frac{2 m_{c}^{\star}}{\hbar^{2}}\left[E_{c}(x)-E\right]}} \\
& T_{w k b} \approx e^{-\left(\frac{t_{b}^{-}}{0.1 \mathrm{~nm}}\right) \sqrt{\left(\frac{m_{c}^{\star}}{m_{e}}\right) \cdot\left(\frac{V_{0}}{1 \mathrm{eV}}\right)}}
\end{aligned}
$$

Tunneling in Homojunctions

Reverse-bias tunneling current

If $q V \gg 2 \hat{E}_{\|}$,
$J \approx \frac{q^{2} m^{\star} T_{0} \hat{E}_{\|}}{2 \pi^{2} / \hbar^{3}} V$
$\Longrightarrow \sim \operatorname{mear} I-V$.
$T_{0}=\exp \left[-\frac{\pi \sqrt{m^{\star} E_{g}^{3 / 2}}}{2 \sqrt{2} q F \hbar}\right]$
$\bar{E}_{\|}=\frac{\sqrt{2} q F \hbar}{2 \pi \sqrt{m^{\star}} \sqrt{E_{g}}}$

Tunneling current depends exponentially on the

- Bandgap
- Effective mass
- Electric field

Tunneling in Homojunctions

A back-of-the envelope evaluation of interband tunneling current in semiconductors

$$
T_{W K B} \sim e^{-2 S}
$$

$$
S=\int_{x_{1}}^{x_{2}} \sqrt{\frac{\frac{2 m^{*}}{h^{2}}}{}\left(E_{g}-e F x\right)} d x
$$

$$
x_{1}=0, x_{2}=E_{g} / e F
$$

$$
\Rightarrow T_{W K B} \sim \exp \left[-\frac{2 \hat{3} \sqrt{m^{*}}}{3 \sigma^{2}} E_{g}^{\frac{3}{2}}\right]=\exp \left[-F_{0} / F\right]
$$

$\hbar \frac{d k}{d t}=e F \Longrightarrow k(t)=k(0)+\frac{c F}{t} t$
\Longrightarrow Bloch Osc. period: $T=\frac{h G}{e F}$
Rate of incidence on band-edge:
$\gamma_{\text {inc }}=1 / T=\frac{\epsilon F}{h G}=\frac{a_{0} e F}{h}$,
where $G=2 \pi / a_{0}$ is the reciprocal lattice vector.
Frequency of electron escape:
$f_{e s c} \sim \gamma_{\text {inc }} T_{W K B}=\frac{a_{a \rho} F}{h} \times \exp \left[-\frac{2 \hat{2} \sqrt{m^{*}}}{3 c F h} E_{g}^{\frac{h}{g}}\right]$
Tunneling current density:

$$
\begin{aligned}
& J_{T} \sim e N_{s} f_{e s c}=e N_{v} x_{\text {win }} f_{e s c}=e N_{v}(e V / F) f_{e s c} \\
& \text { Rough estimate: } \Longrightarrow J_{T} \sim \frac{\mathrm{e}^{2}}{h} \cdot\left[a_{0} N_{v} \exp \left[-\frac{2^{\frac{1}{m}} \sqrt{m^{2}}}{3 e F_{h}^{2}} E_{g}^{2}\right]\right] \cdot V
\end{aligned}
$$

Very rough

 estimates! ($\mathrm{V}=0.2 \mathrm{Volt}$)

Tunneling in Semiconductor Homojunctions

Tunneling in Semiconductor Homojunctions

Debdeep Jena (djena@cornell.edu)

Tunneling in Semiconductor Homojunctions

Debdeep Jena (djena@cornell.edu)

Tunneling in Semiconductor Homojunctions

Debdeep Jena (djena@cornell.edu)

Tunneling in Semiconductor Homojunctions

Tunneling in Semiconductor Homojunctions

Tunneling in Semiconductors

bulk semiconductor

ECE $4070 /$ MSE 6050

- "Interband" Zener Tunneling Currents

p-n junctions
heterojunctions

Resonant Tunneling in Semiconductor Nanostructures

The idea behind "Scattering"

How to find $f(k)$ in the presence of scattering

$$
\xrightarrow{x}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{\partial f_{k}}{\partial t}+\mathbf{v}_{k} \cdot \nabla_{r} f_{k}+\frac{\mathbf{F}}{\hbar} \cdot \nabla_{k} f_{k}=\underbrace{\sum_{k^{\prime}}\left[S\left(k^{\prime} \rightarrow k\right)\right.}_{\text {scattering term, } \hat{C} f_{k}} f_{k^{\prime}}\left(1-f_{k}\right)-\underbrace{S\left(k \rightarrow k^{\prime}\right)}_{k} f_{k}\left(1-f_{k^{\prime}}\right)]
\end{array} \\
& \text { The Boltzmann Transport Equation } \\
& \qquad S\left(k \rightarrow k^{\prime}\right)=\frac{2 \pi}{\hbar}\left|W_{k, k^{\prime}}\right|^{2} \delta\left(E_{k}-E_{k^{\prime}} \pm \hbar \omega\right)
\end{aligned}
$$

Fermi's Golden Rule for Scattering Rates

How to find the quantum current with scattering

River bed fluctuations 'screened' by water

Insufficient water fails to screen fluctuations

$$
U_{s c}(q)=\frac{e^{2}}{4 \pi \epsilon^{2} K} \int r^{2} \sin (\theta) d r d \theta d \phi \frac{e^{-\frac{r}{\lambda_{D}}}}{r} e^{i q r \cos (\theta)}
$$

Example of scattering matrix element

$$
\mu_{I}=\frac{2^{\frac{7}{2}}\left(4 \pi \epsilon_{s}\right)^{2}\left(k_{b} T\right)^{\frac{3}{2}}}{\pi^{\frac{3}{2}} Z^{2} e^{3} \sqrt{m^{*}} N_{D} F(\beta)} \sim \frac{T^{\frac{3}{2}}}{N_{D}}
$$

The Boltzmann Transport Equation gives f(k)

The Boltzmann transport equation gives a fullblown treatment of transport properties, and can be solved in several levels of approximation.

Formalism for diffusive charge transport

- Find the perturbation potential due to the defect.
- Use Fermi's Golden rule to evaluate the single-particle scattering rate
- Add up for all allowed states
- Use the solution of Boltzmann equation to find the mobility/conductivity.

$$
\mathbf{J}=2 e \int \frac{d^{d} k}{(2 \pi)^{d}} \mathbf{v} f(\mathbf{k})
$$

Current density: Sum over all group velocities ' v ' in k-space

Distribution function: Solution of Boltzmann Transport Equation

The Boltzmann Transport Equation

Boltzmann equation \rightarrow

$f(k)=f_{0}(k)+e \tau_{m}(k)(\mathbf{F} \cdot \mathbf{v}) \frac{\partial f_{0}(k)}{\partial \varepsilon}$
$\frac{1}{\tau_{m}(k)}=\sum_{k^{\prime}} S\left(k, k^{\prime}\right)(1-\cos \theta)-$ Momentum scattering time $\left(\mu=\frac{\mathrm{e}\left\langle\tau_{\mathrm{m}}(k)\right\rangle}{m^{*}}\right)$
$\frac{1}{\tau_{q}(k)}=\sum_{k^{\prime}} S\left(k, k^{\prime}\right)-$ Quantum scattering time

$$
\left.S\left(k, k^{\prime}\right)=\frac{2 \pi}{\hbar}\left|\left\langle k^{\prime}\right| \Delta E_{c}(r)\right| k\right\rangle\left.\right|^{2} \delta\left(\varepsilon_{k}-\varepsilon_{k^{\prime}}\right)
$$ $\rightarrow k^{\prime}$ by perturbation $D E_{c}$

Most general expression for 'Current Density' in 'd' dimensions:
$\mathbf{J}_{\mathbf{d}}=q \times \frac{g_{s} g_{v}}{L^{d}} \sum_{k} \mathbf{v}_{\mathbf{g}}(k)(f(k))$, where charge current density (general case)
qv_{g} may be replaced by other physical quantities:
$\mathrm{qv}_{\mathrm{g}} \rightarrow$ charge current density (electrical cond.)
$1 \rightarrow$ carrier density
$\mathrm{E}(\mathrm{K}) \rightarrow$ heat current density (thermal cond.)

Time-dependent perturbation theory

$$
\begin{array}{cc}
i \hbar \frac{\partial}{\partial t}\left|\Psi_{t}\right\rangle=H_{0}\left|\Psi_{t}\right\rangle . & i \hbar \frac{\partial}{\partial t}\left|\Psi_{t}\right\rangle=\left[H_{0}+W_{t}| | \Psi_{t}\right\rangle \\
\text { Unperturbed problem } & \text { Time-dependent perturbation }
\end{array}
$$

Perturbation
transformation $>\left|\Psi_{t}\right\rangle=e^{-i \frac{H_{0}}{\hbar} t}|\Psi(t)\rangle$
H_{0} is the Hamiltonian operator
If the system was in an eigenstate $\left|\Psi_{t_{0}}\right\rangle=|0\rangle$ of energy E_{0} at time t_{0}, then the state at a future time differs from the initial state by a phase factor

$$
H_{0}\left|\Psi_{t_{0}}\right\rangle=E_{0}\left|\Psi_{t_{0}}\right\rangle \Longrightarrow\left|\Psi_{t}\right\rangle=e^{-i \frac{E_{0}}{\hbar}\left(t-t_{0}\right)}\left|\Psi_{t_{0}}\right\rangle
$$

$$
i \hbar\left(-\frac{i}{\hbar} H_{0} e^{-i \frac{H_{0}}{\hbar}}|\Psi(t)\rangle+e^{-i \frac{H_{0}}{\hbar}} t \frac{\partial}{\partial t}|\Psi(t)\rangle\right)=\left[H_{0}+W_{t}\right] e^{-i \frac{H_{0}}{\hbar}}|\Psi(t)\rangle
$$

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=\left[e^{+i \frac{H_{0}}{\hbar} t} W_{t} e^{-i \frac{H_{0}}{\hbar} t}\right]|\Psi(t)\rangle=W(t)|\Psi(t)\rangle
$$

Time-dependent evolution in the Interaction picture

$$
\begin{aligned}
& W_{t}=0 \Longrightarrow W(t)=0 \Longrightarrow i \hbar \frac{\partial|\Psi(t)\rangle}{\partial t}=0 \\
& \text { State vectors do not rotate in time }
\end{aligned}|\Psi(t)\rangle=\left|\Psi\left(t_{0}\right)\right\rangle \begin{aligned}
& \text { If } W=0, \text { the state vector does } \\
& \text { not rotate in time in the } \\
& \text { interaction picture. }
\end{aligned}
$$

Figure 24.1: Schrodinger vs. Interaction pictures of time-evolution of quantum state.

$$
i \hbar \frac{\partial}{\partial t}\left|\Psi_{t}\right\rangle=\left[H_{0}+W_{t}\right]\left|\Psi_{t}\right\rangle
$$

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=W(t)|\Psi(t)\rangle
$$

$$
|\Psi(t)\rangle=\left|\Psi\left(t_{0}\right)\right\rangle+\frac{1}{i \hbar} \int_{t_{0}}^{t} d t^{\prime} W\left(t^{\prime}\right)\left|\Psi\left(t^{\prime}\right)\right\rangle
$$

Time-dependent perturbation theory

The probability of the state making a transition from $|0\rangle$ to $|n\rangle$ at time t is

$$
\left.\left|\left\langle n \mid \Psi_{t}\right\rangle\right|^{2}=|\langle n \mid \Psi(t)\rangle|^{2} \approx|\langle n| W| 0\right\rangle\left.\right|^{2} \frac{e^{2 \eta t}}{\left(E_{0}-E_{n}\right)^{2}+(\hbar \eta)^{2}} .
$$

The rate of transitions from state $|0\rangle \rightarrow|n\rangle$ is

$$
\left.\frac{1}{\tau_{|0\rangle \rightarrow|n\rangle}}=\frac{d}{d t}|\langle n \mid \Psi(t)\rangle|^{2} \approx|\langle n| W| 0\right\rangle\left.\right|^{2}\left(\frac{2 \eta}{\left(E_{0}-E_{n}\right)^{2}+(\hbar \eta)^{2}}\right) e^{2 \eta t} .
$$

$$
\frac{\lim _{\eta \rightarrow 0^{+}} \frac{2 \eta}{x^{2}+\eta^{2}}=\lim _{\eta \rightarrow 0^{+}} \frac{1}{i}\left[\frac{1}{x-i \eta}-\frac{1}{x+i \eta}\right]=2 \pi \delta(x)}{\delta(a x)=\delta(x) /|a|}
$$

$$
\left.\frac{1}{\tau_{|0\rangle \rightarrow|n\rangle}} \approx \frac{2 \pi}{\hbar}|\langle n| W| 0\right\rangle\left.\right|^{2} \delta\left(E_{0}-E_{n}\right),
$$

Fermi's golden rule for time-varying potentials

Perturbations oscillating in time

$$
\begin{aligned}
& W_{t}=2 W e^{\eta t} \cos (\omega t)=e^{\eta t} W\left(e^{i \omega t}+e^{-i \omega t}\right) \\
& \quad\langle n \mid \Psi(t)\rangle \approx \frac{\langle n| W|0\rangle}{i \hbar}\left(\int_{t_{0}}^{t} d t^{\prime} e^{i\left(\frac{E_{n}-E_{0}+\hbar \omega}{\hbar}\right) t^{\prime}} e^{\eta t^{\prime}}+\int_{t_{0}}^{t} d t^{\prime} e^{i\left(\frac{E_{n}-E_{0}-\hbar \omega}{\hbar}\right) t^{\prime}} e^{\eta t^{\prime}}\right)
\end{aligned}
$$

$$
\left.\frac{1}{\tau_{|0\rangle \rightarrow|n\rangle}} \approx \frac{2 \pi}{\hbar} \times|\langle n| W| 0\right\rangle\left.\right|^{2} \times[\underbrace{\delta\left(E_{0}-E_{n}+\hbar \omega\right)}_{\text {absorption }}+\underbrace{\delta\left(E_{0}-E_{n}-\hbar \omega\right)}_{\text {emission }}] .
$$

Fermi's golden rule for
oscillating potentials

Scattering rate due to point scatterers

$$
\begin{gathered}
W(r)=V_{0} \delta(\mathbf{r}) \\
\left\langle\mathbf{k}^{\prime}\right| V_{0} \delta(\mathbf{r})|\mathbf{k}\rangle=\int d^{3} \mathbf{r}\left(\frac{e^{-i \mathbf{k}^{\prime} \cdot \mathbf{r}}}{\sqrt{V}}\right) V_{0} \delta(\mathbf{r})\left(\frac{e^{+i \mathbf{k} \cdot \mathbf{r}}}{\sqrt{V}}\right)=\frac{V_{0}}{V} \\
\frac{1}{\tau\left(|\mathbf{k}\rangle \rightarrow\left|\mathbf{k}^{\prime}\right\rangle\right)}=\frac{2 \pi}{\hbar}\left(\frac{V_{0}}{V}\right)^{2} \delta\left(E_{\mathbf{k}}-E_{\mathbf{k}^{\prime}}\right) \\
\frac{1}{\tau(|\mathbf{k}\rangle)}=\sum_{\mathbf{k}^{\prime}} \frac{1}{\tau\left(|\mathbf{k}\rangle \rightarrow\left|\mathbf{k}^{\prime}\right\rangle\right)}=\frac{2 \pi}{\hbar}\left(\frac{V_{0}}{V}\right)^{2} \underbrace{\sum_{\mathbf{k}^{\prime}} \delta\left(E_{\mathbf{k}}-E_{\mathbf{k}^{\prime}}\right)}_{D\left(E_{\mathbf{k}}\right)} \\
\frac{1}{\tau\left(E_{\mathbf{k}}\right)}=\frac{2 \pi}{\hbar}\left(\frac{V_{0}}{V}\right)^{2} n_{s c} V \int \frac{d^{3} \mathbf{k}^{\prime}}{\frac{(2 \pi)^{3}}{V}} \delta\left(E_{\mathbf{k}}-E_{\mathbf{k}^{\prime}}\right)=\frac{2 \pi}{\hbar} V_{0}^{2} n_{s c} g\left(E_{\mathbf{k}}\right)
\end{gathered}
$$

Scattering of Bloch Electron States

$$
\begin{gathered}
\frac{1}{\tau_{\mathbf{k} \mathbf{k}^{\prime}}}=\frac{2 \pi}{\hbar}|V(\mathbf{q})|^{2} \delta\left[E_{\mathbf{k}^{\prime}}-\left(E_{\mathbf{k}} \pm \hbar \omega\right)\right] \\
\mathbf{q}=\mathbf{k}-\mathbf{k}^{\prime} \\
V(\mathbf{q})=\left\langle\mathbf{k}^{\prime}\right| W(\mathbf{r})|\mathbf{k}\rangle
\end{gathered}
$$

$$
\begin{array}{r}
=\int_{V}\left[\frac{e^{-i \mathbf{k}^{\prime} \cdot \mathbf{r}}}{\sqrt{V}} u_{\mathbf{K}}^{\star}(\mathbf{r})\right] \times W(\mathbf{r}) \times\left[\frac{e^{+i \mathbf{k} \cdot \mathbf{r}}}{\sqrt{V}} u_{\mathbf{K}}(\mathbf{r})\right] d^{3} \mathbf{r} \\
\quad=\int_{V}\left[\frac{e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}}}{V}\right] W(\mathbf{r}) \times\left[u_{\mathbf{K}}^{\star}(\mathbf{r}) u_{\mathbf{K}}(\mathbf{r})\right] d^{3} \mathbf{r}
\end{array}
$$

How do multiple scattering centers add up and contribute to the total scattering rate?

$$
\approx(\underbrace{\int_{V} e^{i \mathbf{q} \cdot \mathbf{r}} W(\mathbf{r}) \frac{d^{3} \mathbf{r}}{V}}_{\text {crystal }}) \times(\underbrace{\int_{\Omega} u_{\mathbf{K}}^{\star}(\mathbf{r}) u_{\mathbf{K}}(\mathbf{r}) \frac{d^{3} \mathbf{r}}{\Omega}}_{=1})
$$

Fourier Transform of real-space scattering potential!

$$
V(\mathbf{q}) \approx \int_{V} e^{i \mathbf{q} \cdot \mathbf{r}} W(\mathbf{r}) \frac{d^{3} \mathbf{r}}{V}
$$

Scattering by many impurities

$$
\begin{array}{r}
W_{t o t a l}(\mathbf{r})=\underbrace{W(\mathbf{r})+W\left(\mathbf{r}-\mathbf{R}_{\mathbf{1}}\right)+W\left(\mathbf{r}-\mathbf{R}_{\mathbf{2}}\right)+\ldots}_{{ }^{\prime} N_{i m p}^{\prime} i^{i m p u r i t i e s}} \\
V_{0}(\mathbf{q}) \approx \int_{V} e^{i \mathbf{q} \cdot \mathbf{r}} W(\mathbf{r}) \frac{d^{3} \mathbf{r}}{V}
\end{array}
$$

$$
V_{t o t a l}(\mathbf{q})=V_{0}(\mathbf{q})+\int_{V} e^{i \mathbf{q} \cdot \mathbf{r}} W\left(\mathbf{r}-\mathbf{R}_{\mathbf{1}}\right) \frac{d^{3} \mathbf{r}}{V}+\ldots
$$

$$
V_{t o t a l}(\mathbf{q})=V_{0}(\mathbf{q})+V_{0}(\mathbf{q}) e^{i \mathbf{q} \cdot \mathbf{R}_{1}}+V_{0}(\mathbf{q}) e^{i \mathbf{q} \cdot \mathbf{R}_{\mathbf{2}}}
$$

$$
V_{\text {total }}(\mathbf{q})=V_{0}(\mathbf{q})[\underbrace{1+e^{i \mathbf{q} \cdot \mathbf{R}_{1}}+e^{i \mathbf{q} \cdot \mathbf{R}_{2}} \ldots}_{{ }^{\prime} N^{\prime} \text { terms }}]
$$

$$
\left|V_{t o t a l}(\mathbf{q})\right|^{2}=\left|V_{0}(\mathbf{q})\right|^{2}[(\underbrace{1+e^{i \mathbf{q} \cdot \mathbf{R}_{1}}+e^{i \mathbf{q} \cdot \mathbf{R}_{\mathbf{2}}} \ldots}_{{ }^{\prime} N_{\text {imp }}^{\prime} \text { terms }}) \times(\underbrace{1+e^{-i \mathbf{q} \cdot \mathbf{R}_{1}}+e^{-i \mathbf{q} \cdot \mathbf{R}_{\mathbf{2}}} \ldots}_{{ }^{\prime} N_{\text {imp }}^{\prime} \text { terms }})]
$$

Fourier Transform property:

$$
\int e^{i q x} f(x) d x \leftrightarrow F(q)
$$

$\int e^{i q x} f(x+a) d x \leftrightarrow F(q) \times e^{i q a}$

Scattering rate is linearly proportional to impurity density in the dilute uncorrelated limit!

Scattering events in semiconductors

Scattering processes

Remote impurities Background impurity Charged dislocations Strain field of dislocations Dipoles in alloy

Coulombic

Isotropic

Alloy disorder
Interface roughness
Acoustic phonon
A static periodic potential causes no scattering \rightarrow every other potential causes scattering!
Periodic 'non-static' potentials: Phonons.
Static non-periodic potentials: Defects \& Impurities.

General Nature of Scattering Rates

Scattering events in semiconductors

Negere 6.7 Temperatare dependence of the mobility for a-type GaAs shouing the separate and combined scatsering processes. [From C. M. Wolfe, G. E. Still. man. and W, T, Lindtey, S. Appl Phys, 41. 30et f1900.)

Scattering by each type of impurity affects the net electron mobility.

- Mobility in a ultra-clean (defect-free) semiconductor is limited by phonon (optical+acoustic) scattering.
- If the scattering rate of defects/impurities exceed that of phonons, then they determine the mobility.
- Method: find the scattering rate due to each type of defect. The total scattering rate is the sum of all.

Scattering by a neutral impurity

For example, for electrons in Ge , where $m / m_{0}=0.12$ and $\varkappa=16$, a mobility of $1.1 \times 10^{3} \mathrm{~cm}^{2} / \mathrm{V} \mathrm{s}$ is obtained assuming, e.g., $10^{17} \mathrm{~cm}^{-3}$ neutral impurities.

Scattering by charged impurities

River bed fluctuations 'screened' by water

Insufficient water fails to screen fluctuations

$$
\left|k-\boldsymbol{k}^{\prime}\right| \approx 2 k \sin (\theta / 2)
$$

$$
\beta_{\mathrm{BH}}=2 \frac{m}{\hbar_{1}}\left(\frac{2}{m} 3 k_{\mathrm{B}} T\right)^{1 / 2} L_{\mathrm{D}}
$$

$\beta_{B H}=\left(\frac{\chi}{16}\right)^{1 / 2} \frac{T}{100 \mathrm{~K}}\left(\frac{m}{m_{0}}\right)^{1 / 2}\left(\frac{2.08 \times 10^{18} \mathrm{~cm}^{-3}}{n}\right)^{1 / 2}$
Brooks-Herring dimensionless factor

The mobility $\mu=(e / m)\left\langle\tau_{m}\right\rangle$ is given by

$$
\mu=\frac{2^{7 / 2}\left(4 \pi \varkappa \varkappa_{0}\right)^{2}\left(k_{\mathrm{B}} T\right)^{3 / 2}}{\pi^{3 / 2} Z^{2} e^{3} m^{1 / 2} N_{1}\left[\ln \left(1+\beta_{\mathrm{BH}}^{2}\right)-\beta_{\mathrm{BH}}^{2} /\left(1+\beta_{\mathrm{BH}}^{2}\right)\right]}
$$

which in units of $\mathrm{cm}^{2} / \mathrm{Vs}$ is

$$
\mu=\frac{3.68 \times 10^{20} \mathrm{~cm}^{-3}}{N_{1}} \frac{1}{Z^{2}}\left(\frac{x}{16}\right)^{2}\left(\frac{T}{100 \mathrm{~K}}\right)^{1.5}
$$

$$
\cdot \frac{1}{\left(m / m_{0}\right)^{1 / 2}\left[\log \left(1+\beta_{\mathrm{BH}}^{2}\right)-0.434 \beta_{\mathrm{BH}}^{2} /\left(1+\beta_{\mathrm{BH}}^{2}\right)\right]}
$$

and the \log is to the base 10 .

Phonons in Semiconductors

Newton's law for mass-spring chain

$$
F=M \frac{d^{2} u_{s}}{d t^{2}}=C\left(u_{s+1}-u_{s}\right)+C\left(u_{s-1}-u_{s}\right)
$$

$$
u_{s}=u_{0} e^{i(q s a-\omega t)}
$$

$$
\omega^{2}(q)=\frac{2 C}{M}(1-\cos q a)
$$

Phonons in Semiconductors

Acoustic and optical phonon dispersion

$$
\omega_{ \pm}^{2}(k)=\frac{C}{M_{r}}\left[1 \pm \sqrt{1-\frac{2 M_{r}}{M_{1}+M_{2}}(1-\cos k a)}\right]
$$

Phonons in Semiconductors

Electron-Def. Pot. Acoustic Phonon interaction

$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-000-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

*

Deformation Potential Acoustic Phonon Scattering Potential

$$
\begin{equation*}
\mathbf{u}(\mathbf{r}, t)=\mathbf{a} u(\mathbf{r}, t) \tag{6.4}
\end{equation*}
$$

where

$$
\begin{equation*}
u(\mathbf{r}, t)=u \exp \left[i\left(\mathbf{q}_{s} \cdot \mathbf{r}-\omega_{s} t\right)\right] \tag{6.5}
\end{equation*}
$$

In these equations a is the displacement direction, and u is the amplitude. The strain associated with the displacement is

$$
\begin{align*}
& \nabla \cdot \mathbf{u}(\mathbf{r}, t)=\mathbf{a} \cdot \nabla u(\mathbf{r}, t) \tag{6.6}\\
& \nabla \cdot \mathbf{u}(\mathbf{r}, t)=i \mathbf{q} \cdot \mathbf{a} u(\mathbf{r}, t) \tag{6.7}
\end{align*}
$$

Equation (6.7) indicates that for the transverse components of a phonon where the displacement and the wavevector are orthogonal, $\mathbf{q}_{r} \cdot \mathbf{a}=0$, and no strain is produced. The scattering potential for the longitudinal component is, therefore.

$$
\begin{equation*}
\Delta U(\mathbf{r}, t)=\varnothing_{A} \nabla \cdot \mathbf{u}(\mathbf{r}, t) \tag{6.8}
\end{equation*}
$$

where the deformation potential, ℓ_{A}, in units of energy, is defined as the proportionality constant between the scattering potential (units of energy) and the strain.

 proced.

Electron-Piezoelectric Acoustic Phonon interaction

Piezoelectric Acoustic Phonon Scattering Potential

$$
\begin{aligned}
& \Delta U(\mathbf{r}, f)=-Q b(\mathbf{r}, r) \\
& d(\mathbf{r}, t)=-\int \mathbf{E}(\mathbf{r}, \mathrm{t}) \cdot d \mathrm{r} \\
& \mathrm{D}(\omega)=\epsilon\left(\omega \mathrm{E}=\epsilon_{\mathrm{n}} \mathrm{E}+\mathrm{P}(\omega)\right. \\
& \mathrm{D}(0)=\epsilon(0) \mathrm{E}=\epsilon_{0} \mathrm{E}+\mathrm{P}(0) \\
& \text { Piezo charge } \\
& \mathbf{D}(0)=e(0) E(r, n)+\sigma_{\mathrm{m}} \nabla \mathrm{~F}(\mathbf{r}, \theta) \\
& \mathrm{E}(\mathbf{r}, f)=-\frac{c_{\mathrm{e}}}{(0)} \nabla_{\omega(\mathbf{r}, f)} \\
& \Delta U(\mathrm{r}, t)=\frac{-q e_{\mathrm{pe}}}{e(0)} \Delta r(\mathrm{r}, t) \\
& \Delta U(\mathrm{r}, t)=\frac{i g \epsilon_{\mathrm{p}}}{\epsilon(0) q_{.}} \nabla-\mathrm{u}(\mathrm{r}, t)
\end{aligned}
$$

Electron-Def. Pot. Optical Phonon interaction

40
 70
Lail

a)

Пeare 63 Denglacensents of a diwoeit chain for LO and TO phonoes at fai the
 by apes circles. Far aose efpe optical ploweon oely the lighter atoent ise de. phoced.

Typical phonon spectra of semiconductors

$$
\begin{equation*}
3 \omega(r, t)=\omega_{1}(r, t)-\omega_{2}(r, t) \tag{6.17}
\end{equation*}
$$

where $u_{1}(r, f)$ and $u_{i}(r, f)$ have the form given by (6.4) and (6.5). The scattering potential dve to modulation of the conduction and valence cdges must thes be propertional to this relative displacement and

Electron-Polar Optical Phonon interaction

$$
\begin{aligned}
& D(x)=\mathrm{e}(\mathrm{x}) \mathrm{E}=\mathrm{c}_{\mathrm{E}} \mathrm{E}+\mathrm{N}(\mathrm{x}) \\
& \boldsymbol{\Gamma}(\underline{0})=\boldsymbol{\Gamma}(\boldsymbol{x})+\mathbf{P}
\end{aligned}
$$

Using (6.23) in 16.30 p and subtracting (6.211, we obtain

$$
s f 0 \mathbf{E}=s(x) \mathbf{E}+\mathbf{P}
$$

16. 237
or

$$
\begin{equation*}
\mathrm{P}(0)=\Delta(x) \mathbf{E}+\mathbf{P}_{7} \tag{6,24}
\end{equation*}
$$

From (6.24) we can determine the internal fields lindaced by the optical phonon polarization of the unit cell.

The polarization of a unit cell, P/ir, n, is sebermined by the relative displacessent of the ions it a vail cell. Buir, I, and the efliective iosic charge, e^{*}, usch that

$$
\mathrm{P}(r, n)=\frac{c^{*}}{\square} \operatorname{la}(\mathrm{r}, n)
$$

In this equation $口=1 / \mathrm{V}$ in the volume of the N primitive or n gner-Seite unit sells and c^{*} is the Eorn effective charge given loy
where ρ is the mass density. This equation is derived in Chapter 7, Assumins to popace or surface charges. (6.24) and (6.25) yive an inlernal ficld.

$$
\mathbf{E}\left(\mathbf{r}, n=-\frac{e^{*}}{\square v(x)} \delta \mathrm{se}(\mathrm{r}, t)\right.
$$

Frohlich interaction

$$
\frac{\epsilon_{r}(0)}{\epsilon_{r}(\%)}=\left(\frac{\omega_{\mathrm{L} . \mathrm{O}}}{\omega_{\mathrm{TO}}}\right)^{2}
$$

as the Lyddane-Sachs-Teller relation

Usise (6.9. (6. 10. and (6. 36). the scaniering potential for polar mode scalteriog is

$$
\Delta U(r, n)=\frac{-\Delta r^{*}}{S_{e}(x)} \int \delta d(r, n) d r
$$

ef with (6.5) and (4.19),

$$
\Delta U(r, n)=\frac{\left\langle/ v^{*}\right.}{D e(m) q_{n}} \Delta s(r, n
$$

(h. 28)

A comparimon of 16,18 and ${ }^{2}$ (is) shoes that the catbering potewtials for Acformation poetential and olar mode scattering by tical phonons are out of phase by 90° and ay ains independent.

Polar optical phonon scattering potential

phoson alswerption

$$
\begin{align*}
& {\left[-\partial f(k) / \partial l_{\text {me }}=V(2 \pi)^{-3} \int d^{3} q\left[S_{-}(k, k-q) f(k)[1-f(k-q)]\right.\right.} \\
& \quad+S_{+}(k, k+q) f(k)[1-f(k+q)]-S_{-}(k+q, k) f(k+q)[1-f(k)] \\
& \quad-S_{+}(k-q, k) f(k-q)[1-f(k)] . \tag{6.9.1}
\end{align*}
$$

Amplitude of Phonon Vibrations

$$
\begin{array}{r}
u_{s}(x, t)=u_{0} e^{i(\beta x-\omega t)}+u_{0} e^{-i(\beta x-\omega t)} \\
\left|u_{s}\right|^{2}=4 u_{0}^{2} \cos (\beta x-\omega t)
\end{array}
$$

$\mathrm{KE}=\frac{1}{2} M\left(\frac{d u_{s}}{d t}\right)^{2}=2 M \omega^{2} u_{0}^{2} \sin ^{2}(\beta x-\omega t)$

$$
\mathrm{PE}=\frac{1}{2} K u_{s}^{2}=2 K u_{0}^{2} \cos ^{2}(\beta x-\omega t)
$$

$$
\text { but. . . } \omega^{2}=\frac{K}{M} \rightarrow
$$

$\mathrm{KE}+\mathrm{PE}=2 M \omega^{2} u_{0}^{2}=N_{\omega} \cdot \hbar \omega \rightarrow$

$$
\text { since } \ldots M=\rho V
$$

$$
u_{0}^{2}=\frac{\hbar}{2 \omega \rho V} \cdot N_{\omega}
$$

$$
N_{\omega}(T)=\frac{1}{e^{\frac{\hbar \omega}{k T}}-1}
$$

Typical phonon spectra of semiconductors

Vibration amplitude as a function of the temperature: Quantum-Classical connection of the phonon harmonic oscillator

Electron-Phonon Scattering Rates

Polar optical phonon

$S\left(k \rightarrow k^{\prime}\right)=\frac{2 \pi}{\hbar}\left|W\left(q_{s}\right)\right|^{2} \frac{\hbar}{2 \rho \Omega \omega_{q_{s}}}\left[N\left(\omega_{q_{s}}\right)+\frac{1}{2} \mp \frac{1}{2}\right] \delta\left[\pm \cos (\theta)+\frac{q_{s}}{2 k} \mp \frac{\omega_{q_{s}}}{v q_{s}}\right]$

$$
\begin{aligned}
& D=\epsilon_{0} E+\frac{q^{\star} u}{\Omega} \\
& E(x, t)=-\frac{q q^{\star} u}{\epsilon_{0} \Omega}
\end{aligned}
$$

$$
\left(\frac{q^{\star}}{\Omega}\right)^{2}=\rho \epsilon_{0} \omega_{0}^{2}\left(\frac{1}{\epsilon_{s}^{\infty}}-\frac{1}{\epsilon_{s}^{0}}\right)
$$

$$
W(r, t)=-q \int d x E(x, t)=\frac{q \omega_{0} \sqrt{\rho}}{i \beta} \sqrt{\frac{1}{\epsilon_{s}^{\infty}}-\frac{1}{\epsilon_{s}^{0}}} \cdot u_{0} e^{i(\beta \cdot \mathbf{r}-\omega t)}
$$

Piezoelectric acoustic phonon

$$
\begin{gathered}
D=\epsilon_{0} \epsilon_{s} E+e_{p z} \frac{\partial u}{\partial x} \\
E(x, t)=-\frac{e_{p z}}{\epsilon_{0} \epsilon_{s}} \frac{\partial u}{\partial x} \\
W(r, t)=-q \int d x E(x, t)=\frac{q e_{p z}}{\epsilon_{0} \epsilon_{s}} u_{0} e^{i(\beta \cdot r-\omega t)} \\
\frac{K^{2}}{1-K^{2}}=\frac{e_{p z}^{2}}{\epsilon_{0} \epsilon_{s} v_{s}}
\end{gathered}
$$

Deformation potential acoustic phonon

$$
W(x, t)=D_{a c} \frac{\partial u}{\partial x}
$$

$$
W(r, t)=D_{a c}(\nabla \cdot \mathbf{u})=i D_{a c} \beta u_{0} e^{i(\boldsymbol{\beta} \cdot \mathbf{r}-\omega t)}
$$

Momentum conservation

$$
\hbar \mathbf{k}^{\prime}=\hbar \mathbf{k} \pm \hbar \boldsymbol{\beta}
$$

Energy conservation

$$
E_{\mathbf{k}^{\prime}}=E_{\mathbf{k}} \pm \hbar \omega_{\boldsymbol{\beta}}
$$

$$
k^{\prime 2}=k^{2}+\beta^{2} \pm 2 k \beta \cos \theta
$$

Deformation potential optical phonon

$$
W(r, t)=D_{o p} u=D_{o p} u_{0} e^{i(\boldsymbol{\beta} \cdot \mathbf{r}-\omega t)}
$$

$$
\begin{aligned}
& \text { Energy conservation } \\
& \beta^{2} \pm 2 \beta k \cos \theta \mp \frac{2 m^{\star} \hbar \omega_{\beta}}{\hbar^{2}}=0
\end{aligned}
$$

For acoustic phonons, $\hbar \omega_{\beta}=\hbar v_{s} \beta$, and we get

Allowed angles for acoustic phonon scattering events

$$
\beta=2 k\left(\mp \cos \theta \pm \frac{m^{\star} v_{s}}{\hbar k}\right)=2 k\left(\mp \cos \theta \pm \frac{v_{s}}{v_{k}}\right)
$$

For optical phonons, we get

> Allowed angles for optical phonon scattering events

Electron-Acoustic Phonon interaction: Mobility

$5^{r}=A, \exp \{ \pm \mathrm{i}(\boldsymbol{q}, \cdot r)\}$ Acoustic phonon scattering
$\left.\left|H_{r i t}\right|=\frac{e_{x a} q_{i} A_{i}}{V} \right\rvert\, \int \exp \left[i\left(k-k^{\prime} \pm q d \cdot r\right) d^{B} r \mid\right.$.
$K=k \pm q$

$$
2 M \omega^{2} u_{0}^{2} \approx N_{p h} \times \hbar \omega
$$

$\left|H_{k k}\right|=\varepsilon_{*} q_{i} A_{i}$.
$A_{i} \rightarrow\left|\int \psi_{N \pm 1}^{*} x \psi_{N} d^{3} r\right|= \begin{cases}\left(N \hbar / 2 M \omega_{i}\right)^{1 / 2} & \text { for } N \rightarrow N-1 \\ \left.(N+1) \hbar / 2 M \omega_{i}\right)^{1 / 2} & \text { for } N \rightarrow N+1\end{cases}$
SHO: |amplitude| ${ }^{2}$ ~ number of phonon
$N \rightarrow N_{q}=\left[\exp \left(h \omega_{\nu} / k_{\mathrm{s}} T\right)-1\right]$

$$
S \approx \frac{2 \pi}{\hbar}\left|H_{k}\right|^{2}\left[\delta\left(\varepsilon(k)-\varepsilon(k)+\hbar \omega_{k}\right)+\delta\left(e(k)-\varepsilon(k)-\hbar \omega_{0}\right)\right]
$$

$\left|H_{2 \pm q, a}\right|=\varepsilon_{\mathrm{s}} q_{1}\left(\left(N_{\mathrm{c}}+1 / 2 \mp 1 / 2\right) \mathrm{A} / 2 \underline{ } \mathrm{~V} \omega_{\mathrm{g}}{ }^{1 / 2}\right.$.

$$
c_{l}=\rho v_{s}^{2} \quad \approx 2 \frac{2 \pi}{\hbar}\left|\boldsymbol{H}_{k i}\right|^{2} \delta\left[\varepsilon\left(k^{\prime}\right)-\varepsilon(k)\right] . \quad \text { absorption~emission }
$$

Deformation potential
Piezoelectric
Piezoelectric

$$
\begin{aligned}
& \Delta U(\mathbf{r}, t)=\mathscr{E}_{A} \nabla \cdot \mathbf{u}(\mathbf{r}, t) \\
& \mu= \frac{2 \sqrt{2 \pi}}{3} \frac{e \hbar^{4} c_{l}}{m^{5 / 2}\left(k_{\mathrm{B}}\right)^{3 / 2} \varepsilon_{\mathrm{ac}}^{2}} T^{-3 / 2}
\end{aligned}
$$

$$
\Delta U(\mathrm{r}, t)=\frac{i q e_{p l}}{c(0) q_{t}} \nabla \cdot \mathrm{u}(\mathrm{r}, l)
$$

$$
\mu=\frac{16 \sqrt{2 \pi}}{3} \frac{\hbar^{2} x x_{0}}{m^{m / 2} e K^{2}\left(k_{\mathrm{B}} T^{D / 2}\right.} \propto T^{-1 / 2}
$$

which in units of $\mathrm{cm}^{2} / \mathrm{V} \mathrm{s}$ is given by

$$
\mu=3.06 \times 10^{4} \frac{c_{l} / 10^{12} \mathrm{dyn} \mathrm{~cm}^{-2}}{\left(\mathrm{~m} / m_{0}\right)^{5 / 2}(T / 100 \mathrm{~K})^{3 / 2}\left(\varepsilon_{\mathrm{ac}} / \mathrm{eV}\right)^{2}} \propto T^{-3 / 2}
$$ and in units of $\mathrm{cm}^{2} / \mathrm{Vs}$

$$
\mu=26 \frac{x}{\left(m / m_{k}\right)^{1 / 2} K^{2}(T / 100 \mathrm{~K})^{1 / 2}} .
$$

Electron-Optical Phonon Scattering Rates, Mobility

where $z=\Theta / 2 T$ and $y=\varepsilon / k_{\mathrm{B}} \theta$. The function is shown
Its numerical value in units of $\mathrm{cm}^{2} / \mathrm{Vs}$ is given by

$$
\mu=2.04 \times 10^{3} \frac{\left(\varrho / \mathrm{g} \mathrm{~cm}^{-3}\right)(\Theta / 400 \mathrm{~K})^{1 / 2}}{\left(\mathrm{~m} / m_{0}\right)^{5 / 2}\left(D / 10^{8} \mathrm{eV} \mathrm{~cm}^{-1}\right)^{2}} f(T / \Theta)
$$

Polar Optical Phonon Scattering

$$
\begin{aligned}
x=\frac{\hbar|c| E_{0}}{2^{1 / 2} m^{6 / 2}\left(f \omega_{0}\right)^{2 / 2}} & =\frac{1}{137} \sqrt{\frac{m c^{2}}{2 k_{\mathrm{a}} \theta}\left(\frac{1}{x_{0 p 1}}-\frac{1}{x}\right)} \\
& =397.4 \sqrt{\frac{m / m_{0}}{\theta / K}\left(\frac{1}{x_{\text {ept }}}-\frac{1}{x}\right)}
\end{aligned}
$$

The mobility is simply $(\mathrm{e} / \mathrm{m}) \tau_{\mathrm{m}}$:

$$
\mu=\left[|e| /\left(2 m \propto \omega_{0}\right)\right] \exp (\Theta / T)
$$

which in units of $\mathrm{cm}^{2} / \mathrm{Vs}$ is given by

$$
\mu=2.6 \times 10^{5} \frac{\exp (\Theta / T)}{\alpha\left(m / m_{0}\right)(\Theta / \mathrm{K})} \quad \text { for } \quad T \ll \theta
$$

For example, in n-type GaAs where $\Theta=417 \mathrm{~K}, m / m_{0}=0.072, \alpha=0.067$, we calculate a mobility at 100 K of $2.2 \times 10^{5} \mathrm{~cm}^{2} / \mathrm{V} \mathrm{s}$. This is of the order of magnitude of the highest mobilities observed in this material. At this and

Electron-Photon Interactions

 mentiperine

Major ${ }^{(W)}$-V Semiconductorfamilies:

- GaAs-based (A/GaAs/GaAs) (strain-free, or pseudomorpitic)
- inP based (InGaAs channels)
- 6.1 Angstrombharrow gap channels (generally grown metamorphically on GaAs)
- GaN-based (InGaNGaN and AMaNGaN) (Dypically pseudomorphic)

Electron-Photon Interactions

Fig. 12.12. Bandge enorgy verses lamioe oonstant of III-V aieride senionedwotors at roons bemperabure.

Major III-V Semiconductor families:

- GaAs-based (A/GaAs/GaAs) (strain-free, or pseudomorphic)
- InP based (InGaAs channels)
- 6.1 Angstrom/narrow gap channels (generally grown metamorphically on GaAs)
- GaN-based (InGaN/GaN and A/GaN/GaN) (typically pseudomorphic)

Fif 76. Bandpup energy and lanioc conetant of varioes III.V semioondections alt roves smperatore (adopted from Tien. 1985)

How to make white light with semiconductors

(a)

Homojunction LED

Holes $\quad n$-type
(b)

Double Heterostructure LED

p-type
Active
Layer
n-type

$$
\mathrm{IQE}=\frac{\text { Light generated }}{\text { Electrons injected }}
$$

$$
=\frac{R_{\text {radiative }}}{R_{\text {radiative }}+R_{\text {nonradiative }}}
$$

$$
=\frac{B n^{2}}{A n+B n^{2}+C n^{3}}
$$

Electron-Photon Interactions

Figure 26.1: Schematic absorption spectrum $a(h \omega)$ of bulk semicondactors. The insets depict various state transitions upoe absorption of photons.

- Absorption power is Quantified by "Absorption Coefficient"
- A negative absorption coefficient is equivalent to optical gain!
- Adapted from: Wolfe/Holonyak/Stillman Physical Properties of Semiconductors

Absorption Coefficient of Compound Semiconductors

$$
\alpha(\hbar \omega)=\frac{\text { Number of photons absorbed per unit volume per second }}{\text { Number of photons incident per unit area per second }}
$$

$$
\alpha(\hbar \omega)=\frac{R}{S / \hbar \omega}
$$

Number of photons incident per unit area per second:

- Incident photon number per unit area per second: |Poynting vector|/ photon energy
- Goes as square of the amplitude of vector potential (or electric field, or magnetic field)

Absorption Spectra of Compound Semiconductors

$$
\begin{aligned}
& \begin{array}{cl}
E_{c}(\mathbf{k})=E_{g}+\frac{h^{2} k^{2}}{2 m_{c}^{*}} & \text { first assume } \\
E_{v}(\mathbf{k})=-\frac{h^{2} k^{2}}{2 m_{h}^{*}} & \mathrm{f}_{\mathrm{v}}(\mathrm{k})=1, \mathrm{f}_{\mathrm{c}}(\mathrm{k})=0
\end{array} \\
& \frac{1}{m_{r}^{*}}=\frac{1}{m_{e}^{*}}+\frac{1}{m_{h}^{*}} \\
& \alpha_{0}(\hbar \omega)=C_{0}\left|\hat{e} \cdot \mathbf{p}_{\mathbf{c v}}\right|^{2} \times\left(g_{s} g_{v}\right) \times \int_{\mathbf{k}} \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \delta\left[E_{c}(\mathbf{k})-\left(E_{v}(\mathbf{k})+\hbar \omega\right)\right] \longleftarrow \underbrace{\left.\gamma_{\text {abs }}=\frac{2 \pi}{\hbar}\langle\langle | W(\mathbf{r}) \mid a\rangle \right\rvert\, \delta\left[E_{b}-\left(E_{a}+\hbar \omega\right)\right]}_{\left.\gamma_{e m}=\frac{2 \pi}{\hbar} \right\rvert\,\langle a| W(\mathbf{r})|b|^{2} \delta\left[E_{a}-\left(E_{b}-\hbar \omega\right)\right]} \text { Fermi's Golden Rule }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cl}
E_{c}(\mathbf{k})=E_{g}+\frac{h^{2} k^{2}}{2 m_{c}^{*}} & \text { first assume } \\
E_{c}(\mathbf{k})-E_{v}(\mathbf{k})=-\frac{\hbar^{2} k^{2}}{2 m_{h}^{*}} & E_{v}+\frac{h^{2} k^{2}}{2 m_{r}^{*}}
\end{array} \xrightarrow[1]{1} \\
& \text { Figure } 9.5 \text { (a) Optical absorplion in a drect-band gap semiconductor (b) The ahserption } \\
& \overline{m_{r}^{*}}=\overline{m_{i}^{*}}+\overline{m_{i}^{*}} \quad \text { Hgure } 9.5 \text { (a) Optcal absorplion in a drect-band gap vemicomjuctor (b) The ahserption } \\
& \alpha_{0}(\hbar \omega)=C_{0}\left|\hat{e} \cdot \mathbf{p}_{\mathbf{c v}}\right|^{2} \cdot \rho_{r}\left(\hbar \omega-E_{g}\right) \\
& \text { Optical absorption coeff. of bulk semiconductor } \\
& \text { (general form applicable to quantum wells, etc...) } \\
& \text { "Joint" density of states of (VB,CB) } \\
& \rho_{r}(u)=g_{s} g_{v} \cdot \frac{1}{(2 \pi)^{2}} \cdot\left(\frac{2 m_{r}^{\star}}{\hbar^{2}}\right)^{\frac{3}{2}} \cdot \sqrt{u} \\
& C_{0}=\frac{\pi e^{2}}{n_{r} c \varepsilon_{0} m_{0}^{2} \omega}
\end{aligned}
$$

Electron-Photon Interactions

Loss Coefficient of Semiconductors

Optical Matrix Elements for Transitions

M_{b}^{2}	$=\frac{1}{3} P_{x}^{2}=\frac{m_{0}^{2}}{3 \hbar^{2}} P^{2}$
	$=\left(\frac{m_{0}}{m_{e}^{*}}-1\right) \frac{m_{0} E_{g}\left(E_{g}+\Delta\right)}{6\left(E_{g}+\frac{2}{3} \Delta\right)}$

Table 9.1 Summary of the Momentum Matrix Elements in Parabolic Band Model ($\left|e^{2}+\mathbf{p}_{c t}\right|^{2}=|\hat{e} \cdot \mathbf{M}|^{2}$)

Bulk $\left|\hat{\tilde{x}} \cdot \mathbf{p}_{c t}\right|^{2}=\left|\hat{y} \cdot \mathbf{p}_{c,}\right|^{2}=\left|\hat{z} \cdot \mathbf{p}_{c t}\right|^{2}=M_{b}^{2}=\frac{m_{9}}{6} E_{p}$ Quantum Well

TE Polarization ($\hat{c}=\hat{x}$ or \hat{y})
TM Polarization $\left({ }^{3}-z\right)$
$\left.\left.\langle | \hat{e} \cdot \mathbf{M}_{e-h \hat{h}}\right|^{2}\right\rangle=\frac{3}{1}\left(1+\cos ^{2} \theta\right) M_{h}^{2}$
$\left.\left.\langle | \hat{e} \cdot \mathbf{M}_{c-n t}\right|^{2}\right\rangle=\left(\frac{2}{1}-\frac{1}{4} \cos ^{2} \theta\right) M_{b}^{2}$
$\left.\left.\langle | \tilde{e}^{2} \cdot \mathrm{M}_{4} \mathrm{mb}^{2}\right|^{2}\right\rangle=\left\langle\sin ^{2} \theta \mathrm{M}_{t}^{2}\right.$

Conservation Rule
(

$$
\left.\left.\left.\left.\langle | \hat{x} \cdot \mathbf{M}_{c-i}\right|^{2}\right\rangle+\left.\langle | \dot{y} \cdot \mathbf{M}_{e-i}\right|^{2}\right\rangle+\langle | z \cdot \mathbf{M}_{e},\left.\right|^{2}\right\rangle=3 M_{b}^{2} \cdot(h-h / \text { or } h h)
$$

$$
\left.\left.\left.\langle | e^{2} \cdot \mathbf{M}_{c-b \hat{A}}\right|^{2}\right\rangle+\left.\langle | \hat{e} \cdot \mathbf{M}_{c-h b}\right|^{2}\right\rangle=2 M_{b}^{2}
$$

Optical Gain in Semiconductors

- We have looked at light absorption by a semiconductor (useful for photodetectors \& solar cells)
- But LEDs and LASERs are electrically injected light emitters
- The same theory that explains absorption explains emission under electrical injection as well

Non-equilibrium Fermi-Dirac functions with electron quasi-Fermi levels (note: not necessary to talk about holes here)
F_{c} : Conduction Band quasi-Fermi level
F_{v} : Valence Band quasi-Fermi level
$f_{c}(\mathbf{k})=\frac{1}{1+\mathrm{e}^{\left(E_{\mathrm{l}}(\mathbf{k})-F_{c}\right) / k_{B} T}}$
$f_{c}(\mathbf{k})=\frac{1}{1+\mathrm{e}^{\left(E_{c}(\mathbf{k})-F_{c}\right) / k_{B} T}}$

$$
\begin{array}{r}
\alpha(\hbar \omega)=C_{0}\left|\hat{e} \cdot \mathbf{p}_{\mathbf{c v}}\right|^{2} \times\left(g_{s} g_{v}\right) \times \int_{\mathbf{k}} \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \delta\left[E_{g}+\frac{\hbar^{2} k^{2}}{2 m_{r}^{*}}-\hbar \omega\right] \\
\text { Non-equilibrium } \alpha(\hbar \omega)=\alpha_{0}(\hbar \omega) \times\left[f_{v}\left(k_{0}\right)-f_{c}\left(k_{0}\right)\right]
\end{array}
$$ absorption coefficient

$$
k_{0}=\sqrt{\frac{2 m_{r}^{*}}{\hbar^{2}}\left(\hbar \omega-E_{g}\right)}
$$

Fundamental result for understanding LEDs and LASERs

Optical Gain in Non-Equilibrium Conditions

$$
\begin{aligned}
& \alpha(\hbar \omega)=\alpha_{0}(\hbar \omega) \times\left[f_{v}\left(k_{0}\right)-f_{c}\left(k_{0}\right)\right] \quad k_{0}=\sqrt{\frac{2 m_{T}^{*}}{\hbar^{2}}\left(\hbar \omega-E_{g}\right)} \\
& f_{v}\left(k_{0}\right)-f_{c}\left(k_{0}\right)=\frac{\exp \left(\frac{E_{c}-F_{c}}{k T}\right)-\exp \left(\frac{E_{0}-F_{v}}{k T}\right)}{\left[1+\exp \left(\frac{E_{-}-F_{c}}{k T}\right)\right]\left[1+\exp \left(\frac{E_{c}-F_{c}}{k T}\right)\right]}<0 \rightarrow
\end{aligned}
$$

The inversion conditions can be achieved by

- Optical pumping (gas lasers), or
- Electrical pumping (semiconductor LEDs \& Lasers)

A laser requires a light emitter to be placed in a highfinesse (hi-Q) optical cavity to amplify a specific mode.
Bernard-Duraffourg inversion condition

Absorption Coefficient/Optical Gain in Quantum Wells

General form of absorption coefficient:

$\alpha_{0}(\hbar \omega)=C_{0}\left|\hat{e} \cdot \mathbf{p}_{\mathbf{c v}}\right|^{2} \cdot \rho_{r}\left(\hbar \omega-E_{g}\right)$
$C_{0}=\frac{\pi e^{2}}{n_{r} c \varepsilon_{0} m_{0}^{2} \omega} \quad \rho_{r}^{2 \mathrm{D}}=\frac{m_{r}}{\pi \hbar^{2} L_{z}}$

$$
\rho_{r}^{2 \mathrm{D}}=\frac{m_{r}}{\pi \hbar^{2} L_{z}}
$$

$$
\Delta \frac{\alpha_{0}(\hbar \omega)}{C_{n}\left|\hat{e} \cdot \mathbf{p}_{n}\right|^{2}}= \begin{cases}\frac{m_{r}}{\pi h^{2} L_{z}} & \text { for } E_{h 1}^{\prime \prime}<\hbar \omega<E_{h 2}^{\prime 2} \\ 2 \frac{m_{r}}{\pi h^{2} L_{z}} & \text { for } E_{h 2}^{\prime 2}<h \omega<E_{h 1}^{\prime \prime} \\ 3 \frac{m_{r}}{\sigma \hbar^{2} L_{z}} & \text { for } E_{h \mid}^{\prime \prime}<\hbar \omega<E_{n 4}^{c s} \\ \text { etc. } & \end{cases}
$$

Interband and Intersubband Optical Transitions in QWs

Using effective-mass theory, optical matrix elements in quantum wells:
$M \propto|\langle f| \mathbf{r} \cdot \eta| i\rangle \mid=\int \chi_{e}(z) e^{i k_{c i} \cdot \mathbf{r}+} u_{c k_{s}}(\mathbf{r}) \eta \cdot \mathbf{r} \chi_{h}(z) e^{i k_{k_{d}} \cdot \mathbf{r}_{k}} u_{\mathrm{vk}}(\mathbf{r}) \mathrm{dr}$

For INTERBAND transitions:

$$
M=\sum_{R_{i}} \chi_{e}\left(\mathbf{R}_{i}\right) \chi_{n}\left(\mathbf{R}_{i}\right) e^{i\left(\mathbf{k}_{\mathrm{s}}-\mathrm{k}_{e z}\right) \cdot \mathbf{R}_{i}} \int_{\text {cell }} u_{\mathrm{ck}}(\mathbf{r}) \eta \cdot \mathbf{r} u_{v k_{A}}(\mathbf{r}) d \mathbf{r}
$$

$$
M_{i n t e r b a n d} \sim a_{0}, \text { dipole length } \sim \text { lattice constant }
$$

For INTERSUBBAND (intra-band) transitions:

$$
M \sim \int_{\text {crystal }} \chi_{e}(z) \boldsymbol{\eta} \cdot \mathbf{r} \chi_{e}^{\prime}(z) d r \int_{\text {cell }} u_{c k e}(\mathbf{r}) u_{c k e}^{*}(\mathbf{r}) d^{3} r
$$

$M_{\text {intersubband }} \sim L_{\text {well }}$, dipole length \sim Quantum Well Width (giant dipole effect!!)

(b) INTERBAND TRANSITION

(c) NNTRABAND TRANSITICN

Optical Gain in Quantum Wells

$$
\frac{\alpha_{0}(\hbar \omega)}{C_{n} \mid \hat{e} \cdot \mathbf{p}_{c,} l^{2}}= \begin{cases}\frac{m_{r}}{\pi h^{2} L_{z}} & \text { for } E_{h 1}^{\prime \prime}<\hbar \omega<E_{h 2}^{\prime 2} \\ 2 \frac{m_{p}}{\pi h^{2} L_{z}} & \text { for } E_{h 2}^{\prime 2}<h \omega<E_{h 1}^{e 3} \\ 3 \frac{m_{r}}{\pi h^{2} L_{z}} & \text { for } E_{h 3}^{\prime 3}<h \omega<E_{n 4}^{c 4} \\ \text { etc. }\end{cases}
$$

Figare 9,7. The stepwis ahsorptica spectrum for a guantum well structsre.

Equilibrium absorption coefficient in QW is proportional to the joint DOS and has 2D subband features

$$
\alpha(\hbar \omega)=\alpha_{0}(\hbar \omega)\left[f_{s}^{m}\left(E_{t}=\hbar \omega-E_{h m}^{e n}\right)-f_{c}^{n}\left(E_{1}=\hbar \omega-E_{h m}^{e n}\right)\right]
$$

Nogurt 9.8. (a) Population inversion in a quastum well such that $F_{f}-F_{1}>h_{10}>E_{6}+E_{f 1}-$ $E_{A 1}$ Here F_{s} is measured from the valcmice band edge where the energ- level os chosen to be zere (b) The products of the density of states and the occupanon probabiliny for electrons in the conductioe bund $p_{f}(E) f,(E)$ and holes in the valence hand $p_{s}(F) f_{k}(E)-p_{4}(E E)-f(E)$ ase ploted n the energy I in the vertical wale.

Compound Semiconductor Heterojunction LEDs

$$
\begin{aligned}
& R_{\text {radiative }}=n p v_{t h} S_{R} / 2 \eta^{2} \\
& \mathrm{~S}_{\mathrm{R}} \approx 5 \times 10^{-25} \eta^{2} \mathrm{E}_{\text {gap }}^{2} \alpha\left(\mathrm{~m}_{\mathrm{e}}^{*} \mathrm{~m}_{\mathrm{h}}^{*}\right)^{-3 / 2}(300 / \mathrm{T})^{5 / 2} \mathrm{~cm}^{2}
\end{aligned}
$$

Measured Gain Spectra in III-V Quantum Wells

Gain spectrum in QWs follows the equilibrium JDOS modulated by the Fermi Dirac functions in accordance with the Bernard-Duraffourg condition.

(a)

(b)

Compound Semiconductor Heterojunction Devices

(Rockett)

Compound Semiconductor Heterojunction Devices

Applications: The Double-Heterostructure Laser

DOUBLE-HETEROSTRUCTURE LASER

Compound Semiconductor Laser Designs

Fro. 91. Schematies of the gain formation in DH lasers (top) and OW lasers (bottom):

SINGLE QUANTUM WELL

Fio. 93. The various QW structares used as active layens in lasen and the aswodiated

MULTIPLE QUANTUM WELL

GAIN-SCH-QUANTUM WELL density of states.

GRIN-SCH-QUANTUM WELL

SCH-qUANTUM WELL

Compound Semiconductor Laser Designs

Fho. 100a. Schematics of basd-filling for coodsction and valence band states for equal numbers of injected electrons and holes in unstrained (left) and strined (right) OW active layers.

Fig. 113. Schematics of gain curves in 2D, 1D, and 0D structares. Similar numbers of electrons and holes are being injected above transparency, yielding equal integrated gain. (From Nagle and Weisbuch. ${ }^{\text {²s }}$)

When $L>a_{\mathrm{B}}$, (but still well-separated, confined energy levels), a "giant" oscillator strength situation develops, which yields a transition matrix element ${ }^{575-7}$

$$
\begin{equation*}
f=f_{\mathrm{at}} \cdot\left(V_{\text {box }} / V_{\text {exc }}\right) \tag{112}
\end{equation*}
$$

where $V_{\text {box }}$ and $V_{\text {exc }}$ are the QB and exciton volume, respectively. The enhancement of the oscillator strength originates in the coherent excitation of the QB volume (somewhat analogous to the intersubband giant dipole matrix element of Eq. (54e)), which yields an increased dipole moment.

Current Density J ($\mathrm{A} / \mathrm{cm}^{2}$)
Fic. 114. Schematics of quantum box structure and gain curves 3D, 2D, 1D, 0D lasers, with optimized optical confinement in each case. (Adapted from M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. QE-22, 1915, © 1986 1EEE.)
(Weisbuch/Ninter)

Reduction of lasing threshold current density

Alferov Nobel Lecture 2000

Intersubband Optical Transitions

Figure 9.11. (a) A simple quantum well with a small doping cooceniration (b) A modulationdoped guantum well with a sagnificant amouns of screening due to a large doping conceatration. (c) The subtand energy diagram in the k, space. A disect vertical transition occurs because of the k-seloction rule in the plane of gaantum wells

For INTERSUBBBAND (intra-band) transitions:
$M \sim \int_{\text {crystal }} \chi_{e}(z) \boldsymbol{\eta} \cdot \mathbf{r} \chi_{e}^{\prime}(z) d r \int_{\text {cell }} u_{c k e}(\mathbf{r}) u_{c k e}^{*}(\mathbf{r}) d^{3} r$

$$
\begin{array}{r}
\psi_{a}(r)=u_{c}(\mathbf{r}) \times\left[\frac{1}{\sqrt{A}} e^{i \mathbf{k}_{\mathbf{t}} \cdot \rho}\right] \times \phi_{1}(z) \\
\psi_{b}(r)=u_{c}(\mathbf{r}) \times\left[\frac{1}{\sqrt{A}} e^{i \mathbf{k}_{\mathbf{t}}^{\prime} \cdot \rho}\right] \times \phi_{2}(z) \\
\mu_{\mathbf{b a}}=\left\langle\psi_{b}\right| e \mathbf{e}\left|\psi_{a}\right\rangle \approx\left\langle u_{c} \mid u_{c}\right\rangle \times\left\langle\frac{1}{\sqrt{A}} e^{i \mathbf{k}_{\mathbf{t}} \cdot \rho}\right| e \mathbf{r}\left|\frac{1}{\sqrt{A}} e^{i \mathbf{k}_{\mathbf{t}}^{\prime} \cdot \rho}\right\rangle \\
\approx \delta_{\mathbf{k}_{\mathbf{t}}, \mathbf{k}_{\mathbf{t}}^{\prime}}\left\langle\phi_{2}\right| e z\left|\phi_{1}\right\rangle \hat{z} \approx \delta_{\mathbf{k}_{\mathbf{t}}, \mathbf{k}_{\mathbf{t}}^{\prime}} \times e \mathbf{z}_{\mathbf{1 2}}
\end{array}
$$

$M_{\text {intersubband }} \sim L_{\text {well }}$, dipole length \sim Quantum Well Width (giant dipole effect!!)

Intersubband Optical Transitions

(a) Bound-to-bound transition

$$
\alpha(h \omega)=\left(\frac{\omega}{n_{r} c E_{0}}\right) \frac{\left|\mu_{21}\right|^{2}(\Gamma / 2)}{\left(E_{2}-E_{1}-h \omega\right)^{2}+(\Gamma / 2)^{2}}\left(\frac{m_{\varepsilon}^{*} k_{B} T}{\pi h^{2} L}\right) \ln \left(\frac{1+\mathrm{e}^{\left(E_{F}-E_{1}\right) / k_{E} T}}{1+\mathrm{e}^{\left(F_{f}-E_{F}\right) / k_{A} T}}\right)
$$

(b) Bound-to-continuvm miriband transitions

Figure 9.15. A pernod of a quantum cawcade laser $127 \mid$ using ulerwobband transulnam between
 cakslated salats are $E_{1}-E_{2}-295 \mathrm{meV}$ and $E_{2}-E_{1}=10$ racV

Applications of ISB transitions: In Quantum Cascade Lasers

Electron-Photon Interactions

Fig. 12.12. Bandgap energy versus lattice constant of III-V nitride semiconductors at room temperature. E. F. Schutert

Semiconductor "Nanostructures": A Quantum Well

ECE $4070 /$ MSE 6050

- Design of a quantum well blue laser diode

Electron-Photon Interactions

$20 \mathrm{~nm} \operatorname{InGaN}: M g$
700 nm GaN:Mg
$20 \mathrm{~nm} \mathrm{AlGaN:Mg} \mathrm{EBL}$
$20 \mathrm{~nm} \operatorname{InGaN}$
MQW $3 \times(2.6 \mathrm{~nm} / 7 \mathrm{~nm})$
$80 \mathrm{~nm} \operatorname{lnGaN}$
200 nm GaN:Si
GaN c-plane substrate

Quantum well Heterostructures grown by MBE (Henryk Turski)

ECE $4070 /$ MSE 6050

- Demonstration of a GaN/InGaN/GaN Quantum Well Laser Diode

Electron-Photon Interactions

ECE 4070 / MSE 6050

- Demonstration of a GaN/InGaN/GaN Quantum Well Laser Diode

Electron-Photon Interactions

ECE 4070 / MSE 6050

- Demonstration of a GaN/InGaN/GaN Quantum Well Laser Diode

[^0]: Spectral decomposition of the Hamiltonian operator (diagonalization)

