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1. Introduction
This article discusses the quantum physics of electron and hole statistics in the bands of semiconductors, the

quantum mechanical transport of the electron and hole states in the bands, and optical transitions between
bands. The unique point of view presented here is a unified picture and single expressions for the carrier
statistics, transport, and optical transitions for electrons and holes in nanostructures all dimensions - ranging
from bulk 3d, to 2d quantum wells, to 1d quantum wires. The focus in the early parts is on nanostructures of
dimensions d = 1, 2, 3 that allow transport, and the 0d quantum dot case is discussed for photonics.

2. Electron Energies in Semiconductors
Electrons in free space have continuous values of allowed energies E(k) = h̄2k2

2me
, where h̄ = h/2π is the

reduced Planck’s constant, me the rest mass of an electron, and k = 2π/λ is the wavevector. h̄k = h
λ = p is

the momentum of the free electron by the de Broglie relation of wave-particle duality. A periodic potential
V(x + a) = V(x) in the real space of a crystal, when included in the Schrodinger equation, is found to
split the continuous energy spectrum electron energies E(k) = h̄2k2

2me
into bands of energies Em(k), separated

by energy gaps. The mth allowed energy band is labeled Em(k). The states of definite energy Em(k) have
real-space wavefunctions ψk(x) = eikxuk(x), where uk(x + a) = uk(k), called Bloch functions. Each band has
exactly the same number of allowed electron states N as the number of unit cells in the real space. Each state
of energy Em(kn) in each band m is indexed by a unique kn = 2π

L n with n = 0,±1,±2, where L = Na is the
macroscopic size of the crystal. The kn lies in the first Brillouin zone, between −G/2 ≤ k ≤ +G/2, where
G = 2π/a is the reciprocal lattice vector. The Pauli exclusion principle allows each state to be occupied by
gs = 2 electrons of opposite spins. Thus, each band Em(k) can hold a maximum of 2N electrons. The bands
have the property Em(k + G) = Em(k), i.e., they are periodic in the k−space.

The k of the bands Em(k) have a different meaning from the free electron wavevector. h̄k is not the
momentum of the electron of a unique energy Em(k). States of definite energy (or energy eigenstates) Em(k)
are not states of definite momentum in a periodic crystal1. The Bloch states are a mixture of states of momenta
h̄(k± G), which is why h̄k is referred to as the ‘crystal momentum’.

The group velocity of state k in energy band E(k) is vg = 1
h̄∇kE(k). In response to an external force F, the

crystal momentum changes according to F = h̄ dk
dt ; the energies and velocities change to satisfy this relation.

The two statements above are the most remarkable results of the quantum mechanics of electrons in
crystals, and are by no means obvious. The states at the very bottom and the very top of any band Em(k) must
have zero group velocity. An empty band cannot carry a charge current because there are no electrons in
them. A filled band also cannot carry a net charge current - but for a different reason. In a filled band, the
currents carried by a filled state k has an exactly equal partner, but opposite in sign at −k, and the net current
cancels and gives zero: J f illed = q

Ld ∑k f (k)vg(k) =
q

Ld ∑k vg(k) = 0 for a filled band, where f (k) = 1 is the
occupation probability of state k, q is the electron charge, and Ld the volume in d dimensions. An empty
band can carry current only if electrons are put into it - by doping, electrostatically, optically, or thermally. A
filled band can carry a net current only if electrons are removed from it - again, by doping, electrostatically,
optically, or thermally. When electrons are removed from the top of a filled band, the net current is
J = q

Ld ∑ f (k)vg(k) =
q

Ld ∑ vg(k) +
(−q)

Ld ∑k[1− f (k)]vg(k) =
(−q)

Ld ∑k[1− f (k)]vg(k), implying the current is

1A crude classical analogy is a ball moving at a constant velocity in a flat plane will maintain its momentum. But if it rolls in a
periodic potential, its velocity increases and decreases periodically: its momentum is not fixed.
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effectively carried by ‘holes’ or empty electron states, which behave in transport and electrostatically as
positive charges −q, where q is the normal electron charge.

A crystal is an intrinsic semiconductor if there is a few eV bandgap between a completely filled valence band
Ev(k) and the next conduction band Ec(k) that is completely empty. At the very bottom of the conduction
band, we can expand the energies as the parabola Ec(k) ≈ Ec +

h̄2k2

2m?
c

, where Ec(0) = Ec is the band-edge, or
lowest energy, and m?

c is the conduction band edge effective mass. Similarly, for the top of the valence band
is approximated as Ev(k) = Ev − h̄2k2

2m?
v

, with Ev(0) = Ev the valence band edge, and m?
v the valence band

effective mass. Ec− Ev = Eg is the energy bandgap of the semiconductor. If the crystal momentum k at which
the conduction band reaches the minimum and the valence band reaches its maximum are exactly the same,
we have a ‘direct bandgap’ semiconductor, and if they are not, it is an ‘indirect bandgap’ semiconductor.

3. Semiconductor Statistics
We will build the ‘Map of Semiconductor Physics’ in Table 1. Some general results for semiconductor

structures are now discussed, in which electrons and holes are allowed to move in d dimensions. d = 3 is
the case in an ordinary 3D bulk semiconductor, d = 2 are 2D semiconductor membranes or heterostructure
quantum wells, d = 1 are quantum wires, and d = 0 are quantum dots. The density of states of the
conduction band in d-dimensions is given by

gd
c (E) =

gsgv

(4π)
d
2 Γ( d

2 )
(

2m?
c

h̄2 )
d
2 (E− Ec)

d−2
2 , (1)

where gs is the spin-degeneracy which is = 2 for conventional situations, and gv is the valley degeneracy.
The units are in 1/(eV · cmd). The valley degeneracy of the conduction band gv = 1 for most direct-bandgap
semiconductors in 3D, but is gv = 6 for 3d Silicon, and gv = 4 for 3d Germanium. Γ(...) is the Gamma
function, with Γ(1) = 1, Γ(1/2) =

√
π, and Γ(n + 1) = nΓ(n). For d = 3 the DOS increases as

√
E− Ec,

for d = 2, the DOS is constant, and for d = 1, the DOS decreases as 1/
√

E− Ec. The dependence on the
conduction band edge effective mass is (m?

c )
d
2 , which means a conduction band with a heavier effective mass

has a higher DOS in all dimensions. Exactly in the same way, the valence band DOS has m?
v for the mass,

and the energy dependence on dimensions is (Ev − E)
d−2

2 , the same as for the conduction band, except the
argument is Ev − E for obvious reasons at the top of the valence band.

At equilibrium, the Fermi level EF determines the number of electrons in the conduction band nd and the
number of holes pd in the valence band. On the other hand, at equilibrium, if we know either the number of
electrons in the conduction band nd or holes pd in the valence band, the Fermi level is uniquely determined.
There is a one-to-one correspondence between the densities and EF at equilibrium. The relation is obtained
by using the Fermi-Dirac occupation function with the density of states:

nd =
∫ ∞

Ec
dE · gd

c (E) · 1

1 + e
Ec(k)−EF

kbT

= Nd
c · Fd−2

2
(

EF − Ec

kbT
). (2)

The prefactor Nd
c = gsgv(

2πm?
c kbT

h2 )
d
2 is called the effective band-edge DOS, and has units of 1/cmd where

d is the dimension. For typical semiconductors, N1d
c ∼ 106/cm, N2d

c ∼ 1012/cm, and N1d
c ∼ 1018/cm3

at T = 300 K. The dimensionless factor Fj(η) = 1
Γ(j+1)

∫ ∞
0 du uj

1+eu−η is the Fermi-Dirac integral of order
j, the values of which may be obtained from tables, by calling functions in Matlab or Mathematica, or
by direct integration. Two important limits of the Fermi-Dirac integral are Fj(η) ≈ eη for η << −1, and

Fj(η) ≈
η j+1

Γ(j+2) for η >> +1. The dimensionless argument is η = EF−Ec
kbT , which is a measure of how far

the Fermi-level EF is from the band edge Ec, measured in units of the thermal energy kbT. If for example,
the Fermi level is at EF = Ec − 6kbT for a 3D semiconductor with N3d

c = 1018/cm3, η = EF−Ec
kbT = −6, and

the electron density in the conduction band is n3d = N3d
c · F1

2
(η) ≈ N3d

c · e−6 ≈ 1018

400 ≈ 2.5× 1015/cm3.
On the other hand, if for the same semiconductor EF = Ec + 3kbT, η = +3, and the electron density is
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n3d = N3d
c · F1

2
(η) ≈ N3d

c ·
η

1
2 +1

Γ( 1
2+2)

= 1018 · 3
3
2

3
√

π
4

∼ 4× 1018/cm3. Similar arguments carry over to find the

statistics and densities of holes in the valence band.

In the absence of dopants and impurities, an intrinsic semiconductor is charge neutral. This implies if there
are any electrons thermally ionized from the valence to the conduction band, there must be an equal number
of holes in the valence band. This sets nd = pd, or Nd

c Fd−2
2
( EF−Ec

kbT ) = Nd
v Fd−2

2
( Ev−EF

kbT ), which is only possible
for an unique EF. This charge neutrality condition fixes the location of the Fermi level EF. The product of the
intrinsic carrier densities is

nd · pd = Nd
c · Nd

v · Fd−2
2
(

EF − Ec

kbT
) · Fd−2

2
(

Ev − EF
kbT

) ≈ Nd
c · Nd

v · e
− Eg

kbT , (3)

where the approximation on the right holds only for non-degenerate carrier distributions, when EF−Ec
kbT <<

−1, and Ev−EF
kbT << −1. This is true when EF is far inside the gap. In this case, the intrinsic electron or

hole density in d−dimensions is obtained explicitly as ndi = pdi =
√

Nd
c Nd

v · e
− Eg

2kbT , and is exponentially
dependent on the bandgap. For example, in 3d Silicon at T = 300 K, ni ≈ 1010/cm3.

In the presence of dopants and impurities, at equilibrium a bulk semiconductor is still charge neutral. For a
donor density ND and donor state at energy ED (meaning the ionization energy is Eg − ED, using the valence
band edge as the reference), and an acceptor density NA and acceptor ionization energy EA, the new charge
neutrality condition for a d-dimensional semiconductor is nd + N−A = pd + N+

D , which is written explicitly as

Nd
c Fd−2

2
(

EF − Ec

kbT
) +

NA

1 + 2e
(EA−EF)

kbT

= Nd
v Fd−2

2
(

Ev − EF
kbT

) +
ND

1 + 2e
−(ED−EF)

kbT

. (4)

The solution to this equation gives the Fermi level EF and the carrier density explicitly. The number of
valence bands considered determines the prefactor of the exponent in the N−A term. It is 2 for a single valence
band, and 4 when light hole and heavy hole bands are considered. The non Fermi-Dirac statistics of the
ionized dopants occurs because of on-site Coulomb repulsion upon occupation of more than one electron at
a dopant site.

4. Ballistic Transport in Semiconductors
Let the conduction band of a d−dimensional semiconductor have a fixed electron density2 of nd. If the

electron states in this conduction band are connected to the electron states in two transparent (= ohmic)
metal contacts, and a voltage V is applied across it, the resulting ballistic current is obtained in the following
manner. The left electrode is called the source, with a Fermi level EFs, and the right electrode the drain
with Fermi level EFd, where EFs − EFd = qV. The electron population of density nd in the semiconductor
conduction band at the ‘source injection point’ is split into right-going states and left going states. In ballistic
transport, there is no scattering - meaning states moving to the right are in equilibrium with the source, and
states moving to the left are in equilibrium with the drain. Because the net carrier density is not changed by
the applied drain voltage, we have the relation

nd =
1
2

Nd
c [Fd−2

2
(

EFs − Ec

kbT
) + Fd−2

2
(
(EFs − qV)− Ec

kbT
)]. (5)

Solving this equation at the applied voltage V allows the unknown EFs, and consequently EFd = EFs − qV
to be uniquely determined. When V = 0, the left-going electron and right-going electron densities are
identical, EFs = EFd = EF, and the current is zero. For small voltages, EFs and EFd split nearly symmetrically
around the zero-bias EF. For large voltages, the argument (EFs−qV)−Ec

kbT of the second term which represents
the left-going carriers at the source injection point becomes large and negative, meaning Fd−2

2
(η) ≈ eη

becomes very small. In this case, almost all electron in the band are moving to the right, and almost none to

2The density may be chemically fixed by doping it with donors, or capacitively fixed by applying a voltage across a gate capacitor.

3



the left. Under this situation, EFs is in the band, but EFd enters the gap. For voltages larger than this voltage,
EFs does not change, and the increase in voltage goes into lowering EFd.

Because of the imbalance of left- and right-going states when V 6= 0, a net current flows in the semiconductor
band. To find the net quantum mechanical current, we sum the current due to individual k−states Jd

c =
q gsgv

Ld ∑k f (k)vg(k) · F
F where the component of the group velocity along the electric field at the source

injection point is used. The sum may be written in the form

Jd
c =

q
Ld · gsgv · [∑

k
fR(k)vg · ẑ−∑

k
fL(k)vg · ẑ], (6)

where the dot product gives the projection of the group velocity along the direction of electric field, which
is the direction of net current flow. fR(k) is the Fermi-Dirac distribution of the right-going electron states,
characterized by the source Fermi level EFs, and fL(k) is the Fermi-Dirac distribution of the left-going
electron states, characterized by the drain Fermi level EFd = EFs − qV. Using integrals of the form∫ ∞

0
dk

kd

1 + e
Ec+ h̄2k2

2m?
c
−EF

kbT

= I(d, η) =
1
2
· (2m?

c kbT
h̄2 )

d+1
2 · Γ(d + 1

2
) · Fd−1

2
(η), (7)

where η = EF−Ec
kbT , we get

Jd
c =

q2

h
· Nd−1

c · ( kbT
q

) · [Fd−1
2
(

EFs − Ec

kbT
)− Fd−1

2
(
(EFs − qV)− Ec

kbT
)]. (8)

See Table 1 for a summary for the ballistic current in various dimensions. The total electron density of
Equation 5 is the sum of the left- and right-going electron densities, but the total current in Equation 8
the difference of the right and left going currents, as it should be. The current density in d-dimensions is

proportional to the band-edge DOS of d− 1 dimensions, and the quantum of conductance q2

h . When the
voltage V is large, the left-going current becomes negligible, Jd

c becomes independent of the applied voltage
V, and the net current saturates. The saturation of the current in a semiconductor - even in the quantum limit
- is one of its very important characteristics that drives its useful applications in electronics.

If the electron density in the band is controlled not by the source and the drain, but capacitively by a third
terminal called the gate, then nd of Equation 5 can be dynamically changed; EFs as a result will be controlled
by the gate voltage. This allows the current of Equation 8 flowing between the source and the drain to
be controlled remotely by a third terminal, which does not draw any current itself. In other words, the
resistance between the source and drain is ‘transferred’ to a third terminal, giving this device the name the
Transferred-Resistor, or the Transistor. Because the control is exerted due to an electric field across a gate
capacitor, this form of a transistor is called the Field-Effect Transistor, or the FET. The expressions above are
for the ballistic FET. Scattering in the semiconductor will lower the net current that flows by mixing left and
right going states and lowering the effective EFs − EFd across the channel from its ballistic value of qV. But it
will not change the fundamental qualitative picture described above in the quantum limit.

5. Ballistic Transport in Non-Uniform Potentials and Tunneling
Consider the situation when an electron in the conduction (or valence) band experiences a potential that

varies in space according to Ec(x). The non-uniformity may arise due to band bending due to electric fields,
at junctions, or in quantized heterostructures such as quantum wells or dots. Because |ψ(x)|2 = |uk(x)|2,
the Bloch states extend over the whole crystal, and their probability densities are periodic. Thus, they are
not well suited to model electrons in non-uniform potentials. By considering the linear combination of a
small set of k states near the edge of the band, the effective mass approximation converts the Bloch picture of
individual electron states ψk(x) = eikxuk(x) to a wavepacket φ(x) = ∑k Ckψk(x) ≈ C(x)uk(x), where C(x)
is a slowly varying function compared to the lattice constant. The resulting effective mass equation for a
bandstructure Ec(x, k) = Ec(x) + h̄2k2

2m?
c

, and any perturbation W(x) in the band edge is then
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[Ec(−i
d

dx
) + W(x)]C(x) ≈ EC(x) =⇒ [− h̄2

2m?
c

d2

dx2 + W(x)]C(x) ≈ [E− Ec(x)]C(x), (9)

from where the envelope function C(x) can be determined. C(x) should not be mistaken for the total
wavefunction, which is φ(x) ≈ C(x)uk(x), but for much phenomena that occur for small energies within
the same band, uk(x) will typically cancel. For a constant W(x) = 0 and a spatially constant Ec(x) = Ec,

the envelope function C(x) = 1√
L

eikx is a plane wave, where k =
√

2m?
c (E−Ec)

h̄2 . But when the band edge
Ec(x) varies slowly for W(x) = 0, the solution of C(x) for the equation on the right of 9 is given by the
Wentzel-Kramers-Brillouin or WKB approximation:

d2C(x)
dx2 ≈ −2m?

c

h̄2 [E− Ec(x)]︸ ︷︷ ︸
Q(x)

C(x) =⇒ C(x) ≈ K

Q(x)
1
4

e±
∫ x

a du
√

Q(u), (10)

where K is a normalization constant. If E > Ec(x), Q(x) = −k(x)2 < 0, and the exponential e±
∫

du
√

Q(u) in
the WKB wavefunction is of the form e±i

∫
dx·k(x), which is still oscillatory, like the plane wave situation. The

electron density corresponding to the envelope function (not the total wavefunction3) is then given by the
probability density n(x) ≈ |C(x)|2 = |K|2/|k(x)|, from where it may be seen that for regions where k(x) is
large, n(x) is small. The analogy to classical mechanics is the following: a particle spends less time in a region
where its kinetic energy is large. The approximate current density J ≈ qnv ≈ q(|K|2/k(x)) · (h̄k(x)/m?

c ) ≈
qh̄|K|2/m?

c ensures the current carried by the wavepacket is continuous in space.
When an electron of energy E is incident on a barrier, E < Ec(x), and Q(x) = κ(x)2 > 0. In this case,

the WKB envelope function C(x) ≈ K√
κ(x)

e±
∫

dx·κ(x), which now is a exponentially decaying, or growing

wavefunction amplitude, quite unlike the oscillatory function seen for E > Ec(x). For propagation of the
wavepacket from x1 to x2 the WKB transmission probability is

TWKB ≈ |
C(x2)

C(x1)
|2 ≈ e−2

∫ x2
x1

dx·κ(x)
= e
−2

∫ x2
x1

dx·
√

2m?
c

h̄2 [Ec(x)−E]
. (11)

As an example, consider a spatially uniform potential barrier V0 − E, and the the total barrier thickness to

be x2 − x1 = tb. Using them in Equation 11, we get TWKB ≈ exp [− tb
0.1 nm

√
m?

c
me
· V0−E

1 eV ]. For V0 − E = 1 eV,

m?
c = me and tb = 3 nm, the tunneling probability is 1/e30 ≈ 10−13. If the barrier thickness decreases by 3

times to tb = 1 nm, the tunneling probability increases substantially to 1/e10 ≈ 5× 10−5. This trick is used
in several semiconductor device applications such as in ohmic contacts, and in resonant tunneling diodes to
boost the tunneling currents.

6. Scattering: Electron-Phonon, Electron-Defect, and Electron-Photon
The ballistic picture of transport assumes that the distribution functions f (k) of the electrons in the bands

En(k) are at the mercy of the contacts to the electron states in the bands, and f (k) shares the same Fermi-level
as the contact(s) with which it can exchange electrons. The presence of the crystal, or the surroundings do not
mix the electrons between different k−states against the wishes of the contacts. This is a good approximation
in the smallest devices, but it is always possible for other physical processes to wrest part of the control of
the occupation function of the electron states from the contacts. These scattering processes can be useful, or
may create losses, and knowing their nature is a central tool to coax the desired function from the device.

Photons: Consider a semiconductor crystal on which photons or light is incident. The electric field of the
light wave takes the form E(x, t) = E0[ei(kx−ωt) + e−i(kx−ωt)]/2, where E0 is the amplitude of the electric
field, and the circular frequency ω and the photon wavevector k = 2π/λ are related by ω = ck. The electric

3The periodic part of the Bloch function always remains as a constant background oscillation, which does not change the arguments.
uk(x) is similar to the individual compartments of a long train, and C(x) is the train when looked from far - say from an airplane flying
at a great height above the train, when the individual compartments are not seen. By looking at C(x), we are looking at the transport of
the entire train, or the entire electron wavepacket.
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potential seen by electrons in the crystal will be of the form W(x, t) =
∫

dx · E(x, t). If the light wavelength
is of the order of µm, which is much larger than the lattice constant and electron wavelengths in the crystal,
the light wave may be approximated as E(x, t) ≈ E0e±iωt (this is called the dipole approximation), and
the perturbation seen by the electrons in the semiconductor is W(x, t) = q

∫
dx · E(x, t) ≈ qE0xe±iωt =

W0(x)e±iωt, where the perturbation is split into a spatial part W0(x) and a time-dependent part e±iωt. This
potential is experienced by the electrons, in addition to the perfect periodic potential Vper(x) of the crystal,
so the total potential seen by the electrons is Vper(x) + W(x, t).

Phonons: Even when light is not incident on a semiconductor, the atoms in the crystal do not sit still,
they vibrate around their equilibrium periodic positions. The amplitude of vibration increases as the heat
energy, characterized by the lattice temperature T increases. Beyond a certain temperature, the crystal
melts. This implies that the crystal is actually not even periodic! At room temperature, the vibrations
from the mean positions are not too large, and can be broken down into quanta of orthogonal lattice wave
modes called phonons. The displacement of an atom at location x at time t due to a single phonon is
written as u(x, t) = u0ei(qx−ωt). This phonon has an amplitude u0, a wavevector q = 2π/λ, and frequency
ω. In crystalline solids, ω and q have two relations: acoustic, and optical. For acoustic modes, ω = vsq
where vs is the sound velocity, and for optical modes, ω ≈ ω0. The perturbation to the periodic crystal
potential Vper(x) due to the phonon is treated as a small time-dependent change due to the dilation or
compression of the lattice, and a deformation potential Dc is used to measure the change in the electronic
potential experienced by the electron: W(x, t) = Dc

du(x,t)
dx for a longitudinal acoustic wave. For such a wave,

W(x, t) = iqu0ei(qx−ωt) = W0(x)e±iωt. Note that for both phonons and photons, the perturbation to the
periodic potential is of the form W0(x)e±iωt, and is explicitly time-dependent.

Defects: Let us say that the crystal is sitting in the dark, and at a very low temperature. Even then, if there
are defects in the crystal, they will introduce perturbations to the periodic potential. Let us say each defect
has a potential W0(x), and there are identical defects at various locations x1, x2, x3, .... Then, the total potential
seen by the electron is Vper(x) +Wtot(x), where Wtot(x) = W0(x− x1) +W0(x− x2) +W0(x− x3) + .... Note
that the potential of these defects is time-independent, unlike those of phonons and photons. Such defect
potentials may be considered to be time-dependent, but with ω = 0.

Fermi’s golden rule for Transitions: The electrons in the semiconductor crystal are now subject to these
perturbation potentials of the form W(x, t). The time-dependent Schrodinger equation, and the resulting
scattering rate of states due to the perturbation is given by

ih̄
∂Ψ
∂t

= [− h̄2

2me

d2

dx2 + Vper(x) + W(x, t)]Ψ =⇒ 1
τ(k→ k′)

≈ 2π

h̄
· |〈k′|W0(x)|k〉|2 · δ[E(k)− E(k′)± h̄ω].

(12)
Here, on the right is the scattering rate from the unperturbed Bloch state ψk(x) = eikxuk(x) to the unper-

turbed Bloch state ψk′(x) = eik′xuk′(x) by the perturbation W(x, t) = W0(x)e±iωt, given by the Fermi’s golden
rule. The scattering rate is in units of 1/sec. The matrix element 〈k′|W0(x)|k〉 =

∫
dxψ?

k′(x)W0(x)ψk(x) con-
sists only the spatial part, and the time-dependent part of the perturbation appears as the frequency ω
inside the Dirac-delta function. In the matrix element, the entire Bloch functions ψk(x) = eikxuk(x) and
ψk′(x) = eik′xuk′(x) appear. The spatial part 〈k′|W0(x)|k〉dictates whether a scattering transition from state
k→ k′ is allowed or not, and if it is allowed, it determines its strength. The Dirac-delta function ensures en-
ergy conservation in the scattering process. For time-independent scattering potentials such as from defects,
ω = 0, and the energy of the electron before scattering E(k) and after scattering E(k′) must be identical. This
form of scattering is called elastic scattering. On the other hand, for time-dependent scattering potentials,
the electron can gain or lose energy. In fact, Fermi’s golden rule says more: because E(k′) = E(k)∓ h̄ω, only
those transitions are allowed in which the electron can absorb energy from, or emit energy into, phonon and
photon modes in discrete quanta of energy h̄ω.

A typical order of magnitude of scattering time for a conduction to valence band (or interband) transition
due to electron-photon interaction in a semiconductor is τinterband

optical ∼ ns. For transitions within the same band

(or intraband transitions) due to phonons or photons, a typical time is τintraband
phonon ∼ τintraband

phonon ∼ ps. Because
scattering due to defects is typically elastic, it is intraband; the scattering times due to defects can vary widely
depending on the defect densities, from τde f ect ∼ms in ultraclean defect-free semiconductors, to ∼ ps.
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7. The Boltzmann Transport Equation
If we can determine the final distribution function f (k) of the electron states considering transitions and

scattering between all k↔ k′, we can find how a semiconductor will respond to voltages, or heat or light.
For example, the net charge current flowing in the semiconductor then will be J = q gsgv

Ld ∑k vg(k) f (k). To
include the variations of the distribution function in space x and time t, we write the occupation function as
f (x, k, t). Though the spatial location of a Bloch state of wavefunction ψk(x) = eikxuk(x) is ill defined because
the state extends over the entire crystal, the spatial extent of a wavepacket φ(x) ≈ C(x)uk(k) is well defined by
∆x ∼ 1/∆k, where the wavepacket is constructed by a linear combination of Bloch states with wavevectors
k± ∆k. So when we write the distribution function as f (x, k, t), we explicitly mean the occupation function
of the wavepacket states.

Consider the distribution function f (x, k, t) which is the occupation probability of an electron state k at
spatial location x at time t. Let S(k → k′) denote the scattering rate in 1/sec out of state k into other
states k′. S(k′ → k) then denotes the reverse, or rate of scattering in to state k from other states k′. These
rates are obtained from the Fermi’s golden rule result in Equation 12. It may be weighted if the physical
process so demands; for example, for momentum scattering rate, Sm(k→ k′) = 1

τ(k→k′) [1− cos(θ)], where
1

τ(k→k′) =
2π
h̄ · |〈k

′|W0(x)|k〉|2 · δ[E(k)− E(k′)± h̄ω], and θ is the angle between k and k′.
There is an interesting relation between the direction of a scattering event S(k → k′) and its reverse

S(k′ → k). Single-particle quantum mechanics in the form of Fermi’s golden rule does not distinguish
between a rate and its reverse. But the quantum statistics of the states, a genuine many-particle effect, clearly
dictates which processes are preferred. To see this, consider a situation when there are no electric fields,
or no concentration gradients in the semiconductor, and f (x, k, t) is the occupation function of an electron
wavepacket. Because electrons are Fermions, if a state k is already filled, the Pauli exclusion principle kicks
in, and it is not possible to scatter in to it. For an electron to scatter from state k′ to k, it must be occupied.
These conditions dictate that the rate of scattering in to a state k is proportional to the factor fk′(1− fk),
leading to the following rate equation for Fermions:

d f (x, k, t)
dt

= ∑
k′
[S(k′ → k) fk′(1− fk)− S(k→ k′) fk(1− fk′)]. (13)

At equilibrium, f (x, k, t) does not change with time, and the left hand of this equation is zero. But
equilibrium is much more. If the total number of particles does not change with time, the rate of each
microscopic scattering process going one way k → k′ and its reverse, k′ → k are also exactly equal. The
occupation function under this equilibrium condition is the Fermi-Dirac distribution function for electrons,
f 0
k = 1

1+e
E(k)−EF

kbT

. Here, EF is the Fermi level, and T is the temperature of the heat bath with which the

semiconductor electrons are in equilibrium4. Regardless of the temperature of the electrons in equilibrium,
we must then have

S(k′ → k) f 0
k′(1− f 0

k )− S(k→ k′) f 0
k (1− f 0

k′) = 0 =⇒
1− f 0

k′

f 0
k′
·

f 0
k

1− f 0
k
=

S(k′ → k)
S(k→ k′)

= e
E(k′)−E(k)

kbT . (14)

For elastic scattering, E(k) = E(k′), and S(k→ k′) = S(k′ → k). For emission or absorption of photons or
phonons, Sabs = S[E(k)→ E(k) + h̄ω] ∝ N(ω) = 1

e
h̄ω
kbT −1

. Then, we obtain

Sem

Sabs
= e

h̄ω
kbT =⇒ Sem = e

h̄ω
kbT Sabs ∝ e

h̄ω
kbT N(ω) = 1 +

1

e
h̄ω
kbT − 1

= 1 + N(ω) =⇒ Sem ∝ 1 + N(ω), (15)

4What exactly is this heat bath? The atoms of a semiconductor crystal sitting on a chip at room temperature are in thermal equilibrium
with the chip, and the electrons in the semiconductor are in thermal equilibrium with the atoms of the crystal. Thus, the temperature of
the chip makes it all the way to the temperature characterizing the Fermi-Dirac distribution of the electrons. If on the other hand, the
electrons were interacting strongly with light, or photons from the sun in a solar cell, the temperature of the electrons will be somewhere
between the temperature of the sun, and the temperature of the solar panel on which the semiconductor sits.
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Absorption of course is naturally stimulated, meaning if there are no photons or phonons to absorb, Sab = 0.
But we see that if an electron is emitting into bosonic modes of photons or phonons, Sem ∝ (1 + N(ω),
which means that even if N(ω) = 0 and there are no photons or phonons present, the electron can still
emit: this is called spontaneous emission. If there are photons or phonons present, the rate of emission is
enhanced, this is stimulated emission. The possibility of stimulated emission was first conceived by Einstein,
and has led to the realization of lasers. By considering a rate equation of a similar kind as Equation 13 but
for Bosons, with fk replaced by N(ω) for the equilibrium Bose-Einstein distribution, it may again be shown

that S(h̄ω′→h̄ω)
S(h̄ω→h̄ω′) = e

h̄ω′−h̄ω
kbT , which is the same as the relation for Fermions.

Now if we turn on electric fields that exert a force F on the electrons, it will change k according to F = h̄ dk
dt ,

or create gradients in k space. We have also have electron concentration gradients in real space. In the
presence of these gradients, the distribution function deviates from the equilibrium Fermi-Dirac function,
fk 6= f 0

k . If these processes of gradients are considered, Equation 13 must change to

f (x, k, t) = f (x− v · dt, k− F
h̄
· dt, t− dt) + dt ·∑

k′
[S(k′ → k) fk′(1− fk)− S(k→ k′) fk(1− fk′)], (16)

which upon Taylor expansion of the first term on the right becomes

∂ fk
∂t

+ v
∂ fk
∂x

+
F
h̄

∂ fk
∂k

= ∑
k′
[S(k′ → k) fk′(1− fk)− S(k→ k′) fk(1− fk′)]. (17)

This is the Boltzmann transport equation. The mixing of states k↔ k′ which was not allowed in our ballistic
treatment earlier is now allowed, as seen explicitly in the right hand side of the equation. By solving this
equation, we can obtain fk, the distribution function for electrons, considering all imaginable processes. For
example, in ballistic conditions, the RHS which captures scattering may be set to zero. To consider scattering,
the right hand side must be included, and the equation solved for fk. The Boltzmann equation also provides
the time-dependent changes of fk, meaning it captures the dynamical behavior of the electrons.

As an example, consider there are no concentration gradients v ∂ fk
∂x = 0, and no electric fields, F

h̄
∂ fk
∂k = 0.

Say the scattering sum on the RHS can be written as a small change from the equilibrium Fermi-Dirac

distribution, RHS ≈ − fk− f 0
k

τ characterized by a scattering time τ. Then, the Boltzmann transport equation
becomes

∂ fk
∂t
≈ −

fk − f 0
k

τ
=⇒ fk(t) ≈ f 0

k + ( fin − f 0
k )e
− t

τ . (18)

This example shows that if at time t = 0, the distribution function was a non-equilibrium value fin,
upon removal of all fields and gradients, the distribution function relaxes to the equilibrium Fermi-Dirac
value exponentially with a characteristic time τ. The approximation that all scattering is captured by

RHS ≈ − fk− f 0
k

τ is thus called the relaxation time approximation, meaning it can be characterized by one time
constant τ. If on the other hand, an electric field is turned on, at steady state, ∂ fk

∂t = 0, and the Boltzmann
transport equation becomes

F
h̄

∂ fk
∂k
≈ −

fk − f 0
k

τ
=⇒ fk ≈ f 0

k −
F
h̄

τ
∂ fk
∂k

= f 0
k − qEvkτ

∂ fk
∂E(k)

=⇒ fk ≈ f 0
k + qEvkτ(−

∂ f 0
k

∂E(k)
), (19)

where we have used the group velocity of the wavepacket vk =
1
h̄

∂E(k)
∂k , and that the force on the electron

is F = qE, were E is the electric field. We have further replaced fk → f 0
k inside the derivative: this

approximation holds for small electric fields. This solution of the Boltzmann transport equation is in a

suggestive form because the equilibrium portion f 0
k is split from the non-equilibrium portion qEvkτ(− ∂ f 0

k
∂E(k) ).

The non-equilibrium portion is driven by the electric field, and is the starting point for the evaluation of
electrical conductivity, mobilities, and electric currents in the presence of scattering.
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If the electric field was zero, but there was a concentration gradient, the steady state distribution function
in the relaxation time approximation is

vk
∂ fk
∂x
≈ −

fk − f 0
k

τ
=⇒ fk ≈ f 0

k − vkτ
∂ f 0

k
∂x

, (20)

where we have again replaced the unknown fk → f 0
k on the right for small gradients compared to

equilibrium.

8. Flow of currents in the presence of scattering
The Boltzmann transport equation can be used to capture ballistic transport as a special case when there is

no scattering. But it can also be solved to obtain the distribution function f (k) in the presence of perturbations
and scattering. For each external perturbation, it can provide a net current density. In response to an electric
potential gradient E = − dV(x)

dx due to an electric field, the charge drift current density is obtained from
Equation 19 as

Jdri f t = q
gsgv

Ld ∑
k

vk fk ≈ q
gsgv

Ld ∑
k

vk[ f 0
k + qEvkτm(k)(−

∂ f 0
k

∂E(k)
)] =

q2gsgv

Ld [∑
k

v2
kτm(k)(−

∂ f 0
k

∂E(k)
)]E. (21)

Here we have used ∑k vk f 0
k = 0. For charge current, the momentum relaxation time τm(k) is obtained by

first finding 1/τ(k→ k′) from the Fermi’s golden rule considering individual scattering potentials W(x, t).
The momentum scattering rate is obtained by summing the rate 1/τ(k→ k′) over all final states k′ with an
angular weight for momentum scattering: 1

τm(k) = ∑k′
1

τ(k→k′) [1− cos θ], where θ is the angle between k and
k′, or the angle by which the momentum is scattered. If the angle by which the electron is scattered is small,
the net momentum in the direction of current is not affected much, and the conductivity should be high. But
if the angle is large, say θ ≈ π, the conductivity is lowered significantly. This is captured by the 1− cos θ
weight heuristically. This factor can be derived exactly from the Boltzmann transport equation.

Relating this drift charge current to a Drude form Jdri f t = σE = qnµE, where n = gsgv
Ld ∑k fk, we identify

the electron drift mobility as

µ =
Jdri f t

qnE
=

q2gsgv
Ld · [∑k v2

kτm(k)(−
∂ f 0

k
∂E(k) )] · E

q · [ gsgv
Ld ∑k fk] · E

= q ·
∑k v2

kτm(k)(−
∂ f 0

k
∂E(k) )

∑k f 0
k

. (22)

The numerator has the derivative of the Fermi-Dirac distribution with energy. This means if we have a
degenerate Fermi gas when say EF > Ec, for most of the electrons in the window Ec ≤ E(k) ≤ EF, the term

− ∂ f 0
k

∂E(k) ≈ 0, and they cannot carry net currents. Their contribution to the ensemble mobility is low: this

is Pauli blocking in action. Because − ∂ f 0
k

∂E(k) peaks at the Fermi level, the contribution to the mobility will
be dominated by states near the Fermi level E ≈ EF, or in other words, the conductivity is dominated by

states near the Fermi level. If we consider the low temperature approximation − ∂ f 0
k

∂E(k) ≈ δ(E− EF) in the

degenerate condition for parabolic bands, we can obtain µ ≈ qτm(kF)
m?

c
, where kF is the Fermi wavevector. This

form of the mobility is in the Drude form. For the more general situation, the summation over the k states
must be performed.

In the presence of spatial gradients of the distribution function (or carrier concentration gradients), the
current is obtained from Equation 20 with a momentum scattering time τm(k)

Jdi f f = q
gsgv

Ld ∑
k

vk[ f 0
k − vkτm(k)

∂ f 0
k

∂x
] ≈ −q

gsgv

Ld ∑
k

v2
kτm(k)

∂ f 0
k

∂x
. (23)

With further approximations, the diffusion current may be shown to be of the form Jdi f f = qD dn(x)
dx , where

n(x) is the local electron concentration 1
Ld ∑k f 0

k , and D is a diffusion constant. Similarly, spin currents will
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flow in response to spin density gradients Jspin = Ds
ds(x)

dx with a corresponding spin diffusion constant, and

heat current in response to temperature gradients Jheat = −κe
dT(x)

dx . The thermal diffusion constant κe is the
electronic contribution to the thermal conductivity.

9. Explicit evaluation of scattering rates and mobility
We now succinctly outline the explicit calculation of the drift mobility due to scattering between effective

mass wavepacket states centered at states |k〉 and |k′〉 within the same band, with corresponding time-
dependent wavefunctions φk(r, t) ≈ Ck(r, t)uk(r) and φk′(r, t) ≈ Ck′(r, t)uk′(r). Consider a scattering
potential of the form W(r, t) = W0(r)e±iωt. The time-dependent effective mass equation for the wavepacket
centered at k is

ih̄
∂Ck(r, t)

∂t
= [Ec(−i∇) + W(r, t)]Ck(r, t) = [− h̄2

2m?
c
∇2 + Ec(r) + W(r, t)]Ck(r, t). (24)

The lattice periodic part uk(r) cancels in this equation, just as in the time-independent version. In the
absence of the perturbation, the envelope functions of the states are Ck(r) and Ck′(r). We can write the
momentum scattering rate using Fermi’s golden rule for the envelope function as

1
τ(k→ k′)

=
2π

h̄
|〈Ck′(r)|W0(r)|Ck(r)〉|2δ[E(k′)− (E(k)± h̄ω)] =⇒ 1

τm(k)
= ∑

k′

1
τ(k→ k′)

(1− cos θ),

(25)
where cos θ = k′ ·k

|k||k′ | . It is possible to directly use the envelope function in the golden rule for transitions
within the same band, for small changes in k, which ensures that the periodic part of the Bloch functions
uk(r) are the same. For such transitions, the time-dependent effective mass equation Equation 24 has an
identical mathematical form as the exact time-dependent equation for the Bloch functions in Equation 12.
Whenever this condition fails, one must resort back to using the functions Ck(r)uk(r) and Ck′(r)uk′(r), where
the lattice-periodic parts are explicitly included. Such situations arise when there are transitions between
bands, say from the conduction to the valence band, or from the Γ point with |s〉 orbital lattice-periodic
states, to a |p〉 state in the same band, but at the other extrema, say near the Brillouin zone edge.

For transitions within the same band and for small changes in k, consider the case of scattering by a single
positively charged ionized impurity (say an ionized donor atom) in a semiconductor crystal. Fixing the origin
of coordinates at the location of the impurity, the screened scattering potential is W(r, t) = W0(r)e±iωt =

W0(r) = − q2

4πεsr e−
r

LD , where εs is the dielectric constant of the semiconductor, LD is the Debye screening
length, and ω = 0, indicating the scattering potential is time-independent. The envelope functions are
Ck(r) = 1√

V
eik·r and Ck′(r) = 1√

V
eik′ ·r where V is the macroscopic volume of the semiconductor crystal.

The scattering matrix element is

〈Ck′(r)|W0(r)|Ck(r)〉 =
∫

d3r(
1√
V

e−ik′ ·r) · (− q2

4πεsr
e−

r
LD ) · ( 1√

V
eik·r) =

q2

εsV
1

1
L2

D
+ |k− k′|2

, (26)

where the integral is evaluated in 3D spherical coordinates over the entire space by aligning the vector
k− k′ at an angle θ to the z−axis. Note that the scattering matrix element between plane-wave like envelope
states is equal to the Fourier transform of the scattering potential. Now the total momentum scattering rate
of state k is

1
τm(k)

= ∑
k′

2π

h̄
· | q2

εsV
1

1
L2

D
+ |k− k′|2

|2 · δ[E(k′)− (E(k)± h̄ω)] · (1− cos θ), (27)

which upon summing over all 3D k′ states, using the Dirac-delta function, and the considering the effect of
a total of Nimp impurities results in
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1
τm(k)

=
gsgvq4m?

c
8πε2

s V
·

Nimp

V︸ ︷︷ ︸
nimp

· 1
(h̄k)3 · [ln(1 + 4k2L2

D)−
4k2L2

D
1 + 4k2L2

D
], (28)

where k = |k| is the length of the wavevector, and nimp = Nimp/V is the volume density of the uncorrelated
scatterers. The dimensions may be checked to be 1/sec. The term in the square brackets is a slowly varying
function. The momentum scattering rate can now be used in Equation 22 to get the electron mobility
explicitly.

For a parabolic bandstructure E(k) = h̄2k2

2m?
c

assuming a reference Ec = 0, the momentum scattering rate as a
function of the electron kinetic energy is

1
τm(E)

=
gsgvq4m?

c
8πε2

s
· nimp ·

1

(2m?
c E)

3
2
· [ln(1 + 8m?

c E
h̄2 L2

D)−
8m?

c E
h̄2 L2

D

1 + 8m?
c E

h̄2 L2
D

], (29)

which indicates that the scattering rate reduces as the kinetic energy of electrons increases. For a non-
degenerately doped semiconductor, using Maxwell-Boltzmann approximation of the equilibrium distribution

function f 0
k ≈ e

− E(k)
kbT , the electron mobility due to ionized impurity scattering is obtained to be

µimp ≈
2

7
2 (4πεs)2(kbT)

3
2

π
3
2 q3√m?

c nimpF(β)
∼ T

3
2

nimp
, (30)

where F(β) = ln[1+ β2] + β2

1+β2 is a slowly varying function, and β = 2
√

2m?
c (3kbT)

h̄2 . As the impurity density
increases, the mobility decreases due to more frequent scattering. The mobility increases with temperature
because an energetic electron is less perturbed by the scattering potential from its original path. The mobility
limited by ionized impurity scattering is high for semiconductors with small effective masses, and for large
dielectric constants.

10. Semiconductor Electron Energies for Photonics
Let the semiconductor bandgap be Ec − Ev = Eg, where Ec is the conduction band minimum, and Ev is

the valence band maximum. Let the conduction band effective mass be m?
c and the valence band effective

mass m?
v, so that the conduction band states are given by Ec(k) = Ec +

h̄2k2
c

2m?
c

and the valence band states

are Ev(k) = Ev − h̄2k2
v

2m?
v

. Now if there is an optical transition between the conduction band state E2 and a
valence band state E1, the photon energy must be hν = E2 − E1 to ensure energy conservation. Because the
photon in circularly polarized light carries an angular momentum ±h̄, the conduction band and the valence
band should have a net angular momentum difference of h̄, which they do - because the conduction band
states derive from |s〉 orbitals, and the valence band states from |p〉 orbitals. Finally, to ensure momentum
conservation, we must have h̄kc = h̄kv + h̄kν, where h̄kν is the photon momentum. Since the electron states
have |kc| ≈ |kv| ≈ π

a0
where a0 is a lattice constant, whereas the photon momentum h̄|kν| = h

λ is much
smaller, we make the assumption kc = kv = k, i.e., the conduction and valence band states that talk to absorb
or emit photons must have the same k. Pictorially, this is what we call ‘vertical’ transitions in the E(k)− k
diagram.

An energy state in the conduction band is then

E2 = Ec +
h̄2k2

2m?
c

, (31)

and one in the valence band is

E1 = Ev −
h̄2k2

2m?
v

, (32)

11



which leads to a photon energy

hν = E2 − E1 = (Ec − Ev) +
h̄2

2
(

1
m?

c
+

1
m?

v
)k2 = Eg +

h̄2k2

2m?
r

, (33)

which is equivalent to
h̄2k2

2m?
r
= hν− Eg. (34)

Because the LHS is positive, the above calculation reinforces our intuitive observation that only photons of
energy hν equal or larger than the energy bandgap Eg will interact with the electron states5.

11. The Optical Joint Density of States ρjnt(ν)

How many such electron k states are available per unit volume to emit, or absorb photons in the energy in-
terval [hν, h(ν + dν)]? This quantity is of central importance in the evaluation of electron-photon interactions,
and is called the optical joint density of states (JDOS) of the semiconductor, denoted by ρjnt(ν). The number
of states per unit volume is ρjnt(ν)d(hν). The optical JDOS ρjnt(ν) captures the property of light (through
hν), and matter (through the semiconductor parameters the bandgap Eg, and band effective masses m?

c and
m?

v). The quantity ρjnt(ν) will also reflect if the optically active semiconductor electron states are unconfined
and free to move in 3D bulk, or confined in quantum wells (2D), quantum-wires (1D), or quantum dots (0D).
The quantum confined structures are routinely used in practical semiconductor LEDs, SOAs, modulators,
and lasers.

To count the number of electron states in 3D, assume the electrons are confined in a cubic box of size
Lx = Ly = Lz = L. Because an integer number of electron half-wavelengths must fit in the box, we get the
condition k = (kx, ky, kz) =

π
L (nx, ny, nz), where (nx, ny, nz) is a triplet of integers each of whose values can

be 0, 1, 2, .... This defines a 3D lattice in the k = (kx, ky, kz) space in the first octant, where each point denotes

an allowed electron state, occupying a volume (π
L )

3 = π3

V . Because the volume of the semiconductor cube is
V = L3 and we are interested in the JDOS ρjnt(ν) per unit volume, we also define the total JDOS as Djnt(ν).
The JDOS per unit volume is then related to the total JDOS by ρjnt(ν) = Djnt(ν)/V.

We discuss the 3D optical JDOS first. The optical JDOS ρν(k) in the k−space counts the same states as in the
energy space, meaning ρk(k)dk = Djnt(ν)d(hν). Using equation 34 in the form h̄2

2m?
r
(k2

x + k2
y + k2

z) = hν− Eg,
we obtain

ρ3D
k (k)dk = 2 · 1

8
· 4πk2dk

π
Lx

π
Ly

π
Lz

= Djnt(ν)d(hν) =⇒ ρ3D
jnt(ν) =

1
2π2 (

2m?
r

h̄2 )
3
2

√
hν− Eg , (35)

where ρ3D
jnt(ν) = Djnt(ν)/V was used. The units of ρ3D

jnt(ν) are in 1
energy·Volume as may be verified from

equation 35. For semiconductors it is expressed in 1
eV·cm3 .

The JDOS for quantum confined electron states is found in the same manner as for the 3D, except instead
of a 3D k space, we have a 2D, or lower-dimensional k space. For example, for a quantum well laser, the
electron and hole states are free to move in two dimensions (x, y) because of large dimensions Lx = Ly = L
and confined in the third z direction because of a heterostructure quantum well confining potential to a
length Lz smaller than the electron de-Broglie wavelengths. This situation is realized if we create a structure
in which Lz << L, where Lz is a few nm, whereas L is the size of the wafer - in a few 100s of µm or in mm.

For such a quantum-confined structure, Equation 34 now takes the form

h̄2

2m?
r
(k2

x + k2
y︸ ︷︷ ︸

k2
‖

+k2
z) = hν− Eg =⇒ h̄2

2m?
r

k2
‖ = hν− [Eg +

h̄2

2m?
e
(

π

Lz
nz)

2︸ ︷︷ ︸
En

+
h̄2

2m?
h
(

π

Lz
nz)

2

︸ ︷︷ ︸
Ep

], (36)

5We are neglecting excitonic and other multiparticle effects here and focusing on the strongest interband transitions.
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where we identify the blue-shift in the minimum transition energy due to quantum confinement in the
conduction and the valence bands En + Ep. This quantum-engineering of the effective bandgap is a very
powerful tool for engineering light-matter interactions in semiconductor heterostructures.

Figure 1: A Quantum Well Laser.

The allowed electron modes then form a dense 2D lattice in the (kx, ky) =
π
L (nx, ny) planes, separated by

large kz =
π
Lz

nz in the kz direction. Then, the ‘cylindrical’ 4-fold symmetry around the kz−axis of the allowed
lattice of mode points in k−space has each mode occupying a volume π

Lx
π
Ly

π
Lz

, and the JDOS is given by

ρ2D
k (k)dk = 2 · 1

4
·
(2πk‖dk‖)

π
Lz

π
Lx

π
Ly

π
Lz

= Djnt(ν)d(hν) =⇒ ρ2D
jnt(ν) =

m?
r

πh̄2Lz
Θ[hν− (Eg + En + Ep)] , (37)

where we again used ρ2D
jnt(ν) = Djnt(ν)/V. The Heaviside unit-step function Θ[...] in the 2D optical JDOS

yet again reinforces our intuition that the smallest photon energy that can interact with the quantum well
electron states must have an energy hν = Eg + En + Ep because quantum confinement has pushed the
minimum energy in the conduction band up to Ec + En and in the valence band down to Ev − Ep. The units
of ρ2D

jnt(ν) is still 1
eV·cm3 , the same as for 3D - this is verified from equation 37.

Continuing to lower dimensions, it is left to the reader to show that for electron states in 1D quantum wires
confined in the (x, y) plane to (Lx, Ly) and free to move in the z−direction, the optical JDOS is

ρ1D
jnt(ν) =

2
πLxLy

√
2m?

r

h̄2
1√

hν− (Eg + En + Ep)
, (38)

where the quantum confinement energies are now En = h̄2

2m?
e
[( π

Lx
nx)2 + ( π

Ly
ny)2] and Ep = h̄2

2m?
h
[( π

Lx
nx)2 +

( π
Ly

ny)2].
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For 0D quantum dots in which electrons are confined in all three directions to boxes of size (Lx, Ly, Lz), the
structure mimics an atomic system, giving an optical JDOS

ρ0D
jnt(ν) =

2
LxLyLz

δ[hν− (Eg + En + Ep)] , (39)

where δ[...] is the Dirac-delta function highlighting that the electron energies are discrete and atomic-like,
and do not form extended states or bands. The quantum confinement energies are now En = h̄2

2m?
e
[( π

Lx
nx)2 +

( π
Ly

ny)2 + ( π
Lz

nz)2] and Ep = h̄2

2m?
h
[( π

Lx
nx)2 + ( π

Ly
ny)2 + ( π

Lz
nz)2]. It may be verified again that the units of

ρ0D
jnt(ν) is exactly the same as in other dimensions.

We will shortly see that the optical gain coefficient of a semiconductor in 1/cm units is given by γ0(ν) =

A · [ λ2
0

8πn2 ] · [hρjnt(ν)] · [ fc(E2) − fv(E1)], where A is the Einstein coefficient of units 1/sec, λ0 is the free-
space photon wavelength, and n is the refractive index of the semiconductor. The gain coefficient is
characteristically proportional to the optical joint density of states ρjnt(ν). Those conversant with atomic laser

theory will immediately recognize the similarity to the gain coefficient γ0(ν) = A · [ λ2
0

8πn2 ] · [g(ν)] · [N2 − N1],
where g(ν) is the lineshape function in units of sec, and N2 − N1 is the population inversion in 1/cm3 units.
The semiconductor counterpart of the lineshape function hρjnt(ν) has units sec/cm3, and the population
inversion term motivates a discussion of the dimensionless occupation probabilities fc(E2) and fv(E1) of the
allowed conduction and valence band electron energy states, to which we now turn.

12. Probability of Occupation of Electron States
Because electrons are Fermions, the Pauli exclusion principle forces them to follow the Fermi-Dirac

distribution function in energy. If the semiconductor is in thermal equilibrium at a temperature T, the
distribution of electrons in the semiconductor in energy is given by

f (E) =
1

1 + e
E−EF
kBT

, (40)

where the Fermi energy EF is a single energy characterizing the number of electrons, and kB is the Boltzmann
constant. However, for semiconductor photonic devices, we will be interested in p− n junction diodes
under electrical bias conditions. In a p − n junction, we will typically have the following situation: the
conduction band electrons in the n−side of the junction will be connected to an ohmic metal contact lead,
and the valence band electrons in the p-side of the diode to another ohmic metal contact lead. These two
leads will then be connected to a battery of voltage V.

Application of a voltage V pulls the diode out of the state of equilibrium. We can now consider two separate
electron distributions: those of electrons in the conduction band, and of electrons in the valence band. These
two electron systems are in equilibrium amongst themselves, but they are out of equilibrium from each other.
The electrons in the conduction band in the n−side of the diode are in equilibrium with the voltage of the
battery terminal connected to them; this is modeled by assigning to them a quasi-Fermi-level Fn. Similarly the
electron states in the valence band of the p−side of the diode are in equilibrium with the other terminal of
the battery, sharing a quasi-Fermi-level Fp. The electron populations at the two terminals of the battery are
held at an energy qV apart, meaning Fn − Fp = qV.

Because of the above definitions, the occupation probability of an electron state of energy E2 in the
conduction band is fc(E2), and the occupation probability of an electron state of energy E1 in the valence
band is fv(E1), where each is Fermi-Dirac function modified to account for the non-equilibrium physics:

fc(E2) =
1

1 + e
E2−Fn

kBT

and fv(E1) =
1

1 + e
E1−Fp

kBT

. (41)

14



If we are interested in the 3D electron density in the conduction band, we can use the 3D conduction band
density of states to write

n =
∫ ∞

Ec
dE · ρc(E) fc(E) =

∫ ∞

Ec
dE · 1

2π2 (
2mc

h̄2 )
3
2
√

E− Ec
1

1 + e
E−Fn

kT
, (42)

with similar expressions for electrons in the valence bands. For finding the probability of E1 being an empty
energy state in the valence band (or hole), we must use the probability that the electron state is not occupied,
which is precisely 1− fv(E1). Let us say that for photon emission, we need an electron occupying energy E2
in the conduction band to transition into an empty state E1 in the valence band such that E2 − E1 = hν. The
probability for the electron states to satisfy the criteria is the product fc(E2)[1− fv(E1)].

13. Interband Absorption, and Spontaneous & Stimulated Emission
Einstein’s re-derivation of the Planck blackbody radiation formula introduced the concepts of rates of

spontaneous emission, stimulated emission, and absorption through the net rate equation

1
d(hν)

d∆n
dt

= − Aρjnt(ν) fc(E2)[1− fv(E1)]︸ ︷︷ ︸
=Rsp(ν),Spontaneous Emission

− Bρjnt(ν)ρν fc(E2)[1− fv(E1)]︸ ︷︷ ︸
=Rst(ν),Stimulated Emission

+ Bρjnt(ν)ρν fv(E1)[1− fc(E2)]︸ ︷︷ ︸
=Rab(ν),Absorption

,

(43)
where the LHS tracks the rate of change of excess electron (or hole) density ∆n per energy interval d(hν).

Electrons may be lost from this level due to spontaneous emission of photons of energy hν = E2 − E1 if
the electron transitions to state E1 in the valence band. This will happen at a rate Rsp(ν), as indicated in
equation 43. The net spontaneous emission rate Rsp(ν) is made of the JDOS ρjnt(ν), which counts how many
electron state pairs (E2, E1) are available per unit energy interval per unit volume satisfying hν = E2 − E1,
and the Fermi factor fc(E2)[1− fv(E1)], which is the probability that the occupations of the states are just
right for emitting a photon. The coefficient A, an effective spontaneous emission lifetime, at this stage may
be considered something that can be obtained from experiments. The exact form of A may be calculated
from time-dependent perturbation theory, and more accurately from quantum electrodynamics. It is a rate
constant typically of the order 1/ns for most semiconductors.

The second term in the RHS of equation 43 is the rate of stimulated emission, Rst(ν). The coefficient is B -
which has different units from the A coefficient. Einstein showed that for the above picture of light-matter
interaction to be consistent with Planck’s blackbody radiation formula, the A and B coefficients are related by
A
B = 8πn3ν3h

c3 . The JDOS and probability functions are identical for the stimulated emission and spontaneous
emission rates. Other than the A and B coefficients, the two processes are distinguished by the term ρν,
which is the energy density of the photon field, is in units of eV/cm3. It is related to the intensity of the photon
field Iν by the relation Iν = ρν · (c/n), where c/n is the photon velocity in a medium of refractive index n.
The intensity of the photon field is obtained from the Poyntying vector Iν = Eν ×Hν from the electric and

magnetic fields, the magnitude of which is Iν = E2
ν

2η in units of Watts/cm2, or the rate of flow of energy per
unit area. Here Eν is the electric field amplitude, and η the electromagnetic wave impedance.

The spontaneous emission rate Rsp(ν) does not require photons to be present to induce emission, true to its
name. The emitted photon goes into any of the allowed photon modes in the electromagnetic field: this is a
random process and there is no correlation of which mode one spontaneously emitted photon goes with the
next. The stimulated emission rate Rst(ν) and the absorption rate Rab(ν) are both proportional to the photon
field ρν implying they cannot occur in the absence of light. The photon created by stimulated emission goes into
exactly the same electromagnetic mode as the photon that stimulated it. The emitted photon has the same phase,
wavelength, polarization, and is coherent with the photon that stimulated it: it is a clone! The process of
stimulated emission is responsible for gain and lasing. In stimulated emission, we start with one photon but
end with two - implying gain.
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Typically under optical amplification and lasing conditions, the spontaneous emission is a low-intensity
background. Let us look specifically at the stimulated emission and absorption processes. The net emission
rate or downward transitions is given by Rem(ν) = Rst(ν)︸ ︷︷ ︸

↓

− Rab(ν)︸ ︷︷ ︸
↑

:

Rem(ν) = Bρjnt(ν)ρν( fc(E2)[1− fc(E1)]− fv(E1)[1− fc(E1)]) = Bρjnt(ν)ρν[ fc(E2)− fv(E1)]. (44)

Because each such stimulated emission event increases the photon count by one, and the energy of the
photon field by hν, we should track the energy flowing though a box of area S. The increase in the photon
number in a volume S · dz results in an increase in the photon field intensity

[Iν(z + dz)− Iν(z)] · S = Rem(ν) · hν · S · dz =⇒ dIν(z)
dz

= Rem(ν)hν, (45)

which with the relation between the Einstein A and B coefficients, and the relation Iν(z) = ρν · c leads to

dIν(z)
dz

= A ·
λ2

0
8πn2 · hρjnt(ν) · [ fc(E2)− fv(E1)]︸ ︷︷ ︸

γ0(ν)

·Iν(z) = γ0(ν)Iν(z), (46)

which indicates the semiconductor gain coefficient

γ0(ν) = A ·
λ2

0
8πn2 · hρjnt(ν)︸ ︷︷ ︸

depends on material & hν

· [ fc(E2)− fv(E1)]︸ ︷︷ ︸
population inversion

(47)

If γ0(ν) > 0, the intensity Iν(z) grows with distance according to Iν(z) = Iν(0)eγ0(ν)z and we have photon
gain. If γ0(ν) < 0, photons are absorbed, and one should refer to this quantity as the absorption coefficient.
The prefactor that depends on the semiconductor JDOS and the photon properties is alway positive. So in
order to obtain gain, the Fermi difference function should meet the criteria

fc(E2)− fv(E1) =
1

1 + e
E2−Fn

kBT

− 1

1 + e
E1−Fp

kBT

> 0 =⇒ Fn − Fp > E2 − E1 =⇒ Fn − Fp > hν > Eg . (48)

The boxed condition Fn − Fp > hν > Eg is referred to as the Bernard-Duraffourg population inversion
criteria for semiconductors, or the condition to achieve optical gain. Since in a p− n diode, Fn − Fp = qV,
we judge from this condition that it is necessary to apply a voltage larger than the effective bandgap of
the optically active region. For photon energies matching Fn − Fp = hν, the net gain coefficient γ0(ν) = 0,
meaning the semiconductor medium is transparent to those photons. For photon energies exceeding this
quasi-Fermi level split, the Fermi difference function is negative, leading to loss. Thus, the semiconductor
gain spectrum has a bandwidth Eg

h ≤ ν ≤ Fn−Fp
h , and the shape γ0(ν) dictated by the product of the optical

JDOS, and the Fermi difference function.

It is clear that at equilibrium, or for small levels of carrier injection when Fn ≈ Fp = EF, the factor
fc(E2) − fv(E1) ≈ −1, and we obtain the optical absorption coefficient of the semiconductor α0(ν) =

A · λ2
0

8πn2 · hρjnt(ν), whereby the change of intensity of photons as they are absorbed dIν(z)
dz = −α0(ν)Iν(z),

leading to Iν(z) = Iν(0)e−γ0(ν)z.

Returning to spontaneous emission, we obtain a spectrum

Rsp(ν) = Aρjnt(ν) fc(E2)[1− fv(E1)] = Aρjnt(ν)
1

1 + e
E2−Fn

kBT

· e
E1−Fp

kBT

1 + e
E1−Fp

kBT

≈ Aρjnt(ν)e
− hν

kBT e
Fn−Fp

kBT (49)



This condition is important for LEDs, because it indicates that by splitting the quasi-Fermi levels Fn − Fp =
qV with a voltage, we exponentially increase the spontaneous emission rate of photons. Of course these
photons must be extracted before they get re-absorbed again, because though absorption rate is smaller, it is
not negligible!



0 Dimension 1 Dimension 2 Dimensions 3 Dimensions d Dimensions

Conduction
Bandstructure Ec Ec +

h̄2k2
x

2m?
c

Ec +
h̄2

2m?
c
(k2

x + k2
y) Ec +

h̄2

2m?
c
(k2

x + k2
y + k2

z) Ec +
h̄2

2m?
c
(∑d

i=1 k2
i )

Conduction Band DOS
gd

c (E) gsgvδ(E− Ecn)
gs gv
2π ( 2m?

c
h̄2 )

1
2 1√

E−Ec

gs gv
2π ( 2m?

c
h̄2 )θ(E− Ec)

gs gv
(2π)2 (

2m?
c

h̄2 )
3
2
√

E− Ec
gs gv

(4π)
d
2 Γ( d
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( 2m?

c
h̄2 )

d
2 (E− Ec)

d−2
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Effective DOS Nd

c
gsgv gsgv(
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c kb T

h2 )
1
2 gsgv(
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c kb T

h2 ) gsgv(
2πm?

c kb T
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3
2 gsgv(

2πm?
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d
2

Electron Density nd − N1d
c F− 1

2
( EF−Ec

kb T ) N2d
c F0(

EF−Ec
kb T ) N3d

c F+ 1
2
( EF−Ec

kb T ) Nd
c Fd−2

2
( EF−Ec

kb T )

Source Fermi Level EFs
under bias V − n1d = 1

2 N1d
c [F− 1

2
( EFs−Ec

kb T ) + F− 1
2
( (EFs−qV)−Ec

kb T )] n2d = 1
2 N2d
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EFs−Ec
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c [F+ 1
2
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kb T ) + F+ 1
2
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kb T )] nd = 1
2 Nd

c [Fd−2
2
( EFs−Ec

kb T ) + Fd−2
2
( (EFs−qV)−Ec

kb T )]

Ballistic Electron
Current Density Jd at

voltage V
− q2

h · N
0d
c ·

kb T
q · [F0(

EFs−Ec
kb T )− F0(

(EFs−qV)−Ec
kb T )]

q2

h · N
1d
c ·

kb T
q · [F1

2
( EFs−Ec

kb T )− F1
2
( (EFs−qV)−Ec

kb T )] q2

h · N
2d
c ·

kb T
q · [F1(

EFs−Ec
kb T )− F1(

(EFs−qV)−Ec
kb T )]

q2

h · N
d−1
c · kb T

q · [Fd−1
2
( EFs−Ec

kb T )− Fd−1
2
( (EFs−qV)−Ec

kb T )]

Valence Bandstructure Ev Ev − h̄2k2
x

2m?
v

Ev − h̄2

2m?
v
(k2

x + k2
y) Ev − h̄2

2m?
v
(k2

x + k2
y + k2
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2m?
v
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i=1 k2
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Valence Band DOS
gd

v(E) gsgvδ(E− Evn)
gs gv
2π ( 2m?

v
h̄2 )

1
2 1√

Ev−E
gs gv
2π ( 2m?

v
h̄2 )θ(Ev − E) gs gv

(2π)2 (
2m?

v
h̄2 )

3
2
√

Ev − E
gs gv

(4π)
d
2 Γ( d
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d
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d−2
2
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v
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2
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Density Jd
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h · N
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v ·
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kb T )] q2

h · N
2d
v ·
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Electron-Hole-Photon
Relation Ecn − Evn = hν Eg +

h̄2k2
x

2m?
r
= hν, (Eg = Ec − Ev, 1

m?
r
= 1

m?
c
+ 1

m?
v

) Eg +
h̄2

2m?
r
(k2

x + k2
y) = hν Eg +

h̄2

2m?
r
(k2
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z) = hν Eg +
h̄2

2m?
r
(∑d

i=1 k2
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Optical Joint DOS
ρjnt(hν) in eV · cm−3
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d
2 L3−dΓ( d

2 )
( 2m?

r
h̄2 )

d
2 (hν− Eg)

d−2
2
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2
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c N1d
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2
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kb T )F− 1
2
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kb T )− F2
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2
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0 (
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2
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2
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2
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Spontaneous Emission
Spectrum Rsp(ν)

− A · gs gv
2πLy Lz
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r

h̄2 )
1
2 1√

hν−Eg
· fc(E2) · [1− fv(E1)] A · gs gv

2πLz
( 2m?
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Stimulated Emission
Spectrum Rst(ν)

− B · ρν · gs gv
2πLy Lz

( 2m?
r

h̄2 )
1
2 1√

hν−Eg
· fc(E2) · [1− fv(E1)] B · ρν · gs gv

2πLz
( 2m?
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(2π)2 (
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2
√
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Absorption Spectrum
Rab(ν)

− B · ρν · gs gv
2πLy Lz

( 2m?
r

h̄2 )
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hν−Eg
· fv(E1) · [1− fc(E2)] B · ρν · gs gv
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2
√
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Photonic Gain Spectrum
of Semiconductor γ0(ν)

− A · λ2
0

8πn2 · h
gs gv

2πLy Lz
( 2m?

r
h̄2 )

1
2 1√

hν−Eg
· [ fc(E2)− fv(E1)] A · λ2

0
8πn2 · h

gs gv
2πLz
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r
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0
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r
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3
2
√

hν− Eg · [ fc(E2)− fv(E1)] A · λ2
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Table 1: Quantum Electronic, Photonic, and Statistical Properties of Conduction and Valence Band Electrons in Semiconductor Nanostructures.
• Ec is the band edge, and m?

c the effective mass of the conduction band. Ev is the band edge, and m?
v the effective mass of the valence band.

• For low dimensions, Ec and Ev, and the bandgap Eg = Ec − Ev include the quantum confinement energies if present.
• h is Planck’s constant, h̄ = h

2π , kb is the Boltzmann constant, and q the electron charge.
• gs is the spin degeneracy, and gv the valley degeneracy.
• Fj(η) =

1
Γ(j+1)

∫ ∞
0 du uj

1+eu−η is the Fermi-Dirac integral of order j, and Γ(...) is the Gamma function.
• EF is the Fermi level at equilibrium. EFs is the source quasi-Fermi level and EFd the drain quasi-Fermi level.
• Similarly, Fn is the conduction band quasi-Fermi level and Fp is the valence band quasi-Fermi level.
• hν is the photon energy of frequency ν, and Lx, Ly, Lz are the dimensions of the semiconductor nanostructure.
• A and B are the Einstein A and B coefficients, λ0 = c/ν the wavelength of the photon in vacuum, and n the refractive index of the semiconductor.

• fc(E2) = 1/[1 + e
E2−Fn

kb T ] is the Fermi-Dirac occupation function of state E2 = Ec +
h̄2k2

2m?
c

in the conduction band.

• fv(E1) = 1/[1 + e
E1−Fp

kb T ] is the Fermi-Dirac occupation function of state E1 = Ev − h̄2k2

2m?
v

in the valence band.

• E2 − E1 = hν = Eg +
h̄2k2

2m?
r

is the energy of the photon emitted when the electron transitions from E2 → E1 radiatively.

• The Einstein A and B coefficients are related by A
B = 8πn3ν3h

c3 .
• The photon density is ρν = Iν/(c/n) in eV/cm3, c/n is the speed of light in a media of refractive index n, and Iν = E2

0/2η in W/cm2 is the Poynting energy density
with electric field amplitude E0 and wave impedance η.


