Handout 1

Drude Model for Metals

In this lecture you will learn:

* Metals, insulators, and semiconductors
* Drude model for electrons in metals

* Linear response functions of materials

Paul Drude (1863-1906)
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Inorganic Crystalline Materials

lonic solids Covalent solids

Mostly insulators |
Example: NaCl, KCI

Semiconductors Insulators Metals
Si, C, GaAs, InP, GaN SiO,, Si;N, Au, Ag, Al,
PbSe, CdTe, ZnO Ga, In

Metals
1- Metals are usually very conductive

2- Metals have a large number of “free electrons” that can move in response to an
applied electric field and contribute to electrical current

3- Metals have a shiny reflective surface
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Properties of Metals: Drude Model

Before ~1900 it was known that most conductive materials obeyed Ohm’s law
(i.e. I=V/R).

In 1897 J. J. Thompson discovers the electron as the smallest charge carrying
constituent of matter with a charge equal to “-e”

_1.6x10-1° . sea of
e=1.6x10""C ions_ | electrons

J

In 1900 P. Drude formulated a theory for
conduction in metals using the electron
concept. The theory assumed:

®
ONONO)

1) Metals have a large density of “free
electrons” that can move about freely
from atom to atom (“sea of electrons”)

2) The electrons move according to
Newton’s laws until they scatter from

ions, defects, etc. @
3) After a scattering event the momentum of

the electron is completely random (i.e.

has no relation to its momentum before

scattering) @

—
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Drude Model - |

Applied Electric Field: @ @

electron
In the presence of an applied external electric path
field E the electron motion, on average, can @ @

be described as follows:

/

Let 7 be the scattering time and 1/7 be the scattering rate

This means that the probability of scattering in small time interval time dt is: ﬂ
T
The probability of not scattering in time dt is then: (1_ﬂj
T
Let ﬁ(t) be the average electron momentum at time t, then we have:
. dt /.. = dt
Bt + dt) = [1 - —](p(t)— o E(t) dit)+ [7) ©)
T T
N —~ - _—_ H_{
If no scattering If scattering happens then average
happens then momentum after scattering is zero

Newton’s law

> PO g~

S—
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Drude Model - i

Case I: No Electric Field

dp(t) - _@ Steady state solution: p(t)=0
dt T
Case lI: Constant Uniform Electric Field Electron path

Steady state solution is:
y Electron path

p(t)=-erE

Electron “drift” velocity is defined as:

<i

PO __etp__,E
=7=—7E=— E
m H

{ 4 = er/m = electron mobility
m

(units: cm?/V-sec)
Electron current density J (units: Amps/cm?) is:
J=n(-e)v=neuE=cE

Where: n = electron density (units :#lcm3)

nezr

o = electron conductivity (units : Siemens/cm) = neyu =

—
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Drude Model - 11l

Case lll: Time Dependent Sinusoidal Electric Field
dp(t) =—e E(t)— p(t)
dt T

There is no steady state solution in this case. Assume the E-field, average
momentum, and currents are all sinusoidal with phasors given as follows:

E(t)= Re[ E(o) oot ] p(t)= Re[ ) e-iot ] J(t) = Re[ J(o) et ]

%&t) =—e E(t)- @ = —iop(w)= —eE‘(w)_@

= i)(w)=—1_eiﬁé(w) = Ww:%:_%ﬂw)

Electron current density:

J(»)= n (-e) V(o) = o(w) E(w)

ne’s
m _a(a)=0)
1-iot 1-iwt

Drude’s famous result !!

o(o)=
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Linear Response Functions - |
The relationship:
J(@) = o(0) E(o)
is an example of a relationship between an applied stimulus (the electric field in

this case) and the resulting system/material response (the current density in this
case). Other examples include:

P(@)= ¢ xeT(w) E(o)

electric polarization  electric electric field
density susceptibility

M(w) = Zm(?’) H(o)

magnetic polarization magnetic magnetic field
density susceptibility

The response function (conductivity or susceptibility) must satisfy some
fundamental conditions .... (see next few pages)
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Linear Response Functions - Il

Case lll: Time Dependent Non-Sinusoidal Electric Field

For general time-dependent (not necessarily sinusoidal) e-field one can
always use Fourier transforms:

= Cdo 2 —-iot £ e = iot
E(t)= | 2 E(w)e o  E(w)= [dt E(t)e )
—00 —00
Then employ the already obtained result in frequency domain:

J() = o(0) E(@)

And convert back to time domain:

)= T 92 Jw)e = | 92 o(w) E(0) e @
w27 Y
Now substitute from (1) into the above equation to get:
i) =1 92 o(0) E(@) et = Tdt [}" 9 (0)e w(t-ﬂ E(t)
—0 2z —o0 —o0 2z
= J(t)= [dt'o(t-t)E(t)

—0

S—
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Linear Response Functions - lll

= J(t)= [dt' o(t—t') E(t)

—00

Where: o-(t - t') = OJ? ‘2177”; O'(a)) e—i o(t-t")

The current at time t is a convolution of the conductivity response function and the
applied time-dependent E-field

Drude Model: O'(a)) = :-(—wii;(:-)
_py T do —iat-t) _ T do o(@=0) _ia(-r)
olt t)—_j;ozﬂa(a))e __J;,Zir 1—ia)re
_(t-t)
=>o(t-t)= ol0=0) o(t-t)
T

step function
o(t-t)

(¢-t)

—
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Linear Response Functions - IV

The linear response functions in time and frequency domain must satisfy the
following two conditions:

1) Real inputs must yield real outputs:
_ ) 00 . v —
Since we had: J(t)= [dt' |: | do o(w)e™ oft-t )i| E(t)
Co | w27
This condition can only hold if:
o(-w)= o (0)
2) Output must be causal (i.e. output at any time cannot depend on future input):
— © —
Since we had: J(t)= [dt' o(t-t') E(t)

—a0

This condition can only hold if:

o(t-t)=0 for t<t'

Both these conditions are satisfied by the Drude model

S—
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Drude Model and Metal Reflectivity - |

When E&M waves are incident on a air-metal interface there is a reflected wave:

€0 Ho Fi %
H,-é -
S Y /A

The reflection coefficient is:

-

Question: what is 8(01) for metals?
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Drude Model and Metal Reflectivity - I

From Maxwell’s equation:

, L L 6E(f t) Effective dielectric
Ampere’s law: v x H(F,t) = J(F,t)+ ¢, 76; constant of metals
Phasor form:  VxH(F)= J(F)—ﬁia) £ E(F) i cor(©) = &6 [1+ i 0'(“’)}

= o(w)E(F)-iw &, E(F) @éo
=—i 0 gerr (@) E(F)
Metal reflection coefficient becomes:
o Er _ % —2enr(@)
\/g + \Eeff (a’)
. . o(w=0)
Using the Drude expression: 0'(01) 1-ior

the frequency dependence of the reflection coefficient of metals can be
explained adequately all the way from RF frequencies to optical frequencies

— s
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Drude Model and Plasma Frequency of Metals

ne’z/m _o(@=0)
1-iwr 1-ier

For metals:  gq4 ()= &, [1 +i 0'(0))] and o(w)=
For small frequencies (w7 << 1) :

o)~ o(w=0) = "::T = to(0)=¢ (1“0(2300)]

For large frequencies (@z >> 1) (collision-less plasma regime):

2 2
o(w=0) .ne wp
olw)r———=i—— = gofl@w)= e, | 1-—5
( ) —ioT mae eff ( ) o [ 2
ne? For most good metals
where the plasma frequency is: @p =, —— this frequency is in the
&oMm UV to visible range

Electrons behave like a collision-less plasma

1
Note that for @wp > @ >>—  the dielectric constant is real and negative
T

—
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Plasma Oscillations in Metals
Consider a metal with electron density n

Now assume that all the electrons in a certain region got displaced by distance u

+ve charge left -ve charge
behind ~_ accumulated

OB ©
®

®
f—

u

\

O

OOOOLO O

®®®®®®:$
ofo¥ocYolo

The electric field generated = E =

|

®
®

\

®
®

J

neu _’I

&,

[
nezu

Force on the electrons = F = —eE = —

€o
As a results of this force electron displacement u will obey Newton’s second law:

2
dut) p_ _eg__

ne? u(t) N dzu(t) . u(t) second order
dt? €o dt?

system

Lo . Plasma oscillations are charge
Solution is: u(t)= Acos(apt)+ Bsin(a,t) density oscillations 9

S—
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Plasma Oscillations in Metals — with Scattering
From Drude model, we know that in the presence of scattering we have:

— M

As before, the electric field generated = E(t) = Lu(t) S )]
€o
Combining (2) with (1) we get the differential equation:

9O _ o2 u(e)-1 90 —{ op= "

dt? dt £om
Or: —_—
ONOJONO} ONO)
ﬂz(t)Jrld"i(t)er’Z’u(t):o @ @ @ @
dt T dt @ @ @ @
BVAVA J
second ordt} system with damping — ul'_ —l ul‘_/
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Plasma Oscillations in Metals — with Scattering
1
Case | (underdamped case): @p > 2
Solution is:

u(t)=e"’ '[A cos(Q pt)+ B sin(Q pt)] — Esa::?lf:t?of‘lssma
Where:

Case Il (overdamped case): @p < E

Solution is:

u(t) —Ae Mt Be 2t «+«—— No oscillations

_A 2 B I
" 2r 41,2 (4 " 2r 41,2 P
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Appendix: Fourier Transforms in Time OR Space

Fourier transform in time:

f(w)= Jdt f(t)e

Inverse Fourier transform:

£(t) = _T ‘;Lfr’ flw)e @t

Fourier transform in space:

g(k)= Jox g(x)e '~

Inverse Fourier transform:

g(x)= T 5 alk)e’**

—
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Appendix: Fourier Transforms in Time AND Space

Fourier transform in time and space:

h(k,w)= [ dx [dt h(x,t) e kX gl @t

—00 —0o0

Inverse Fourier transform:

h(x.t)= | 3 7 de

habed hk, ikx —iot
_L27Z'_°°2ﬂ' (k) e €

S— s
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Appendix: Fourier Transforms in Multiple Space Dimensions

Fourier transform in space:

[c2) 0 0 . —i .
h(kx,ky,kz)= [ dx [dy [dz h(x,y,z) e kxX g 'Ky ¥ giksz
- - -

Need a better notation!
a0 ¢} a0
[d3% = [dx [dy [dz

—00 —a0 —a0

o R kgkr kg kg 2
F=xX+yy+z2

= h(k)=]d% h(7) ek-¥

Inverse Fourier transform:

3 ~ L
h(F)=]’% h(k) -7

—
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Handout 2

Sommerfeld Model for Metals — Free Fermion Gas

In this lecture you will learn:

* Sommerfeld theory of metals

Arnold Sommerfeld (1868-1951)
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Problems with the Drude Theory

dp(t) _ m av(t) _ £ mv(t)
dt dt T

- —e[£+v(epe]- ™0

* Does not say anything about the electron energy distribution in metals
- Are all electrons moving around with about the same energy?

* Does not take into account Pauli’s exclusion principle

To account for these shortcomings Sommerfeld in 1927 developed a model for
electrons in metals that took into consideration the Fermi-Dirac statistics of
electrons

Note added:
Six of Sommerfeld’s students - Werner Heisenberg, Wolfgang Pauli, Peter Debye,
Hans Bethe, Linus Pauling, and Isidor I. Rabi - went on to win Nobel prize in

Physics.

Sommerfeld himself was nominated 81 times (more than any other person) but
was never awarded the Nobel prize.

—
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Quantum Mechanics and the Schrodinger Equation

The quantum state of an electron is described by the Schrodinger equation:

l-“l;,z(f,t):ihM

ot
~9 2. 52 2
Where the Hamiltonian operatoris:  [J = i+ v(f-)_ Px + Py +P; V(A)
2m 2m
— — _iEt ~
Suppose: y(F,t)=y(F)e then we get: A y(F)=E y(F)

(Time independent form)

The momentum operator is: I% =—V

1
i
EV n? v2 = hz|:62 o2 62i|
i

B2 P.P_ 11 ot N
ox> 6y2 82>

Therefore:— =— " = "V,
2m 2m 2mi

2m " 2m
The time independent form of the Schrodinger equation is:

- %sz/(F)+ V(F)y(F)=E y(r)
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Schrodinger Equation for a Free Electron
The time independent form of the Schrodinger equation is:

2
— V() V(O (F) = E ()
For a free-electron: V(f): 0

We have: h2 9 4 -
“om"’ w(F)=E y(F)

Solution is a plane wave (i.e. plane wave is an energy eigenstate):
~ 1 ik r_ |1 ilkyx+kyy+k = =Y2
V/E(r)z\/; elk.r =\/; e’( xX+Kyy+ zz) —_— <|:j'd3r ‘Wk(r)‘ =1

#2(k2 + k2 +K2)  n2k?
2m T 2m

Energy:

The energy of the free-electron state is: E =

Note: The energy is entirely kinetic (due to motion)

Momentum:

The energy eigenstates are also momentum eigenstates:

A~ h A - h - - .
P=5V = Pylr)=SVy(r)=nk y(r)

—
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Electrons in Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent
Schrodinger equation:

- %VZV/(FH V(F)y(F)=E y(F)

Consider a large metal box of volume V=L, L L, :

In the Sommerfeld model: L, V = [_x[_y[_z

* The electrons inside the box are confined in a

three-dimensional infinite potential well with zero /
potential inside the box and infinite potential y

outside the box L,

V(F)=0  for |F| inside the box
V(F)=w  for |F| outside the bo‘x

free electrons

* The electron states inside the box are given by (experience no
the Schrodinger equation potential when inside
the box)

—
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Electrons in Metals: The Free Electron Model

" o . .
Need t Ilve: —— =E
eed to solve 2m Ve (F) w(F)

With the boundary condition that the wavefunction V/(F) is L z

zero at the boundary of the box z y
. .\ [8 . . . X /
Solution is: . (F)= v sm(kxx)sm(kyy)sm(kzz) - y
V=L,L,L
Where: kxzni ky=ml kzzpl xtykz
L, Ly L,

And n, m, and p are non-zero positive integers taking values 1, 2, 3, 4, .......
Normalization:
— _\2

The wavefunction is properly normalized: j'd3r ‘V/R (r)‘ =1
Energy: 2, 2 2 2 2.2
n?(k% + k2 + k2) 12k

2m 2m
Note: The energy is entirely kinetic (due to motion)

The energy of the electron states is: E =

—
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Electrons in Metals: The Free Electron Model

k K
Labeling Scheme: y L,
—>
All electron states and energies can be
labeled by the corresponding k-vector
(7)= [ s sinliy)sintlz) L |
wip(r)= v sin(k, x)sink, y Jsin(k,z L, K,
2,2
-\ #4k p 4
E(k)="" s
( ) 2m k, L,
k-space Visualization:
The allowed quantum states can be k, = n’* k. =mZ> k,=pZ
visualized as a 3D grid of points in the L, y L, L,

first quadrant of the “k-space”

Problems:

* The “sine” solutions are difficult to work with — need to choose better solutions
* The “sine” solutions come from the boundary conditions — and most of the
electrons inside the metal hardly ever see the boundary

—
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Born Von Karman Periodic Boundary Conditions

o .
Solve: — —— = E
olve: -_ vV w(F)=E y(F)

Instead of using the boundary condition: l//(l') \ boundary = 0 L, z
Use periodic boundary conditions: =
X /
l//(x +Ly,y, z) = l//(x,y, z) These imply that each L L
_ facet of the box is x
'//(x’y * Ly,z)— v(x.y.2) folded and joined to
y/(x, y,Z+ Lz) = y/(x,y, z) the opposite facet
~ 1 ik.F 1 ilkyx+kyy+k
Solution is: wk(r)z\/; elk.l’ =\/; el( xX+Kyy+ zZ)
The boundary conditions dictate that the allowed values of k,, k,, and k,, are such
that: _
eikx(x+Lx) =ei(kxx) - ei(kxl-x) =1 = Kk, =nii n=0,%1,%2,....
X

eik"(y+l'y) ei(k"y) = ei(k""y)=1 = ky=m2—” 4 m=0,#1,%2,....

ei ky(z+L;) — ei(kzz) = ei(kzl-z) =1 = kz - pzl p=0,+1, £2,.

—
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Born Von Karman Periodic Boundary Conditions
Labeling Scheme:

All electron states and energies can be labeled by the corresponding k-vector
. 1 ik.r o\ h%k?

vi(F)=,- e Elk)=22_

k 4 ( ) 2m

o L . 3z =\2
Normalization: The wavefunction is properly normalized: [d°F ‘Wk(rx =1

Orthogonality: Wavefunctions of two different states are orthogonal:
i(k-k').F
3o ko = 3. €
Jd°F yp(F)yg(F)=[d°F Vv =0k k
Momentum Eigenstates:

Another advantage of using the plane-wave energy eigenstates (as opposed to the
“sine” energy eigenstates) is that the plane-wave states are also momentum
eigenstates

= h - ~
Momentum operator: p = ;V = pyg(F)= ?V vi(F) =ik y(F)
Velocity:

Velocity of eigenstates is: V(E): %E = %VE E(ﬂ)

—
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States in k-Space

k 2z
k-space Visualization: y r
The allowed quantum states states can be +—%
visualized as a 3D grid of points in the entire 21
“k-space” Ly
2 2 2
kxznl kyzml kzzpl
Ly L, L, Ky
n,m,p=0,11,12 13, ... /2”
k, L,
Density of Grid Points in k-space:

Looking at the figure, in k-space there is only one grid point in every small

volume of size:
27 2z | 27) _ (22)’
L\, \L,) Vv

= There are grid points per unit volume of k-space } Very important

27)} result

—
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Electron Spin

Electron Spin:

Electrons also have spin degrees of freedom. An electron can have spin up
or down.

So we can write the full quantum state of the electron as follows:

W;T(F)=\g e kT or V’H(F):\g e k7|l

The energy does not depend on the spin (at least for the case at hand) and
therefore

£k 1)- £k 4)- 1K

For the most part in this course, spin will be something extra that tags along
and one can normally forget about it provided it is taken into account when
counting all the available states

—
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The Electron Gas at Zero Temperature - |
* Suppose we have N electrons in the box.

* Then how do we start filling the allowed quantum states?

* Suppose T~0K and we are interested in a filling scheme
that gives the lowest total energy. /
14

The energy of a quantum state is: k
2(, 2 2 2

E(E): h (kx+ky+kz)_ 12k2 R

2m 2m

Strategy:
* Each grid-point can be occupied by two electrons
(spin up and spin down)

« Start filling up the grid-points (with two electrons
each) in spherical regions of increasing radii until
you have a total of N electrons

* When we are done, all filled (i.e. occupied)
quantum states correspond to grid-points that are
inside a spherical region of radius kg

—
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The Electron Gas at Zero Temperature - III(

* Each grid-point can be occupied by two electrons (spin
up and spin down)

« All filled quantum states correspond to grid-points that

1z

a

are inside a spherical region of radius k¢

Volume of the spherical region =§7r kg ks
V4 4 3 Fermi sphere|
Number of grid-points in the spherical region= ———3 X7 ki
(27)* 3
Number of quantum states (including v 4 P v K3
R X - X x_—7w Kp=——5Kp
spin) inside the spherical shell (2”)3 3 372
But the above must equal the total number N of electrons inside the box:
"4
N=—"k}
3z 3
. N k
= n=electron density = = =—F
V 3

= k= (3”2,,)%

J\k*

—
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The Electron Gas at Zero Temperature - Il

« All quantum states inside the Fermi sphere are filled (i.e.
occupied by electrons)
* All quantum states outside the Fermi sphere are empty

/
h

Fermi Momentum:
The largest momentum of the electrons is: 7ikg
This is called the Fermi momentum
Fermi momentum can be found if one knows the electron
density: 1
kF = (37[2n) 3
Fermi Energy: 2,2
The largest energy of the electrons is: m

2m h2K2
This is called the Fermi energy E: Er = =CF

2m
2

2[ 2 ) 2
Also: EF=h 372%n)3 o e 1 [ZmE,:Jz

h2

2m 372

Fermi Velocity:

J kx
kZ
N

Fermi sphere

3

The largest velocity of the electrons is called the Fermi velocity v:: vp=—-

—
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The Electron Gas at Non-Zero Temperature - |

k
« Since T#0K, the filling scheme used for T=0K will no longer y

work

* For T#0K one can only speak of the “probability” that a
particular quantum state is occupied Kk,

k,

Suppose the probability that the quantum statgof
wavevector Kk is occupied by an electron is f(k

Then the total number N of electrons must equal the following sum over all
grid-points in k-space:

N=2x ¥ f(k)

/‘ all k

* By assumption f(l?) does not depend on the spin. That is why spin is taken
into account by just adding the factor of 2 outside the sum

spin

D f(l?) can have any value between 0 and 1

—
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The Electron Gas at Non-Zero Temperature - |

k
" dk, dk,
Recall that there are grid points per unit volume J@Idk
3 y
of k-space 27)
= So in volume dk, dk,, dk, of k-space the number of kx
grid points is: k;
v v 3
dk, dk, dk, = d~k
@ T (20
= The summation over all grid points in k-space can be replaced by a volume integral
dk
> -V | 3
all k (27)
Therefore:
35
N=2x 3 f(k)=2xV |- 2K (k)
all k (27)

Question: What is f(R) ?

—
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The Fermi-Dirac Distribution - |

A fermion (such as an electron) at temperature T occupies a quantum state with
energy E with a probability f(E-E) given by the Fermi-Dirac distribution function:

1
1+ e E-EfJKT

E;= chemical potential or the Fermi level (do not confuse Fermi energy with Fermi level)
K = Boltzmann constant = 1.38 X 10-22 Joules/Kelvin

fE-E/)=

f(E - Ey) f(E-Ef) ~2kT
1 I T=0K 1 0 :>\§ T>0K
0 i >
Ef E 0 Ef E

f(E-Ey) ~2KT

4—:—>
1 | T>>0K
0.5 ; The Fermi level E;is determined by invoking

Elf E some physical argument ...(as we shall see)

—
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Distribution Functions: Notation

The following notation will be used in this course:

* The notation f(l?) will be used to indicate a general k-space distribution function
(not necessarily an equilibrium Fermi-Dirac distribution function)

* The notation f(E — E;) will be used to indicate an equilibrium Fermi-Dirac
distribution function with Fermi-level E;. Note that the Fermi-level is explicitly
indicated. Note also that the Fermi-Dirac distribution depends only on the energy and
not on the exact point in k-space

+ Sometimes the notations f,(E — E;) or f,(E) or fo(l?) are also used to indicate
equilibrium Fermi-Dirac distribution functions

—
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The Electron Gas at Non-Zero Temperature - Il

The probability f(l?) that the quantum state of wavevector kis occupied by an
electron is given by the Fermi-Dirac distribution function:

N 1 . o~ h2K2+ K2+ K2)  p2k2

R)= e ir =) E)  wmers ) kE) e

Therefore:
N=2xV|

d’k 1
(27[)3 1+e(E(E)—Ef)/KT

d3k
(2n)

f(k)=2xV |

Density of States:

The k-space volume integral is cumbersome. We need to convert into a simpler
form — an energy space integral — using the following steps:

_ 2,2 2
d*k = 4r K2 dk and ="K L gk gk
2m m
Therefore:
= 2mE
d3k = 47 k? dk = 47zmdeE But: k=T
h h

It follows that:

d3k = 47r':deE - :—Z\/Zm:"E dE
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The Electron Gas at Non-Zero Temperature - IV
d3k 1 °° 1
N=2xV _ =V |[dE g(E
" I(2”)3 1+ elEK}-Er) KT (I) 9(E) 1+ eE-Er)/KT

3
Where: g(E)= L(Zh—’:]z JE

2 ”2 Density of states function

g(E) has units: #/ Joule-cm? k
The product g(E) dE represents the number of

quantum states available in the energy interval
between E and (E+dE) per cm?® of the metal

Suppose E corresponds to the inner
spherical shell from the relation:
_ nPk?
2m
And suppose (E+dE) corresponds to the outer
spherical shell, then g(E) dE corresponds to

twice the number of the grid points between the
two spherical shells

—
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The Electron Gas at Non-Zero Temperature -V

a0 1 a0
N=V(deE 9(E) W:V{)dE g(E) f(E—‘Ef)

Where: g(E) 1(2'"):@

272\ 1?
The expression for N can be visualized as the
integration over the product of the two functions:

E; E
. — K- w Ef
Check: Suppose T=0K: N=VIdE g(E) f(E_Ef)= v j'dE g(E)
f(E) 0 s 0
1 T=0K =vi(2mEfj§
0 372 "2
E; E

3

1 (2mE;2
= n=_3 2

Compare with the previous result at 7=0K: 3z h

_ 1 (2mEg)2 — At T=0K (and only at T=0K) the Fermi level
- 3”2 hz E; is the same as the Fermi energy E¢

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

The Electron Gas at Non-Zero Temperature - VI
For T # OK:

Since the carrier density is known, and does not change with temperature, the
Fermi level at temperature T is found from the expression

© 1

In general, the Fermi level E;is a function of temperature and decreases from E; as
the temperature increases

E(T=0)=EF
& Ef(T > 0)< EF

For small temperatures ( KT << E;), a useful approximation is:

ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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Total Energy of the Fermion Gas

The total energy U of the electron gas can be written as:

SOED

o0
Convert the k-space mtegral to energy integral: U = deE g(E) f(E-Ef)E

u=2x z flk)Ek)-

The energy density uis:u=_ = jdE g(E) f(E- Ef) E

Suppose T=0K:

Er 1 2m)2 5
u= [(dE g(E) E=—|—|" (E
fae o(E) s[h (Er)2

|

w

Since: n=i2(2m2EF) 2
3z h

We have: U = %n Er

—
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Equilibrium Current Density of the Electron Gas
In the Drude model we had:
J=n(-e)v
* But now we have a Fermi gas in which electrons move with different velocities

* The velocity of the electron with wavevector Kk is: V(E): M k

m y

So the current density expression can be written as:

=0tz AR)ee)=-2oxs 2% 0ole)

(27)° \
d3k (—)j \J
(2z)°

In the sum, for every occupied state k there is astate —k occupied with exactly
the same probability. Therefore:

J=—2exj

3k > Makes sense - metals do not
J=—2ex | ( ) = =0 have net current densities
(2 Ir) m flowing in equilibrium

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University

kX

12



Electron Gas in an Applied Electric Field - |

* Now suppose there is an electric field inside the
metal

* Also assume, as in the Drude model, that the
scattering time of the electrons is r and the

scattering rate is 1/7 z
* The time-independent Schrodinger equation is a L, 'E
good point to start: y

A (e, t) = in 2V 1) X /

ot L,
L

52 N\ p2 . 2 x
Where H=L+V(F)=P—+eE F=——V2+eE r

2m 2m

t
L E [E(t") dt'
i[k—eEt].F _jow
e e

_ 1 .
Assume a solution: l//(l',t) = \F h and plug it in to get:

2

hz k- eE ¢ The energy of the electron shows that its

h <+~—————— wavevector (and momentum) is increasing
E(t) =1 with time
2m The wavevector is now time dependent!

—
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Electron Gas in an Applied Electric Field - Il

¢ An equation for the time-dependent electron

X i z
wavevector can be wrltfen as: Lz >

d hk(t) - _eE y E

dt X
Now we need to add the effect of electron scattering. - ‘/[_:,
As in the Drude model, assume that scattering adds L, -
damping: - - ~
d th((t) CeE- hlk(t)— k|
T

The boundary condition is that: R(t = 0) =k

Note: the damping term ensures that when the field is turned off, the wavevector of
the electron goes back to its original value

Steady State Solution: k(t =)=k _% E

In the presence of an electric field, the wavevector of every electron is shifted by
an equal amount that is determined by the scattering time and the field strength

—
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Electron Gas in an Applied Electric Field - lll

y er = Y
_S*E _—

h E=E,x

f( 2,*"\\ R(tzw)zk'_%é ; *\\\\
i \ ) L \

v C 7 P v 0—0- 7 P
\ /I X \ /l X
\\__/ J Cd

Electron distribution in k-space Electron distribution is shifted in
when E-field is zero k-space when E-field is not zero
Distribution function: f(E) Distribution function: f(E + % E')

Since the wavevector of each electron is shifted by the same amount in the
presence of the E-field, the net effect in k-space is that the entire electron
distribution is shifted as shown

—
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Electron Gas in an Applied Electric Field - IV

er E ky
Current Density: Tn -

i % (- er-) - N E
J--2ex] 3K f(k+elEJ|7(k) 7 >

(27) h |I o ]

00
Do a shift in the integration variable: \\ /' k,

d*k A
J=-2ex| o f(E)V(E-EEJ

(27[) h

Electron distribution is shifted in
3 Al k= EE k-space when E-field is not zero

3 d°k (- PR . -oer
J=-2ex| 3 f(k) Distribution function: fl k+-——E

(27[) m h

2 3
Jzemf[zx; Kk k)| e
( ”) electron density = n
2
J=-"CTE_GE
m
n ezr
Where: 5= Same as the Drude result!
m

—
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Handout 3

Free Electron Gas in 2D and 1D

In this lecture you will learn:

* Free electron gas in two dimensions and in one dimension
* Density of States in k-space and in energy in lower dimensions

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Electron Gases in 2D

dimensions

Semiconductor Quantum Wells:

InGaAs
quantum well
(1-10 nm)

Semiconductor quantum
wells can be composed of
pretty much any
semiconductor from the
groups I, 11, IV, V, and VI of
the periodic table

TEM
micrograph

« In several physical systems electron are confined to move in just 2

* Examples, discussed in detail later in the course, are shown below:

STM

micrograph
- 3
=

Graphene:

»{33/
08
D

Graphene is a single atomic layer
of carbon atoms arranged in a
honeycomb lattice

—
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Electron Gases in 1D

« In several physical systems electron are confined to move in just 1 dimension

* Examples, discussed in detail later in the course, are shown below:

Semiconductor Quantum Semiconductor Quantum Carbon Nanotubes
Wires (or Nanowires): Point Contacts (Rolled Graphene
(Electrostatic Gating): Sheets):

/]

InGaAs
Quantum well

InGaAs

Nanowire

GaAs

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Electrons in 2D Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent
Schrodinger equation:

- %VZW(FH V(F)y(F)=E y(F)

Consider a large metal sheet of area A= L, L, :

Use the Sommerfeld model: 1

* The electrons inside the sheet are confined in a L,
two-dimensional infinite potential well with zero

potential inside the sheet and infinite potential

outside the sheet

V(F)=0  for F inside the sheet \
V(F)=w  for F outside the sheet
free electrons
* The electron states inside the sheet are given (experience no

by the Schrodinger equation potential when inside
the sheet)

—
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Born Von Karman Periodic Boundary Conditions in 2D
2
solve: — L v2y(F)=E y(F)

Use periodic boundary conditions:

y
_ These imply that each ﬂ
W(x +Ley,s z) - W(X’ y,z) edge of the sheet is Ly

W(X,y + Ly,Z)= v(x,y,2) folded and joined to L
the opposite edge

Solution is:  w(F)= \/% ek 7 - \/; ei(kxx+kyy)

The boundary conditions dictate that the allowed values of k,, and k, are such

that:
i (kylLy) 2z
e' Vixtx) =1 = ky=n— n=0,%1,%2,£3,.......
Lx 3 ’ ’ El
e’(“y"y)=1 - ky=mi” m=0,+1,£2,+3,.......
y

—
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Born Von Karman Periodic Boundary Conditions in 2D
Labeling Scheme:

All electron states and energies can be labeled by the corresponding k-vector
o |1 ik.F N

vi(F)=,- e'* Elk)=""—

k A ( ) 2m

- A . 2 =2
Normalization: The wavefunction is properly normalized: Id r ‘l//,;(rj =1

Orthogonality: Wavefunctions of two different states are orthogonal:

. . ol k-Kk).7
Momentum Eigenstates:

Another advantage of using the plane-wave energy eigenstates (as opposed to the

“sine” energy eigenstates) is that the plane-wave states are also momentum
eigenstates

Momentum operator: p = ?V = p '/’E(F) = ?V '/’E(F) = nk '/’R(F)
Velocity:

Velocity of eigenstates is: V(E): %E = %VE E(q)

—
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States in 2D k-Space k, 2z

k-space Visualization: L,
The allowed quantum states states can be e o o o
visualized as a 2D grid of points in the entire
“k-space” e e ¢
2 2 — o — o
ky = n<Z ky, = m=<Z
L, Ly ky
2” [ ] [ ] [ ] [ ]
n,m=0,%1,+2 3, ....... fI
y [ ] [ ] [ ] [ ]
Density of Grid Points in k-space:
Looking at the figure, in k-space there is only one grid point in every small
area of size:
[2”] 27 _ (22}
L, Ly A
A id poi i Very important
= There are grid points per unit area of k-space ry imp
27[)2 result
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
The Electron Gas in 2D at Zero Temperature - |
* Suppose we have N electrons in the sheet.
N

* Then how do we start filling the allowed quantum states?

y
* Suppose T~0K and we are interested in a filling scheme

that gives the lowest total energy.

LX
The energy of a quantum state is: ky
2(, 2 2) 2,2
2m 2m eo oo
Strategy: o o o5 o
* Each grid-point can be occupied by two electrons ¢ ¢/ o o
(spin up and spin down) o qdoooe

« Start filling up the grid-points (with two electrons
each) in circular regions of increasing radii until
you have a total of N electrons

* When we are done, all filled (i.e. occupied)
quantum states correspond to grid-points that are
inside a circular region of radius kg

—
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The Electron Gas in 2D at Zero Temperaturek- ]

* Each grid-point can be occupied by two electrons (spin
up and spin down)

y
ke
« All filled quantum states correspond to grid-points that
are inside a circular region of radius kg \J k,

Area of the circular region= k,z_-

A 2 Fermi circle
Number of grid-points in the circular region = WX z K
V4
Number of quantum states (including A 2 A >
spin) in the circular region = 2x (2”)2 xz kg = ng
But the above must equal the total number N of electrons inside the box:
A >
N=_—k
2z
- elect density = N k,% Units of the electron
= n=electron density = A 27 density n are #/cm?

1
= kg =(27 n)2

—
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The Electron Gas in 2D at Zero Temperature - ll|

« All quantum states inside the Fermi circle are filled (i.e. k-V

occupied by electrons)
a

* All quantum states outside the Fermi circle are empty

Fermi Momentum:

The largest momentum of the electrons is: 7ikg

This is called the Fermi momentum

Fermi momentum can be found if ont1e knows the electron

\
J\kx

density: 1 Fermi circle
kF = (27[ n) 2
Fermi Energy: hzkz
The largest energy of the electrons is: = "F
2m 12K2
This is called the Fermi energy E: Er = =CF
2m
2
n“mrn m
Also: Er = or n=—Eg
m P h2
Fermi Velocity: nk
The largest velocity of the electrons is called the Fermi velocity v:: vg = =F
m

—
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The Electron Gas in 2D at Non-Zero Temperature - |

k
Y dk,
>

Recall that there are grid points per unit area of k- I:lIdky
space 2z

= Soinarea dk, dk, of k-space the number of kx
grid points is:

dk, dk, - A g%k

(2 )2 (2n)

= The summation over all grid points in k-space can be replaced by an area integral

d’k
A
allzk - Fanp (27:)2

Therefore:

d2%k -
szxauzkf() 2><AI( zf )

f(—) is the occupation probability of a quantum state

—
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The Electron Gas in 2D at Non-Zero Temperature - Il

The probability f(E) that the quantum state of wavevector k is occupied by an
electron is given by the Fermi-Dirac distribution function:

f(E): ‘1 Where: E(E): hz(k’z‘ + kﬁ)_ n?k*

1+ e ER)-E)KT 2m  2m

Therefore:
2k 1

(”)2 (q) 2 Af(zﬂ)z 1+ e ERN-E KT

Density of States:

The k-space integral is cumbersome. We need to convert into a simpler form — an
energy space integral — using the following steps:

25 2,2 2
d?k = 21 k dk and E=%:>dE Mdk

Therefore:

d2k ©k dk
—
( 7: o7 oxh

2xA|

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University




The Electron Gas in 2D at Non-Zero Temperature - ll|
d’k 1

i 1
N=2xA — =A(dE E
J @zY 1+ elEK}Er)KT (I, 920(E) 1+ e(EE VKT
. m
Where: 920(E) = 2 — Density of states function is constant
zh (independent of energy) in 2D
d.p(E) has units: # / Joule-cm? k
y

The product g(E) dE represents the number of
quantum states available in the energy interval
between E and (E+dE) per cm? of the metal

Suppose E corresponds to the inner ci
from the relation:

n2k?

T 2m

And suppose (E+dE) corresponds to the outer
circle, then g,,(E) dE corresponds to twice the
number of the grid points between the two
circles

—
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The Electron Gas in 2D at Non-Zero Temperature - IV
2] 1 0
= A(J;dE 92p(E) 11 o E-E VKT = Ang 92p(E) f(E‘_Ef)

m 920(E)
Where: gop(E)= —s
wh

The expression for N can be visualized as the %\f(E - Ef)

integration over the product of the two functions: E‘f E

Check: Suppose T=0K: © Ef
N= A(j)dE g2p(E) fF(E-Ef)=A [deE g2p(E)|

f(E-Ef)
1 ’ m
T=0K = A—zEf
Th
0
Ef E m
= n= —2Ef
zTh
Compare with the previous result at T=0K:
n= iEF At T=0K (and only at T=0K) the Fermi level

= E; is the same as the Fermi energy E¢

—
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The Electron Gas in 2D at Non-Zero Temperature -V
For T # 0K:

Since the carrier density is known, and does not change with temperature, the
Fermi level at temperature T is found from the expression

Ef
® 1
n= (I)dE g2D(E) L JE-E KT = KTIog 1+eKT

In general, the Fermi level E; is a function of temperature and decreases from E as
the temperature increases. The exact relationship can be found by inverting the
above equation and recalling that:

n= EF

hz
to get:

Ef
E¢(T)= KT log| eKT -1

—
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Total Energy of the 2D Electron Gas

The total energy U of the electron gas can be written as:

EROED

Convert the k-space |ntegral to energy integral:U = Aj'dE 920(E) f(E-Ef)E

U=2x x fk f(k) E(k)= 2xAj(

The energy density uistt = — = j'dE g2p(E) f(E- Ef) E

Suppose T=0K:
E?

Er m
u= dE E E =
(I) 920(E) 27 12

Since: n= Er

h2

1
We have: U = En Er

—
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2D Electron Gas in an Applied Electric Field - |
_ETE i EEE—
E=E,x

ky
~ h
f( )/"‘\\ I?(t:oo):l?—%é 7 ‘\\
/ o \‘

/
1 \
L4 ——) - -
kx \ / kx
Q 4

Electron distribution is shifted in
k-space when E-field is not zero

Distribution function: f| k + % E

Electron distribution in k-space
when E-field is zero
Distribution function: f(E)

Since the wavevector of each electron is shifted by the same amount in the
presence of the E-field, the net effect in k-space is that the entire electron

distribution is shifted as shown
—E
L.V

—
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2D Electron Gas in an Applied Electric Field - Il
k

er E
Current density (units: A/lcm) T -
R 2k (. Y\ (- AN E
J=—2ex[ LK f(k+e—TEJ|7(k) 7 8
(2”)2 h |I o ]
00
Do a shift in the integration variable: \ /' k,
ZE \\ ‘d 7
J-—2ex|? f(k)v[ﬁ_ﬂé)
(27) h

Electron distribution is shifted in

25 Kl k- EE k-space when E-field is not zero

- dk (- h e . - er
J=-2ex]| f(k) Distribution function: flk+—"E

(2z)? m n

2 25
J=“{2xj 9% (k)| e
m ( ”)2 electron density = n (units: #/cm?)
2
J=-"TE_GE
m
2 Same as the Drude result - but
units are different. Units of care

_ne‘r
Siemens in 2D
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Electrons in 1D Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent
Schrodinger equation:

- Z,;ZW(X)+ V(x)y(x)=E y(x)

Consider a large metal wire of length L :

Use the Sommerfeld model:

* The electrons inside the wire are confined in a
one-dimensional infinite potential well with zero
potential inside the wire and infinite potential
outside the wire

V(x)=0  for x inside the wire
V(x)=  for x outside the wire _\

free electrons

* The electron states inside the wire are given by (experience no
the Schrodinger equation potential when inside
the wire)

—
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Born Von Karman Periodic Boundary Conditions in 1D

n® o*
Solve: - ﬂax—zy/(x) =E y(x)

Use periodic boundary conditions:

These imply that each

x+L,y,2)=w(x,y.z facet of the sheet is
w( y:2)=y(xy,2) folded and joined to

the opposite facet

Solution is: y/(x)=\E of (kxx)

The boundary conditions dictate that the allowed values of k, are such that:

elt)q o k= nzT’r n=0,+1,%2,43,......

—
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States in 1D k-Space

k-space Visualization:
The allowed quantum states states can be

visualized as a 1D grid of points in the entire 2z
k-space T
2z o—0o— 0o o o »
ky =n— T
x L 0 ky

Density of Grid Points in k-space:

Looking at the figure, in k-space there is only one grid point in every small

length of size:
( )
L

= Thereare L grid points per unit length of k-space Very important
2z result /

—
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The Electron Gas in 1D at Zero Temperature - | \
* Each grid-point can be occupied by two electrons (spin
up and spin down)
i N ke ke
« All filled quantum states correspond to grid-points that | !|
are within a distance k. from the origin | | k

0 X
Length of the region = 2kg \]

L Fermi points
Number of grid-points in the region = z—x 2kg
v 4

Number of quantum states (including L
spin) in the region = 2x gXZkF

But the above must equal the total number N of electrons in the wire:

2k
N=L%CE
T
. N  2kg Units of the electron
= n=electron density = . density n are #cm
zn
= kp="
F= 2

—
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The Electron Gas in 1D at Zero Temperature - I|

« All quantum states between the Fermi points are filled (i.e.
occupied by electrons)
 All quantum states outside the Fermi points are empty

0 b
Fermi Momentum:
The largest momentum of the electrons is: 7ikg

This is called the Fermi momentum Fermi points
Fermi momentum can be found if one knows the electron
density:

Tn
ke =""

2
Fermi Energy:
The largest energy of the electrons is: = ~F

This is called the Fermi energy E¢: Ep=—"

n2r? n?
Also: Ep=—"—— or n= \8m JEr

8m Th

Fermi Velocity: hk
The largest velocity of the electrons is called the Fermi velocity v:: Vvg = =F

—
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The Electron Gas in 1D at Non-Zero Temperature - |

L

Recall that there are _=_ grid points per unit length of k-
space 2z dk,

=
x

= Soin length dk, of k-space the number of 0
grid points is:

L ok

2z

= The summation over all grid points in k-space can be replaced by an integral

S o L dk,

all k Zw 27
Therefore:

N=2x = fk,)=2xL | Txs(k,)

all k o 21

f(kx) is the occupation probability of a quantum state

—
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The Electron Gas in 1D at Non-Zero Temperature - Il

The probability f(k x) that the quantum state of wavevector ky is occupied by an
electron is given by the Fermi-Dirac distribution function:

f(kX)_*WE K FE KT  Where: E( )=27n:
Therefore:
N=2xL j dkx fky)=2xL j 1

2” 1+ e Ekx)-Ef KT
Density of States:

The k-space integral is cumbersome. We need to convert into a simpler form — an
energy space integral — using the following steps:

2,2 2
ZLIZ—"—>2L2]’— and E%:dE_Hdk
T 07[

Therefore:

axt | ¥ 1 JaE 7V
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The Electron Gas in 1D at Non-Zero Temperature - llI

1
—o 2z 0 \/7 /

© dky 1 © 1
N=2xL f 27 1+ o EUkx)-Er)KT =’-£dE 91p(E) 1+ e E-EJKT
v2m 1
Where: E)=""
ere g1D( ) zh JE

g4p(E) has units: #/ Joule-cm

The product g(E) dE represents the number of
quantum states available in the energy interval
between E and (E+dE) per cm of the metal

Suppose E corresponds to the inner points

from the relation: 2,2
E-= n“k
2m M kx
And suppose (E+dE) corresponds to the outer

points, then g,,(E) dE corresponds to twice the
number of the grid points between the points
(adding contributions from both sides)

—
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The Electron Gas in 1D at Non-Zero Temperature - IV
o0 1 2]
N=L[dE 9w0(E) | _E-g KT = L]dE 9w(E) f(E-Er)

ere: g1p = 2n JE

The expression for N can be visualized as the
integration over the product of the two functions:

Check: Suppose T=0K: © Ef
N= L{)dE g(E) f(E-Ef)=L lf)dE 91p(E)

f(E-Ef)
\V8m
1 T=0K =Lﬁ\/Ef
0 -y
Ey E o n=—8;ln JEf
T

Compare with the previous result at 7=0K:

n= \8m \/? At T=0K (and only at T=0K) the Fermi level
Y F E; is the same as the Fermi energy E¢
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The Electron Gas in 1D at Non-Zero Temperature - V

For T # 0K:

Since the carrier density is known, and does not change with temperature, the
Fermi level at temperature T is found from the expression

® 1

In general, the Fermi level E;is a function of temperature and decreases from E; as
the temperature increases.

—
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Total Energy of the 1D Electron Gas
The total energy U of the electron gas can be written as:
a0
U=2x Y f(k,)E(k,)=2xL | dkyx
all k —0 &7

Flkx) E(ky)

00

Convert the k-space integral to energy integral: U = L[dE g4p(E) f(E-Ef)E
0

u

The energy density u ist/ = L =

ZdE gp(E) F(E-Ef)E

Suppose T=0K:

Er /8m E¥?
u= [dE gip(E) E=""--F
0 T h 3

Since: n= 7V8':Jﬁ
z

1
We have: u=_nEg

3

—
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1D Electron Gas in an Applied Electric Field - |

—
f(kx) E=E,x

’IIF h h _\\I‘ _\\‘

’II |‘\ \II:\

I I s
Electron distribution in k-space Electron distribution is shifted in
when E-field is zero k-space when E-field is not zero
Distribution function: f(ky) Distribution function: f(kx + ehi Ex)

Since the wavevector of each electron is shifted by the same amount in the
presence of the E-field, the net effect in k-space is that the entire electron
distribution is shifted as shown

—_—t
L

—
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1D Electron Gas in an Applied Electric Field - I

Current (units: A)

I=—2ex T%f(k +5F xjv(kx)

—00

Do a shift in the integration variable:

1
© dk, er IS
I=-2ex | 2 Flk) V| kx ==~ Ex Electron distribution is shifted in
- k-space when E-field is not zero

co dk (kx —eh—TEx) Distribution function: f[k +&° Ex]
I=-2ex [ —* f(k, )T h

—00

e2
=== j —X f(ky)|E,
m
electron density = n (units: #/cm)
ne’r _ =
I= E=cE
m
2 Same as the Drude result - but
Where: o-"1€7 units are different. Units of oare
m Siemens-cm in 1D

ECE 407 - Spring 2009 - Farhan Rana — Cornell University
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Handout 4

Lattices in 1D, 2D, and 3D

In this lecture you will learn:

* Bravais lattices

* Primitive lattice vectors

* Unit cells and primitive cells

« Lattices with basis and basis vectors August Bravais (1811-1863)

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Bravais Lattice

A fundamental concept in the description of crystalline solids is that of a
“Bravais lattice”. A Bravais lattice is an infinite arrangement of points (or
atoms) in space that has the following property:

The lattice looks exactly the same when viewed from any lattice point

A 1D Bravais lattice:

R
@ @ @ @ @ @ @ L
b
A 2D Bravais lattice: I
— R

|

TP l

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University




Bravais Lattice

A 2D Bravais lattice: @

A 3D Bravais lattice:
d"//,./t/. /
L 4
= 4

55
e

4
/» 9
4 4 o
- - -
c ///
b
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Bravais Lattice

A Bravais lattice has the following property:
The position vector of all points (or atoms) in the lattice can be written as

follows: Where n,m, p=0, 1,12, 13, .......
1D R=na,
And the vectors,
2D R=naj+ma, ap,a,and az
3D R=na +may+pa, are called the “primitive lattice

vectors” and are said to span the

lattice. These vectors are not parallel.
Example (1D):

—_—
[ @ L > @ @ @ L J
3.=b x b
Example (2D): aj=bhx
y
3
x
da=cy
aj=bx 5

—
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Bravais Lattice

Example (3D):

d=bx
The choice of primitive vectors is NOT unique:

3

a=cy

—
b

Q)

ficy
Il
X

All sets of primitive
vectors shown will work
for the 2D lattice

a,=bx+cy

—
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Bravais Lattice
Example (2D):
@

\

v

All lattices are not Bravais lattices:

The honeycomb lattice

—
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The Primitive Cell
* A primitive cell of a Bravais lattice is the smallest region which when
translated by all different lattice vectors can “tile” or “cover” the entire lattice
without overlapping

>

c| b

Two different choices of primitive cell Tiling of the lattice by the primitive cell
* The primitive cell is not unique

* The volume (3D), area (2D), or length (1D) of a primitive cell can be given in terms of
the primitive vectors, and is independent of the choice of the primitive vectors or of
the primitive cells

1 Q= ‘51‘ Example, for the 2D lattice above:

D

L G =b % G=bx
20 Qp =[ayxay a=cy or G =bx+cy
3D Q3 = ‘51 '(52)(53] Qz =‘51X52‘=bc Qz =‘§1X52‘ = bc

—
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/ The Wigner-Seitz Primitive Cell
* The Wigner-Seitz (WS) primitive cell of a Bravais lattice is a special kind of a

primitive cell and consists of region in space around a lattice point that consists of
all points in space that are closer to this lattice point than to any other lattice point

G, .
S S S S |
R e )

. "
b&bbb

WS primitive cell Tiling of the lattice by the WS primitive cell
* The Wigner-Seitz primitive cell is unique

* The volume (3D), area (2D), or length (1D) of a WS primitive cell can be given in
terms of the primitive vectors, and is independent of the choice of the primitive
vectors

1D Q= ‘51‘ Example, for the 2D lattice above:

N ~ 51 = b * 51 = b *
2D Q, =[dy x ay)| Gy=cy o G =bx+cy
3D Q3=‘51.(52X53] Q, =\§1x52\=bc Qz=‘51><52‘=bc

—
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Wigner-Seitz Primitive Cell
Example (2D):

aj=bx
é 9*4_9 Y, P
2=5 2 y Primitive cell
. b?
Qz =\a1xaz\=—

Q

b Primitive cell
Example (3D): /
Qs=‘51.(52)(53]=bcd c / /

-
NG

a=bx —

—
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Lattice with a Basis
Consider the following lattice:

b, b,
¢ Clearly it is not a Bravais
lattice (in a Bravais lattice,
the lattice must look exactly
the same when viewed from
any lattice point) c I

« It can be thought of as a Bravais lattice with a basis consisting of more than just
one atom per lattice point — two atoms in this case. So associated with each point
of the underlying Bravais lattice there are two atoms. Consequently, each
primitive cell of the underlying Bravais lattice also has two atoms

1383/

h b Primitive cell
, - P — /

* The location of all the
basis atoms, with respect /
to the underlying Bravais
lattice point, within one
primitive cell are given by
the basis vectors: CI

dy=0

d,=hx

—
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Lattice with a Basis
Consider the Honeycomb lattice:

It is not a Bravais lattice, but it can be considered a
Bravais lattice with a two-atom basis

h
«— Primitive cell
S primitive cell F
w imiti ]
Primitive cell S primitive ce
—

| can take the “blue” atoms to be the
points of the underlying Bravais lattice

that has a two-atom basis - “blue” and A
“red” - with basis vectors:
31 =0 32 =hx Or | can take the small “black” points to be

the underlying Bravais lattice that has a two-
atom basis - “blue” and “red” - with basis
vectors: h h

Note: “red” and “blue” color coding
is only for illustrative purposes. All
atoms are the same.

di=—-_% dy=_2x
1772 272
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Lattice with a Basis
Now consider a lattice made up of two Py Py Py Py
different atoms: “red” and “black”, as shown
« It is clearly not a Bravais lattice since two a
different types of atoms occupy lattice 4
positions
* The lattice define by the “red” atoms can be a 4
taken as the underlying Bravais lattice that
4 a/2
has a two-atom basis: one “red” and one
“black” ®
* The lattice primitive vectors are:
~ . _ a. a. o @ @ L J
aj=ax a=_X+_
1 2=5 2 y a

* The two basis vectors are: Primitive cell

81 =0 The primitive cell has the two basis atoms: one

“red” and one “black” (actually one-fourth each
~ a . 13 ”
dy = 2 X of four “black” atoms)

—
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Bravais Lattices in 2D

There are only 5 Bravais lattices in 2D

Oblique Rectangular Centered Rectangular

1 © O O o 2 O O O o 3 O o o
(%] (&)
© o o © o o o o
2 2 Q o
N © o o © o o
lal #|a, ¢=90° lal #la), @=90° lal #1a), @=90°
4 ) ) o 5 0 o o
(&) o (#) (»)
; L
(+]
= = 120° % ¢
I8 = (%), @ Il =13, o= 90"
% — Spring M) — Farhan Rana — Comell University
/ Lattices in 3D and the Unit Cell \
Simple Cubic Lattice: /.
51 =a i
52 =a }7 % %
Gy at / /
y o5——%
X
z

Unit Cell: —

It is very cumbersome to draw entire lattices
in 3D so some small portion of the lattice, ‘a/'
having full symmetry of the lattice, is usually  Unit cell of "

drawn. This small portion when repeated can a cubic

generate the whole lattice and is called the lattice a

“unit cell” and it could be larger than the a ﬂ
“—a >

rimitive cell '

—
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1) Triclinic:
a, B,y #90°

2) Monoclinic:

Bravais Lattices in 3D

There are 14 different Bravais lattices in 3D that are classified into 7 different crystal
systems (only the unit cells are shown below)

4) Tetragonal:

a#c

a#c

a

6) Hexagonal:

5) Rhombohedral:
a, B,y #90°

a #90° a#90°
ﬁ_y=90° ﬂ,y=90° a*c
N
N N Ao c
l l
a
3) Orthorhombic: 7) Cubic:
. a#b#c . a#b#c . a#b#c a#b#c ]
@ a a
c c c a a a
a a a a a a a
b b b b . Body Face
Simple Centered Centered
Cubic Cubic Cubic

-
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BCC and FCC Lattices
Body Centered Cubic (BCC)

Unit Cell

Unit Cell

Lattice:
51=a)? 52=a}7 y
a3 =2 (k+y+2)
Or a more symmetric choice is: a
d=0 (x+7+2)
= A/ n A A
ey, o Emg(k+y-D)
ay =2 (%-y+2)
Face Centered Cubic (FCC)
Lattice:
y
-~ @/ s A
a=_-y+2z
1 z(y ) X
Gy =2 (%+2) z a
2
-~ @ .
a =5 (%+7)

—
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BCC and FCC Lattices

The choice of unit cell is not unique

FCC Unit Cell

\ :

Shown are two different unit cells for the FCC lattice

—
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,,L__A.K'_.fj‘;:,

Materials with FCC lattices:

Aluminum, Nickel, Copper, Platinum,
Gold, Lead, Silver, Silicon,
Germanium, Diamond, Gallium
Arsenide, Indium Phosphide

BCC and FCC Lattices
The (Wigner-Seitz) primitive cells of FCC and BCC Lattices are shown:

Materials with BCC lattices:

Lithium, Sodium, Potassium,
Chromium, Iron, Molybdenum,
Tungsten, Manganese

— —
ECE 407 - Spring 2009 — Farhan Rana — Cornell University



Lattices of Silicon, Germanium, and Diamond

Diamond Lattice

.

2 T

* Each atom is covalently bonded to four
other atoms via sp3 bonds in a
tetrahedral configuration

* The lattice defined by the position of the
atoms is not a Bravais lattice

* The underlying lattice is an FCC lattice
with a two-point (or two-atom) basis

* The lattice constant “a” usually found in

the literature is the size of the unit cell, as
shown. The primitive lattice vectors are:

~ a n A\ = I BN
ai=2(7+2) &= (k+2)

as =g(i+y) Same as for a FCC

lattice
z
* The two basis vectors are:
5 = A n A
x di=0 d2=z(x+y+z)
—
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Lattices of lll-V Binaries (GaAs, InP, GaP, InAs, AlAs, InSb, etc)

Diamond lattice (Si, Ge, Diamond)

Zincblende lattice (GaAs, InP, InAs)

* Each Group lll atom is covalently bonded to four other group V atoms (and vice
versa) via sp3 bonds in a tetrahedral configuration

* The underlying lattice is an FCC lattice with a two-point (or two-atom) basis. In
contrast to the diamond lattice, the two atoms in the basis of zincblende lattice

are different

—
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Handout 5

The Reciprocal Lattice

In this lecture you will learn:

* Fourier transforms of lattices
* The reciprocal lattice

¢ Brillouin Zones

» X-ray diffraction

* Fourier transforms of lattice periodic functions

—
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Fourier Transform (FT) of a 1D Lattice

Consider a 1D Bravais lattice:

l
° ® = — e ® °
aj=ax

Now consider a function consisting of a “lattice” of delta functions — in which a delta
function is placed at each lattice point:

f(x)%
~— 1 1 1+ t+ 1t 1T-—>

§1=a)‘; X
f(x)= ¥ 6(x—na)

nN=—w0

The FT of this function is (as you found in your homework):

+o0 o ) . .
flky)= [ dx ¥ &(x-na)e  kxx = Ze'kX"a=2l 3 5(kx—m2?7r)

—00 n=-—oo n=-—oo a m=—o

The FT of a train of delta functions is also a train of delta functions in k-space

—
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Reciprocal Lattice as FT of a 1D Lattice

f(x)
S ST SR ST ST S SR S g

FTis: f(k,()%1= 2z
—1 1 g 1t 1 1T 1T —>
by =% % kx

The reciprocal lattice is defined by the position of the delta-functions in the FT of
the actual lattice (also called the direct lattice)

Direct lattice (or the actual lattice):

>
14

Reciprocal lattice:

@ ® L >@ ® ® ® o —/
- 2 kx
b1=—x
—a

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Reciprocal Lattice of a 1D Lattice
For the 1D Bravais lattice,

® ® @ >® L ® ® L]
51 =ax
The position vector R,, of any lattice point is given by: Rn =na,

Flx)
—1 1 Lﬁ; t ot 0t ot
)= 5 s(k-Rn) |

+oo 00 . . 0 .=
The FT of this functionis: (k)= [ dx ¥ 8(x—R,)e*xX = 3¢/ kRn
—0

n=—o n=—oo

The reciprocal lattice in k-space is defined by the set of all points for which the k-

vector satisfies, Lo
el K-Rn _

for ALL R,, of the direct lattice

o]
For the points in k-space belonging to the reciprocal lattice the summation Y e

ecomes very large! n=—o0

ik.Rp,

—
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Reciprocal Lattice of a 1D Lattice
For the 1D Bravais lattice,

[ @ @ >® @ @ @ L
aj=ax

The position vector f(’,, of any lattice point is given by: R’n =n 51

The reciprocal lattice in k-space is defined by the set of all points for which the k-

vector satisfies, Lo
el K-Rn _4

for ALL R,, of the direct lattice

For k to satisfy e’ ¥-Rn =1, it must be that for all R,

k.R, =2z x{integer }
= k, na =2z x{integer }

2z
=k, = m? { where m is any integer

Therefore, the reciprocal lattice is:

E—
® @ @ >® @ L 4 L 4 ® K
- 2r .
b1 =—X
E(mmng 2009 - Farhan Rana — Cornell University
Reciprocal Lattice of a 2D Lattice
Consider the 2D rectangular Bravais lattice: Y Y
If we place a 2D delta function at each lattice PY PY
point we get the function: 3, =cCV
2=CY N
© L - I
f(x,y)= ¥ X d(x-na)s(y-mc) dj=ax x
N=—c0 M=—c0 ® ®

The above notation is too cumbersome, so we write it in a simpler way as:

f(f) = Z 52 (F - K’j) —— The summation over “j ” is over all the lattice points
J

A 2D delta function has the property: deF 52 (F — Fo) g(F) = g(i-o)
and it is just a product of two 1D delta functions corresponding to the x and y
components of the vectors in its arguments: §2 (f - fo) = 5(,( - Fo.)“()d(y —F, y)

Now we Fourier transform the function f(F) :

f(K)=[d% f(F) e /%" = d?F $6%(F-R;) e KT
J

ik P 2 o 0
=Ze—1k.Rj=(27r) 2 3 6kx—n2—” ok —m?®
a y c

j ac N=— M=—wn

—
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Reciprocal Lattice of a 2D Lattice
f(k)=xe ¥ Ri - @) g 3 5[1( 2?”) é‘(ky -mz?"]

j ac p=—wom=—

y
([ ([
( ] (]
a=cy
»
aj=ax x
(]
Direct lattice
* Note also that the reciprocal lattice in k-space is defined by the set of all points for
which the k-vector satisfies, ~
ik.R;
e =
for all ﬁj of the direct lattice
* Reciprocal lattice as the FT of the direct lattice or as set of all points in k-space
for which expli k. Rj)=1 forall R;, are equivalent statements }

_/
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Reciprocal Lattice of a 2D Lattice

[ ] [ ]

(] . (]

a=cy

o >
aj=ax x

(]

Direct lattice

* The reciprocal lattice of a Bravais lattice is always a Bravais lattice and has its own
primitive lattice vectors, for example, b1 and b, in the above figure

* The position vector G of any point in the reciprocal lattice can be expressed in
terms of the primitive lattice vectors:

G=n 51 +m 52 { For m and n integers
So we can write the FT in a better way as:

f(k)= (2:) 3 5(k ZZJé(ky—mzf)=(2”)zZéz(k—éj)

nN=—00 M=—0

where Q, = ac is the area of the direct lattice primitive cell

—
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Reciprocal Lattice of a 3D Lattice

Consider a orthorhombic direct lattice:
R=na,+ma,+pa;  wheren, m, and p are integers a
Then the corresponding delta-function lattice is: c ‘a'
<a—>

f(F)=x 6°(F-R;)
J
A 3D delta function has the property: J‘d3f 53(F - Fo) g(F) = g(Fo

The reciprocal lattice in k-space is defined by the set of all points for which the k-
vector satisfies: exp\i k . Rj)= 1 forall R; of the direct lattice. The above relation
will hold if k equals G : ) ) )
_ _ - ~ - T A - T . = T
G=nby+mby+pbs and b1=?x b2=?y by=—2
Finally, the FT of the direct lattice is:

f(K)=[d%F f(7F) e'%" =[d%F $&%(F-R;) e K"
J

kR _ @2 s s\ @) s
-z RS (k-G;)= 2o (k-G;)

—
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Direct Lattice Vectors and Reciprocal Lattice Vectors \
k
y

Direct lattice

R=n51+m52 é=nB1+m52

Remember that the reciprocal lattice in k-space is defined by the set of all points for
which the k-vector satisfies, L
el k-R_4q

for all R of the direct lattice

So for all direct lattice vectors R and all reciprocal lattice vectors G we must have:

(o]}

i

e G-R _1q

—
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Reciprocal Lattice of General Lattices in 1D, 2D, 3D

More often that not, the direct lattice primitive vectors, &a,,ad,, and a; , are not
orthogonal

Question: How does one find the reciprocal lattice vectors in the general case?
ID lattice:

If the direct lattice primitive vector is: d@;=a X
and length of primitive cell is: Q,=a

Then the reciprocal lattice primitive vector is: 51 = zi X NOtei
R 2 a 51 . b1 =2z
fF)=2 s(F-R;)) <=> fk)=2"5 s(k-G;) . &
i Q e Ptm _q
2D lattice:
If the direct lattice is in the x-y plane and the primitive vectors are: a;and a,
and area of primitive cell is: Q, = ‘51 x 52‘ B A w5 2 =
Then the reciprocal lattice primitive vectors are: by =27 axz b, = 2”ﬂ
Qy Q,
f0)-3 7R, -5 (g
()=2 6% -R;) <= 1(K)="7 "z 5*(k-6;)
J
Note: éjsk =2ﬂ'5jk and eiGp'R’" =1

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Reciprocal Lattice of General Lattices in 1D, 2D, 3D

3D lattice:

If the direct lattice primitive vectors are: a,,a,, and a;
and volume of primitive cell is: Q3 = ‘51 . (52 X 53]

Then the reciprocal lattice primitive vectors are: Note:
- ayxa; - d3xay - a,xa aj.by =276y
b1 =27 2 3 b2 =27 3 1 b3 =27 1 2 J J
Q3 Q3 Q3
6;)

7)) <= 1()-2)5 -6

3 ]

s 2T . .

by=""(%+y)
d=b % b
f=-treby a9
2="5 Y

2
Q, =[dy x| = % 4z/b
4z/b

—
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The Brillouin Zone

The Wigner-Seitz primitive cell of the reciprocal lattice centered at the origin is
called the Brillouin zone (or the first Brillouin zone or FBZ)

A ) Wigner-Seitz primitive cell
1D direct lattice: l
—_—

—
| p— | | N -
® & — e ® ® e & %
a=ax
Reciprocal lattice: First Brillouin zone
—_— —
1 o — o
- 2r . x
b1 =—X
2D lattice: a
y Wigner-Seitz ky ) )
primitive cell ° Reciprocal lattice

First Brillouin zone

—
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Wigner-Seitz The Brillouin Zone
2D lattice:  primitive cell First Brillouin zone

by
b 4z/b
——>
4r/b
Direct lattice Reciprocal lattice

Volume/Areal/Length of the first Brillouin zone:

The volume (3D), area (2D), length (1D) of the first Brillouin zone is given in the
same way as the corresponding expressions for the primitive cell of a direct lattice:

1D O, = ‘ e ‘ Note that in all dimensions (d) the following
1= b1 relationship holds between the volumes, areas,
2D I =‘ R XEz‘ lengths of the direct and reciprocal lattice
2 1 primitive cells: (27z)d
3D T =|by . (B, xb3) Ma="0."

—
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Direct Lattice Planes and Reciprocal Lattice Vectors

There is an intimate relationship between reciprocal lattice vectors and planes of
points in the direct lattice captured by this theorem and its converse

Theorem: 3D lattice
If there is a family of parallel lattice
planes separated by distance “d ” and n
is a unit vector normal to the planes
then the vector given by,

= 27 .
G=“"h
is a reciprocal lattice vector and so is:
27 . .
m* { m=integer
Converse:
If G; is any reciprocal lattice vector, .
and G is the reciprocal lattice vector d 2D lattice
of the smallest magnitude parallel toG; , ° ° °
then there exist a family of lattice planes ° ° ° .
perpendicular to G; and G, and Gk
separated by distance “d ” where: ° ° ° "
2z ° ° °

d="—

6|
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Ex\a\mple: Direct Lattice Planes and Reciprocal Lattice Vectors

Direct lattice™.

Consider:
. XV
G =by+b, =27r(—+ZJ
a c¢
. . = 2z ac
There must be a family of lattice planes’normal to G and separated by: ﬁ =T
a“+c
Now consider:
- 2%y
G =26, +b, =2n(—+¥J
a ¢
2z ac

here must be a family of lattice planes normal to G and separated by:

6™ Va? +ac?

—
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The BCC Direct Lattice

Direct lattice: BCC Reciprocal lattice: FCC

The direct and the reciprocal lattices are not necessarily always the same!

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

/ The FCC Direct Lattice

4r/a
Reciprocal lattice: BCC

First Brillouin zone of
the BCC reciprocal
lattice for an FCC direct
lattice

—
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The Reciprocal Lattice and FTs of Periodic Functions

The relationship between delta-functions on a “d ” dimensional lattice and its Fourier
transform is:

17)=x 5(-r,) <=> 1(f)-2 5 s9(k-g,)
j Qq

Supper W(F) is a periodic function with the periodicity of the direct lattice then
by definition:

W(F +R;)=w(F)
forall R; of the direct lattice

One can always write a periodic function as a convolution of its value in the
primitive cell and a lattice of delta functions, as shown for 1D below:

W(x)

—1 1 1 ]

- a!/2 372 X

Wo(x)
Bl I DY S SN S

| a | | |

“a2

—
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The Reciprocal Lattice and FTs of Periodic Functions \
w(x)
—1 —1 1 1
a !

I :
IWQ (01 —a/2 a/2 X

il N f l} I

- Ea/ 2 a/2

Mathematically:
@
W(x)=Wu(x)® X6(x-na)
n=-—w
And more generally in “d ” dimensions for a lattice periodic function W(7) we have:
— — dl= =4
W(F)=Wo(F)® 25 (F-r))
Value of the function Lattice of delta
in one primitive cell functions

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University

10



The Reciprocal Lattice and FTs of Periodic Functions

For a periodic function we have:
W(F)=Wo(F)® 2597 -R;)
J

Its FT is now easy given that we know the FT of a lattice of delta functions:

17)=3 69 -R,) <=> (§)-25 59(k-6,)
i Qg j

We get
. (2 Lo 2.) I _
w(K)=wo (k) (g) x64(k-6)) (5) 3 6%(k-6,)wq(6))
d J d J /
The FT looks like reciprocal
lattice of delta-functions with
If we now take the inverse FT we get: unequal weights
N d9% oy ik d% (27)? - <\ Lik.F
W(F)= wik)e'k-" = ¥ 6%k-G;)Wo(G;)e' ¥ "
() J.(Zﬂ')d () I(Zﬂ')d Qg 7 ( J) Q( J)

has wavevectors belonging to the
reciprocal lattice

Wq (éj) ,-éj F A lattice periodic function can always
\: Z Qg e _— be written as a Fourier series that only
]

—
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The Reciprocal Lattice and X-Ray Diffraction
X-ray diffraction is the most commonly used method to study crystal structures

In this scheme, X-rays of wavevector k are sent into a crystal, and the scattered
X-rays in the direction of a different wavevector, say k', are measured

k' If the position dependent dielectric constant of the medium is
' given by &£(F) then the diffraction theory tells us that the
amplitude of the scattered X-rays in the direction of k' is
proportional to the integral:

Sk > k') o [d%F e TKT o(F)el KT

X

For X-ray frequencies, the dielectric constant is a periodic
function with the periodicity of the lattice. Therefore, one can

write: B 16, F
e(F)=Z£(Gj)e' T
j

Plug this into the integral above to get: S(E - R') oc ZE(G])(ZI[)35(E + ﬂj - E')

]
= X-rays will scatter in only those directions for which:

k'=k+G  where G is some reciprocal lattice vector

or: k'=k+G Because —G is also a reciprocal vector
whenever G is a reciprocal vector

ECE 407 - Spring 2009 - Farhan Rana - Cornell University
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/ The Reciprocal Lattice and X-Ray Diffraction
Rl
= X-rays will scatter in only those directions for which:

k'=k+G (1)
k Also, the frequency of the incident and diffracted X-rays is the
same so:
o'=w
= k'c= ‘E‘c
= k' = ‘R‘
L2 2 (=2 L
(1) gives: |k|" =k +/G"+2k.G
L2 .2 =2 [
=k =k"+6 t2k.G
—~12 —~12 2 .
=k =k +/6"+2k.6
6P
=>tk.G= Ty Condition for X-ray diffraction
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
The Reciprocal Lattice and X-Ray Diffraction
k' The condition, ‘é‘z
R . é = i 7
P> is called the Bragg condition for diffraction

Incident X-rays will diffract efficiently provided the incident
wavevector satisfies the Bragg condition for some
reciprocal lattice vector G

A graphical way to see the Bragg condition is that the incident wavevector lies on a
plane in k-space (called the Bragg plane) that is the perpendicular bisector of some
reciprocal lattice vector G

Bragg plane Bragg plane

S—
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/ The Reciprocal Lattice and X-Ray Diffraction
k' The condition, ‘2

k

E.G=i‘é—
2

can also be interpreted the following way:

Incident X-rays will diffract efficiently when the reflected
waves from successive atomic planes add in phase

**Recall that there are always a family of lattice planes in
real space perpendicular to any reciprocal lattice vector

Condition for in-phase reflection from
successive lattice planes:

2dcos(9)=m 4

G; N [m 2—”] cos(9) = 1(m 2”]2
/ | A0 d 2 d
k é‘z

GomZn kG-
d 2

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Bragg Planes
2D square
reciprocal lattice

\1 / L

Corresponding to every reciprocal L]

lattice vector there is a Bragg plane in

k-space that is a perpendicular

bisector of that reciprocal lattice \ -/
vector '\

Lets draw few of the Bragg planes for °

the square 2D reciprocal lattice
corresponding to the reciprocal lattice

vectors of the smallest magnitude / ,\

ny | .

NN NN

1D square reciprocal lattice

—
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Bragg Planes and Higher Order Brillouin Zones
2D square
reciprocal lattice
Bragg planes are shown for the ° \ / °
square 2D reciprocal lattice

corresponding to the reciprocal lattice

vectors of the smallest magnitude \ /
'\ 3 3
3 1 3
°
Higher Order Brillouin Zones N 4
The nth BZ can be defined as the region b 4

in k-space that is not in the (n-1)th BZ
and can be reached from the origin by /
crossing at the minimum (n-1) Bragg \

.\
planes ° /

N\
The length (1D), area (2D), volume (3D)
of BZ of any order is the same {stBZ 2ndBZ 3dBZ

N
RN E R X RTR R
1D square reciprocal lattice

—
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Appendix: Proof of the General Lattice FT Relation in 3D

This appendix gives proof of the FT relation:
— - 3 — —
f(F):Z 53(F—Rj) < f(k)z(ZQL)Z 63(k—Gj)
J 3

for the general case when the direct lattice primitive vectors are not orthogonal
Let: §=n1 é1+n2 52 +n3 53
Define the reciprocal lattice primitive vectors as:

dyxa; ayxay - a\xa
2 3 b2=2ﬂ'3 1 b3=2ﬂ'1 2

-
bi=2x Q3 Q3 Q3

Note:  &; by =27 Sk
Now we take FT:

f(K)=[d% f(F) e %7 =[d% 363(F-R;) e/ K"
J

—
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Appendix: Proof

One can expand k in any suitable basis. Instead of choosing the usual basis:
k=keX+kyy+k,z
| choose the basis defined by the reciprocal lattice primitive vectors:
k =kq by+ky by + ks by
Given that: &; . by, =27 Sik

| get:
’,-(”)= Ze_i k. f\’j _ 3 e—i k .(n1é1+n252+n3é3)
J nqnz n3
= X &(ky—my)5(ky — my) 5(ks —m3)
mq my m3
Now:

(ky—my) 5(ky — my) 5(k3 — my) 53(R—é)

where: G = my by+m, b, + m3 by

But we don’t know the exact weight of the delta function 53 (R - G)

—
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Appendix: Proof

since: k=kyX+ky,y+k;z and k =kyq by+ky by + k3 by

This implies: k b, b, b, Ky
ky =| bay b2y by, | k2 N U
kz b3x b3y b3z k3

0 0 o
Any integral over k-space in the form:  [dky [dk, [dk;

—00 —0oo —00

) 0 oo}
can be converted into an integral in the form: [dk, | dky [dk,

—00 —0oo —00

by the Jacobian of the transformation:

[dkqy [dky [dks

—0o0 —00 —a0

—00 —0o0 —00

B w % alky , ky o kz)
dk dk, [dk, — | X1 ¥*'°Z
[akx | dky Tdke a(ky , k , k3)

Therefore: 6(’( . )
8(ky—my) 8(ky — my) 8(ks —m3) = - XY "2

0(kq, k2, k3)

5%(k-6)

—
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Appendix: Proof

From (1) on previous slide:
k. ky k)

5 _ (@
6(k1,k2,k3) -

=‘51-(b2><53]=173 o

Therefore:

f(’?)=2_e_ik'kj= Y 8(ky—my)5(ky — my) 5(ks — my)
j

mq mz ms3

_(@n) G
= 973%53('(_ G))

—
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Review Handout

Time Independent Perturbation Theory in Quantum Mechanics

In this lecture you will learn:

¢ First and Second Order Time Independent
Perturbation Theory in Quantum Mechanics

Werner Heisenberg (1901-1976)

—
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Motivation: A Potential Well Problem

Consider a simple potential well:

—> X

L

Suppose one has found all the eigenvalues and the eigenstates by solving the
Schrodinger equation:

2
= o V24(x)+ V(x)d(x) = E 4(x)
The eigenenergies are labeled as: e, { n=123,......

The corresponding eigenstates are:  ¢,(x) or |g,) {n=123,......

S—
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Motivation: A Potential Well Problem

Eigenstates of a simple potential well are as depicted below:

X
The eigenenergies are labeled as: e, { n=123,......
The corresponding eigenstates are:  ¢,(x) or |g,) {n=123,.....
M — Spring 2010 — Farhan Rana — Cornell University
Motivation: Addition of a Small Perturbation
Now assume that a small perturbation is
introduced in the potential: —_— V=YV,
U(x)=V(x)+AV(x)
V=0
—> x
L
—_ —V =Y,
+
U(x)= v=q M
L L
V(x) AV(x)

S—
ECE 4070 - Spring 2010 - Farhan Rana - Cornell University



Motivation: Statement of the Problem

v=Y,
U(x)=V(x)+AV(x)
V=0
— X
L
How do we find the eigenstates and eigenenergies for the new potential U(x) ?
2 2
— V2 (x)+ U()w(x) = E w(x)

Option: Start from scratch again and solve the Schrodinger equation to get:

The new eigenenergies, labeled as: E, { n=123,......

and the corresponding eigenstates: y,(x) or |y,) {n=123,.....

uckily, another simpler option is available

—
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Time Independent Perturbation Theory

Lets generalize the potential well problem a little

Suppose for a Hamiltonian I:lo we have solved the Schrodinger equation and
obtained all the eigenenergies and eigenstates:

Ho|$n) = €nlén) {n=123, ... Orthonormality — <¢,, ‘¢p> =dnp

We now want to obtain the eigenenergies and the eigenstates for the new
hamiltonian H where H has an added small perturbation,

H=H,+AH Hly,)=Eplw,) {n=123,.....

Basic Assumption: If AH is not too large a perturbation, the new eigenenergies and
eigenstates are likely close to the unperturbed values

Therefore assume:
n
"/’n> = ‘¢n>+ ZAcm‘¢m>
m=n Main idea: Use the old
eigenstates to construct the

AR AT .
Some small correction .
new eigenstates

E,=e,+Ae,
Nt

Some small correction

S—
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First Order Perturbation Theory

A Note on the Correction Terms:
Wn)=|¢n)+ ZACH 0m)

E,=e, +Ae, m=n
Correction Correction

We expect that the correction terms can be expended in a series where each
successive term is proportional to a higher power of AH . After all, the .
corrections should approach zero as the perturbation is made smaller, i.e. asAH —» 0
First Order Corrections to the Eigenenergies:
Take the expressions: [y,) =|dp)+ T Ach|dm) E,=e,+Ae,

m#n

Plug them into the Schrodinger equation: Fl‘ ¥n)=Eplvn)

And multiply both sides from the left by the bra: (¢, |

0o+ 58) )+ A )| = 6 e+ 200 )+ ZAch )

—
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First Order Perturbation Theory
0B+ 88) )+ S8 )| = (o0 + 200 )+ ZAchidm)]

m#n

Note that the quantities Ac,'}, and Ae, , if non-zero, are proportional to some
power of AH that is equal to or greater than unity

So, as a first order approximation, we keep only those terms in the equation
above that are first order in the perturbation AH . This gives,

Ae, = <¢n ‘AF, ‘¢n>

As expected, the first order correction to the eigenenergy is proportional to AH

First Order Corrections to the Eigenstates:

Now take the expressions:\y/n> = \¢n> + ZAc,',’,\¢m> E,=e,+Ae,
m#n

Plug them into the Schrodinger equation: Fl‘ ¥n)=Eplvn)

And multiply both sides from the left by the bra: <¢p‘ (p # n)

(80Fo58) 60+ ZAchigm) )= (4ol + 200 |40+ EAchdm)
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First Order Perturbation Theory
(4 (FI°+AH)[¢n>+ ZAcs,¢m>] = (¢ (en+Aen)(¢n>+ ZAc:,',¢m>]
m#n m#n

Again, as a first order approximation, we keep only those terms in the equation
above that are first order in the perturbation AH. This gives,

Ao _ (90/8H [4n)
p e,—-ep

Summing up the results obtained thus far, we can write the new eigenstates and
eigenenergies in the presence of the perturbation as follows,

E,=e,+(¢,/AH|¢,) + terms higher orderinAH

(¢m | AH |¢n)

€n—©eny

Wn)=|dn)+ T \¢m) + termshigher order in AH
m#£n

Question: What if we want more accurate eiegenenergies and/or eigenstates?

nswer: One can obtain corrections to arbitrary large powers in AI:I

—
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Second Order Perturbation Theory
For many interesting perturbations the first order correction term to the energy
vanishes, i.e.: ~
<¢n ‘AH ‘¢n> =0

For the above reason and/or also to obtain more accurate values of the
eigenenergies, it is sometimes necessary to obtain corrections to the
eigenenergies that are of second order in AH

Second Order Corrections to the Eigenenergies:

We take the expressions obtained that are accurate to first order in AH:
E,=e,+ <¢n ‘AF’ ‘¢n>+Aen

(¢m| AH |¢n)

Wn)= ‘¢n>+m§n e —en

|bm)+ ZACH|¢m)

m#n
The terms containing Ac,',', and Ae, now represent second order corrections
We plug them into the Schrodinger equation: ’:I"//n> = En‘,//n>

And multiply both sides from the left by the bra: (g |

S—
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Second Order Perturbation Theory
AN m [AH| ¢,
(#a (Ao +AH)[¢n>+ z M¢m>+m§3cﬁy¢m>} =

mzn ©p—€np
oo 00 )0 )+ 3 I g 5 g |

We keep only those terms in the equation above that are second order or first order
in the perturbation AH . The terms first order in AH cancel out (as they should
since the solution we used was already accurate to the first order) and we get:

~ 2
pe, - 3 (#m/AHIgn)

mzn ©p—€n

The expression for the eigenenergies accurate to second order in AH is thus:

~ 2
.y (ém A |65

m=n ©p—©€n

E,=e,+(¢,|AH|¢p) + terms of higher order in AH

—
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Handout 6

Electrons in Periodic Potentials

In this lecture you will learn:

* Bloch’s theorem and Bloch functions
* Electron Bragg scattering and opening of bandgaps
* Free electron bands and zone folding

* Energy bands in 1D, 2D, and 3D lattices

—
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The Reciprocal Lattice and X-Ray Diffraction

= X-rays will scatter in only those directions for which:

k'=k+G and R':‘E‘

o lef
+k.G=——

Bragg condition for X-ray scattering

S— .
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X-Ray Diffraction and Bragg Planes

Consider x-rays with wavevector k incident

on a crystal, as shown:

N

2D square
reciprocal lattice

AN

v

<

N\~

b
k
kK'=k+tG
ki =K
What is k'?

—
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X-Ray Diffraction and Bragg Planes

Consider x-rays with wavevector k incident

on a crystal, as shown:

kK'=k+G
ki =K
What is k'?

N

2D square
reciprocal lattice

e

—
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X-Ray Diffraction and Bragg Planes

2D square
Consider x-rays with wavevector k incident reciprocal lattice
on a crystal, as shown: ° \. °

AN
AN )

ki =K
Whatis k'?
—
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Atomic Potentials in Crystals
V(F)
The potential energy of an electron due 0—

to a single isolated atom looks like:

Potential of
an isolated

Energy levels
In a crystal, the potential energy due to o < atom

all the atoms in the lattice looks like:

Energy \ / Potential in
levels <:% ; % % EE; E % E % % i a crystal

X

0
The lowest energy levels and wavefunctions of electrons remain unchanged when

going from an isolated atom to a crystal

The higher energy levels (usually corresponding to the outermost atomic shell) get
modified, and the corresponding wavefunctions are no longer localized at
individual atoms but become spread over the entire crystal

—
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* The atomic potential is lattice periodic (even for a
lattice with a basis):

V(F+R)=V(F)
where R is any lattice vector

* Because the atomic potential is lattice periodic, it can be
written as a convolution (assuming a lattice in “d ” dimensions)

V(F) =V, (F)® £6¢ (f _ ﬁj) Vo (F) = potential in one primitive cell
j

and expanded in a Fourier series of the type:

VolG:) ;6. & N P& 5 : ol B wls

V(f) -y Q( J) el Gj.r _ ZV(Gj)e' Gj.r Verify that: V(r + R)_ V(r)
i Qd i

where only the reciprocal lattice vectors appear in the exponential

= The Fourier components of the periodic potential contain only the reciprocal
lattice vectors

—
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Electrons in a crystal satisfy the Schrodinger equation:

- %sz/(F)+ V(F)y(F)=E y(r)
Where:
V(F+R)=V(F)

Since the potential is periodic, and one lattice site is no different
than any other lattice site, the solutions must satisfy:

~ =)2 —\2
w(F+R)" = ()
This implies that the wavefunction at positions separated by a lattice vector can
only differ by a phase factor:

v(F +R)= e MRy )
It follows that both the following relations must hold:
y/(F +R+ f\") _¢i0(R) y/(F + ﬁ") _ o/ [o(R}o(R) w(F)
y/(F +R+ f\") _ ¢ o(R+R) w(F)
Which implies:

6(R)+6(R')=6(R +R’)

—
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The simplest, and the only way, that the relation:
0(§)+ 0(§') = e(k + ﬁ")

can hold for all lattice vectors is if the phase is a linear scalar
function of the vector R :

o(R)=k.R
where k is some vector. It follows that our solutions must satisfy:
y(F+R)=e' %R y(F)

Bloch’s Theorem:

The above is one version of the so called Bloch’s theorem, which says that
associated with every solution of the Schrodinger equation in a periodic potential
there is a wavevector k such that:

y/(f'+ﬁ’)= el k-R w(F)

Solutions of the Schrodinger equation for periodic potentials with the above
property are called Bloch functions

—
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Case Study: Electron in a 1D Periodic Potential

Consider the 1D Bravais lattice,

Py Py Py Py Py Py Py
@ @ @ @ @ @ @
—

a X

The position vector Ry of any lattice point is given by: R, =na
And the reciprocal lattice and reciprocal lattice vectors are:

— k
2z Gm=m2—”
a a

Free Electron Approach:

We will suppose that the periodic atomic potential V(x) is small, and that the electrons
are essentially free, and we will treat the potential as a perturbation and see how it
effects the free electrons. We have:

V(x+na)=V(x)

Consequently, the Fourier series expansion of V(x) will be:

_Vo(k=Gp)

V(x)=XV(G,,)e' m X where : V(G,,) .
m

—
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Electron in a 1D Periodic Potential: Bragg Scattering

The key idea is that the electrons will Bragg scatter from the periodic atomic
potentials just like X-rays:

k

'k' ® ® -

a

For Bragg scattering, the difference between the final and initial wavevector must
equal a reciprocal lattice vector:

k'-k =+G,,
AND the final and initial electron energies must be equal:
hz‘k.‘z hz‘k‘z
om = om The initial electron
wavevector must be
Both the above conditions are satisfied if: G one-half of a
o —+%m reciprocal lattice
k k & k== 2 vector OR the initial
electron wavevector
G_, G, must be on a Bragg
G_q G, plane (or point in 1D)
— 1 5
&7 ¢ 717 & T & T ¢ T ¢ | & —
—2z/a —zx/a z/a 2z/a k

—
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Electron in a 1D Periodic Potential: Bragg Scattering

The Bragg condition can also be thought in terms of interference of waves in
scattering:

a

Consider an electron with wavevector k. The electron will “Bragg scatter” from the
atoms if the electron wave, with wavelength 1, reflecting off successive atoms adds
in phase in the backward direction

This condition gives:
2a=m2A

:>22—ﬂa=27zm
A

>2k=m* =G,
G
K = Em
= =&
G
k=x°m
- 2

—
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Perturbation Theory: A Review

Consider a Hamiltonian with eigenfunctions and energies given by:

F’o‘¢n>=en‘¢n>

In the presence of a perturbing potential, the new eigenfunctions and energies

are given by: ) A
(Ao +V)|wn) = Enlyn)

If the perturbation is small, then the new eigenfunctions are slightly perturbed from
the original eigenfunctions and, to first order in the perturbation, can be written as:

Wn)=|dn)+ = M\¢m>+higher order terms
m=#

n €~y

Thus, the perturbation “mixes” the eigenfunctions of the original Hamiltonian to
generate the eigenfunction of the new Hamiltonian.

Note: The effect of the perturbation is not small, and the perturbation theory breaks

down, if for: R
(#m V|n) % 0

we have:
e,—-en=0

—
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Electron in a 1D Periodic Potential: Perturbation Theory

The goal here is to treat the periodic potential as a perturbation to the free electron
Hamiltonian. So in the absence of the perturbation we have the free electron case:

. p2 W2 g2 7. #2K2
H°=ﬂ=_ﬁax72 = ¢k(X)=\Ee'kx e(k)=—2m

Ho|dk) = e(k) |¢x) Energy

The energy dispersion relation of free electrons
is parabolic, as shown in the figure

Now assume that the perturbation is the
periodic potential of the atoms:
V(x)
which can also be expressed in a Fourier series as:

Vo(k =Gm)

V(x)=ZV(Gn) ¢/ °n* where : V(6,,)= ot

—
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Electron in a 1D Periodic Potential: Perturbation Theory

So we try perturbation theory and write:
(Ao + V() lwi) = E(K) i)

And write the new eigenfunction as:

(e V] ¢k>

Wk) = \¢k>+2e(k) #:)+higher order terms

First evaluate the potential matrix element (L is the size of the entire 1D crystal):

o b2 1 _ik'x 1 ikx
Vige)= [ dx L V(x) L
-L/2

=1ZV(G ) jdxe’k" iGy x ekx
Lm -L)2
=YV(Gm) Sk-k,g, =0 unless k'=k+Gp,
m

(B

—
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Electron in a 1D Periodic Potential: Perturbation Theory

The new eigenfunction is:

0 (e VIge)
k)=~ |d)+ 2 :3:‘) ‘¢k> #x') + higher order terms — EV(G'") Sk—k , G,y
=|g)+ 2 M‘ Pr+Gyy > +higher order terms

me(k)-e(k+Gp,

= The new eigenfunction corresponding to the wavevector k consists of a
superposition of only those plane waves whose wavevectors differ from k by

reciprocal lattice vectors

The effects of the periodic perturbation will be large for those electron states for
which the denominator is zero or is close to zero:

e(k)-e(k+G,)~0 ——» and V(G,)=0

= —%(G,",’, +2kGpy)~ 0

T

G
>krx——"=—-m= {Bragg condition
2 a
= Perturbation theory breaks down for those electron states that Bragg scatter/

om the periodic potential!
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Electron in a 1D Periodic Potential: Variational Solution

We consider a periodic atomic potential of the form: Energy
V(x)= V(G,) e’ ®* +V(G_4) e 61 * : [Pk
2 2 : : 2m
G1=i G_1=—i=—G1 H H
a a

Since the potential is always real: V(G_;)=V (G;)

The potential will strongly couple plane wave
eigenstates with wavevectors that differ by + G, ; ;
and the strongest coupling will be between states 7 V4 k
with wavevectors, . .

7 7m_Gy G4 a a

a’ a 2’2
because they have equal energy

Variational Solution (Finite Basis Expansion):

For states with wavevectors k near +s/a, we assume a variational solution for the
perturbed state:

k)= c(k)‘¢k>+c(k+G—1)‘¢k+G_1>

or: yk(x)= c(k)\g el kx +c(k+G_1)\E of (k+G_1) x
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Electron in a 1D Periodic Potential: Variational Solution

wi) = c(k)| )+ c(k +G_q) ‘ ¢k+G_1> Energy
Plug it into the Schrodinger equation: ; ; h2k2
(o + V() wk) = Ew) /) 2m

And then take the bra with (¢ | and then with (4. |
to get the matrix eigenvalue equation:

0 Ve T o) g 9 ]

V(G_,) elk+G_4)|c(k+G_y) k+G_q) oz

T
a a

Solution for the energy eigenvalue is:

E(k)= e(k)+ egk+G_1)i\/(e(k)—e§k+G_1))2+V(G_dz {for k near +7/a

Now, in a similar way, had we started off by trying to find a solution for k near —n/a we
would have obtained:

E(k)= e(k)+ez(k+G1)i\/[e(k)—ez(k+G1))2+V(G1)z { for k near —rz/a
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Electron in a 1D Periodic Potential: Variational Solution

The obtained solutions E(k) are plotted on top of Energy

the free electron energy dispersion e(k) so that
you can see the difference. An energy gap opens
up!

E, = 2V(G) =2V(G)

e(k)

V(x)= V(G))e' & X +V(G_4) e’ C-1%

2z 27 * z
6= 6,--"-¢ - -z
1=" _1 2 1 V(G_4)=V (Gy) a

E(k)= e(k)+ egk + G‘1)i \/(e(k)— egk + G—1)J2 + \V(G_1]2 { for k near +7/a

Qk)_e(k)+ez(k+G1)i\/(e(k)—ez(k+61)]2+v(G1]2 {for K nej

—
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Electron in a 1D Periodic Potential: Variational Solution
Energy

Lets find the wavefunctions for k=n/a

The matrix equation becomes:

o) V) T e gy f o]

V(G_,) e(-z/a)|c(-x/a c(-r/a)
The two solutions for V(G,) real are:

E,(z/a)=e(z/a)+V(G,) _ﬁ E
ik S I i "’
= [Waja) = €(7/2) |y/a) + (- 7/2) |4_s/a)

1 iZx -i%x \/zcos[zx)
= ya(x)x, o e xe @ |={ L2

2L

—
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Electron in a 1D Periodic Potential: Origin of the Bandgaps

We have: E,(z/a)=e(z/a)xV(G,) Energy

2

T T —COSs
11 i=x  -i=x \[ (
Vaa(X)= |56 ? te @ |= \F . [

i sin

Note that (for V(G,) real):
V(x)= V(G))e'®1 X +V(G_4)e' C-1 %
=2V(Gy) cos[z?” x]

RS

V(x)
* The solutions are

standing waves (as a result

of forward and backward—%gv%é
Bragg scattering) Lower energy

2 Higher energy
solution (X solution
Vr/a

* The higher energy

region of higher potential

solution has larger
probability density in the //

—
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Electron in a 1D Periodic Potential: Summary

Summary of Findings:
* For a perturbative periodic potential with the following Fourier Series representation,

V(x)= V(G))e' ®* +V(G_4)e 1%

the plane wave eigenfunctions of the free electron G = 21

with wavevector k get coupled with the wavevectors a

(k+G,) and (k+G,) as a result of the fact that the 2
potential had wavevectors G, and G_, in its Fourier Gq=- a -G
series.

« If the electron wavevector k is such that e(k) and
e(k+G,) have the same energy, or if e(k) and e(k+G_;)
have the same energy, then a bandgap of magnitude
2|V(G,)| will open up in the free electron dispersion
for the wavevector value k

e(k)=e(k+Gy) e(k)=e(k+G_4)
—k=-C1 —k=-8
2 2

~_"

Bandgap will open for these values of k

—
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Electron in a 1D Periodic Potential: More General Case

Now suppose the potential looks like: Energy

V(x)= V(Gy)e'®1* +v(G_4)e'C1 X
+V(Gy)e'®2% 1v(G_,)e G2

\
\
Bandgaps will open at these k-points: k Z\V(Gz )‘
(1) e(k)=ek+G_4)
= k = _Q — E
2 a
) e(k)=e(k+Gy) | -
:>k=_g=_£ I \%\2\“/(61)‘
2 a \
) e(k)=e(k+G_,) L2z oz k
a a
2 a G- &
@) e(k)=e(k+G,) 17 a -1
Gz 2z 4z
=>k=—~%t=-—" G, =—
2 a 27 a
E(m — Spring 2009 - Farhan Rana — Cornell University
Bandgaps and Bragg Planes
Bandgaps will open at these k-points: ' ' Energy
() e(k)=e(k+G_y) |
G T
Sk=—"T1=% /
2 a lll
@) e(k)=e(k+Gy)
=k _Gi__~7 I
2 a
(3) e(k)=e(k+G_y) 1 3 §
4) e(k)=e(k+G,) i T~ 5
G, 2z 27 z 7 27 k
Sk=——"5%=-—" - - - -
2 a a a a a
Bandgaps open at Bragg points (1D), lines (2D), planes (3D) in the reciprocal space.
Recall that a wavevector is on a Bragg point (1D), line (2D), plane (3D) if the following
condition holds: ‘é‘z G
k.G=+"1 and for 1D it becomes: k=i7’"
2
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Bandgaps and Brillouin Zone Boundaries

Some very important observations:

* Bandgaps open at Bragg points
(1D), lines (2D), planes (3D) in the
reciprocal space.

* The Bragg points (1D), lines (2D),
planes (3D) define the boundary
between Brillouin zones

= Bandgaps open at the Brillouin
zone boundaries

—
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The Restricted k-Space Convention and Energy Bands

Consider any value of the wavevector outside the Energy
FBZ, as shown \ /

The unperturbed solution would be plane wave of

wavevector k: i X ;
¢ (x)= \E e'kx

The periodic potential perturbation would couple AN 7
this plane wave state with all other states that are N /
separated from it in k-space by reciprocal lattice ﬂ 8 Py It
vectors. Therefore the actual solution would look -7 -7 I al =
something like: label origin
1 i (k+Gy) k value k valu
I\K+ X
wi(x)= Zc(k+Gm)\E e " label original
m k value k value

The above is a superposition of plane waves with wavevectors that differ from the
unperturbed wavevector by reciprocal lattice vectors

The convention is to label the actual solutions ¥y (X) not by the k-value of the
unperturbed wavefunction but by that wavevector in the superposition solution
t falls in the FBZ, as shown

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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The Restricted k-Space Convention and Energy Bands
1 .
In the actual solution:  (x) =Y c(k+G,) \E e (k+Gm) x
m
The k-value used for labeling is always understood to be in the first BZ

Consequently, the energy-vs-k dispersion relation is always drawn only for the first

BZ by translating the energy-vs-k curves lying in higher BZs to the the first BZ by
appropriate reciprocal lattice vectors, as shown below:

The resulting different “bands” of energy in the first BZ are called “energy bands”
and are labeled as n=1,2,3,....

Energy . Energy '
\ h
\ |
\ —’r"> n=3
\
A /i

N
N

2z 7
a a
—
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The Restricted k-Space Convention and Energy Bands

Energy
Since now we have multiple energy values for | !
the same k-label, we use an additional label “n” \ / =3
to indicate the energy band. The final solutions \ ’l,’h'
and energy values are then written as follows: \ K
¥Yn,k (X ) and E, (k ) \ s
——n=2
where k-value is understood to be in the first .
BZ. And the solution can be expanded as: N ’
=~ | “ n=1
_ 1 i(k+Gp)x 2 2 I8
Vnk(x)=Xcn(k+Gp), ;€ S z
’ m L a a a a

Bloch’s theorem check:

We know that solutions of the Schrodinger equation in periodic potentials (Bloch
functions) need to satisfy the Bloch’s theorem:

w(F+R)=e'K R y(F)
y/nk(x+R)=ch(k+Gm)\ﬁei(k+Gm)(X+R)=eikRch(k+Gm)\/jei(k+Gm)x
’ m L m L

TRy (x)

ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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From Free Electron Dispersion to Energy Bands — 1D
One can always get an approximate idea of how the bands will look:

Energy

Energy Fold the free- ’
electron band :
Start from into the first /
free electro BZ ‘ | k
dispersion /
Openup |
bandgaps
_2r z = 2z Kk 1 2z z 2z Kk
E E: a a a a a a

oPen up Energy Energy

bandgaps L !

at edges | i

of BZs \ f

\ / Fold into the | *
N ~ first BZ
~_1_ = > /
2z =z = 2= Kk 2 a r 2k
R 2 e "2 a A
o
ECE 407 — Spring 2009 — Farhan Rana — Cornell University

From Free Electron Dispersion to Energy Bands:

: Zone Folding

N
3

Energy Fold the free- Eneray
electron band: ;
into the first !
BZ mmm)p
2 =z r 2z k 2z z 2z k
a a a a a a a a
Energy

An easy trick to construct the
free electron bands folded into
the first BZ is to assume that a
replica of the free electron band
is sitting at each reciprocal
lattice point

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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Generalization to Higher Dimensions - |

Consider a 2D or a 3D crystal with the periodic potential given as:
_ =\ iGj.F
= . J
V(F)= §j: V(Gj)e

* The potential will couple the free-electron state with wavevector k to all other
states with wavevectors k + G i

2 A 2 2 —12
* The strongest coupling will be with states whose energy h ‘k + Gi‘ equals h ‘k‘
_ 2m 2m
* Therefore, strong coupling will occur if the wavevector k satisfies:
-~ =22 ~2
n2lk+G;  n?lK
2m  2m
2 - = 12
= 12
= kG; = ——‘ i
G;j 2
« Since, the reciprocal lattice vector Gj is arbitrary, one can also write the above
condition as: _2
I G
k.G= iu {Bragg condition
2
-
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Generalization to Higher Dimensions - Il \
In a 1D lattice, bandgaps opened up at k-values at the Bragg points (edges of BZs):

SIS R CRIE RIS

1D reciprocal lattice 2D square reciprocal lattice

Same thing happens in higher dimensions:
bandgaps open up for wavevectors that lie on
the Bragg lines (2D), planes (3D). 3 3
3

* Recall that a wavevector will like on a Bragg
line/plane if it satisfies: 1
=2
k.G=+% H 3 * 3
2

for some reciprocal lattice vector G

* Bragg lines/planes in k-space are
perpendicular bisectors of some reciprocal

lattice vector /

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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Generalization to Higher Dimensions - llI

* Bandgaps will open up at the edges of the
Brillouin zones

* Wavevector is restricted to the first BZ, and
electron energy-vs-k dispersion curves in
higher BZs can be translated by appropriate
reciprocal lattice vectors to be in the first BZ
to obtain energy bands

* Electron energies and solutions are written
as:

voi(F)  and  E, (k)

* The solutions satisfy the Bloch’s theorem:

w(F+R)=e' KR y(F)
and can be written as a superposition of
plane waves, as shown below for 3D:

F)= rLA 1 i(l?+‘j_
Wn,E(r)_§cn(k+Gj)\/;e G )

2D square reciprocal lattice

r

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Energy Bands of a 2D Square Lattice - |

° ° °
2D square
direct lattice

° ° °

a
° ° °
e
a

Question: How to draw the free electron
bands?

Answer: Assume a free electron band
sitting at each reciprocal lattice point and
then consider its contribution to the bands
in the first BZ

2z
a
Reciprocal lattice

é:mz—ﬂfﬁnz—”}?
a a

—
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Energy Bands of a 2D Square Lattice - Il

« It is obviously difficult to draw bands for 2D
or 3D lattices

* The bands are usually drawn along some 3 3

specific high-symmetry directions in k-space.

The figure below shows the bands from T to 3 l M 3
1

the X point (the numbers indicate the
degeneracy of each energy band)

Energy 2 3 3

2z
a
Reciprocal lattice

(0,0) (0,/a)
r X

—
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Energy Bands of a 2D Square Lattice - Il

Energy Energy

(0,0) (0,n/a)  (0,0) (0,n/a)
r X r X

* Once the free electron energy bands have been drawn in the first BZ then the
locations where bandgaps are likely to be opened are identified

* A rough sketch of the actual bands can then be made, as shown above

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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Energy Bands of a 2D Square Lattice - llI

N\
B
A N e

FBZ 2z
a
2z
° e a2 o
—

-
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Appendix: Obtaining the 2x2 Matrix Equation (On Slide 14)
Remember the matrix element of the periodic potential between the plane wave
states: R

(V) =2V(Gm) Skr_k, Gm
m
Trial solution for values of k near G;:

i) = c(k) | g) + ek + G_1) | dhsc_,)
Plug it into the Schrodinger equation:

(Ao + V() lvi) = E(K)vi)
And then take the bra with (¢ | to get:
(8 (Fo + V() wi) = E(k) g wic)
= (¢ \(’:’o +V(x )) [ c(k)\gx) +clk+ G—1)‘ Pr+G_y >]
= E(k )¢k \[ c(k)\ gy )+ clk + G—J P16, >]
= e(k) c(k)+ (¢ [V(X) dsc_, ) clk + G_q) = E(k) c(k)

= e(k) c(k)+V(Gy) c(k + G_4) = E(k) c(k)

First result

ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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/ Appendix: Obtaining the 2x2 Matrix Equation \

i) = (k) |g) + c(k +G_1) | disc_, )
Plug it into the Schrodinger equation:
(Ao + V) lwi) = E()Yyie)

And then take the bra with <¢k+G_1 ‘ to get:

<¢k+G_1 ‘(’:’o +V(x))|wi) = Ek )<¢k+G_1 ‘ '//k>
= <¢k+G_1 ‘(’:'o + V(X)) [ c(k) ¢)+clk + G—1j¢k+G_1 >]
= E(k) ¢sc. ‘[ c(k) i)+ clk +G_1) drc., >]
= e(k+G_y) c(k+G_q)+ <¢k+G_1 V(x) ¢« ) c(k) = E(k) c(k +G_y)
= e(k+G_q)c(k+G_1)+V(G_4)c(k)=E(k) c(k +G_) Second result

N /

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Appendix: Obtaining the 2x2 Matrix Equation \

We have the two equations:
(1) e(k) c(k)+V(Gy) c(k +G_1)= E(k) c(k)
2 e(k+G_q)c(k+G_q)+V(G_1)c(k)= E(k) c(k +G_4)

which can be written in the matrix form:

Vo oths ool o] E¥ara)

- /

—
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Handout 7

Properties of Bloch States and Electron
Statistics in Energy Bands

Energy

In this lecture you will learn:

* Properties of Bloch functions

Ly
T
T
AN

* Periodic boundary conditions for Bloch
functions

* Density of states in k-space

* Electron occupation statistics in energy
bands

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Bloch Functions - Summary

« Electron energies and solutions are written as ( k is restricted to the first BZ):
Yk (F) and E, (R)

* The solutions satisfy the Bloch’s theorem:

Wn,l?(?"'f‘i)z e”;.k '//n,l?(f)

and can be written as a superposition of plane waves, as shown below for 3D:
_ (~ = ) 1 _i(k+G)).7
y/ni(r)= Scplk+G; ve
j
* Any lattice vector and reciprocal lattice vector can be written as:

I‘:\’=n151+n252+n353 é=m151+m252+m353

* Volume of the direct lattice primitive cell and the reciprocal lattice first BZ are:

Q3 =|a.(3xa;)| M =| by . (b, x B3|

—
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Bloch Function — Product Form Expression

A Bloch function corresponding to the wavevector k and energy band “n” can
always be written as superposition over plane waves in the form:

~ s 1 ilk+G;).7
o) Senlf <) 1 o)
J
The above expression can be re-written as follows:

~ ik.F - 1 iG;.r
as(0)=e'F 730,k +6)) G e
1 ik.r = iGj.F
=£e' "se, «(6;) &'
J

=\geil?.i un,E(F)

Where the function u E(F) is lattice periodic:

un 10 +R)=Tc, 4(6)) % T =xe, 1(6)) '

J J
= Un , E(F)
(F+R)
= 1 ik.r _\ satisfies W"sk(
. . = | . . e -
Note that: Yk (r) v e U, k(r Bloch’s theorem —elk-R v o (F
s— = n,k

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Allowed Wavevectors for Free-Electrons (Sommerfeld Model)

We used periodic boundary conditions:

l//(X+Lx,y,Z)=l//(X,y,Z)
y/(x,y+Ly,z)= v(x,y,z)

y/(x,y,z+Lz)=y/(x,y,z) /'
Ly

L |V=Ld,lL,

The boundary conditions dictate that the allowed -—
values of k,, ky, and k,, are such that: Ly
el ok = 27 | h=0,41,22,... k 2z
L, y L
i (kyLy) 2z -
e V=1 = k,=m ] m=041,122.. 2z
L, —
L.V
i 2z
el(kzl-z)=1 = k,=p— p=0,%1,%2,....
Lz ’ 3 ’
L kx
= There are 3 grid points per unit volume /21
of k-space  (27) k, L,
S—
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Bloch Functions — Periodic Boundary Conditions

° e ° ° ° °
a, 5,
° —0 ° k —>0
a By
° ° ° ° ° °

Reciprocal lattice for a 2D
Direct lattice lattice

« Any vector K in the first BZ can be written as:
R=CZ1 51+a2 52+d3 53
where o, oy, and o3 range from -1/2 to +1/2:

1
-—<
2

—

0!15 sz

N =

-—<
2

N|=

—
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Bloch Functions — Periodic Boundary Conditions

e © © o o o o o o o o o
Ny lay

e o o o o ® & o & o o For the 2D crystal :
Nyja) @ o o o @ e o o o o
A=| Nygyx Ny, |

e © o o o o o o o o o o =N,N, Q,

* Consider a 3D crystal made up of N; primitive cells in the a, direction, N, primitive

cells in the & direction and N primitive cells in the @; direction

= Volume of the entire crystal is: V =| Nyd; . (Npd; x N3d3) | = NyNoN3 Q3

Assuming periodic boundary conditions in all three directions we must have:

TNy (7) = 7)

w(F + Ny d;) = e K- N2 32 y(7) = y (F)

w(F +Ny 53)=eiR'N353 w(F)=w(F)

w(F+Nya)=e

—
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Bloch Functions — Periodic Boundary Conditions

The periodic boundary condition in the 51 direction implies: ° ° °
b,
:>e’k'N1a1=1 {E=a151+a252+a353 ° i e
=>k.Nya;=2zm; {m, is an integer b
=2z Ny=2zmq {recall that:a; .6, =275, . .
my
= a1 = Reciprocal lattice for a 2D
N1 lattice
1 1 N. N
Since: — <o << = —dem,<™ ° e °
27172 2 2 3
= m, can have N, different integral values N @
between —N,/2 and +N,/2
] ]
]

Direct lattice

—
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Bloch Functions — Periodic Boundary Conditions
Similarly, the periodic boundary conditions in the

directions of a, and a; imply: ° ? °
- - b,
:>elk.Nzaz=1 & elk.N3a3=1 X
° —0
:}k.N252=27[m2 & k N3a3=27rm3 by
my ms
= Qg = —= & a3 = —— ) ) [ )
N N3
= _& <mo < h & _& <m- < & Reciprocal lattice for a 2D
2 2= 2 2 3= 2 lattice
= m, can have N, different integral values
= m, can have N, different integral values N . N
= mj can have N different integral values a,
Since any k-vector in the FBZ is given as:
E=a151+a2 52+a3 53 ¢ ay *

= there are N; N, N; different allowed k-values
in the FBZ ° ° °
= There are as many different allowed k-values
in the FBZ as the number of primitive cells in
the crystal Direct lattice

—
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Density of States in k-Space

¢ In the first BZ, there are N, allowed k-values
* The number of allowed k-values per unit
length in k-space are:
N, Q4 L [ ]

_1_T1=N1(27r)1=@

Reciprocal lattice for a 2D lattice Question: Since k is allowed to have only
discrete values, how many allowed k-values
® 52 hd are there per unit volume of the k-space?
27
2 T e et ese 2z 3D Case:
2 LN AN I N, a, Volume of the first BZ is:
LN ] o0 0
) ——0 = (=
:::oooo b1 H3=‘b1(b2>(b3)‘
o000 0000
©00ccoe 2z ¢ In this volume, there are N; N, N3
2 T allowed k-values
== N1 a
e a ® » The number of allowed k-values per unit
. ~ ~ - volume in k-space are:
k=ay;bi+ay by +a; b; _ NyNyN;
1
=™ {_4«“& s
N, 2 2 = NjN,N; =3
N. (2r)’
2 = ﬂ — & < m2 < 72 a
N, 2 2 Vv
T (2.\3
2= Ny < MNs (27)
N5 2 2 where Vis the volume of the crystal
Ecm — Spring 2009 — Farhan Rana — Cornell University
Density of States in k-Space
1D Case: ® |ooo@eeeo]—@
Length of the crystal: L =N, |a; |=N; Q4 by
Length of the first BZ is: I1 =| by |= ;—”
1

2D Case:

Area of the crystal: A = ‘N1 51 X N2 52‘ = N1 N2 Qz ®
2

Area of the first BZ is: T, = | by x by = (ZQL)

2

* In the first BZ, there are N,N, allowed k-values

* The number of allowed k-values per unit area in

k-space are: ® ®

N;N. Q A
=12 _N,N, -2 5=
1T 27 (27

—
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States in k-Space and Number of Primitive Cells

1D Case: -
o e | eo—{—e °  Energy
Reciprocal lattice is: q=ax
by
[ J [ ] | eee .-0—0—0-'—». PY
_r 2
a a

Length of the crystal: L =Ny | d,|=N; Q=N a
Length of the first BZ is: I1y = | by |= 2z
a

* In the first BZ, there are N, allowed k-values
* The number of allowed k-values per unit
length in k-space are:

/
%

_N_ QL
o, ' (2z) (27) -z ¥ z
a " a
1
There are N, allowed k-values in k-space —l—
=There are N, allowed k-values per energy band 2n _2z
—=There are as many allowed k-values per energy band as the Nja L

number of primitive cells in the entire crystal

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

States in k-Space and Number of Primitive Cells
2D Case:

Reciprocal lattice is:

[
2z
az
S5 ky
S
oo
o
[ ) [ J
———p
* In the first BZ, there are NN, allowed k-values a ky

=There are N;N, allowed k-values per energy band

=There are as many allowed k-values per energy band as the number
of primitive cells in the entire crystal

—
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Statistics of Electrons in Energy Bands

Suppose | want to find the total number of electrons in the
n-th band - how should I find it?

The probability that the quantum state of wavevector Kk is
in the n-th energy band is occupied by an electron is given
by the Fermi-Dirac distribution:

. 1
W)= e wrE kT

Then the total number N of electrons in the n-th band must
equal the following sum over all the allowed values in k-
space in the first BZ:

N=2x ¥ f,(k)
__—"all kinFBZ

spin
1D Case:

I
[T

The number of allowed k-values per unit length in k-
space is L/ 2n,therefore:

/2 dk
= N=2x ¥ f,(k)=2xL [ %% k)
all KinFBZ /a7

—
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Statistics of Electrons in Energy Bands
Need to find the total number of electrons in the n-th band Energy

N=2x ¥ f,lk)
all kinFBZ

2D Case:

The number of allowed k-values per unit area
in k-space is:

_A_
2rz)?
Therefore: ( )
Py
N=2x ¥ fK)=2xA[ T ¢ (k)
all KinFBZ Bz (27)? ky
3D Case:
The number of allowed k-values per unit volume in k-space is: ﬁ
v 4
Therefore:
3
N=2x 5 fK)=2xv | LK ¢ (k)
all KinFBZ FBz (27)

S—
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Band Filling at T=0K for a 1D lattice

Suppose the number of primitive cells = N, Energy

Question: suppose we have 2 electrons per primitive
cell. How will the bands fill up at T<0K? Where will be
the Fermi level?

2 electrons per primitive cell

= 2N, total number of electrons

Number of k-values per band = N,

Number of quantum states per band = 2xN,
spin

= First band will be completely filled. All higher

bands will be empty

E¢for 2 electrons

iy g
per primitive Fell

Question: Suppose we have 3 electrons per primitive
cell. How will the bands fill up at T=0K?

=

o 3L

3 electrons per primitive cell
= 3N, total number of electrons

= First band will be completely filled. Second band
will be half filled. All higher bands will be empty

—
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Band Filling at T~0K for a 2D lattice

Suppose the number of primitive cells = NyN,

Energy
Question: suppose we have 2 electrons per primitive
cell. How will the bands fill up at T=<0K? Where will be
the Fermi level?

2 electrons per primitive cell
= 2NN, total number of electrons

KK

8550
S

5

X
S0

aSssesiyey
ORRh

SR
.‘«“‘8“
S
et

S
S5
s
R
‘\

R

Number of k-values per band = NyN,

Number of quantum states per band = 2xN;N,
spin

= First band will be completely filled. All higher

bands will be empty

5
N
N

N
»

R

Important lesson:
In an energy band (whether in 1D, 2D or 3D) the total number of quantum states /

available is twice the number of primitive cells in the direct lattice. How the bands
get filled depends on the number of electrons per primitive cell.

N 7

S—
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Fermi Surfaces (3D) and Contours (2D) in Solids

First energy band of
a 2D lattice

Fermi circle for a free electron gas
in 2D

Energy 4

\\\
NN /5
\ A

NN\ e a'¢ 5/

s

What happens in solids when the
energy bands are more complex?

—
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Fermi Surfaces (3D) and Contours (2D) in Solids
[ ] [ ] ® [ ]

[ ] [ ] 2
3 =Cyy b, = N
[ ] @ [ .
= g — o> ]
T oX by = cl Fermi contours for
FBZ ! different electron
° ° ° ° ° ° densities corresponding

First energy band of
a 2D lattice

S
ASE
4 1000
Al
N\ LA
\ K % .-
N N
TSz
NS
I\t
WKLY
RS
L

to the energy band
shown on the left

FBZ

SN\
NNz

—
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Fermi Surfaces (3D) and Contours (2D) in Solids

Fermi surface of a simple cubic Fermi surface of a FCC lattice

direct lattice shown inside the shown inside the first BZ (the

first BZ figure shows the Fermi surface
of Copper)

—
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Band Filling at T~0K for Silicon

Silicon:

Atomic number: 14

.-~

, ~

. - A -
Electron Configuration: 1s2 2s22p® '\352 3p?;

Number of electrons in the outermost sheil: 4

* The electrons in the outermost shell can
move from atom to atom in the lattice — they
are not confined to any individual atom.
Their energies are described by the energy
bands « Silicon lattice is FCC
* The electrons in the inner shells remain

confined to individual atoms * There are 2 Silicon atoms per

primitive cell (2 basis atoms)

= There are 4 electrons contributed

by each Silicon atom and so there are
8 electrons per primitive cell that are
available to fill the energy bands

—
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Band Filling at T=0K for Silicon
* There are 8 electrons per unit cell available to fill the energy bands

* Recall that in each energy band the number of states available is twice the
number of primitive cells in the crystal

« In Silicon, the lowest 4 energy bands will get completely filled at T=0K and all the
higher energy bands will be empty

kz

FBZ (for FCC lattice)
Silicon Energy Bands

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Energy Bands in Silicon

* The highest filled energy band is called the valence band. In silicon the valence
band is double degenerate at most points in the first BZ

* The lowest empty energy band is called the conduction band

« In energy, the valence band maximum and the conduction band minimum need
not happen at the same point in k-space (as is the case in Silicon)

* The lowest energy of the conduction band is called E_ and the highest energy of
the valence band is called E,

kz 6
Conduction
band I~
, I o
Valence/
band
ky an

\s

FBZ (for FCC lattice)

Silicon Energy Bands

S—
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Handout 8

Linear Combination of Atomic Orbitals (LCAO)

In this lecture you will learn:

* An approach to energy states in molecules
based on the linear combination of atomic

orbitals
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Energy Bands and Atomic Potentials in Crystals
V(F)
The potential energy of an electron due 0—
to a single isolated atom looks like:
Potential of
an isolated
Energy levels
In a crystal, the potential energy due to o < atom

all the atoms in the lattice looks like:

Energy < — — — Potential in
= \—/ a crystal

! x

The lowest energy levels and wavefunctions of electrons remain unchanged when
going from an isolated atom to a crystal

The higher energy levels (usually corresponding to the outermost atomic shell) get
modified, and the corresponding wavefunctions are no longer localized at
individual atoms but become spread over the entire crystal

—
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Failure of the Nearly-Free-Electron Approach
v(F

Vacuum

Energy <

bands

Potential in
a crystal

* For energy bands that are higher in energy (e.g. 2 & 3 in the figure above) the
periodic potential of the atoms can be taken as a small perturbation

=For higher energy bands, the nearly-free-electron approach works well and gives
almost the correct results

* For energy bands that are lower in energy (e.g. 1 in the figure above) the periodic
potential of the atoms is a strong perturbation

= For lower energy bands, the nearly-free-electron approach does not usually work
very well

—
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Nearly-Free-Electron Approach Vs LCAO for Germanium

Energy Energy Empirical Energy
NFA (eV) LCAO (eV) Pseudopotential  (eV)
NZ8
- - 12 12
I = R s —\§< . 8
:1_\_/ \_ . ' e .
2 2 '
K M ) <7 )
A ! 1 1 1 < |
L r L r X K, U

* For most semiconductors, the nearly-free-
electron approach does not work very well

* LCAO (or tight binding) works much better and
provides additional insights

S—
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LCAO: From Hydrogen Atom to Hydrogen Molecule

Consider a Hydrogen atom with one electron in the 1s orbital: v(f)
One can solve the Schrodinger equation:

_ %sz/(F)+ V(F)y(F) = E y(r)

1s energy level
and find the energy of the 1s orbital and

its wavefunction

atom

Potential of
a Hydrogen

Flo ‘¢1s(F)> =Ejs ‘¢1$(f)>
where: 2 ¢1$(F)
A, = 2" V2 1 V(F)

oo YN

o

Angular probability
distribution for the
1s orbital

0
~ 1 -
holF)= g &%
V4

a,

Radial amplitude for the 1s orbital

—
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Linear Combination of Atomic Orbitals (LCAO)

Now consider a Hydrogen molecule V(r)
made up of two covalently bonded
Hydrogen atoms sitting at a distance
of 2d from each other, as shown:

a atom b atom

Hamiltonian for an electron is: ! )
h2
2m

H V2 1 V(F - d%)+ V(F +dx)

The basic idea behind LCAO approach is to construct a trial variational solution in

which the wavefunction is made up of a linear combination (or superposition) of
orbitals of isolated atoms:

w(F))=ca | #s(F —d %))+ cp |4 (F + dX))

And then plugging the trial solution into the Schrodinger equation to find the
coefficients c, and ¢, and the new eigenenergies:

Ay (7)) = Ey(F))

—
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LCAO: From Hydrogen Atom to Hydrogen Molecule
Plug the LCAO solution: |w(F)) = ¢, |¢1s(F —d X))+ cp | (F + dX))
into: H|y(F)) = E|y(F)) A= —%Vz +V(F —dx)+V(F +dx)
STEP 1: take the bra of the equation first with ( ¢5(F —d X)| to get:

(hs(F—d )| A e, |41 (F - d %))+ cp | 1s(F + d%))]

= Elgrs(F ~d %)|[ca |15 (F —d %))+ cp |15 (F +dR))]

Note that:

<¢1s(r dx)\H\¢1$(r dX) E1s
Let: a atom b atom
<¢1s (r dx)‘ ‘¢1s (r + dx) ~ —Vsso \ I

(15 (F - d%)| d1(F + d%)) = 0

|—> Not exactly zero — but we will assume
so for simplicity

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

LCAO: From Hydrogen Atom to Hydrogen Molecule

So we get finally:
E1s Ca— Vssa Cp = E Ca

STEP 2: take the bra of the equation now with ( gs(F +d X)| to get:

Eis ¢p—Vssg Ca=E ¢y

Write the two equations obtained in matrix form:
|: E1s - vssa] |:ca:| -E |:ca]
- vsso- E1s Ch Cp
This is now an eigenvalue equation and the two solutions are:
E=EstVsss

al-al) [a] -

—
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Bonding and Anti-Bonding Orbitals

: V(F)
For the lower energy solution we have: E
Ep =Eqs —Vsso Eg
_ 1 " - S s
we(F) =5 [~ d %)+ s+ %) ] A x
we(F)

This is called the “Bonding molecular orbital” /\/\

For the higher energy solution we have: ! '

-d 0 d X
Ep=Eqg + Vs, val(F)
wa(P) = T [Ihs(F-d )= 1o (P + %) ]
90 d x

This is called the “Anti-bonding molecular orbital”

—
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LCAO: Energy Level Splitting and the Energy Matrix Element

V(F) V(F)

1s atomic

&Energy levels
energy level

of the molecule

0 x -d 0 d X

Energy level diagram going from two isolated atoms to the molecule:

1:-E The total energy is
2:Eq oV "EA lowered when
SSI’ Hydrogen atoms form
1:Eg a Hydrogen molecule

The two 1s orbitals on each Hydrogen atom combine to generate two molecular
orbitals — the bonding orbital and the anti-bonding orbital — with energy splitting
related to the energy matrix element:

(15 (F ~ d%)| H |1 (F + %)) = -V,

Sso

—
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Atomic Orbitals
* Wavefunction amplitudes of the atomic s
and p orbitals in the angular directions are
plotted
* The s-orbital is spherically symmetric

* The p-orbitals have +ve and —ve lobes and
are oriented along x-axis, y-axis, and z-axis

—
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Orbitals and Bonding
There are two main types of co-valent bonds: sigma bonds (or c-bonds)

and pi-bonds (or n-bonds)
(1) Sigma bonds (or s-bonds):

s-s c-bond
- e‘e (Example: Hydrogen molecule,
semiconductors)
;7 (¢5(F - 7)| Al |45 (F - ) = Vs,

p-p c-bond

R ee"e .- (Example: Semiconductors)

T T <¢p(F_F1)‘ A ‘¢p(i;_i;2)> ~ vppo-

s-p c-bond

- ee’e ________ (Example: Semiconductors)

- : (#o(F=Fy) A |4s(F - F2)) = ~Vipg

s-p o-bond
ee’ """" (Example: Semiconductors)
T (8o(F =) H |4(F - 12)) = Vg

—
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Orbitals and Bonding
What about this situation?

@e 807 )| A1) =0
0 The Hamiltonian is up-down symmetric

The s-orbital is up-down symmetric
j The p-orbital is up-down anti-symmetric
= The matrix element is zero! No bonding possible

....... i sin(a) +------cos(a)

1 1
N0 , . non
‘ s e p——
nn n Fz

(o = 7)| A | ¢5(F ~ 7)) = 0. sin(8) + (- Vg, ). cos(6)
= —Vgpo €0s(6)

—
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Orbitals and Bonding
(2) Pi bonds (or n-bonds):

p-p n-bond
(Example: graphene, carbon nanotubes, conjugated
conducting molecules)

<¢p(F_F1)‘ H ‘¢p(F_F2)>z_vppn

R on
What about this situation? What s.houlld be the matrix element? '

’ JO 9
e S e sin P X---cos(h)
G%a

(7 = 72)| A | $p(F ~ 1)) = (- Vippie)- sin(6) + 0 . cos(6)
=—Vpp, sin(6)

—
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LCAO: Methane Molecule

A methane molecule consists of one carbon atom covalently bonded to 4 hydrogen
atoms in a tetrahedral configuration:

Carbon:
Atomic number: 6
Electron Configuration: 1s2 2s22p?
Number of electrons in the outermost shell: 4

Hydrogen:
Atomic number: 1

Electron Configuration: 1s?
Number of electrons in the outermost shell: 1

Methane: H

| The four electrons from the outermost shell of the
H—C—H carbon atom and the four electrons from the four
|
H

hydrogen atoms take part in covalent bonding

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

z LCAO: Methane Molecule
* The carbon atom is sitting at the origin

* The position vectors of the four hydrogen atoms are:

7 = %(1,1,1) Fy = 13(_ 1-11) F = %(_ 11,-1)

K= %(1,_1,_1) — Tetrahedral configuration

* The carbon atom has one 2s orbital and three 2p orbitals

* Each hydrogen atom has one 1s orbital

* One can write the solution for the methane molecule as a linear combination
of all available orbitals

"/’(F» = jz;cj ‘¢IS(F_FI)>+C5 ‘¢25(F)>+CG ‘¢2px(f)>+c7 ‘¢2py(i:)>+cs ‘¢2pz(i:)>

But we will pursue a different, and simpler, approach

—
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LCAO: Methane Molecule — sp; Hybridization

For the carbon atom, do a change of basis and define 4 new sp3 atomic orbitals
from the 4 existing (one 2s and three 2p) atomic orbitals

N

o(F)

01(7) = 362 + b (7)) +  dapy () + ()]
192(7)) = 3 [ 926(7) = B2 (7)) = B2y (F) + [ 202(7) ]
)]

]

123(7)) = 3 [ 925(7) ~ B2 (7)) + B2y (7))~ 22()

1930 = 5[ 1826(F) + |62 7))~ 20y () e (F)

p3(F)

o(F)

—
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LCAO: Methane Molecule — sp; Hybridization

* Each carbon sp3 orbital forms a s-sp3 c-bond with the 1s orbital of the
hydrogen atoms towards which it is pointing:

Average energy of the sp3 orbital:

EZS + 3E2p 5

:><¢7j(F)":"¢m(F)>=Esp3 5jm= 4 jm

Important matrix element for the s-sp3 bond:
(15 (7 =71)] A ()

= ($1s(F = 72) AL 21625 (7)) + B2 (7)) + [ dapy (F) + |25 P)) |
1 1 Vspo- _1 vspo- 1 vspa

=—_V -
2 %9 2 /3 2.3 2 J3

_ [Vssa"' 3vspa]_
=S80 "TSPO|__,

2
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LCAO: Methane Molecule — sp; Hybridization

* Matrix elements for all s-sp3 c-bonds are the same

s-sp3

Important matrix elements: o-bond

SSo ’\/7VS o
(- 2) A ) = | Vst ]

<¢1$(r rz) H‘¢2(r) Ssa'+\/7vspo_]

{5
1
[ ssa+fvs,,a]
()

(1s(F-F5)| H |p3(F)) =

SSo \/7vs o
(t1s(F = 74) | H |@4(F)) = : P
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LCAO: Methane Molecule — sp; Hybridization

Write the solution for the methane molecule using the sp3 orbitals of the
carbon atom:

W) = % ) halF 7))+ 05 o1+ s lga(P) 1 os(F) o 04(F)

Zz

And plug it into the Schrodinger equation: H|y/(F)) = E |y(F))

To a first approximation, 1s orbital on each Hydrogen
atom has a large matrix element only with the sp3
orbital pointing towards it, so instead of one giant 8x8
matrix equation one gets a set of four 2x2 matrix
equations:

el bl e el [
Senlel-e el (5 anllad-= T2

SSCT*'Z\FVSIW] ~(phs(F — 1) H |4(F))

ECE 407 - Spring 2009 — Farhan Rana — Cornell University

|

<

Where: 771 = [
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LCAO: Methane Molecule — sp; Hybridization

Eis -n [01} _E [01}

-1 Esps||cs Cg
The energy eigenvalues of any one of these four 2x2
equations are:

E1s + Esp3 E1s ~ Esp3 i 2
E = + +
ae( 3]y
2
EB _ (E1s +2Esp3J_ \/(E1s _2Esp3J + ”2

* The higher energy corresponds to the anti-bonding state and the lower energy
corresponds to the bonding state.

« In this case, the bonding and anti-bonding states are made up of a linear

combination of the hydrogen 1s state and one of the carbon sp3 state.

—
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LCAO: Methane Molecule — sp; Hybridization

Energy level diagram going from isolated hydrogen and carbon atoms to the
orbitals of the methane molecule is:

3:E3p 4:Egps

sp3
orbitals
of C

1:E25

Atomic
orbitals
of C

4:E1$

Atomic
orbitals
of H

—
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LCAO: Boron Trifluoride Molecule

A BF; molecule consists of one boron atom covalently bonded to 3 fluorine atoms
and all atoms lie in the same plane

Boron:
Atomic number: 5
Electron Configuration: 1s2 2s22p?

Number of electrons in the outermost shell: 3

Fluorine:
Atomic number: 9

Electron Configuration: 1s2 2s22p5

Number of electrons in the outermost shell: 7

BF;:
o
1?,0»«/ F All three electrons from the outermost shell of the boron
F<B atom and only one of the 7 electrons from each fluorine
AN F atom take part in covalent bonding

—
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LCAO: BF; Molecule - sp, Hybridization
For the boron atom, do a change of basis and define 3 new sp2 atomic orbitals
from the 3 existing (one 2s and two 2p) atomic orbitals

91(7)) =5 825 F) + g 82 (F) + T2y P)
92(F) = T3 2o (P) + T o) - Tyl )

7)) = % #s(F))- \E ‘¢2px(F)> 12(\)\‘;|X n

oo (F

<
<

o(F) Y| o3(F)

—
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LCAO: BF; Molecule — sp, Hybridization

¢ In the fluorine atom, the 2s orbital and the two 2p orbitals that are perpendicular
to the line joining the fluorine atom to the boron atom are all filled with 2 electrons
each and do not participate in bonding

* The remaining p-orbital in fluorine that is pointing towards the boron atom, and
contains one electron, forms a s-bond with the sp2 orbital pointing towards it

Average energy of the sp2 orbital:

A R E,s +2E. -sp2
= {00 Alom() = Espz 5jm=—"""3 " 5im & pond

Important matrix elements:

| Vspo +V2Vppo
¢z,,(f—f1)H¢1(f)>=[*’}3""]=n

N ~ V. +~2V,
Alpg(r)) = | =P~ PP | =

——

¢2p(F_ a2)

ol =15) () o e
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LCAO: BF; Molecule - sp, Hybridization

~

Write the solution for the BF; molecule using the sp2 orbitals of the boron

atom:
3
V()= 2 ¢ ldnlF ~77)) + ca 1) + 05 02(F) + 6 03(F)
j=
g = - - . r — — y
And plug it into the Schrodinger equation: H|y/(F)) = E |y(F)) 7
1200 ]
To a first approximation, the 2p orbital on each f3__« 1200 X
fluorine atom has a large matrix element only with the SN
sp2 orbital pointing towards it, so instead of one giant 120° r
6x6 matrix equation one gets a set of three 2x2 matrix
equations:

R e I e b b
n Esp2 Cy Cy n E$p2 Cs Cs

[ —

Eyy -7 }[03] _E [cg,] Where:
-1 Espa||cg Ce _(Vepo +42Y,
= 3

,,,,a] = (¢op(F = 1) A ()

ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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LCAO: BF; Molecule - sp, Hybridization

n Espz Cy Cy
y —
The energy eigenvalues of any one of these three 2x2 n
equations are: T

2 N B
E,,+E E,,-E ~1-
EA=[ 2p 2 5p2]+\/( 2p 2 5’32] +7? 1zo°‘\f2

2
E,, +E E,,—-E
EB=[ 2p 5 spz]_\/[ 2p . spZJ +772

* The higher energy corresponds to the anti-bonding state and the lower energy
corresponds to the bonding state.

« In this case, the bonding and anti-bonding states are made up of a linear
combination of the fluorine 2p state and one of the carbon sp2 state.

—
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LCAO: BF; Molecule - sp, Hybridization

Energy level diagram going from isolated fluorine and carbon atoms to the
orbitals of the BF; molecule is:

2:Ezp 3:Eqp

1: Ez 5p2 .
.s orbitals 3:E,
Atomic of B
orbitals
of B

3: Ezp ‘
Atomic \;39?-- X
orbitals 7
of F - - T

—
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Handout 9

Application of LCAO to Energy Bands in Solids and
the Tight Binding Method

In this lecture you will learn:

* An approach to energy bands in solids

using LCAO and the tight binding method Energy

k
—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University
Example: A 1D Crystal with 1 Orbital per Primitive Cell
Consider a 1D lattice of atoms: .
51 Rm =m ay
a X
Each atom has the energy levels as 1 Va(r)
shown 0—
* The electrons in the lowest energy Es ¢s(F)
level(s) are well localized and do not take Energy levels <
part in bonding with neighboring atoms
* The electrons in the outermost s-orbital 0 r

participate in bonding
. K2 _
The crystal has the Hamiltonian: H=—""—v2 Zva(f - Rm)
2m m
V(F) Potential in a crystal

\/\/\/\/\/\f\/\f\/l/
. S
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Tight Binding Approach for a 1D Crystal
51 Rm =m 51

a D ¢
2

A= —zh—mvz +EV3(F—§,,,)

Periodic potential

We assume that the solution is of the LCAO form: y/(F)= 3 ¢, ds(F —Rm)
m
And assume that orbitals on different atoms are approx. orthogonal:

<¢s(’7_kn)‘¢s(?_km)>=5nm

« If we have N atoms in the lattice, then our solution is made up of N different s-
orbitals that are sitting on the N atoms

* In principle one can take the assumed solution, as written above, plug it in the
Schrodinger equation, get an NxN matrix and solve it (just as we did in the case of
molecules). But one can do better ...........

We know from Bloch’s theorem that the solution must satisfy the following:
L =)2 N2
wF+RY =7
w(F+R)=e'k-Ry(F)
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Tight Binding Approach for a 1D Crystal
51 Rm =m 51

a x
Consideration 1:
For the solution: ¥w(F)=Xc, ¢5(F - ﬁ’m)
to satisfy: m
vl R =)
one must have the same value of \cm\z for all m (i.e. all coefficients must have the
same weight).

el Om N2 43
So we can write without loosing generality: Cp; = N ”'/’(")‘ d’r=1
Consideration 2: - e Om S
For the solution: ¥(F)= Z‘\/ﬁ s (r - Rm)
) m
to satisfy:

w(F+R)=e'K-Ry(7)

one must have the phase value equal to: 6, = k. Ry,

—
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Tight Binding Approach for a 1D Crystal
51 Rm =m 51

Consideration 2 (contd...):

Proof:

i6m ~ ~
W(F)=§%¢S(F_Rm)=g JN ¢S(F_Rm)

For the Bloch condition we get:

. e K-Rm . e kK-Rm .
y/(r+R)=§ W o +R—Rm)=§ W #(F - (Rm - R))
Let:
Rm-R=R,
eik.(k,,+§) ‘g ol K-FRo
- - ik. - B
:>y/(r+R)=%T¢s(r—Rp)=e % N ¢s(r—Rp)
_elk-R w(F)
Etm — Spring 2009 — Farhan Rana — Cornell University
Tight Binding Approach for a 1D Crystal
51 Rm =m 51
a X
So we can write the solution as:

eik.km

(A)=x% "4 (F-R
'//k( ) o JN ¢s( m)
And we know that it is a Bloch function because:

All that remains to be found is the energy of this solution — so we plug it into the
Schrodinger equation:

A

vi(F)) = E(K) (7))
= %e'f/'ﬁRm ] ¢s(F_Rm)>=E(R)Ee’k\/;m¢s(i:_f‘;m)>

—
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oz - Ra) -2 4 R)

Multiply this equation with <¢S(F)\ and:

 keep the energy matrix elements for orbitals that are nearest neighbors and
« assume that the orbitals on different atoms are orthogonal

elk R1

R R -R) ORI A
- E(K) - (¢5(7) 4 7)

lk.a1 —I'k.§1
e 1 e
= -V,

SSGT"'WES _Tvssa = E(E)

= Elk)= E - 2V,,,, coslk . &) /

(r R)>

2~
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Tight Binding Approach for a 1D Crystal

E(

)= E, -2V, coslk . &)

Energy levels in an isolated atom
Energy

Va(F)

0—

Es ¢s(F)
Energy levels <

: . .
a a

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University



Tight Binding Approach for a 1D Crystal
ay

a X
E(k)= E; -2V, cos(k . )

Energy , » Number of quantum states at the
: starting point = 2 x number of orbitals
used in the LCAO solution = 2N

* Number of quantum states at the ending
point = 2 x energy levels per band for an
N atom crystal = 2N

= Initial number of quantum states =
Final number of quantum states

A band of N energy levels
4Vsso 2N quantum states

—
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Tight Binding vs NFEA for a 1D Crystal

LCAO - Tight Binding Nearly Free Electron Approach (NFEA)
E(E): Es -2V, cos(l? . 51) Energy
Energy

Would have also
obtained the higher
energy bands in
LCAO if higher
energy atomic
orbitals were also
included in the
LCAO solution

The energy matrix elements are of the order of: Vg5, ~—

—
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Example: A 1D Crystal with 2 Orbitals per Primitive C_eII

EEEE;; 51 Rm=ma1
a X

s— p

Each atoms now has a s-orbital and a p-orbital that contributes to energy band
formation

¢s(F) - E;
¢p(F) - E,

We write the solution in the form:
ik.Rp B . . .
wi(F)= EeT [CS(k)¢S(f _Rm)"' cp(k)¢p(f_Rm)]

Verify that it satisfies: (F + ﬁ’): el k- ky/’;(F)

And plug it into the Schrodinger equation:

A v (7)) = E(R) jwg (7))

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

/ Tight Binding Approach for a 1D Crystal
(™

Al (7)) = E(K) v ()

Step 1:

Multiply the equation with (g (F)| and:

 keep the energy matrix elements for orbitals that are nearest neighbors and
« assume that the orbitals on different atoms are orthogonal

[Es-2v,, cos(l?.é1) Jes(k)+2i Vepo sin(E.51) cp(l?) = E(E) cs (I?)

Step 2:

Multiply the equation with <¢p(F)‘ and:

 keep the energy matrix elements for orbitals that are nearest neighbors and
* assume that the orbitals on different atoms are orthogonal

[ Ep+2Vpp, cos(k.a;) ] cp(l?)— 2i Vgp,r sin(k.a;) cs(K)= E(K) cp(a)

—
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Tight Binding Approach for a 1D Crystal

We can write the two equations in matrix form:

2i Voo, sin(kd;) ][cs
cos(l?.é1) Cp

For each value of wavevector one obtains two
eigenvalues — corresponding to two energy bands

{ES — 2V, cos(k.d;)

~2i Vg, sin(k.dy)  Ep+2Vppe

For k =0 we get:
Elk = 0)=E, +2V,p,

| av,

ppo

Cs\K = 0 - 0 Bloch function is made
Cplk=0 |1 of only p-orbitals :
E(k=0)=E, -2v,,, §
Cs\K = 0 _ 1 Bloch function is made E
Colk=0 10| of only s-orbitals " a

—
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Tight Binding Approach for a 1D Crystal

Bloch function is made
of both s- and p-orbitals

E[R = l) =2
2a 7z
cs(l? = l)‘() ” a
2a = |: ] Bloch function is made
¢ [E =" ,‘g) ?| of both s- and p-orbitals
p 2a

—
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Tight Binding Approach for a 1D Crystal

- Bloch function is made
e L
of only p-orbitals

) e

J 1 Bloch function is made
J = of only s-orbitals

—
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Handout 10

The Tight Binding Method (Contd...)
And
Crystal Symmetries and Energy Bands

In this lecture you will learn:

* The tight binding method (contd...)

* The n-bands in conjugated hydrocarbons
* The relationship between symmetries and
energy bands

—
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Tight Binding for a Square Lattice with a Two-Atom Basis

Consider a 2D square lattice with a two-atom basis:

1 %" «The primitive vectors and basis vectors are

[0} . o as follows:
a az o a 51 =ax 52 =a }7
RN - - a, - a.

al o BQ () di=5x  dp=y
S o « Each basis atom contributes one s-orbital that
d participates in bonding

o (0] [0} = Each primitive cell contributes two s-orbitals

a that participate in bonding

#sa(F) < Esa
#s8(F) & Esp

One can write the trial tight-binding solution for wavevector k as:

ik.Rp

V/E(F)=%e N I:CSA(’?)eiE'&1 ¢SA(F_Rm —31)4' CSB(’?)@"}'J2 ¢SB(F_

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University



Analysis of the Tight Binding Solution

ik.Ry N s L N s L
vi(F)= %eT [CSA("')G'kT'd1 bsalF — R —dy)+ Cs:s("')e/'k'd2 ¢SB(F—Rm—d2)]

(1) Summation|over all | /

primitive cells (3) Summation over all orpitals within a primitive
cell with undetermined cpefficients

— ——
(2) Common phase factor [0} R o
for each primitive cell az
e o e
a
a
(4) A phase factor for each orbital that is ° 3 ° b
related to the position of the orbital within o 2 A o
the primitive cell w.r.t. lattice point ) d, ' e
(] (0] o
a

—
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Tight Binding Solution \
k) wi(F)

Plug the solution into the Schrodinger equation: H ‘y/E(F» = E(

And then, one by one, multiply by from the left by the N o
bra’s corresponding to every orbital in one primitive e - e
cell to generate as many equations as the number of o + o)
orbitals per primitive cell 52
Step 1: . ¢ a
Multiply the equation with (gsa(F - dy)| and: al o 8O )
* keep the energy matrix elements for orbitals that are > A
nearest neighbors, and ® d *——6—
» assume that the orbitals on different atoms are o o 1
orthogonal b
a
Esa csa(k)-4Vs, cos(k.d;) cos(k.dz) esp(k) = E(k) esalk)

where the following identity has been used:

ei E .(&1+&2)+ei k (&1—82)+ eiE .(—81+82)+ei E .(—81—&2) = 4COS(R . &1)COS(E . Jz)

—
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Tight Binding Solution

Step 2: . PY | ° °
Multiply the equation with (¢sg(F — )| and: o o
* keep the energy matrix elements for orbitals that are a,
nearest neighbors, and Py 3 o—4 O
* assume that the orbitals on different atoms are a 1
orthogonal 0o B O o
~ - . _ 2 A
Esg csp(k)- 4Vss, cos(k.dy) cos(k.d; ) csa(k) M 70 G
= E(K) csg (k) o 0 0
a
Write the equations obtained in a matrix form:
Esa — 4V, cos(k.d;) cos(k.d, )} [cSA (k)} _£(®) {cSA( )
- 4Vssa cos(k.d1) cos(k.dz) ESB cSB(k cSB(k)_

—
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Tight Binding Solution

\_
-

o | o —
o WL o
a
' Era
a' o BOQ ]
P S
mE .
(] (0] ()
a
Egsa — 4V, cos(k.d;) cos(k.d, )| [ csa(k) _ (%) csa (k)]
-4V, cos(l?.81) cos(l?.&z) Esg csglk csg (k)]

—
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Polyacetylene

Polyacetylene is a one-dimensional conducting hydrocarbon polymer
H H

C cC
[+ [

y
H H I

* Carbon atoms are all sp2 hybridized (one 2s orbital
together with the 2p, and the 2py orbitals generate three sp2
orbitals)

* Two sp2 orbitals form c-bonds with the sp2 orbitals of the
neigboring carbon atoms and one remaining sp2 orbital
forms a 6-bond with the 1s orbital of the hydrogen atom

* The bonding orbital associated with each c-bond is
occupied by two electrons (spin-up and spin-down)

* There is one electron per carbon atom left in the 2p, orbital

—
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n-Bands in Polyacetylene .
H H 2p, orbitals

* The 2p, orbital stick out of the plane of the chain and form n-bonds with
neigboring 2p, orbitals

* The p-bonding results in energy bands that we will study via tight binding

The primitive cell of the 1D chain is as shown below (it consists of two carbon
atoms and two hydrogen atoms)

H H
c c
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n-Bands in Polyacetylene

X

Two carbon atoms per primitive cell implies we have a 1D crystal with a two-atom
basis with basis vectors:
a

81 = 0 &2 = E *
 Each basis atom contributes one 2p,-orbital that participates in bonding
= Each primitive cell contributes two 2p,-orbitals that participate in bonding

¢pzA(F) o E, ¢sz(F) o E,

One can write the trial tight-binding solution for wavevector k as:

ik.Rp R - N e s B =
A0 Kl M ) PO 0 POSON (5 PP RN G S )|

m
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n-Bands in Polyacetylene

[ ]

Plug the solution into the Schrodinger equation: H |y (F)) = E(I?)‘y/k (F))

And then, one by one, multiply by from the left by the bra’s corresponding to every
orbital in one primitive cell to generate as many equations as the number of orbitals
per primitive cell

Step 1:

Multiply the equation with <¢pzA(f)‘ and:

* keep the energy matrix elements for orbitals that are nearest neighbors, and
* assume that the orbitals on different atoms are orthogonal

Ep cpzA(l?)— 2V, cos(l?.c?z)csz(l?) - E(k) cpzA(a)

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University




n-Bands in Polyacetylene

two electrons, the lower band is —
completely filled and the upper band is
completely empty at T=0K

X
Step 2:
Multiply the equation with <¢sz(F) and:
* keep the energy matrix elements for orbitals that are nearest neighbors, and
* assume that the orbitals on different atoms are orthogonal
Ep csz (R)_ 2vpp7r cos(R'EZ ) cpzA(R') = E(E) csz(a)
Write the equations obtained in a matrix form:
Ep 2y cos(k.d,) c,,zA(lf) _E(R) pzA(‘f)
~2V,,, cos(k.d,) E, cpza(k cpza(k
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
n-Bands in Polyacetylene
Ep  =2Vp,, cos(kd;)|[comalk)] (R)[ e ()
-2Vppr cos(k.dz E, Cpzel\k Cpzel\K

Solutions are:

E(R) =Ept2Vy,, ‘cos(ﬁ.&zl Energy .
cpzA(—) =1|: 1 ] i
CpzB ( ) " V2 [-1 i
cpzA(—) — 1|:1] i
CpzB ( ) _ \/E 1 g

* There is no bandgap between the :

upper and lower bands! :

* Since each primitive cell contributes ” kx

a
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Other Conducting n-Conjugated Molecules and Polymers
Polyacetylene:

Both used in organic light

Benzene: Alg3: emitting diodes (OLEDSs)

Al

Triphenylamine:

PPV (Polyphenylene Vinylene):

Used in polymer light
emitting diodes (PLEDs)

—
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Tight Binding Bands For Germanium

Germanium:
Atomic number: 32
Electron Configuration: 1s2 2s22p® 3s2 3p® 3d'? 4s2 4p?

Number of electrons in the outermost shell: 4

k2 Tight Binding Bands for Ge Energy (eV)

<] AN
,Q% ky —\/ T~
SRy

FBZ (for FCC lattice) -12

,_
-
>
&=
c
=

S—
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Symmetry and Energy Bands

The crystal potential V(F) generally has certain other
symmetries in addition to the lattice translation symmetry:

V(F+R)=V(F)

For example, the 2D potential of a square atomic lattice, as
shown, has the following symmetries:

a) Symmetry under rotations by 90, 180, and 270 degrees
b) Symmetry under reflections w.r.t. x-axis and y-axis
c) Symmetry under reflections w.r.t. the two diagonals

Let § be the operator (in matrix representation) for any one

of these symmetry operations then: §
=rq

v($F)=Vv(F)

ptation by 90°

—
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Crystal Point-Group Symmetry .
Point-Group Symmetry >
The point group symmetry operation of a lattice are all those

operations that leave the lattice unchanged and at least one
point of the lattice remains unmoved under the operation

Point group symmetry operations can include:

i) Rotations (w.r.t. to axes of rotation)
ii) Reflections (across lines or planes)
iii) Inversions (w.r.t. to a point)

-

Let $ be the operator for a point-group symmetry F'= §F
operation, such that:
v(87)=Vv () R

S =rqgtation by 90°

The operator Sis unitary:

ST = 87" = unitary

—
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Crystal Point-Group Symmetry and Energy Bands
[ ] [ ]

N [ ]
Let S be the operator for a point-group symmetry
operation, such that:
7= 8§F {ér =S§7"= unitary ° ° °
= V(§F)=V(F) a
[ ] [ ] [ ]
Suppose one has solved the Shrodinger equation and obtained —
the energy and wavefunction of a Bloch State ¥/, \r a
v . . B,
Lo V) i) £l )
Now replace 7 by S§F everywhere in the Schrodinger equation:
2 2
Vé. =V;
hzv B} . §
VS v
om T V(Srj| ¥, k(Sr) (k)'//n,E (Sr) — > 7 Laplacianis
L invariant
ntv2 - - 5
== zmr +V(r) Wn,R(Sr)= En( )Wn,E(Sr)

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Crystal Point-Group Symmetry and Energy Bands
252 . . = . 2y2 =
o V187)|ye(67)= 571 |~ V10 67~ £ B

The above equation says that the function v, k(Sr) is also a Bloch state with the
same energy as ¥, p\r) (we have found a new eigenfunction!)

The question is if we really have found a new eigenfunction or not, and if so what is
the wavevector of this new eigenfunction

We know that Bloch functions have the property that: l//n,,;(f + f\’)= e'k-R l//n,,;(r)

Sowetry thison y ¢ (§f):
Ynk (é(f +R ))= Yn ,;(gf + éf\') ———> - $Ris also a lattice vector

kSR, (s7)=elSRLR, fsr) {E.(s“ﬁe)=(§—uz).ﬁ

> ¥, k(‘ ) is a Bloch function with wavevector $~'k and energy E, (E)

= V’n,E(AF)= Yo%k (F)

—
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Crystal Point-Group Symmetry and Energy Bands
So we finally have for the symmetry operation S:
= Vnk (§F)= Y6 % (F)
We also know that the eigenenergy of l//n,§—1,; (7) is E, (E)
Therefore:
E,($7'%)=E, (k)
Or, equivalently:
En(8K)= Eq(K)

Important Lessons:

1) If Sisa symmetry of the potential such that in real-space we have:
v($7)=Vv(7)

then the energy bands also enjoy the symmetry of the potential such that in k-space:

E,(8K)=E, (k)
2) Degeneracies in the energy bands can therefore arise from crystal point-group
symmetries!

—
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Time Reversal Symmetry and Energy Bands
Suppose we have solved the time dependent Schrodinger and obtained the Bloch

_iEnlk),

state ¥ -(r) with energy E \k) :
n,k n
V’n,E(F’t)=V’n,E(F)e h

[_ n2v? +v(7)} ()= A gt(F,t)

After plugging the solution in the time-dependent equation, we get:

If we take the complex conjugate of the above equation, we get:

2m

{_ n2v2 +v(F)} vz (F)=Eq(R)v 2 (¢)

We have found another Bloch function, i.e.¥p k (F) , with the same energy as ¥/, ,;(F)

Question: What is the physical significance of the state Yk (F) ?

—
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Time Reversal Symmetry and Energy Bands

Suppose we have solved the time dependent Schrodinger and obtained the Bloch
state ¥/ E(F) with energy E,, (k) :

nv? ] L 0w g(Rt)
{— - +V(F) |y, x(F.t)=in "6t

E,(k)

B -ty
Voi(F:t)=v, ;(Fle 7

Lets see if we can find a solution under time-reversal (i.e. when t is replaced by —f):

N 0y, g(F-t)
V@) gt = - Yk O

=
The above does not look like a Schrodinger equation so we complex conjugate it:
- 2 2 -— a * ~ - _t
/% . o . 9V, k(r’ )
+V(r gr-t)=ih——m————
Vot V(E) |y Fimt) = in
This means that V’;,E (f,—t) is the time-reversed state corresponding to the state v/, ; (F,

-ﬂ@t { h2y2

* _ * ~ =1
Voi(Ft)=y,;(Fle 7 2m

= |-

+v(f)} v )= Ea (R £ (¢)

e function l//:,,,; (7) is the time-reversed Bloch state corresponding to v, E(F)

—
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Time Reversal Symmetry and Energy Bands

{_ h;:: +V(F)} vz (F)=En(k)w, ¢ (F)

We have found another Bloch function, i.e.¥p k (f) , with the same energy as ¥, R(F)

The question is if we really have found a new eigenfunction or not, and if so what is
the wavevector of this new eigenfunction

We know that Bloch functions have the property that: V’n,E(F + f\’)= e k- y/n,E(r)

So we try this on l//:,,,; (F):

VaiE+R)=ly(F+R)] = [‘9”;"Ea Vnk (7)] =e'H LRy L)
= l//:,,,; (F) is a Bloch function with wavevector —k and energy En(q)
= v i ()=, () and E,(-k)=E,(K)

Important Lesson: . .
Time reversal symmetry implies that E,,(— k)= E,,( ) even if the crystal lacks
spatial inversion symmetry (e.g. GaAs, InP, etc)

N 4

—
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Handout 11

Energy Bands in Graphene: Tight Binding and the
Nearly Free Electron Approach

In this lecture you will learn:

* The tight binding method (contd...)
* The n-bands in graphene

—
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Graphene and Carbon Nanotubes: Basics
y a=246A

J3a
* Graphene is a two dimensional
single atomic layer of carbon a
atoms arranged in a Honeycomb a
lattice (which is not a Bravais
lattice)

* The underlying Bravais lattice is a
shown by the location of the black
dots and is a hexagonal lattice

* There are two carbon atoms per
primitive cell, A and B (shown in
blue and red colors, respectively)

* Graphene can be rolled into
tubes that are called carbon
nanotubes (CNTs)

—
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Graphene: Sp2 Hybridization
Sp2 hybridization in carbon: y

N . [/
Q

\‘4.\,
1“-’\
IR

‘ (,‘- X

7\

'
“‘ AN '{'
P =
N
N
—/

* All carbon atoms are all sp2 hybridized (one 2s orbital together with the 2p, and
the 2py orbitals generate three sp2 orbitals)

) = 2s )+ ) a7

02F) =y o P+ g b))~ Ty [y ()
= 1 - 2 -

95(7) = 257 2 oo )]

* All sp2 orbitals form s-bonds with the sp2 orbitals of the neigboring carbon atoms

* The bonding orbital associated with each c-bond is occupied by two electrons
(spin-up and spin-down)

* There is one electron per carbon atom left in the 2p, orbital

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Graphene: 2pz Orbitals

n-bonding:

* Each carbon atom contributes one
2p,-orbital that participates in
bonding

= Each primitive cell contributes
two 2p,-orbitals that participate in
bonding

* The 2p, orbital stick out of the plane of the chain and form n-bonds with
neigboring 2p, orbitals

* The n-bonding results in energy bands (n-bands) that we will study via tight
binding

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University



Graphene: Some Useful Vectors

Basis vectors: J3a 4% 2.46A
y a
a
A B X
= a . - a . 5
di=——"—x d,=—"—x 3
17203 27273
a
Nearest neighbor vectors:
. a ., A
- ny = ﬁx
2
Q) L 3 y These will be useful for
J3( 2 2 > writing the final solution
in a compact form
PR B V3,
3= B T2 2

y

—
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Graphene: Tight Binding Solution

 Each basis atom contributes one 2p,-orbital that

participates in bonding

= Each primitive cell contributes two 2p,-orbitals

that participate in bonding

¢pzA(f) And Ep

y

¢sz(F) <« Ep

One can then write the trial tight-binding solution for

wavevector k as:

ik.Rp R
w(r)= EeT [cpzA( )e

iE.&1¢pzA(f _Rim _a1)+ csz(ﬂ)eil?-azqész(F— Rm - 32)

—
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Graphene: Tight Binding Solution

Plug the solution into the Schrodinger equation:
Alyp() = EK)| v (7))

And then, one by one, multiply by from the left by
the bra’s corresponding to every orbital in one
primitive cell to generate as many equations as the
number of orbitals per primitive cell

Step 1: B
Multiply the equation with @, (F- d1)\ and:

* keep the energy matrix elements for orbitals that are nearest neighbors, and
* assume that the orbitals on different atoms are orthogonal

E, cpzA(I?)—Vpp,,(eiE'ﬁ1 +ei K-z 4 gik.fiy )csz(l?)= E(a)cpzA(a)

Notice that the final result can be written in
terms of the nearest neighbor vectors

—
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Graphene: Tight Binding Solution
a=246A

J3a

Step 2: -
Multiply the equation with (5 (F- dz)\ and:

* keep the energy matrix elements for orbitals that are
nearest neighbors, and

* assume that the orbitals on different atoms are
orthogonal

Ep csz(R)— Vpp,,(e_"';‘ﬁ1 e ik M2 gmik.fiy )cpzA(—)= E(E) csz(a)

/

Notice that the final result can be written in

terms of the nearest neighbor vectors /

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University




Graphene: Tight Binding Solution

-

Write the equations obtained in a matrix form:

{ E, ~Vpor f('?)} {szA(’?)} _E(¥)

Voor F (k)  E

~ Vppr p

Where the function f(l?) is:
f(,;)= (ei K gi Ky | o E.ﬁ3J
Solutions are:
E(k)= Ep +Vpp, [F(K)
And the corresponding eigenvectors are:

2] sld

1

] -]

y a=ZD

1

f*@)/f(-ﬂj

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

* No bandgaps open at the K-points and the K’-points

g

* Bandgaps open at the M-points between the first and the second bands

—
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Graphene: n-Energy Bands

10

* Since graphene has two
electrons per primitive cell
contributing to n-bonding, the
lower n-band will be
completely filled at T= 0K

Enegy (eV)

¢ The location of Fermi level
near T = 0K is shown by the
dashed curve

r K M r
In generating the plots | chose energy zero such that:
Ep =0
And for graphene:
Vppr =3.0 eV

—
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Graphene: A Comparison of NFEA and TB

50
1
40
3
Scale normalized N
< 30
2 (12 £
o: —| — o
Zm(aj €20
and offset by V, 3
€10
i
0 1
r K M r

To compare the nearly-free-electron approach (NFEA) to tight-binding (TB) | assumed
the DC potential in NFEA to be:

V, = Ep - 3Vpp,,
And in graphene:
" =3.0 eV

ppz

—
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Why the Zero Bandgap in Graphene?

>/

The answer from tight binding: y, a=246A

The two atoms in a primitive cell are identical. If they were
different then there would be a non-zero bandgap:

I o A R e T
- E(k)- =P ; Ees i\/(E” 3 PBJZ +V2,, if(k)

= Eg =|Epa — Epg| ——> at the K(K)-points
The answer from the nearly-free-electron approach:

As you saw in your homework, if the crystal potential lacked inversion symmetry w.r.t.
the y-axis (i.e. V(- x,y)# V(x,y) ) then there would be a non-zero bandgap.

Of course, if the two atoms in the primitive cell were different then the crystal would
lack inversion symmetry! So both the approaches explaining the zero bandgap are

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Pseudospin in Graphene yy as= zm
Solutions are:

E(k)= Ep + Vy, [f(K)
f(k)= (ei R.ﬁ1 +ei R.ﬁz +ei Rﬁg,]
And the corresponding eigenvectors are:

) @) o]

)~ Slrwal L] - o] L)

Compare with the case of 1/2 spin particles with spins in the x-y plane:

SN 9= | o ¢
: 4 %

—
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Handout 12

Energy Bands in Group IV and lll-V Semiconductors

In this lecture you will learn:

* The tight binding method (contd...)

* The energy bands in group IV and group llI-V semiconductors with
FCC lattice structure

* Spin-orbit coupling effects in solids

—
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FCC Lattice: A Review

Most group VI and group lll-V semiconductor, such as Si, Ge, GaAs, InP, etc have
FCC lattices with a two-atom basis

Face Centered Cubic (FCC)

Lattice: / T / S Unit Cell
- f
a=2(+3) i S—
z
G =2(k+2) | Filel 1
255 a x
— a - -~
ay =5 (%+7) y

—
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Lattices of Group IV Semiconductors
(Silicon, Germanium, and Diamond) | ;
Diamond lattice (Si, Ge, and Diamond)

D8 o mrr—— 8

Nearest neighbor vectors

iy = %(1,1,1) iy = %(- 1,-11)

Basis vectors a
i 5o a - a -~ _a 4
d=0 d; = 2(1’1’1) n; = Z(— 11,-1) M= 4(17 1, 1)

* The underlying lattice is an FCC lattice with a two-point (or two-atom) basis.

* Each atom is covalently bonded to four other atoms (and vice versa) via sp3
bonds in a tetrahedral configuration

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

incblende lattice (GaAs, In

/Lattices of llI-V Binaries (GaAs, InP, InAs, AlAs, InSb, etc)
1z
V4 P, InAs) ny

T -dd

Y/ Nearest neighbor vectors

fiy = %(1,1,1) fiy = %(— 1,-11)
Basis vectors a
g, = g, =2 - _4a Ay == (1,-1,-1
di=0  dy=2(11) Ay =2 (-11-1) s 4 (-1-1)
* The underlying lattice is an FCC lattice with a two-point (or two-atom) basis. In

contrast to the diamond lattice, the two atoms in the basis of zincblende lattice are
different — one belongs to group lll and one belongs to group V

* Each Group lll atom is covalently bonded to four other group V atoms (and vice
versa) via sp3 bonds in a tetrahedral configuration

S—
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Example: Tight Binding Solution for GaAs

* Each Ga atom contributes one 4s-orbital and three n
4p-robitals _
mn
* Each As atom also contributes one 4s-orbital and x
three 4p-robitals
= Each primitive cell contributes a total of eight _
orbitals that participate in bonding Yy ¥ Ry n3
1 ¢s¢(F) © Esg 5 #sa(F) © Esa
2 dpe(F) © Epg 6 dpxa(f) © Epp
3 ¢pye(F) © Epg 7 ¢pya(F) © Epa
4 4p6(F) © Epg 8 gpa(F) © Epa

One can write the trial tight-binding solution for wavevector k as:

ik.Rpy

4 ~ oo 8 S
u/:z(?)=§em [.Zfi¢j(F-Rm)>+e'k'd2j§5°i¢j(’-Rm—dz)> }

J=
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Example: Tight Binding Solution for GaAs
(=Rl el £ ey r—Ro ) |
Jj=

Plug the solution above into the Schrodinger equation to get:

Cq
C2
C3
Cy

XXX XXX X X

Cq
C2
C3
Cs
Cs
Ce
C7

Cg

XXX X XX X X

S—
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Tight Binding Solution for GaAs: The Matrix

N R ] j
Esc 0 0 0 ~Vsso9olK) B ailk) Vj%" 0(k) vj’%" (k)
0 Epg 0 0 - vf/%" ai(k)| Vi g0lk) v2gs(k) | vz a:(k)
Vv, ~ i B R
0 0 Epg 0 —%gz( ) V, 93(k) Vi go(k) Va 91(“)
0 0 0 E, i _ ~ R
o F k)| vgk) | valk) | vielk)
H =
Esa 0 0 0
Hermitian 0 Epa 0 0
0 0 Epa 0
0 0 0 Epa

go(‘)=e1k.n1+elk.n2+elk.n3+elk.n4

g1(~)=eii?.ﬁ1 _eiE.ﬁz _eil?.ﬁ3 +eiE.ﬁ4

3 Vppo =3 Vppn

gz(‘;)=eik.ﬁ1 _eik.ﬁz +ei§.53 _eiE.ﬁ4

ga(E)=eiE.ﬁ1 +eif(.ﬁz _eiE.ﬁ3 _eiE.h4
1 2 1 1
Vi=2V, vV, V, =§vpp,+5vp,,,,

—
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Tight Binding Solution for GaAs

a2

Parameter values for GaAs:

ESG =-11.37eV ESA =-17.33 eV
EPG =-490eV EPA =-7.91eV

Energy (eV)

Veso =1.70 €V Vopo = 3.44 eV
po =215V Vipr = 0.89 eV

0&2
X
T |

N
o

A
3

f

-
-
x

Tight Binding Solution

S—
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Tight Binding Solution for GaAs: States at the I'-Point

0
At the T-point: K _A:
-5 _\/—
9ok =0)=4 S
o1(k)= 92(K)= ()= 0 N
c-15
= Energy eigenvalues can be found analytically w
20 /
1
Two of the eigenvalues at the I'-point are: 25 f
L T

%

. Esg +E Esg —Esca )
Ef(k=0)=( 862 SA)i\/[ sG ) SGAJ +(4vsscr)2

are made up of ONLY s-orbitals from the Ga and As atoms

The Bloch function of the lowest energy band and of the conduction band at I'-point

VekeolF) = = len F - Rn) + 5 |45(F - R~ 2) ]

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Tight Binding Solution for GaAs: States at the I'-Point

Six remaining eigenvalues at the I'-point are:

. Epg +E Epg — Epp \?
Es7a(k=0)=[ P62 PA)i\/[ PG2 PAJ +(4V1)2
234

Each eignevalue above is triply degenerate

/
A

0 2
The Bloch function of the highest three energy %__J——:
bands and of the three valence bands at I'-point are -5 /
made up of ONLY p-orbitals from the Ga and As =
atoms B .10 7‘¥
>
o
4 215 1
o w
1 1E K ‘¢j(r_R”')> 20
l//v k=o(’_)_ZW \-_/1-
m (F-Rp—ds)
+ ZCJM(’ m = d2)) -25

—

—
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Improved Tight Binding Approaches

* Need to include the effect of spin-orbit-coupling on the valence bands

Spin orbit coupling lifts the degeneracy of the valence bands

* Need to include more orbitals (20 per primitive cell as opposed to 8 per primitive cell)
* Use better parameter values

Simplest TB Approach Improved TB Approach with SO-Coupling
(Figure not on the same scale)

E_ "=1.424eV
gap

t A, =0312

Energy (eV)
o =
energy (eV)

S
~
—
>

—
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Spin-Orbit Interaction in Solids

An electron moving in an electric field sees an effective magnetic field given by:

_ ExP { The additional factor

Besr = 2 of 2 is coming from
Thomas precession

The electron has a magnetic moment /i related to its spin angular momentum S by:

2 a s aoa aoa . 01 R 0 —i . 1 0
O'=O'XX+O'yy+O'ZZ Oy = 10 O'y= i 0 G, = 0 -1

The interaction between the electron spin and the effective magnetic field adds a
new term to the Hamiltonian:

O:: ﬂB=7m gzz — ﬁz_.uBé

A 5 = - 1 VV(I'S) 2 nooa [ - 3]
H., = —ji.B.ff = ugo.Bossr = ugo . xP |= o.|[VVIF)xP
so H-Deff = HBO-Deff = KB 2 c2|: e i| 4m2c? ()

—
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Spin-Orbit Interaction in Solids: Simplified Treatment

Near an atom, where electrons spend most of their time, the potential varies mostly
only in the radial direction away from the atom. Therefore:

h g vl VO fop] [E-ixpi
H e — _[er P]: _ ir P L:r)(P is the
S0 am?c? i ( )x am3c%r or -rx orbital angular

no1ev(r). = 1 1av(r)z 7 momentum of
- 55~ ()a.L= 72 ()S.L an electron near
4m*“ccr or 2m*ccr or an atom
Recall from quantum mechanics that the total angular momentum j is:
J=L+8S

= J?=[?+§? +283.Ii
40 lpop-g)
2
Therefore:

g 1+ 1 ov(r)
S am2c?r or

Ny

—
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Spin-Orbit Interaction in Solids: Simplified Treatment
For an electron in a p-orbital:

(8 (P)|?| ¢ (7)) = 120(¢ + 1) = 20

For an electron in a s-orbital:

(85 (F)I2| g5 (7)) = n20(t +1)=0

And we always have for an electron:
<§2> =n2s(s+1)= %hz
If the electron is in s-orbital then: <J2 -2 §2> =0 = <FISO> =0

If the electron is in p-orbital then: <J2 2 §2> 20 = <I:Iso> =0

= The energies of the Bloch states made up of p-orbitals (like in the case of the

three degenerate valence bands at the I" point in GaAs) will be most affected by
spin-orbit coupling

—
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Tight Binding Vs Pseudopotential Technique

A Little More Sophisticated Approach
Nonlocal Pseudopotential Method

Simplest TB Approach of
0 2 4t
R _A: 2
-5 /—
— ol
) T 2
2.0 -_—) 2
> N
g 2
2 .15 i & -
w &
-8
-20-\ __/1‘ -
GaAs -2
-2uL T X Iy A a X UK T T
GaAs Energy Bands
(Chelikowski and Cohen, 1976)
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Energy Bands of Silicon and Germanium
2
0
>
o of
>
£
[
4
w

|
o

-10

=12

A X
Germanium Energy Bands Silicon Energy Bands
(Chelikowski and Cohen, 1976) (Chelikowski and Cohen, 1976)

—
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Appendix: Spin-Orbit Interaction and Bloch Functions

In the absence of spin-orbit interaction we had:
HOy/n,R (f) = En (k) V/n,R (F)

{_th?Jrv(f)} vo ()= En®)y, (7)

In the presence of spin-orbit coupling the Hamiltonian becomes:

H=H,+Hg,
a 5 2 a A —
Ago = #é. Fv()<p]- —i‘“jﬁé [oviF)xv,]

Since the Hamiltonian is now spin-dependent, pure spin-up or pure spin-down states
are no longer the eigenstates of the Hamiltonian

The eigenstates can be written most generally as a superposition of up and down spin
states, or:

- a, i (F ~ ~ X =Quantum number for the two
Ynk.z (F)= |:ﬂn,f (F):| =0,k (’)‘T> +B.k (r)‘¢> spin degrees of freedom, usually
n.k taken to be +1 or -1

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Appendix: Spin-Orbit Interaction and Bloch Functions

4

k] ene el
(2 vy s s ot )

2m 4m*c

For each wavevector in the FBZ, and for each band index, one will obtain two
solutions of the above equation

We label one as y = +1 and the other with 7 = -1 and in general E, -z (k);e E, x(l?)

These two solutions will correspond to spins pointing in two different directions
(usually collinear and opposite directions). Let these directions be specified by 1 at

the location r:

Qi

ﬁ Wn,l?,;((r‘) =+1 Wn,R,x(F)

Ay, )=y, (F)

Q»

—
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Appendix: Spin-Orbit Interaction and Lattice Symmetries
In the presence of spin-orbit interaction we have the Schrodinger equation:

[ttt oo Y o] s 20

Lattice Translation Symmetry:

- %n k (F + f‘,) ei‘;.kan,ﬁ' (F) ik.R =
Wn,l?,l (r M R)= |:ﬂn,k (F + f‘"):| = JikR n,k(ﬁ) =e " R'/,n,kyl(r)

Rotation Symmetry:

Let $ bean operator belonging to the rotation subgroup of the crystal point-group,
such that:

V(§F)= V(F) {.§T =$§~'= unitary

(The case of inversion symmetry will be treated separately)

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Appendix: Spin-Orbit Interaction and Rotation Symmetry

Suppose we have found the solution to the Schrodinger equation:

(5 s o o ][50 - e

And the solution is:
=[] = el

We replace 7 by Sr everywhere in the Schrodinger equation:

{ ZZVng v($F) i ’jzczé [V, v(SF) vs,]H;::g ):|=En LK) ;::E;ﬂ
[ v s“[va(f)xvf]}{;:ﬁ;ﬂ:E,,Z(—){;:ﬁgﬁgﬂ

—
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Appendix: Spin-Orbit Interaction and Rotation Symmetry

{—h;vj+V(F)—i4 ::zcz é.8[v.v(F)x V,]}{;:: gﬂ —E, (k){ﬂ Ez:ﬂ

The above equation does not look like the Schrodinger equation!

We define a unitary spin rotation operator R'? that operates in the Hilbert space of

spins and rotates spin states in the sense of the operator S S

Consider a spin vector pointing in the 1 direction:

il

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Appendix: Spin-Orbit Interaction and Point-Group Symmetry

Start from:
n?v2 "2 . o4 2 n, k(SF) _ i ( )
{ sz +V(I') am?c? o. S[V V(I')XV H:ﬂn k(sr) =E, ( ) ﬂn k(SF)

Introduce spin rotation operator R corresponding to the rotation generated by
the matrix S:

A { VL (e 4,:202 G s[va(,)xvf]}ks@{;n,g (s;ﬂ e, ) ,Qgh H
(o v bt e e etoms o

The above equation shows that the new state:

]

'Bnk(sr)

oy i (F)
satisfies the Schrodinger equation and has the same energy as the state: { "’k(-)}

—
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Appendix: Spin-Orbit Interaction and Point-Group Symmetry

k?[anj(s:(@é))]_em E[an,f(éf )}e"é“” s1l;:§:ﬂ

Since:

5o (86 +R)

The new state is a Bloch state with wavevector §‘1E

Summary: \

If S isan operator for a point-group symmetry operation then the two states given by:

a2

This represents a rotated (in
.§F) space) version of the original
—> J Bloch state. Even the spin is
:] rotated appropriately by the
spin rotation operator.
have the same energy:

En,z'(é_%): En,;:(’;)
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Appendix: Spin-Orbit Interaction and Inversion Symmetry

Suppose the crystal potential has inversion symmetry:
V(-F)=V(F)

Suppose we have found the solution to the Schrodinger equation:
n2v2 n? a, i (F) [, ;(F)
- +V(r)-i——0o.|Vs V(F)x Vi T N|=E,  \k o
And the solution is:
P Ak (F) -
P r)= ’ . < E
V/n,k,z( ) {ﬂn,k(’)} n,x( )
We replace F by —F everywhere in the Schrodinger equation:

R Rl LR | NG ]

,k
R R Y 0 W

ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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Appendix: Spin-Orbit Interaction and Inversion Symmetry
n2v2 hz 2, F)] [ @5 (-F)
{ 2m +V(r)—l m c O' [V V( )XV ]}|:ﬂn’k(—l—')i|_En’l(k)|:ﬂn’k(—F)
an,E(— F)i|

The above equation shows that the new state: { ﬂ(_ f)
n,k )
satisfies the Schrodinger equation and has the same energy as the state: LB ( )i|
&g~ (F+R)) (m[ n,ﬁ(—f)}
e —
i +R)) Foi(-7)

the new state is a Bloch state with wavevector — k

a, (- 7)}

In most cases, the new state: ’ _
n ;;(— r)

Since:

a, i (F )}

has the same spin direction as the state: [,B

0 we can write: Yn-ky (F) = [79",2 E: i-')i|
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Appendix: Spin-Orbit Interaction and Inversion Symmetry

Summary:

If the crystal potential has inversion symmetry then the two states given by:
2 () (-F)
= n,k . a, g\=r
Vi AF)= = F)=| ™ _
n,k,z( ) |:'3n,l?(r)i| '/’n, ,Z( ) I:ﬂn,l? (_r i|
have the same energy:

En,z(_ E)= En,z(ﬂ)

N

—
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry
Consider the Bloch function:

l//n,l?,l (F) = [Z:,k g)i| =Cnk (F)‘ T> * 'Bn,l? (F)‘ J’>

Suppose the Bloch function corresponds to the spin pointing in the direction of the
unit vector i at the location F:

. sk (F) a, i (F) _
Ny _; (F)=a.n 7" . |=+1 o=ty g (F
7 Wn'k'l( ) 7 |:ﬂn,l? (I')i| |:ﬂn,E(r) Wn,k,z( )
What if we want the state with the opposite spin at the same location?

The answer is: 3 i _B *n P (F)
16y Vi O)=| e
niox a*, i (F)
Proof:
gilis, v, O)--il-6*hs, v, O
—-il6,6,6%h,6,0, v, (P =-il6,0v, ¢ (P
sy vy O = AL iy g )
{6=6,%+6,7+6,2 = 6*=6,8-6,7+6,2%6 |
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry
In the presence of spin-orbit interaction we have the Schrodinger equation:

{_ h;:’ +V(F)- ,-4”’?:(:23 vE)xe H;:gﬂ _ E,,,Z(I?){Z::i gﬂ

a, :(F -
Suppose we have solved it and found the solution: Wn,l?,l (i-’) — |: n,k( )i| o En,;(( )

ﬂn,l? (F)

We complex conjugate it:
nev: o on? ., A ek )] [a*,k (F)
{_Zm+v(r)+’4mz’c20 .[VV(r)xV]}{ﬂ*nE(F) —En,z( ) pr (7

It does not look like the original Schrodinger equation!

Note that:

O=0xX+6,y+6,2

=0 =6xX-6yy+6,2#C

—
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

Av = v
One can always perform a unitary transformation with matrix T and obtain:
TAT YTv =aTv B=TAT
=Bu=4u u=Tv

So try a transformation with the unitary matrix — ié"y with the equation:

Cio -2 cveyei 2 vleolfois, Yo [ o4 0] a5t )
:{_h:’V'1$+V(r)—l e v )xv}[ nk(g)} . (*)[_ﬂ*":‘(g)}
*nk (f)}

We have found a new solution: _
I: a*n k (r)

a i (F
P n,k
with the same energy E k) as the original solution: ¥ (r) mr
n,z( ) nK.xy ﬂnk(’)

stion: What is the physical significance of the new solution?

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Appendix: Spin-Orbit Interaction and Time Reversal Symmem

Under lattice translation we get for the new solution:

-8 F+R)] ok R[ 7Bk ()
a* i (r+R) a*,k @)
So the new solution is a Bloch state with wavevector — k
)= -B* i (F)
Yn-k20)=| o "o (F)
Note that the new solution found can also be written as:
"  [-B*,(F)
AR P _
But as shown earlier, the above state has spin opposite to the state WH,E,Z (f) = |:ﬂn’lf (F)
n,k

Therefore, the new solution is a Bloch state Wn,—l?,—;: (7’) ,i.e.:

VnimyF)==i6y v ", (F)= {_aﬂ**”"f(g)}

And we have also found that its energy is the same as that of the state v/, ¢ x(F):

En,—x(‘ E)= En,z(‘;)

—
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry

In the presence of spin-orbit interaction we have the time-dependent Schrodinger
equation:

{_ V)i, e v )va :g 3} il L,:E::ﬂ
Solution is: ) D) (F)eEn .z (Kt O
V720 { k(@ t)} nk(ﬂ)e_'E ARk )

Lets see if we can find a solution under time-reversal (i.e. when tis replaced by —f):
2y2 2 F.—t rF—t
IV v(E)-i- 6 V) % (7 t) 'h "“(’ )
2m 4am3c k(r t) n,k (" t)
The above does not look like a Schrodinger equation so we complex conjugate it:

s RN SPN VR i O ot o

d it still does not look like the original Schrodinger equation!

—\ _—iE,
'//n,l?,;((r)e L n,z(
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

Av = Av
One can always perform a unitary transformation with matrix T and obtain:
TAT 'Tv = ATv B=TAT
=>Bu=Au u=Tv

So try a transformation with the unitary matrix— ié‘-ywith the equation:
A vt Rt

¢ ,-m{_ e S )xv]} +,,,y)(_ ,,,y{;* il g] -2 ’“y)[;*ni 4 :ﬂ
- o oo S 2

The above equation now looks like the time-dependent Schrodinger equation

—
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Appendix: Spin-Orbit Interaction and Time Reversal Symmetry

Summary:

Corresponding to the Bloch state:

e @8] e, ;@ ek
Vni,,(Frt)= |:'Bn,l? , t)} = s E(F)e-iE,,,Z(E)t

with energy:

En, (k)
the time-reversed Bloch state is:

B Et)] [~ Pl o
o)

)e—iE,,,x(I?)t

=¥k,

nx
_ \A—iEn, 4
— = ) ~ _ ~ F
a *n,E (r,—t) a *n . (F)e_’E"'Z( )t W"!_ks_l( )e

and the time-reversed state has the same energy as the original state:

En,—z(‘ R)= En,z(E)

—
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Appendix: Crystal Inversion Symmetry and Time Reversal Symmetry

Time reversal symmetry implies:

En,—l(_ E)= En,;((ﬂ)

Inversion symmetry implies:

En,, (_ R) = En,z(-)

In crystals which have inversion and time reversal symmetries the above two imply:
En_, (E): E,, (R) —> There is spin degeneracy!

In crystals which do not have inversion symmetry the above two do not guarantee spin

degeneracy. In general:

E,,,_Z(k)# En,x(ﬂ) —> Bands with different spins
can have different energy
dispersion relations

—
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Appendix: Crystal Inversion Symmetry and Time Reversal Symmetry

Cartoon (and much exaggerated) sketches of the conduction bands of Ge and GaAs
are shown below:

E E

Ge GaAs

En,—z(E)= En,z(q) En,—z(k)** En,x(q)

—
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Handout on

Crystal Symmetries and Energy Bands

In this lecture you will learn:

* The relationship between symmetries and
energy bands in the absence of spin-orbit
coupling

* The relationship between symmetries and
energy bands in the presence of spin-orbit
coupling

—
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Symmetry and Energy Bands

The crystal potential V/(F) generally has certain other
symmetries in addition to the lattice translation symmetry:

V(F +R)=V(F)

For example, the 2D potential of a square atomic lattice, as
shown, has the following symmetries:

a) Symmetry under rotations by 90, 180, and 270 degrees
b) Symmetry under reflections w.r.t. x-axis and y-axis
c) Symmetry under reflections w.r.t. the two diagonals

r'=Sr -
. r
Let S be the operator (in matrix representation) for any one >
of these symmetry operations then: .
S = rotation by 90°
=8
= V($F)=V(7)

—
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Crystal Point-Group Symmetry
Point-Group Symmetry
The point group symmetry operation of a lattice are all those

operations that leave the lattice unchanged and at least one
point of the lattice remains unmoved under the operation

Point group symmetry operations can include:

i) Rotations (w.r.t. to axes of rotation)
ii) Reflections (across lines or planes)
iii) Inversions (w.r.t. to a point)

Let S be the operator for a point-group symmetry F'= SF
operation, such that:

r

V(§F)=Vv(F)

The operator Sis unitary:

8T = §-1 = unitary

$ = rgtation by 90°

—
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Crystal Point-Group Symmetry and Energy Bands
[ ] [ ]

[ ]
Let S be the operator for a point-group symmetry
operation, such that:
r'=8§r {§T =87 = unitary ° ° °
= V($§7)=V(F) a
[ ] [ ] [ ]
Suppose one has solved the Shrodinger equation and obtained —
the energy and wavefunction of a Bloch State ¥, ¢ (l' a
[ 2292
n°vVs ~ ~ P —
Lo V0 i 0)= £l
Now replace r by S§r everywhere in the Schrodinger equation:
_ 2 2
Vé. =V
h2vz, ~ “ . n Sr r
S — =\ R —
Vs V(Sr)l Vi (87)=EnK)v, s (67) — Laplacian is
L invariant
n?vz s . A
=\ 2m +V(I‘) V’n,E(sr)= En( )V/n,l?(sr)

—
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Crystal Point-Group Symmetry and Energy Bands
2g2 R R ~ ] 2.2 R
Y +V(SF)} Vo i (67)= Ea(K)v, £ (67)= {- ~ +V(F)} Vi (87)= En(

The above equation says that the function y/n,,;(-§7') is also a Bloch state with the
same energy as ¥, E(F) (we have found a new eigenfunction!)

The question is if we really have found a new eigenfunction or not, and if so what is
the wavevector of this new eigenfunction

We know that Bloch functions have the property that: Ynk (f + R)= e k.R l//,,,,;(f')

Sowetry thison y . (§F):

Ynk (3(7' +R ))= Vi (§F + §§) ——> = SRis also a lattice vector
Sk (ar)- ol R R, (e | K(ER)-(5R)A

V’n,E( F) is a Bloch function with wavevector $~'k and energy E, (E)

—
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Crystal Point-Group Symmetry and Energy Bands
So we finally have for the symmetry operation S:
=,k (87)=v, 5% (F)

We also know that the eigenenergy of ¥, -1 (F)is E,,(ﬂ)
Therefore: ’

E,(§7'%)=E,(K)
Or, equivalently:
E, (‘§E)= En(a)

Important Lessons: \

1) If Sisa symmetry of the potential such that in real-space we have:
v($7)=Vv(7)
then the energy bands also enjoy the symmetry of the potential such that in k-space:
E,($k)=E, (k)

2) Degeneracies in the energy bands can therefore arise from crystal point-group
symmetries!

—
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Time Reversal Symmetry and Energy Bands

Suppose we have solved the time dependent Schrodinger and obtained the Bloch
state ¥/ E(F) with energy E,, (k) :

- n*v? al/’n,ﬁ(f’t)
2m

ot
After plugging the solution in the time-dependent equation, we get:

E,(k)

) . —iEnlk)
Voi(F)=v, ;(Fle 7

+v(f)} v gEt)=in

VE ) )= E0 )

If we take the complex conjugate of the above equation, we get:

+V(F) v o (F) = En(K)w, 4 (F)

We have found another Bloch function, i.e.¥p k (f) , with the same energy as ¥, R(F)

Question: What is the physical significance of the state Ynk (f) ?
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Time Reversal Symmetry and Energy Bands
Suppose we have solved the time dependent Schrodinger and obtained the Bloch

state y/nlk (r) with energy E, (k) :
Enlk)

- oy =i t
Yn,k (I',t) = V/n,E(r) e 7

n2y2
" 2m

i ow, x(F,t
V() v s (7 0) =i "’"gt( )

Lets see if we can find a solution under time-reversal (i.e. when tis replaced by —f):

[ n2v2 | oy, x(F:t)
ot

V) |y 7o) =i

= -

The above does not look like a Schrodinger equation so we complex conjugate it:
a '/In’k (F’_t)
ot

This means that l//;’,; (7‘ ,—t) is the time-reversed state corresponding to the state ¥, ¢ (7,

= |-

om +V(F) |y, g (F-t)=in

-iﬂ‘at 2y2 . o
VoiFt)=v,i(Fe " {‘ o TV )} Vi (F)=Enlk)y, £(F)

e function l//:,’,; (F) is the time-reversed Bloch state corresponding to v, E(F)

—
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Time Reversal Symmetry and Energy Bands

V00 £ 0

We have found another Bloch function, i.e.¥p k (F) , with the same energy as ¥/, ,;(F)

The question is if we really have found a new eigenfunction or not, and if so what is
the wavevector of this new eigenfunction

We know that Bloch functions have the property that: V/,,,,;(f + R’)= e k-R V’n,E(F)
So we try this on l//;’,; (7):

R 2 ) I ) R
= l//;’,; (F) is a Bloch function with wavevector —k and energy En(ﬂ)

= v ;(F)=v,i(F) and E,(-K)=E,(K)

Important Lesson: ~ ~
Time reversal symmetry implies that En(— k )= E,,( ) even if the crystal lacks
spatial inversion symmetry (e.g. GaAs, InP, etc)

N i

—
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Spin-Orbit Interaction in Solids

An electron moving in an electric field sees an effective magnetic field given by:

_ ExP { The additional factor

Besr = 2 of 2 is coming from
2mc Thomas precession

The electron has a magnetic moment /i related to its spin angular momentum S by:

fi=-g*t 26 M, O B

2 a s aoa aoa . 01 R 0 —i . 10
O'=O'XX+O'yy+O'ZZ Oy = 10 o'y= i 0 G, = 0 -1

The interaction between the electron spin and the effective magnetic field adds a
new term to the Hamiltonian:

A _ 5 = - 1 VV(I':) 2 nooa [ - 3]
H., = —ji.B.ff = ugo.Bossr = ugo . xP |= o.|[VVIF)xP
so H-Deff = HBO-Deff = KB 2 c2|: e i| 4m2c? ()

—
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Spin-Orbit Interaction and Bloch Functions

In the absence of spin-orbit interaction we had:
HOy/n,R (F) = En (k) V/n,R (F)

{_th?Jrv(f)} Vo i ()= En®)v, 7)

In the presence of spin-orbit coupling the Hamiltonian becomes:

H=H,+Hg,
a 5 2 a A —
Ago = #é. Fv()<p]- —i‘“jﬁé [oviF)xv,]

Since the Hamiltonian is now spin-dependent, pure spin-up or pure spin-down states
are no longer the eigenstates of the Hamiltonian

The eigenstates can be written most generally as a superposition of up and down spin

states, or:
% =Quantum number for the two

[ank(F B, ;
Ynk,z (F)= |:ﬂ:: (F):| =0,k (’)‘T> +B.k (r)‘¢> spin degrees of freedom, usually
’ taken to be +1 or -1
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Spin-Orbit Interaction and Bloch Functions

o) enstel e

e RO Y AR | R

2m 4m“c

For each wavevector in the FBZ, and for each band index, one will obtain two
solutions of the above equation

We label one as y = +1 and the other with 7 = -1 and in general E, -z (k);e E, x(l?)

These two solutions will correspond to spins pointing in two different directions
(usually collinear and opposite directions). Let these directions be specified by A at

the location r:

Qi

ﬁ Wn,l?,;((r‘) =+1 Wn,R,x(F)

Ay, )=y, (F)

Q»

—
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Spin-Orbit Interaction and Lattice Symmetries
In the presence of spin-orbit interaction we have the Schrodinger equation:

[ttt o o) Y o] s 20

Lattice Translation Symmetry:

- %n k (F + f‘,) ei‘;.kan,ﬁ' (F) ik.R =
Wn,l?,l (r M R)= |:ﬂn,k (F + f‘"):| = JikR n,k(ﬁ) =e " R'/,n,kyl(r)

Rotation Symmetry:

Let $ bean operator belonging to the rotation subgroup of the crystal point-group,
such that:

V(§F)= V(F) {.§T =$§~'= unitary

(The case of inversion symmetry will be treated separately)
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Spin-Orbit Interaction and Rotation Symmetry

Suppose we have found the solution to the Schrodinger equation:

(5 s o o ][0 e 05

And the solution is:
nas®=[a] = el

We replace 7 by Sr everywhere in the Schrodinger equation:

{ ZZVng v($F) i ’jzczé [V, v(SF) vs,]H;::g ):|=En LK) ;::E;ﬂ
[ v s“[va(f)xvf]}{;:ﬁ;ﬂ:E,,Z(—){;:ﬁgﬁgﬂ

—
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Spin-Orbit Interaction and Rotation Symmetry

RS e T

2m 4m

\
—

The above equation does not look like the Schrodinger equation!

We define a unitary spin rotation operator R'? that operates in the Hilbert space of

spins and rotates spin states in the sense of the operator S S

Consider a spin vector pointing in the 1 direction:

il
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Spin-Orbit Interaction and Point-Group Symmetry
Start from:
n?v2 "2 . oa 2 k(SF) _ i ( )
{ sz +V(I') am2c? o. S[V V(I')XV }|:ﬂ: k(sr)i| =E, ( )|:ﬂn k(SF)

Introduce spin rotation operator R corresponding to the rotation generated by
the matrix S:

A { VL (e 4,:202 G s[va(,)xvf]}ks@{;n,g (s;ﬂ e, ) ,Qgh H
(o v bt e e etoms o

The above equation shows that the new state:

s

oy i (F)
satisfies the Schrodinger equation and has the same energy as the state: { "’k(-)}

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University



Spin-Orbit Interaction and Point-Group Symmetry

R5Y| “nk ((S(F+R) _ kSR @, 4 (87) _ SRR pot o, 2(87)
$ 15,586 +R))|” s ﬂ #87)] S| Bri(r)
The new state is a Bloch state with wavevector S‘1k

Summary: \

If S isan operator for a point-group symmetry operation then the two states given by:

a2

This represents a rotated (in
.§F) space) version of the original
—> J Bloch state. Even the spin is
:] rotated appropriately by the
spin rotation operator.
have the same energy:

En,z'(é_%): En,;:(’;)
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Spin-Orbit Interaction and Inversion Symmetry

Suppose the crystal potential has inversion symmetry:

V(=7)=V(F)

Suppose we have found the solution to the Schrodinger equation:
{_ V)i, b 6. [T Vv, ]}{Z'k‘gﬂ - En,l(l?){;:;gﬂ
And the solution is:
Vi, F)= {;::Eg} & En,lk)
We replace 7 by — F everywhere in the Schrodinger equation:
ot avten-i sl Ao ) e T, 0 e
o (o ve)-1 o ble R ) A )
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Spin-Orbit Interaction and Inversion Symmetry
n2v2 h2 2, F)] [ @5 (=F)
{ 2m —+ V(r)—l m c O' [V V( )XV ]}|:ﬂn’k(— ’__)i| = E"'l(k)|:ﬂn’ﬁ(—F)
an,E(— F)i|

The above equation shows that the new state: { ﬂ(_ f)
n,k )
satisfies the Schrodinger equation and has the same energy as the state: LB ( )i|
oy g~ (F+R)) (m[ n,ﬁ(—f)}
e —
P +R)) Foi(-7)

the new state is a Bloch state with wavevector — k

a, k(- f)}

In most cases, the new state: ’ _
n ;;(— r)

Since:

a, i (F )}

has the same spin direction as the state: [,B

0 we can write: Yn-ky (F) = [79"’2 E: i-')i|
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Spin-Orbit Interaction and Inversion Symmetry

Summary:

If the crystal potential has inversion symmetry then the two states given by:
() (-F)
= n,k . a, g\=r
Vi AF)= = F)=| ™ _
n,k,z( ) |:'3n,l?(r)i| '/’n, ,Z( ) |:ﬂn,l? (_r i|
have the same energy:

En,z(_ E)= En,z(ﬂ)

N

—
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Spin-Orbit Interaction and Time Reversal Symmetry
Consider the Bloch function:

l//n,l?,l (F) = [Z:,k g)i| =k (F)‘ T> + ﬂn,l? (F)‘ J’>

Suppose the Bloch function corresponds to the spin pointing in the direction of the
unit vector i at the location F:

an,E(F)

A A — A A an E (F) —
Ny _; (F)=a.n 7", |=+1 N|=Hlw iz (F
G '/’n,kyl( )=0 |:ﬂn,l? (r)i| |:ﬂn,l? (r)i| '/’n,k,l( )
What if we want the state with the opposite spin at the same location?

The answer is: 3 i _B *n P (F)
16y Vi O)=| e
niox a*, i (F)
Proof:
i, v, O--i-6*hs, v, O
—-il6,6,6%h6,6,0, v, (P =-il6,0v, ¢ (P
sy vy O = AL iy 1 )
{6=6,%+6,7+6,2 = 6*=6,%-6,7+6,2#6 |
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Spin-Orbit Interaction and Time Reversal Symmetry
In the presence of spin-orbit interaction we have the Schrodinger equation:

{_ h;:’ +V(F)- i‘“:,:czé vE)xe H;:gﬂ _ E,,,Z(I?){Z::i gﬂ

a, :(F -
Suppose we have solved it and found the solution: Wn,l?,l (i-’) — |: n,k( )i| o En,;(( )

ﬂn,l? (F)

We complex conjugate it:
nev: o on? ., A ek )] [a*,k (F)
{_Zm+v(r)+’4mz’c20 .[VV(r)xV]}{ﬂ*nE(F) —En,z( ) pr (7

It does not look like the original Schrodinger equation!

Note that:

O=0xX+6,y+6,2

=0 =6xX-6yy+6,2#C

—
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Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

Av = v
One can always perform a unitary transformation with matrix T and obtain:
TAT YTv =aTv B=TAT
=Bu=4u u=Tv

So try a transformation with the unitary matrix — ié"y with the equation:

Cio -2 cveyei 2 vleolfois, Yo [ o4 0] a5t )
:{_h:’V'1$+V(r)—l e v )xv}[ nk(g)} . (*)[_ﬂ*":‘(g)}
*nk (f)}

We have found a new solution: _
I: a*n k (r)

a i (F
P n,k
with the same energy E k) as the original solution: ¥ (r) mr
n,z( ) nK.xy ﬂnk(’)

stion: What is the physical significance of the new solution?
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Spin-Orbit Interaction and Time Reversal Symmetry
Under lattice translation we get for the new solution:

-8 F+R)] ok R[ 7Bk ()
a* i (r+R) a*,k @)
So the new solution is a Bloch state with wavevector — k
)= -B* i (F)
Yn-k20)=| o "o (F)
Note that the new solution found can also be written as:
"  [-B*,(F)
AR P _
But as shown earlier, the above state has spin opposite to the state WH,E,Z (f) = |:ﬂn’lf (F)
n,k

Therefore, the new solution is a Bloch state Wn,—l?,—;: (7’) ,i.e.:

VnimyF) =iy v* i, (F)= {_aﬂ**”'}f(g)}

And we have also found that its energy is the same as that of the state v/, ¢ x(F):

En,—x(‘ E)= En,z(‘;)

—
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Spin-Orbit Interaction and Time Reversal Symmetry
In the presence of spin-orbit interaction we have the time-dependent Schrodinger

T e 2 e st
@ t)} Pl 50 )

2m
Vi, (Frt)= { (7.1) (e o (k)

Solution is:
Lets see if we can find a solution under time-reversal (i.e. when tis replaced by —f):
2y2 2 F—t F—t
IV v(E)-i- 6 o) %7 t) 'h "“(’ )
2m 4am2c k(r t) n,k (" t)
The above does not look like a Schrodinger equation so we complex conjugate it:

(25 cvyr 2 vl 62 o)

d it still does not look like the original Schrodinger equation!

—\ _—iE,
'//n,l?,;((r)e L n,z(
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Spin-Orbit Interaction and Time Reversal Symmetry
Given an eigenvalue matrix equation:

Av = Av
One can always perform a unitary transformation with matrix T and obtain:
TAT 'Tv = ATv B=TAT
=>Bu=Au u=Tv

So try a transformation with the unitary matrix— ié‘-ywith the equation:
A vt Rt

¢ ,-m{_ e S )xv]} +,,,y)(_ ,,,y{;* il g] -2 ’“y)[;*ni 4 :ﬂ
- o oo S 2

The above equation now looks like the time-dependent Schrodinger equation

—
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Spin-Orbit Interaction and Time Reversal Symmetry

Summary:

Corresponding to the Bloch state:

e @8] e, ;@ ek
Vni,,(Frt)= |:'Bn,l? , t)} = s E(F)e-iE,,,Z(E)t

with energy:

En, (k)
the time-reversed Bloch state is:

B Et)] [~ Pl o
o)

)e—iE,,,x(I?)t

=¥k,

nx
_ \A—iEn, 4
— = ) ~ _ ~ F
a *n,E (r,—t) a *n . (F)e_’E"'Z( )t W"!_ks_l( )e

and the time-reversed state has the same energy as the original state:

En,—z(‘ R)= En,z(E)

—
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Crystal Inversion Symmetry and Time Reversal Symmetry

Time reversal symmetry implies:

En,—l(_ E)= En,;((ﬂ)

Inversion symmetry implies:

En,, (_ R) = En,x(-)

In crystals which have inversion and time reversal symmetries the above two imply:
En_, (E): E,, (R) —> There is spin degeneracy!

In crystals which do not have inversion symmetry the above two do not guarantee spin

degeneracy. In general:

E,,,_Z(k)# En,x(ﬂ) —> Bands with different spins
can have different energy
dispersion relations

—
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Crystal Inversion Symmetry and Time Reversal Symmetry

Cartoon (and much exaggerated) sketches of the conduction bands of Ge and GaAs
are shown below:

E E

£ (k) En,, ()

E, (k) oy ()

Ge GaAs

En,—z(E)= En,z(q) En,—z(k)** En,x(q)

—
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Handout 13

Properties of Electrons in Energy Bands

In this lecture you will learn:

* Properties of Bloch functions

* Average momentum and velocity of electrons in energy bands
* Energy band dispersion near band extrema

« Effective mass tensor

¢ Crystal momentum

—
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Bloch Functions: A Review

1) The quantum states of an electron in a crystal are given by Bloch functions
that obey the Schrodinger equation:

Ay, i (F)=E(K)p, (F)
where the wavevector K is confined to the FBZ and “n” is the band index

2) Under a lattice translation, Bloch functions obey the relation:
P ik.R =
Voil+R)=e'* Ry, (7)

3) Bloch functions can be written as the product of a plane wave times a lattice
periodic function: B
. ei k.r .
V/,,,R(’) = N "n,k(’)
4) Bloch function of wavevector k can be written as a superposition of plane
waves with wavevectors that differ from k by reciprocal lattice vectors:

y/n,E(F) = ch,l? (é!) \/g ei (E+éj)‘ ’
J

—
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Bloch Functions: Orthogonality and Completeness

Orthogonality:
Bloch functions are eigenstates of a Hermitian operator and therefore must be
orthogonal. In “d ” dimensions:
[ d9% v nik(P)y, (F)=6; o & . :
’ m,k k,k “n,m Both expression valid
L depending upon
7§d(k - k') Sn.m context

Completeness:
Bloch functions for ALL wavevectors in the FBZ and for ALL energy band satisfy
the following completeness relation in “d ” dimensions:

L3y )y niF)=Z V| (;’)“d

Vo k(O v k()= 697 -F)

—
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Another Schrodinger-like Equation for Bloch Functions

The periodic part of a Bloch function satisfies a Schrodinger-like equation:

Ay, i (F)=Enk)y, ;(F)

:{5:1+V( )JW k(r) E ( )Wnk(r)
- eiE'F P + hk +V(I:':) un,‘}(F)=En(R) eiE.Fu _(i:) —

n,k

N (M):v(?) u, ¢ (F) = En(k)u, £ ()

2m
P2 P _ %% (- " g .
Result: = [2m+ m hk‘l‘ﬂ"‘ V(")] “n,k(") = En(k)un,l?(r)

l Where the following two relations ﬁ eiE . f(f') —el ik.
have been used:

B+ nk)f()
P2 oik.7 f(F)=e ik. F( hkr f(r)

—
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Bloch Functions and Electron Momentum

* For an electron with wavefunction given by a plane wave:
= 1 k.7
(r)=.,—e""
#(r) \ﬂ
the quantity 71k is the momentum of the electron
* A plane wave is an eigenfunction of the momentum operator with eigenvalue hk :
LY _ h - - .
P ¢(F)= 7V ¢ (F) = nk ¢ (F)
* A Bloch function is a superposition of plane waves of different wavevectors:
_ =\ [1 i(keG;).7
Wn,ﬁ(r)zz_cn,E(Gf)\/;e l)
J
So clearly it is not an eigenfunction of the momentum operator (i.e. it has no well

defined momentum). So what exactly is the significance of the wavevector Kk that
labels a Bloch function?

* As you will see, even the average momentum of an electron in a Bloch state is
NOT given by 7k :

= ~ * o h - .
<'/’n,;; P‘V/,,J;>=I do% y n,k(f)7V W i (F) = 1k
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Average Momentum and Velocity of Bloch States

We need to find the average momentum and average velocity of an electron in a
Bloch state:

<Wn,E ‘ﬁ‘y/n,l?> =7 \7,,(k)= <Wn,E ‘%‘Wn,l?> =7

Start from a very different point:

Suppose we have solved the Schrodinger-like equation for a particular wavevector k:
P2 P . K2 ) R
omtm hk + om V(r) ”n,E(’) = E,,(k) un,,;(r)

The “Hamiltonian” is:

p2 B 522 .
=P—+%.hk+%+v(”)

Suppose now we want to solve it again for a neighboring wavevector kK+Ak:

2, = 2(i . AL . L
;—m+%. h(E+ AE)+ﬂk2-:n—Akf+ V(T') Uy koai(F) = En(‘“‘Ak) Up frai (7)

—
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Average Momentum and Velocity of Bloch States
The new “Hamiltonian” is:

; P2 P n2(k+ Ak} (e
ponp =a—+—.hlk+Ak)J+ ———+VI\r
k+Ak 2m m ( ) 2m ()
= 2(0k AL 2
=HE+£hAR+h 2k2Ak+Ak =HR+AHR
C m Treat this part as a perturbation

~ - to the old “Hamiltonian”

Using concepts from time-independent perturbation theory, the first order correction
to the energy eigenvalue would be:

E, (K + AK)- E, (k) ~ <un,‘; ‘AFIE‘un,E>

As written, the above expression is approximate but becomes exact in the limit Ak =0

lim Ak > 0: Ep(Kk+Ak)-Eq(k)=(u, ;

E‘“n,k>

= AK.V.E (E)=<u . ﬁ

un,E>

1>

- 7V E P + hk

—
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Average Momentum and Velocity of Bloch States

(Contd...)
:%V,; Eqk)=[d?F e ®-Te-T u',k(F) ﬁ;hk up 5 (F)
- %VE E,(k)=1d%F e Ty nk(r):e i (F)
=1V Eq(K)=[a%F v nk<r)f’, i)
B L

= The average momentum of an electron in a Bloch state is:
m —
< W=7 Vi A

= The average velocity of an electron in a Bloch state is:

0al)= V|2 ) =

n Vi E, ( )
S—
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Average Momentum and Velocity of Bloch States: 1D Example

The average velocity of an electron in a Bloch state is given
by:

_ =y 1 -

Vn(k)= %VE En(k)

Recall from E&M theory (ECE303) that the group velocity of a
electric field wavepacket made of plane waves:

ko +Ak , .
EF6)=% | 9K A(k)elkx g1l
ko—Ak 270
o

da(k)
g(ko) = 7

is given by:

k=ko

Similarly, the “group velocity” of an electron wavepacket
made up of Bloch states from the n-th band:

Energy

k°+Ak dk ) En(k)t : :
vix,t)= | ?A(k) Vnk(x)e " _r z
ko—Ak <70 a i a
would be given by:
v, (ko) = 1dE, (k) 2Ak

“hodk e,
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Energy Bands of Si, Ge, and GaAs for Reference

6 6 6
*E Si\ S_Gc S?‘xaAs\/
4 4 4
3 3+ 3k
~ 2 ~ 2
> > s 2P S
e E ) v -
W I ? < W e/ i ) = 1
| Eg | o - E. K Eg
= —t _r Q) ?" E, & o1t
-1k -1 Yy
-2 -2F 2
-3 -3 =5k
-4 -4 »
L (1) r (100) X L (1) r (100 X L (1) T (100) X

S—
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Energy Band Dispersion Near Band Extrema
Most of the times, it is useful to approximate the energy band dispersion near the
band extrema (e.g. at bottom of the conduction band or at the top of the valence band)

Suppose the n-th band has an extrema at k= Eo . Therefore:

6
Vi EnlK)y g, =0 I Ge
- P P 4
N dEq(k)  _dEn(k) _dE.k) _ o
dk,, ‘E=Eo dky o Ak e 3|
Now for k near Eo one can Taylor expand the energy % 2
dispersion relation: ;: 1= { \

R R . k) ° ! Eg 5
En(k)=En(ko)+ ) (k_k fi Z 90 t &
.i=xl}'vz d J -1}

2 -
s (k) PE) ) o
r=xy,z dk,dkj J
J=Xx,y,z -3}
= AT - .\ d’E (E) For o aom x
=E += k - n k—k,). +.......
n( ) n( 0) 2 r=xz,:y,z( O)r dkrdkj ( O)_,
j=X,y,Z
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Effective Mass Tensor \
. 1 .\ d’E,lk -
E (K)=En(ko)+> = (k-k,), ol (S -
2, xy.z dk,dkj oo
j=X,y,Z k=k° 6
-~ - h? P A (i = -
E,(K)=E, o)+? > (k=Ko), M7} (K=Ko);+ o 51 Ge
r.f’;’y’i Parabolic4
1=xY approximatjon
Where the elements of the matrix M~ are defined as: B
1 d%E,(k 2 1 ™~
rji=.2 ] S 2k
n¢ dk,.dk i ik, & . 51(_. gc
M s called the “effective mass” tensor. M1 is the -1
“inverse effective mass” tensor LF
Note that M-! is symmetric: M,‘} = MI‘: 3

And so M is also symmetric: M, ; = M;,

“Cmn o x

S—
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Effective Mass Tensor and Electron Average Velocity
The energy band dispersion near a band extremum (e.g. at bottom of the conduction
band or at the top of the valence band) can be written as:

~ N\ K2 B - )
E, (k)= E,,(ko)+% > (k-Ko), M7} (K=Ko);+ e
r=x,y,z
I=x.y.z Equivalent
hz kx - kox wa_y_s of
or: Ep(k)= Enlko)+ % [l —kox ky—koy ke —kor M| Ky ~ ko, uriting the
k; — ko, thing
2
Or En(E)=En(ao)+%(a_k’o)T M_1 (a_Eo) )
Since the average velocity of an electron in a Bloch state is given by:
Vn(‘;)z %VE En(R)
Near a band extremum, we have:
h (kx kOX)

v, (K)=m" 10 (k-k,) or: \7,,(‘)=M—‘h(ky:koy) /
h(kz_koz)

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Example: Conduction Band of GaAs
Consider the conduction band of GaAs near the band 6
bottom at the I'-point: /
ko=0 E/k,=0)=E, Sl
1m, 0 0 4
-1
M~7= 0 1Ym, 0 Isotropic! 3 /\
0 0 1/m L
€ Parabolic s . [ — —E.
This implies the energy dispersion relation is: approximation = - £ :
= G
2,2 2 2 I
~ he\ks + k5 + k n2K2 & . ;
Ec(k)=Ec+—(x prk)_ AL 0 E,
2m, 2m, s
The dispersion looks like that of a free-electron with a -2
mass equal to “m,” instead of m. In GaAs, m,=.067 m
._3 -

The average momentum and velocity of an electron in a Bloch 4
state near the conduction band bottom is given by:

L (111 r (100 X

<V’c,l? ‘ﬁ' ‘V/c,:?> = %VE Ec(l?)= [nZ)hI? VC(I?)= %VE Ec(R)= ZT"

e

S—
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Example: Valence Band of GaAs — Heavy Hole Band

Consider the top most valence band (hh-band) of GaAs
near the band maximum at the I'-point:

k,=0 Epn(ko =0)=E,
- 1/mhh 0 0
w1 = 0 —1mpy, 0 Isotropic!
0 0 - 1/mhh
This implies:
_ hz(k,z( + k;‘; + kf) 72K2
Enn(K)=E, = V"t <, -
Mpp Mpyp

The dispersion looks like that of a free-electron with a
mass equal to “-my,” instead of m. In GaAs, m,, =.5m

The average velocity of an electron in a Bloch state near the
valence band maximum is given by:

o1 - hk

Vpn\k)= =V Epplk )= —

hh( ) n k hh( ) mp,

E-E, (V)

—= | =5

-4
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Example: Valence Band of GaAs — Light Hole Band

Now consider the top most valence band (€h-band) of
GaAs near the band maximum at the I'-point:

k,=0 Enlk, =0)=E,
- 1/mu, 0 0
w1 = 0 —1/m,, 0 Isotropic!
0 0 -1my,
This implies:

(a) hz(k,": + k;‘; + kf) 2k
Epp\k =Ev_2—=Ev_27
mp myp

The dispersion looks like that of a free-electron with a
mass equal to “-myg,” instead of m. In GaAs, mg, =.076 m

The average velocity of an electron in a Bloch state near the
valence band maximum is given by:

vin(K)= %VR En(K)=-15

E-E, (eV)

6

A/
I
N
1 Eg

ob—1t

-4
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L (111 r (100 X

L (1) r (100 X

NG




Example: Conduction Band of Silicon -1
In Silicon there are six conduction band minima that occur

il !
along the six I'-X directions. For the one that occurs along Si \
the I'-X(2n/a,0,0) direction: 4
~ 2 P 3
m—p K, =0.85 [—” ,o,o) Ec(ko)= Ec
a
4
Eg
¥

1/m, 0 0 Not isotropic! E s E.
53
-1 |
M~7=1 0 Ym, 0 me=0.92m “ 0 —E
0 0 1m, mg=0.19m gk
This implies: -2 -
. 2(k, - n*(ky, -k 2k =1
Ec(k)=Ec+h (kx kox)2 + ( y oy)2+h (kz koz)2
2m, 2m, 2m, ram o x

The average velocity of an electron in a Bloch state near the
conduction band bottom is given by:

Vc(’?)=%vk Eq(k)

- h(kx_kox)+h (ky _kOY)+h (kz_koz)
m, my my
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Example: Conduction Band of Silicon -1l

Now we look at the conduction band minimum that occurs sk \ ‘
along the I'-X(0,2n/a,0) direction: 2
4
- 2z -
K, =0.85 (o,?,o) E.(ko)=E. sk
E

1/m 0 0 Not isotropic! 3, b : }
-1 ‘ LT} Eg
M = 0 1/m( 0 m€= 092 m L L R E,
0 0 Um m;=0.19 m i
This implies: o |-
D 2(k,, — n2(k, -k 20, _ N A
Ec(k)=Ec+h (kx kox)2 + ( y oy)2 +h (kz koz)z
2m 2m, 2my “ram o x

The average velocity of an electron in a Bloch state near the
conduction band bottom is given by:

Vc(‘?)=%vk Ec(k)

_ h(kx_kox)+h (ky _koy)+h (kz = koz)
my m, mq

S—
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Example: Conduction Band of Germanium - |
6

In germanium there are eight conduction band minima sl
that occur at the L-points. For the one that occurs at the Ge
L(x/a, /a, ©/a) point: 4
P T T - 3
— ko=[;’;’;) Ec(Ko)= Ec o o )Q
3; l b
1/3m, +2/3m; 1/3m,-13m; 1/3m,-1/3m; ) 0!'4(_,\ 15
M1 =|Y3m,-13m, 13m,+2/3m, 13m,-1/3m, ! '
1k
1/3m,-13m; 1/3m,-13m, 1/3m,+2/3m;,
LF
Not isotropic! Not even diagonal! -3
my=1.6m -t
i r (100) X
m;=0.08 m ke
Since the inverse effective mass tensor is symmetric (it always A»
is) one can rotate the co-ordinate system such that the inverse ‘ﬂ. w
effective mass tensor is diagonal in the new co-ordinate system "%' 5
(Recall from linear algebra that a symmetric matrix can always ’Q Lo ky ‘

be diagonalized by a rotation of the basis)

XV
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Example: Conduction Band of Germanium - I

Define a new rotated co-ordinate system, call it the primed co- ¢
ordinate system, in which the x’-axis points in the (’;,1,1)/\/5 51 Ge
direction. Co-ordinate rotation is accomplished by a rotation 4
matrix R:
2. 1 (e - 3
E (K)=E,+" (k-k,) . M. (K- K,) - o} )Q
~ 72 T 4 1 a1 . ; 1 EA\ e
= E,( )=Ec+?(k KJ.R'RM'R'R(k-K,) & % A
2 -1
e h P T 1 p1 ”
= E,( )=Ec+?[R (k-K).RM'R.[R(k-K)|  .F
hz T 1 ->r
E L - E n- _'l_kl Ml— kl_ v
= c( ) ct ( 0) ( 0) DA X
M= 0 1Ym, o my=1.6m y
0 0 1/mt mt =0.08 m L
Effective mass along the I'-L direction is m, and in the two L I Ky
directions perpendicular to this direction it is m; Ky z

S—
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Example: Conduction Band of Germanium - Il
6

In the primed (rotated) co-ordinate system, we have at the L-point: p

| Ge
2 4
Ec(l?)= EC +h7 (E'_R'o)r' M'_1 . (E'_R'o) 3
) 2k g 2(j, —k 2k, -k :z‘p
:>Ec(k')=Ec+h (kngZOX)ZJrh ( ;mt °y)2+h (kzzml:M)z;E 'k e E.

The average velocity of an electron in a Bloch state near the .
conduction band bottom is then given by: 2 F

A
\

VoK)= %V;;- E.(k)

- h (klx_k'ox)_l_ h (kly_kio}')_i_ h (klz_k'oz)
m, my my

Smn T oam x

Same procedure can be applied to the conduction band
minima at the other L-points

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Average Momentum and Crystal Momentum

The wavevector k associated with a Bloch state Ynk (f ) is not the momentum of
the electron and it is not even the average momentum of the electron in the Bloch
state

The average momentum of an electron in a Bloch state is given as:

m —~
<Wn,R P Wn,E> = ;VE En(k)
Near a band extrema, assuming:

En(R)- Enlk, )+ (k- K, " (=)

We have for the average momentum:
-1 oo
<l//n,,; y/n,,;> =mm . n(k-k,)

Example: For GaAs conduction band, the average momentum of an electron near the
band bottom equals:

P

<Wn,R P '//n,l?> = [n’::] nk

The quantity 7 K is called the crystal momentum of an electron in an energy band. As
we will see, it satisfies several conservation rules just like the actual momentum does
for a free-electron.

—
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Effective Mass vs Bandgap

Experimental Data ®cds
02 ®AISh AlAs
*InTe,” *GaP
ZnSe
r ® CdSe
3
=
° o1 L CdTe
g K % InP
“GaAs
L GaSb
InAs
0 InSh | : 1 . 1
0 1.0 2.0 3.0
E,
(V)

/

—
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Energy Band Dispersion Near Band Extrema: When Taylor
Expansion Fails

Graphene is a classical example of the case when Taylor expansion fails
So a different strategy is needed near band extrema

L Eo  ~Vopr f(‘?)} {szA(’f)} _ (%) {szAg:)}

Vopr ' (K) E, [

Suppose one is interested in band dispersion near Eo =K= (0,—

Expand the function f(E) near K as follows:
k=K+Ak
f(i(’ - K‘I‘AE): [ei E.I.I1 + ei E.ﬁz + ei E.ﬁ3 ]E=K+AE
/3 .
=i -a [Akx +1Aky]

E(k =K+ AK)= Ey + Vi, [f(k =K+ AK)

V3 2 2

~Ept ) aVpy, Ak +AK]

E(k =K+ AR)~ E, 2 nv [akZ +ak2 v =233VPpr _ 106 s
- ~Ept 2, AK2 = s

ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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Energy Band Dispersion Near Band Extrema

«There are 6 one-third cones sitting inside
the FBZ

= There are 2 full cones sitting inside the

FBZ: one at the K-point and one at the K’-
point j

—
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Energy Band Dispersion in Graphene: Massless Dirac Fermih

[ . 2 2 Conduction band
Ec(k =K+ Ak)z Ep +nv,Aky + Ak, dispersion

k_ K i)~ _ 2 2 Valence band
E,(k =K+AK)~ E, - v, [AK2 + AK? Hence o

The average velocity of an electron in a Bloch state near the
conduction band bottom is then given by:

R ~ Aky X + Ak, y
VoK)= Vi EoK)=v N
Aky X + Ak, y
Note that: |V (k) =V, (k) =v ~10° mis

All electrons in the conduction band (and in the valence
band as well) move with the same speed (i.e. magnitude K
of the velocity) !!

Similarly,
v, (k)= %VE E,(K)=-v

This is similar to how massless particles, such as photons, behave

—
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Handout 14

Statistics of Electrons in Energy Bands

In this lecture you will learn:

-
ECE 407 — Spring 2009 — Farhan Rana — Cornell University

/ Example: Electron Statistics in GaAs - Conduction Band
c /
/N,

onsider the conduction band of GaAs near the band
bottom at the I'-point:
1m, 0 0
M= 0o 1Ym, o0
0 0 1/me

This implies the energy dispersion relation near the
band bottom is:
2,2 2 2 2,2
. n“\ky + k;, + k
Ec(k)= E,. +(x—y2)= E, +ﬁ
2m, 2m,
Suppose we want to find the total number of electrons in
the conduction band:

We can write the following summation:

N=2x ¥ f[k)
kinFBZ

E-E, (eV)

~4

r

(100) X

J
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Example: Electron Statistics in GaAs - Conduction Band
6

N=2x 3 £k N\
kinFBZ RN
Where the Fermi-Dirac distribution function is: e \/\
2 /\ ]
: e
0

- 1 - e~ ]
f.(k)= e {: f(E.(k)- E;) g f_;&_ T
1+ exp — KT Another way of writing it & i E,
We convert the summation into an integral: e
L
3
N=2x 3 fk)=2xv | &K L =r

~ 3 P
KinFBZ FBz (27) 1+ exp E \k)-E¢ D TG00 X
KT
Then we convert the k-space integral into an integral over energy:

.
N=2xv | 3K !

rBz (27)° 1+exp[Ec‘H—EfJ
KT

We need to find the density of states function g (E) for the conduction band and
eed to find the limits of integration

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

=EdE 9. (E)f(E -Ef)

Density of States in Energy Bands

Consider the 1D energy band that results '
from tight binding: E.+ 2Vssa; ______

E(kx)= Es -2Vsss cos(kx a)

Es%' _____
dE . §
= k= 2aV,,, sin(k, a) Eg—2Vggyh--mnn
X |
i — k
We need to find the density of states _r z x
function g,p(E): a a
n/a z/a Es+2Vsss
2x x  saxL [ Mg B 2,700 g
ky inFBZ —-x/a 2z 0 T z Es-2Vsss dE
Es+2Vss,
—>L | gp(E)dE , ,
Es-2Veoy gn(E) | ,
2 1 ‘ ‘
= gip(E) = : :

E

E \/(zvssm-)2 - (E - Es)2

0 T 0
Es-2Vgs, Es Eg+2Vg

—
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Example: Electron Statistics in GaAs - Conduction Band
6

3 ? ~
N=2xV | d k3 L =[dE g.(E)f(E-Ef)  °[ows /
FBz(27) 1 (Ec k —Ef] ?

+exp KT

@ Electrons will only be present near the band bottom

B
Energy dispersion near the band bottom is: Q.b&’so
2(g 2 2 2 2,2
. n“\ky + ki, + k k
E.(k)=E, +(x—y2)= E, +"
2m, 2m,

(parabolic and isotropic)

Since the electrons are likely present near the band bottom, we
can limit the integral over the entire FBZ to an integral in a
spherical region right close to the I'-point:

4z k2

3 dk f(E;(k)-Ey)

d*k | (;
N=2xV | — f.|k)= 2xV |
rBz (27)° c( ) I—point 87
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Example: Electron Statistics in GaAs - Conduction Band

2 6
N=2xV | 4”’; dk f(E.(k)-Ef) s—c,,,,\s\

T'—point O7 sk
Since the Fermi-Dirac distribution will be non-zero only for small B s }/\

values of k, one can safely extend the upper limit of the
integration to infinity:

0 2
N=2xV YK gk f(E,(k)-E;) AL \
0

E-E,(eV)

8>

We know that: 4
hz(k§+k§+kf)_E +h2k2 e
2m, ¢ 2m,

2
2m, and dE _k k dk
hz (E - Ec) dk m,

E (k)=E_+

= k=

We have finally:
@47 k?

N-= 2xv(j) 8,3 dk f(Ec(k)—Ef)=V;j°dE g.(E) f(E- /

c

S—
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Example: Electron Statistics in GaAs - Conduction Band

6
We have finally: N * /
GaAs

47 k2

N=2xV| 8.3 dk f(Ec(k)—Ef)=v°j°dE 9.(E) f(E—-E;) :/A\/}N\
0 8z E.

Where the conduction band density of states function is:

E-E,(eV)

3/2
1 (2m
gc(E)=?( hze) E-E; -1l \

E
gc( ) Lm0 X
E

The density of states function looks like that of a 3D free electron gas except that
the mass is the effective mass m, and the density of states go to zero at the by

dge energy E.

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Example: Electron Statistics in GaAs - Conduction Band

32 N
n= [dE g,(E) f(E-E;) gc(E)=%(2"Ze) E-E, ‘[
Ec 27[‘ h 4

Zal

9.(E)

E-E,(eV)
)

f(E-E;) | _(E-Ey)
! f(E-Ef)~e KT
1 / -1l

E; E, E

If E.—E;>> KT then one may approximate the Fermi-Dirac ST x

function as an exponential:
f(E — Ef) - 1 (E -E¢ )J Maxwell-Boltzman

1+exp(—E;7_ff) - exp(— KT approximation

n= JdE g.(E) (E-E))=N, p(%j

c

3/2
mg KT Effective density of
. N. = 2| Me KT ective density o
Where: c |: 27 12 i| states (units: #/cm?)

S—
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Example: Electron Statistics in GaAs - Valence Band and Holes
* At zero temperature, the valence band is completely filled and ¢

the conduction band is completely empty

"

* At any finite temperature, some electrons near the top of the 3t
valence band will get thermally excited from the valence band and _ , >/11
occupy the conduction band and their density will be given by: 3 k- “Er
= G
E.-E, : t
n= Nc exp — M o0 E
KT >
* The question we ask here is how many empty states are left in -2
the valence band as a result of the electrons being thermally -3
excited. The answer is (assuming the heavy-hole valence band): o
L

2x 3 [1-f(EpmK)-Ef) ]

kinFBZ
* We call this the number of “holes” left behind in the valence
band and the number of these holes is P:

—_—

.
P=2x ¥  1-f(Epm(k)-E;)=2xV | d’k [ 1-F(Epn(K)-E;)

kinFBZ rBz (27)°
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Example: Electron Statistics in GaAs - Valence Band and Hoh

o d*k . - ¢
PV L anp L)) N

o
3 \/\
@ Holes will only be present near the top of the valence band /\

Eq

E-E,(eV)

Eg
Energy dispersion near the top of the valence band is: t
2(, 2 2 2 i ke
h (kx + ky + kz) _ h2k2 parabolic approx. -1 2 /

Epn(K)=Ev - am =B

. . . -4
Since the holes are likely present near the band maximum, we Lamr {100 x

can limit the integral over the entire FBZ to an integral in a
spherical region right close to the I'-point:

4z k?

P=2xV | !

e dk [1-f(Epp(K)- Ef)]
T'—point O7

S—
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Example: Electron Staztistics in GaAs - Valence Band and Hch
P=2xv | K gk [1-f(E,,(K)-E/)] .\

6
T'—point 8z 5 /
ok
values of k, one can safely extend the upper limit of the 3l \/\
AN
1
0

3

Since the Fermi-Dirac distribution will be non-zero only for small
integration to infinity: 3/13
Je.

s
247 k2 & TR
P=2xV£ o dk [ 1= F(Epp (k) - Ef)] o I A
We know that: e
2(,2 , 12 12 2,2 AT
_ n\ky + ki, + k
Ehh(k)=EV— ( x y z)=EV_ Wk P E
2mpy, 2mpy, o oo x
2
_ |2mp, and ﬁ: 1"k dk
=>k= hz (EV_E) dk myp

We have finally:

® 2
P= 2xv14’”§
0o 8z

dk [1-f(Epp(k)- Ef)]

= Vi[vdE gnn(E) [1- f(E-E; )]
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Example: Electron Statistics in GaAs - Valence Band and Hoh

We have finally: 6
© 47 k2 s ‘GBAS\

/
P= 2xV[~"" dk [1—f(Epy(k)-Ey)] oF \/\
0 87 B /\

= ijvdE gnn(E) [1-F(E - Ef)]

—00

E-E,(eV)

o = N W
D
G

Where the heavy hole band density of states function is:

1 (2m,,\*? -
ghh(E)=ﬁ( hh) JE, -E L \

hz
ghh(E) AL oo x
\ i

[
EV
Note that the mass that comes in the density of states is the heavy hole effective

mass My, and the density of states go to zero at the band edge energy E,, and
he density of states increase for smaller energies

S—
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Example: Electron Statistics in GaAs - Valence Band and Holes

E, 1 (2mp\*?
p= [dE gp(E) [1-f(E-Ef)] g,,,,(E)=§( hz"") E, -E

1>//\

1m
=

E-E, (eV)

6
5
4
3k
2
1
0

T
E, Ef E, E
b
If Ef —E, >> KT then one may approximate the Fermi-Dirac
function as an exponential:

1 E;—E
1-f(E-Ef)= —ECEV” exp(—( ';(T )J
1+ exp(i) \
KT
Maxwell-Boltzman

= de gnn(E) [1-F(E-Ef)]= NhhexP[ & -E,) _EV)) approximation for

2+

-3

-4

L (1 r (100 X

_® KT holes
KT 32
Where: Npp =2 % Effective density of
2r h states (units: #/cm?3)
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Example: Electron Statistics in GaAs - Valence Band and Holes
In most semiconductors, the light-hole band is degenerate with the heavy hole
band at the I'-point. So one always needs to include the holes in the I|ght -hole
valence band as well:4

.>//\

Sk
T g Z:Q Ef E
E, Ef E, Ef [
E, E, 0 E,
p= [dE gun(E) [\-F(E-E¢)]+ [dE g,n(E) [1-F(E-Ey)] p
- - -2
E, !
= [dE [gpn(E)+g.n(E)] [1-f(E - Ef)] .
—0 L (1) 1 (1000 X
E, 9v(E)=9g/n(E)+9gnn(E)
= [dE g,(E) [1-f(E-E/)] 1 (am 32
_ h
=N, (Ef _Ev) 2z h
p =N, exp —? y Density
my KT 3/2 32 /3 of states
Where: N, =2 |:2;hzi| and  my, = (mhﬁ, + m(l/r )2 — effective
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(including both heavy and light holes) must be equal:

GaAs
=>p=n ar

Example: Electron Statistics in GaAs — Electrons and Holes \
At any temperature, the total number of electrons and holes /

=N, exp(— %) =N exp[— %J z ;/13 e,

g
i’; = S _f_ -
N, 2E;-E,_ - Ev) ; {
> Voexp ——£&£ V¥ 0 2
N, p[ KT N
E.+E, KT N -2
>E=—C¢"V+——logl
= T2 Q[Nc] =i8
o g x
Because the effective density of states gv(E)

for electrons and holes are not the
same (i.e. N, # N_), the Fermi level at
any finite temperature is not right in the
middle of the bandgap.

9.(E)

1
But at zero temperature, the Fermi-level ' E
is exactly in the middle of the bandgap T
EV Ef Ec

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

w

6
(including both heavy and light holes) must be equal: f\
GaAs
=> p=n=n; at-
where n; is called the intrinsic electron (or hole) density 3

Example: Electron Statistics in GaAs — Electrons and Hole\
At any temperature, the total number of electrons and holes /

S
2

= p=n=n; gﬁ = __gt._
£ oHf
= pn=n? . %
E;-E,) (E.-Ef)\ 2 s
N, ex _(E-E,) "JN ex (—7"‘ 7= n? S
= Ny p( KT c €XP KT i _z_
= N,N, exp(— %J = n,-2 o o ae) x

E,
=,/N,N,
=n exp[ 2KT]

Note that the smaller the bandgap the larger than intrinsic electron (or hole) density

S—
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/ Electron and Hole Pockets in GaAs

» At any non-zero temperature, electrons 6
occupy states in k-space that are located in 5| %

a spherically symmetric distribution around
the T-point
* This distrbution is referred to as the /\ E.

“electron pocket” at the T'-point e A

E-E,(eV)

[l

1
=

1

-3

* At any non-zero temperature, the holes
(heavy and light) also occupy states in k- o o aoo x
space that are located in a spherically

symmetric distribution around the I'-point

* This distribution is referred to as the “hole
pocket” at the I'-point

Qg pocket

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Shape of Fermi Surface/Contour and Mass Tensor: 2D Example

Energy Energy

When the energy dispersion relation is anisotropic, the distribution of carriers in
k-space, and the Fermi surface/contour, are not spherical/circular but become
ellipsoidal/elliptical

—
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Constant Energy Surfaces

Constant energy surfaces are in the reciprocal space and are such that the energy
of every point on the surface is the same.

For example, the conduction band energy dispersion:
2,2
o n‘k
E \k)]=E,+——
c( ) € 2m,
All points in k-space that are equidistant from the origin (I'-point)
have the same energy.
= Constant energy surfaces in 3D are spherical shells, and in 2D
are circles, with the origin as their center.

Equation of a Constant Energy Surface with Energy E,:

2,2
n“k 2 2 2 2m
Ec+2me =E, = kx+ky+kz=h—2(Eo—Ec)
\ )
Y
Equation of a sphere in |2m
k-space of radius = 1 hT(EO - EC)
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Constant Energy Surfaces
- h2K2 hzk;‘: 72K2
Now consider the energy band dispersion: Ec(k)= E.+ X 4+ + z
2my, 2my, 2m,,
Now the equation of a constant energy surface with energy E, is:
2,2 p2p2 .22 2 K2 2
Ec+hk"+ y+hkz=Eo = k—x+—y+k—z=%(Eo—Ec)
2my, 2my, 2m,, \ My, My, My p l
Y

Equation of an ellipsoid in k-space with semi-major
axes given by:

2m 2m 2m
\/ hzxx(Eo_Ec) \/ hzyy(Eo—Ec)J hzzz(Eo_Ec)

Fermi-Surfaces are Examples of Constant
Energy Surfaces:

2,2 2,2 2,2
LALS hk,,+hk,=

Ec +EF
2my, 2my, 2m,,

S—
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Silicon: Electrons in the Conduction Band

In Silicon there are six conduction band minima that occur 6
along the six I'-X directions. These are also referred to as the 5
six valleys. For the one that occurs along the I'-X(27/a,0,0)

. . 4
direction:

=) K, =0.85 (2?” ,o,o) E.(k,)=E, ,

1m, 0 0 Not isotropic! 3z :

1 o 1

M7= 0 Ym; O me=0.92m L,

= O
0 0 1m mg=0.19 m \&Q@ o
This implies: '$°°\ e
is implies: Q‘b‘

2 2(, 2 -3

Ec(R)=Ec+h (kx_kOX)2+h (ky koy)2+h (kZ_koz)2 -4
2m, 2m, 2m,

Expression for the electron density in the valley located at along
the I'-X(2n/a,0,0) direction can be written as:

9K e f)-)

k near k, (Zﬂ' )3

L (1) r (100 X
kz

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Silicon: Electrons in the Conduction Band
6

Define: m m

5
ax = mz(kx_kox) qy = E(ky_koy) 4
m 3
q; = E(kz_koz) o 2
This implies: W 1
2k, kP, by Hoy P 2k
Y (0 s T 9 0 S
2m, 2my 2m, iy
h2q2 -3

E.(g)=E.+ om Dispersion is isotropic in g-space
-4

Therefore, expression for the electron density in the valley
located at along the I'-X(2n/a,0,0) direction can be written as:

d3k

> neir Eo (2”)3 f(Ec (E)_ Ef)

2 -
3
m,mgmy d°q ~
= [——5 2 —= F(E:(q)-E
K m3 ﬁnej.aro(2ﬂ)3 ( c( ) f)

L Qi) r (100 X

S—
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\
-

Silicon: Electrons in the Conduction Band
6

3=

mymm d°g .
—5t2 ] 5 F(Ec(d)-Ey) )
m gnear 0 (271' ) 4
mmim; _T4r q? ’
~ £t 2[=—3-dq f(E;(q)-E;) &g

m 0 87 3

W 1
Total electron density in the conduction band consists of & g

contributions from electron density sitting in all the six
valleys:

m,mm, _©4rq? 2
n=6x [Tt 5% g f(E.(q)-Ef) N
m 0 8z

=n= [dE g.(E) F(E-E)
E

c

1 (2mg\*?
Where: gc(E)=—2 2( hzej JE-E;
z

Density
and: m, =6%3(m,mym,)"® —— of states

effective

mass

L (1) r (100 X

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Silicon: Electrons in the Conduction Band

«© E.-E 6

n= [dE g.(E) f(E—Ef)=Ncexp[—%) s

" m, KT 32 4
Where: Ne=2|-—°—

ere c |: 27 12 } s

And: myg = 6%3(m,mm, )" g’

o 1

Six electron pockets in FBZ: % g

The electron distribution in k-
space in each pocket is not
spherical but ellipsoidal since
the electron masses in different
directions are not the same

l There are six electron pockets Y
in Silicon - one at each of the
valleys (conduction band -3
minima) -4
i }

Si

L (1) r (100) X

S—
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Germanium: Electrons in the Conduction Band

FBZ, so one-half of each
electron pocket is not in the
FBZ and therefore one-half of
the electron distribution in each

E-E,(eV)

L-valley should not be counted
in the sum for calculating the -1
number of electrons:

N=2x ¥ flE(k)-E) -
kinFBZ

6
In germanium there are eight conduction band minima sl
that occur at the L-points \ Ge
The L-point is at the edge of the B

Eg

7

R
\

The other way to look at the problem is to realize that the
other-half of each pocket is also located in the FBZ on the
opposite side — so in reality there are four complete pockets
of electrons in the FBZ

“mn T x

ECE 407 — Spring 2009 — Farhan Rana — Cornell University
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Handout 15

Dynamics of Electrons in Energy Bands

In this lecture you will learn:

* The behavior of electrons in energy bands subjected to uniform
electric fields

* The dynamical equation for the crystal momentum

* The effective mass tensor and inertia of electrons in energy bands
* Examples

* Magnetic fields

* Appendix: Electron dynamics using gauge invariance arguments,
Berry’s phase, and Berry’s curvature

—
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Electron Dynamics in Energy Bands

1) The quantum states of an electron in a crystal are given by Bloch functions
that obey the Schrodinger equation:

Ay, i(F)=Enk)y, i (F)
where the wavevector k is confined to the FBZ and “n” is the band index

2) Under a lattice translation, Bloch functions obey the relation:
P ik.R =
Wn,E(r+R)= e Wn,E(r)

Now we ask the following question: if an external potential is added to the crystal
Hamiltonian,

A +U(F,t)
then what happens? How do the electrons behave? How do we find the new
energies and eigenstates?

The external potential could represent, for example, an applied E-field or an
applied B-field, or an electromagnetic wave (like light)

—
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Periodicity of Energy Bands

Recall from homework that the energy bands are lattice-periodic in the reciprocal
space,

En(Kk+G)=En(K)

When a function in real space is lattice-periodic, we can expand it in a Fourier
series,
iGj.F

VF+R)=V(F) = v(F)=xV(G))e
J

= When a function is lattice-periodic in reciprocal space, we can also expand it in
a Fourier series of the form,

E(k+6)=E,(k) = E,K)= ZJ_:E,,(Rj)eiRi &

- _J
Y

Fourier representation of energy bands

—
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A New Operator - |
Consider the following mathematical identity (Taylor expansion):
1
f(x+a)=f(x)+f(x)a+ Ef"(x) a% + ..
d
a?
=e 9 f(x)
Generalize to 3 dimensions:

f(F+a)=e?V £(F)

Now go back to the relation:

) = En(K)=3E,R)e i

J

E,(k+G)=E,(
and consider the operator:

E,(- W) =3EnR;)e™ Y
J

We apply this operator to a Bloch function from the same band (i.e. the n-th
band) and see what happens:

En(-V)y, i (F)= ;En(fe,-)e'*f Yy, i(F)=7

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University




A New Operator -

R;.V

én(_iV)V’n,E(F)=§En(Rj)e "y, 5 (F)

The result above implies that the action of the operator E',, (=iv) on aBloch function
belonging to the same band (i.e. n-th band) is that of the Hamiltonian!

E,(-)y, i(F)=Ay, :(F)=E,(K)v, ;(F)

This also implies that if we have a superposition of Bloch functions from a single
band then:

H 3 ck)y,;(F=E,(-v) = C(l?)w,,,,;(F)

kinFBZ kinFB
= 3 clk)Eq(k )m(f)
kinFBZ

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

The Case of Uniform Electric Field

Statement of problem: Need to solve,

R . = Energy |
[H+eE.F]W(F,t)=ih7‘9”’;:’t) !

given that at time t = 0 the state of the electron is a Bloch
function with wavevector k,

y(F.t=0)=y, ;(F)

Assumption: Assume that the state at any later time is going
to be a Bloch function or a linear combination of Bloch
functions belonging to the same band (valid for weak E-

Then one can replace the Hamiltonian with E, (- iV),

fields) \
z
a

[

[H+eE r ]y/(r t)=in 6y/(r f)

\ [En(—iV)+eE F ]y,(, t) in ay/(r t)

—
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The Case of Uniform Electric Field
[Eq(-iv)+eE .7 |u(F 6)=in %

Try the following time-dependent solution with a time-dependent energy:
= = i t v — v
y(F,t)=y, ¢ (F)exp —£I(E(t )+eE. r)dt
0
First see how the assumed solution behaves under a lattice translation:

y/(F +R, t) =Vnk (F + f\’) exp{— %E(E(t')+ eE . (F + ﬁ’)) dt'}

= ei(ﬁ_eftj' R )

So the assumed solution looks like a Bloch function with a time dependent k-vector:

- - eE
k(t)=k ———
() h

But we still don’t know what is the time-dependent energy E(t)

—
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The Case of Uniform Electric Field
Take the trial solution and plug it into the equation:

[En(_iV)+eE.l:‘: ]W(F,t)=ihw

LHS (first term):

RHS:

ih@:[E(tHeE‘.i Jw(#.)

—
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The Case of Uniform Electric Field
Putting it together:

[Ea- )+ e .7 Jy(rt)=in V0D

N [ En(l?—eTE_t)+eE'.f— }y/(?,t)= [E(t)+eE .7 |u(F.1)

= E(f)= E,,(I? - "TE‘)

The time-dependent energy is consistent with our solution being a Bloch function
with a time-dependent k-vector,

k(t)=k -

eEt
/]
So the solution for the initial condition:

w(F,t=0)=y, ;(F)

is approximately a Bloch function with a time-dependent k-vector:

V6.0~ i) 0] - 1 () |

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

The Case of Uniform Electric Field

Final result: In the presence of a uniform electric field the electrons in energy bands
have a time-dependent crystal momentum that satisfies the dynamical equation:

E «&—

d nk(t = X Energy
dt( )k |
/ Incé’easing
time
= The rate of change of the crystal momentum is equal /t=0

to the force on the electron

Note that (perhaps) the more intuitive result that the rate ‘
of change of the average electron momentum equals the

applied force DOES NOT hold,

d WrOPY(RY) |, g
dt

The dynamical equation is instead given in terms of
the crystal momentum

T
a

—
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What Happened to Ehrenfest’s Theorem of QM?

In quantum mechanics, Ehrenfest’s theorem is the closest to Newton’s second law.

Ehrenfest’s theorem: For a time dependent quantum state, the rate of change of the
average momentum equals the average force:

daﬂﬂ%ﬁwﬁﬂ»=wc¢wﬂmwﬁﬂ»

We saw that for electrons in solids, in the presence of a uniform applied E-field,
the following equation does not hold:

AVEIPYEL L 7,0) -0 Eplr,t) = -0 E

The reason is that in solids, in the presence of an applied E-field, the electrons not
only feel the force from the applied E-field but they also feel the force from the
periodic atomic potential. If all forces are correctly taken into account then, of
course, Ehrenfest’s theorem would hold. But it is more useful and simpler to use
the dynamical equation involving the crystal momentum:

dnk(t) _ _ g /
dt

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Another Look at the Dynamical Equation: Energy Conservatm

dnk®) _ o g

One can also derive the dynamical equation: E

dt

from arguments involving energy conservation Energy
Consider an electron with an initial Bloch state with

wavevector K. Suppose in the presence of an E-field the :
wavevector is time-dependent - but we don’t know what is f — 1 6E
the time dependence: d E(t) . T

dt : :
In time 5t the electron energy will increase by: ’ \
)]

o€ =VE,(K).? 5t(t) ot

The increase in electron energy also equals the work done \/
by the E-field on the electron in time &t
z z
a a

6E =Vp(k).(-eE) st —@

Equating (1) and (2) gives:
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Effective Mass Tensor and Acceleration

Consider a solid in which the energy dispersion near a band
extremum is given by:

EnlR)= Enlko) o (k- k) " (=) :

The average velocity is: 4

E-E,(eV)

d V,(K(@®)_ 1 d 7 K(H)
dt dt

In the presence of an E-field the crystal momentum changes as:

Vo(k)=m" 5 (K-k,) 3
b
Consequently, the rate of change of the velocity satisfies: an i\

dnk(t)_ __ g

p eE “Cmn T oam x
Therefore: R R
dv \k(t =
K@) _ g1 dKE) _ 1 g
dt dt
v _
= din(t) ——eM.E
dt
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Effective Mass Tensor and Acceleration \
dv,(t 1 = dv,(t - ¢
ﬁ:—eMﬁE Or: M.¢=—eE s
dt dt Ge
4
The acceleration of electrons in energy bands in response to an 3l
applied force is governed by the effective mass tensor. .| &
.

The above relation shows that the effective mass tensor, which up

E-E, (eV)

—HE,

to this point just represented coefficients for Taylor expansion of 07 E,
the energy dispersion relation, is also a measure of the inertia of b
electrons in energy bands just like ordinary mass is a measure of
the inertia of free electrons. o5
3l
Written out in component form we have: -4
L (1) r (100 X
In general, the electrons are
vV, nlt 1m 1m 1/m E ’
X’"( ) /My My Ymy, X accelerated in a direction
dt Vy,n(t) =-e|Vmy, 1my,, 1my,||E, different from the direction
Vz,n(t) 1/m,, 1/mzy 1m,, || E, of the force due to the

applied E-field !

S—
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Example: Conduction and Heavy-Hole Valence Bands of GaAs

Consider the conduction band of GaAs near the band

bottom at the I'-point: Energy
Ym, 0 0
-1
M7= 0 1vYm, 0 Conduction
0 0 1/ m, band
2
dv(t 4 = _
T;()=—eM 1 E=--°E
m, K,
L,
Now consider the heavy-hole valence band of GaAs hh valence
near the band maximum at the I'-point: band
- 1/mhh 0 0
M=l o -1Ym,, 0
th valence|
0 0 —Ump, 4 th va
dvp,(t . B, )
9Vinl®)_ oyt E- © g E
dt mpp, X

Electrons in the valence band are accelerated in the direction opposite to the
orce acting upon them due to the applied E-field

—
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Example: Conduction Band of Silicon

In Silicon there are six conduction band minima (valleys) 5 s \
that occur along the six I'-X directions. For the one that sk
occurs along the I'-X(2x/a,0,0) direction:

m=p k,=0.85 (2?”,0,0)

>
Ym, o 0 Not isotropic! :v 1 lzi« %
4 0 — E,
M= 0 vYm, o0 mp=0.92m i
0 0 1/’": mg=019m
This implies: N
_3 -
Vx,c(t) 1m, 0 0 Ex A o) x
ot vyc(t)|=—e| 0 1Ym, 0 [|E,
Vz,c(t) 0 0 Ym|lE,

Electrons in this valley have larger inertia (i.e. larger mass)
for E-field applied in the x-direction (i.e. the longitudinal
direction) and smaller inertia (i.e. smaller mass) for E-field
applied in the y- or z-directions (i.e. the transverse
irections)

S—
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Generalization to Include Applied Magnetic Fields

We had for only electric fields:

(assuming parabolic
v = energy band dispersion) = (i .
d r;l:(t) Lo e— 1 ¢ v':}:((t)L e

Magnetic fields can also be included as follows:

k) - o £ -7, (k()<B

l (assuming parabolic
band di i = (i
energy band dispersion) " dv,,(k(t))

e =—eE-e Vn(k(t))x B

Note: If the energy band dispersion is not parabolic (as in graphene) then the
equations on the right hand side have no meaning

—
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Appendix: Electron Dynamics from Gauge Invariance
Consider the Schrodinger equation for an electron in a solid:

{f’:’ +v(?)1 w7 t)=in %

We have seen that the stationary solutions are the Bloch states:

Or since: y,, ¢ (F)="~=

2m

In the presence of electromagnetic vector and scalar potentials the time-dependent
Schrodinger equation becomes:

b

P+eA

2m : +V(?)_ e¢(f’,t) w(F,t)=in oy(F.1)
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Appendix: Electron Dynamics from Gauge Invariance

+eAlr,t

o

wV)-eglf.t)| wir. )= in 200

The Schrodinger equation is invariant (i.e. does not change) under the following
auge transformation: —(a ~(a -
gaus A7 t)—> A(F,t)+ vr(F t)

#F.t)- ¢(ﬁ,t)_ﬂ?’_t)

ot
e, .
R —-i—f(Ft)
v(iF,t)>e " y(F,t)
Now get back to the problem of an electron in an applied electric field. The Schrodinger
equation is:

{:::J'V(?)* 9’5'-?} w(F,t)=in %

Perform the following gauge transformation to eliminate the scalar potential in favor
of the vector potential:

f(F,t)=—E.rt

—
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Appendix: Electron Dynamics from Gauge Invariance

We get:
3 _ ez ez
P — eEt A :gE.rt N g lgE.rt -
(—)im +V[F) e Ty t)=in el v
Let:

iCE.Ft
gr.t)=e"  y(Ft)
P — eEt S\ PEUNE-Y ()
= (—f+ vir r,t)=in—"—"7
oo -+ V() 6.0 =in 2O
Now we have to solve a time-dependent equation BUT the Hamiltonian is now lattice
periodic! Assume, in the spirit of Bloch’s analysis, solution of the form:
it
ik.F —% [E(t")dt"

#(F,t)==—u(Fle "

W

And plug the assumed form in the above equation to get:

—
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Appendix: Electron Dynamics from Gauge Invariance

M)i +V(F)|u(F) = E(t)u(F)

2m

If one now defines a time-dependent wavevector as follows:

nk(t) = 7k — eEt
Then the above equation is just the familiar equation for the periodic part of a Bloch
function whose wavevector is time dependent:

P + nk(t)

g =+ V() Uy 40 (F) = En (k(O) 1 1 (P)

So the answer is: .
o i 4\ gt
~ ekt —gj'E,,(k(t ))dt

¢(F.t) W"n,l?(t)(f)e

And finally the solution of the original problem is (as expected):
it - it ~

_igélft . ikt ) —égE,,(k(t'))dt' ) —é(j)E,,(k(t'))dt'

6. t) =" Un (7 =Vnk@e)\r)e

—
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(F,t)=e

Appendix: Electron Dynamics and Berry’s Phase

Note that the solution: t =
[En(k(e))at

. i
ik.F -
ho

97, ) =t (e Hk(t) = 1k — eEt

is not an exact solution of the equation:
(Poektf (| o . 04(.0)
+Vi\r F,t)=in—"~7
2m ( ) ¢( ) ot
It misses a very important phase factor even if the time dependence is not fast

enough to cause transitions between states. To capture this we try:
- it - .
y olk-F . — JEn(K(e))dt'+ir, £ (0)
¢(I’, )— 7\/V un’,;(t)(r e

Plugging it in, multiplying both sides by uy *
fact that:

n.k(t) (F), integrating, and using the

.Uh

+ 1k(t)
2m

+V(E) Uy ) = En (K(O) 1 50 F)

e get (PTO):

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University

11



Appendix: Electron Dynamics and Berry’s Phase

7nk®) g N . )
5t S AU g (F) o ) (F)= (Ui ‘a‘un,l?(t)>

G=k(t)

t 0 ; _
=7ni(t)=1] d (Unk(e) 5 Unie)) = seiion (tng Vg|tng )
G-k i di )
_q=E(tI=o)=E na 4 ‘|: Ag =ilung Vg|ung)

The final complete solution is then: y
_iCEFt o k(1) _é [En(K(t))dt+ 7,5
w(rt)=e " ¢(Ft)= Tun,k(t)(r)e
it
Thpn (<)ot & /7ni(®)
L—— Berry’s phase

The extra phase factor is called the Berry’s phase and appears in many places in
physics (and in optics)

=V i) (Fle

t is appropriate to write the Berry’s phase as, 7, . (t)=7, (k(t)), since it depends
the trajectory of the time-dependent wavevector in reciprocal space
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Appendix: Bloch Velocity and Berry’s Phase

The velocity of an electron packet in the presence of an E-field is not the same as in the
absence of it

Consider an electron packet:

0(F,t)=j(z”;(2 ( )//nk(t)(r)e

e ,k(t), e (Reesing (F0)
(2 )2 ( ) n,E(t) rje 0

and assume that the function f(k) peaks when k = k,

;E (ke +irn (K(t))

=l

In the absence of Berry’s phase the group velocity of the packet can be found from
the usual stationary phase argument:

Vg(ﬁo)(;_go)=;;’tzdt-( E, (K - Et/1)--E, (K, - eEt/n))

vy lbo)= 1vEA ),

—
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Appendix: Bloch Velocity and Berry’s Phase

In the presence of Berry’s phase the group velocity of the packet from the stationary
phase argument gives an extra term:

volko Mk —ko)= V4, (k) k-ko)- & (k- eEe/n)-7, (K, - oEt/1)]

Nfe - = L G=k—eEt/h G=ko—€Et/h
volko M- Ko)=194E, (K), (k-K,)- gt{q P Apgdd— A,,’q.dq]
° ﬁ=k (.l=ko

The second term in brackets represents the rate of change of the (oriented) area
of the figure below and equals:

d | a=k-eEt/n _ _ G=Ko—eEt/h _ ~ - e~ (-~ -

g . Lz Ap q-dé - ) =IE° Anq | =~V xAngl, o .|:£Ex (k—k, )}

ez 7 = -
- (%Equ xAngla J( —Ko,) k —eEt/n

ko —eEt/n

The packet group velocity is then: ° /

- 1 - e % ~
Vg(k0)=%VREn(k}Ro+£Ex(Vﬁ XAn,(', 17=Eo] k

ko

—
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Appendix: Berry’s Phase and Berry’s Curvature
So, more generally, one can write the velocity of Bloch electrons (in the presence of
a field as):

Vn(K)= %V:}En(’?)-%x (V< An)
The quantity:
Qn(k)=Vi <A,
is called Berry’s curvature and plays an important role in many different places in

solid state physics (spin Hall effect for example)

If a solid possesses time reversal symmetry (all materials in the absence of an external
magnetic field): ~ - (e
Qn(‘ k)= _Qn(k)

If a solid possesses inversion symmetry (like Si, Ge):

It follows that if a solid possesses both time reversal symmetry and inversion
symmetry (like Si, Ge):

Q,(k)=0

—
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Dynamics of Electrons in Energy Bands from Gauge Invariance
Berry’s Phase and Berry’s Curvature

In this lecture you will learn:

* Electron dynamics using gauge invariance arguments
* Berry’s phase and Berry’s curvature in solid state physics

—
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Electron Dynamics from Gauge Invariance
Consider the Schrodinger equation for an electron in a solid:

[5’:’ +v(?)1 w7 t)=in %

We have seen that the stationary solutions are the Bloch states:

Or since: Wn,E(F):—
= (%fw(?) u, ¢ (F)= En(K)u, £ ()

In the presence of electromagnetic vector and scalar potentials the time-dependent
Schrodinger equation becomes:

b

'%+92'Z:n ! +V(r:)—e¢(f',t) W(f,t):mM

ot

—
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Electron Dynamics from Gauge Invariance

+eAlr,t

o

wV)-eglf.t)| wir. )= in 200

The Schrodinger equation is invariant (i.e. does not change) under the following
auge transformation: —(a ~(a -
gaus A7 t)—> A(F,t)+ vr(F t)

#F.t)- ¢(ﬁ,t)_ﬂ?’_t)

ot
e, .
R —-i—f(Ft)
v(iF,t)>e " y(F,t)
Now get back to the problem of an electron in an applied electric field. The Schrodinger
equation is:

{:::J'V(?)* 9’5'-?} w(F,t)=in %

Perform the following gauge transformation to eliminate the scalar potential in favor
of the vector potential:

f(F,t)=—E.rt

—
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Electron Dynamics from Gauge Invariance

We get:
3 _ ez ez
P — eEt A :gE.rt N g lgE.rt -
(—)im +V[F) e Ty t)=in el v
Let:

iCE.Ft
gr.t)=e’  y(rt)
P — eEt S\ PUNE-Y ()
= (—f+ vir r,t)=in—"—"27
o -+ V() 6. 0)=in 2
Now we have to solve a time-dependent equation BUT the Hamiltonian is now lattice
periodic! Assume, in the spirit of Bloch’s analysis, solution of the form:
it
ik.F —% [E(t")dt"

#(F,t)==—u(Fle "

W

And plug the assumed form in the above equation to get:

—
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Electron Dynamics from Gauge Invariance

M)i +V(F)|u(F) = E(t)u(F)

2m

If one now defines a time-dependent wavevector as follows:

nk(t) = 7k — eEt
Then the above equation is just the familiar equation for the periodic part of a Bloch
function whose wavevector is time dependent:

P + nk(t)

o =+ V() Uy 0 (F) = En (k(O) 1 1 (P)

So the answer is: »
) ok P ) -é JEn(K(e))at
o(F.t)= W"n,k(t)(’)e
And finally the solution of the original problem is (as expected):
. t - .t -
_i%Ejt ) oik(t)F ) —é tj)E,, (et ) —é ‘j) Ep(k(e"))dt"
(I’,t)= 7\/7 un,E(t) rje = l//n,l?(t) rje
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(F,t)=e

Electron Dynamics and Berry’s Phase

Note that the solution:

ik.r

. e R
#(r.t) =" Unk(o (e

i
i -
° nk(t) =k — eEt

is not an exact solution of the equation:
!ﬁ-eE‘t[ PN (X
2m +V(r) ¢(r,t)=lh%

It misses a very important phase factor even if the time dependence is not fast
enough to cause transitions between states. To capture this we try:

- it - .

- olk-F . — JEn(K(e))dt'+ir, £ (0)

#(F,t)=""—u, c(Fle o

v k() Added phase

Plugging it in, multiplying both sides by u *n K(t) (F), integrating, and using the
fact that: ’

.Uh

RO V) )= 0 R0

2m

e get (PTO):

—
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Electron Dynamics and Berry’s Phase

6;/" 4(t) H v * = a — . 6
6,7‘; =ifdF u*, () 3¢ Un o) (F) = iU, k0 ‘E‘”ni(t)>
t ) G=k(t)
=y ct)=i | dt'(u_ponl=—=U, gm)=1i u,s Valung)-dg
) tio < "’k(')> 6=E{t=0)< n|ValUna)
= Y pgda .
_6=E{t=0) na-?d { Ag =i(ung|Vglung)
The final complete solution is then: »
—i%E.rt o k()7 ) _%; En(K(t))ait'+iy,, (1)

vE=e g =S, (Fle

—7j'E (k(e"))ate Jrni®
=Vn k(t)(’ Je "0 Berry’s phase

The extra phase factor is called the Berry’s phase and appears in many places in
physics (and in optics)

t is appropriate to write the Berry’s phase as, Yn k(t) Yn (k(t)) since it depends
the trajectory of the time-dependent wavevector in reciprocal space

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Bloch Velocity and Berry’s Phase

The velocity of an electron packet in the presence of an E-field is not the same as in the
absence of it

Consider an electron packet made up of the time-dependent Bloch functions:

( Ve (P ;E (k(e))ait+irn(K(2))
)2 n,k(t)\F /€

e ,k(t), e (Reesing (F0)
(2 )2 ( ) n,E(t) rje 0

Assume that the function f(k) peaks when k =k,

o(F,t)= j(

=l

In the absence of Berry’s phase, the group velocity of the packet can be found from
the usual stationary phase argument:

Vg(ﬁo)(;_go)=;;’tzdt-( E, (K - Et/1)--E, (K, - eEt/n))

vy lbo)= 1vEA ),

—
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Bloch Velocity and Berry’s Phase

In the presence of Berry’s phase the group velocity of the packet from the stationary
phase argument gives an extra term:

volko Mk —ko)= V4, (k) k-ko)- & (k- eEe/n)-7, (K, - oEt/1)]

Nfe - = L G=k—eEt/h G=ko—€Et/h
volko M- Ko)=194E, (K), (k-K,)- gt{q P Apgdd— A,,’q.dq]
° q=k q=ko

The second term in brackets represents the rate of change of the (oriented) area
of the figure below and equals:

d | a=k-eEt/n _ _ G=Ko—eEt/h _ ~ - e~ (-~ -

g . I Angdd- ) =IE° Anq | =~V xAngl, o .|:£Ex (k—k, )}

e ~ o c
- (%Equ xAngla ).(k—ko) k —eEt/n

ko —eEt/n

The packet group velocity is then: ° /

- 1 - e % ~
Vg(k0)=%VREn(k}Ro+£Ex(Vﬁ XAn,(', 17=Eo] k

ko

—
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Berry’s Phase and Berry’s Curvature

So, more generally, one can write the velocity of Bloch electrons (in the presence of
a field as):

o)1 -\ dk ~
al )=gVEEn(k)—EX(VE XAn,E)
The quantity:
Qp (k)= Vi %A,
is called Berry’s curvature and plays an important role in many different places in
solid state physics (spin Hall effect for example)

If a solid possesses time reversal symmetry (e.g. all materials in the absence of
magnetic fields):

Qn(‘ k)= _Qn(k)
If a solid possesses inversion symmetry (e.g. Si, Ge):

Qn(‘ k)= Qn(k)
It follows that if a solid possesses both time reversal symmetry and inversion
symmetry (e.g. Si, Ge):

—
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Handout 16

Electrical Conduction in Energy Bands

In this lecture you will learn:

* The conductivity of electrons in energy bands
* The electron-hole transformation

* The conductivity tensor

* Examples

* Bloch oscillations

—
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Inversion Symmetry of Energy Bands

Recall that because of time reversal symmetry:

l//*n,—l?(i;) =¥nk (f) En(_ i‘;)= En(_’)

We know that:

\7,,([?)=%VE E,(k)

Now let k goto —k in the above equation:

Vnl-K)= 19 4 Ex(-K)

\

Energy

/

Il
|
<!
3
L
\_l/

= V(- k)= Va(K) -

~_

A

—
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Current Density for Energy Bands
Energy

In Drude model, the electron current density was given as:
J=n(-e)v \ /

For a free electron gas the current density was given as:

#(K)v(k)

J=(-e)2x Z f(K)vlk ()=—2ex1(

energy bands

Now we want to find the current density due to electrons in \
z
a

A

The current density due to electrons in the n-th band can be -
written in a manner similar to the free-electron case:

- (-e)2x fo(k) v (k)

v k|nFBZ

—2ex | IK £ ®)vaR)

FBZ (2 7:)3 n

—
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Current Density for a Completely Filled or Empty Bands
Consider a completely filled band for which fn(R)= 1 forall Energy

kin FBZ
Application of an external field will not change anything! \/
3 3
d k -
J =-2ex j' folk)Volk)=-2ex | —= V =0
( )3 ( ) ( ) FBZ(27T)3 n( ) _____.____E_f..

where | have used the fact:

‘7n(— k)= _Vn(k)
= Completely filled bands do not contribute to electrical
current or to electrical conductivity \/
Of course, if fn(l?)= 0 forall k inFBZ: _

=-2ex o’k volk)=
Jy=—2e Féz(”)af(k) aK)=0

o[y

= Completely empty bands do not contribute to electrical current or to electrical
conductivity

nly partially filled bands contribute to electrical current and to electrical conductivi

—
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Current Density and Electron-Hole Transformation

Consider the expression for the current density for a partially Energy
filled band:

()FBZ() fa(k)Vn (K) ()
=2(e)x [ LK -1, (k)-1]7, (k)

FBZ (2 )

/5{%/() zex 1 K bt 0]

=2(+e)x j ( )3 [1 f ( )]Vn(l?)—> () B * Ky

The final result implies that since the current density of a filled band is zero, the
current density for any band can always be expressed in two equivalent ways:

a) As an integral over all the occupied states assuming negatively charged
particles (as in (1) above)

a) As an integral over all the unoccupied states assuming positively charged
particles (as in (2) above)

—
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Current Density and Electron-Hole Transformation \
One has two choices when calculating current from a partially filled band:
The Electron Choice: Energy
The current density is given by:

Jn=2(e)x | f;n()Aﬁ

FBZ

« Current is understood to be due to negatively charged
electrons

« This choice is better when the electron number is smaller
than the hole number

The Hole Choice:
The current density is given by:

3 - R _
A =2(+e)xFéZ(Zﬂ‘)(3[1—fn(k)]\7,,( )

e Current is understood to be due to positively charged fictitious particles
called “holes”

This choice is better when the hole number is smaller than the electron
umber

—
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Metals, Semiconductors, and Insulators
Materials can be classified into three main categories w.r.t. their electrical properties:
Metals: In metals, the highest filled band is partially filled (usually half-filled)
Semiconductors: In semiconductors, the highest filled band is completely filled (at
least at zero temperature)
Insulators: Insulators are like semiconductors but usually have a much larger

bandgap Energy

é ! ! : "k,
Metal Semiconductor Insulator /

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Inclusion of Scattering in the Dynamical Equation

/

In the presence of a uniform electric field the crystal momentum satisfies the

dynamical equation: Energy
d nk(t -
d nk(t) =-eE
dt Conduction
Now we need to add the effect of electron scattering. band
As in the free-electron case, we assume that 7

scattering adds damping:
d nk(t)___ g_lk@)-K]

kX
dt T hh valence
- = band
The boundary condition is that: k(t = 0) =k
Note: the damping term ensures that when the field is turned
'eh valence

off, the crystal momentum of the electron goes back to its

original value ) band
Steady State Solution: k(t =)=k _eTEg Ey

h
In the presence of an electric field, the crystal momentum of every electron is shifted
by an equal amount that is determined by the scattering time and the field strength

—
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Electrical Conductivity: Conduction Band
Consider a solid in which the energy dispersion for conduction Energy

band near a band minimum is given by:
~ . WL T o Conduction
EC(k)=Ec(ko)+?(k—ko) v .(k—ko) band
The velocity of electrons is:
Vo(k)=m".n(k-k,) o
o

The current density is:

- d3k [\ (-
Jo=-2ex | . @nf ,(k)v. (k)

In equilibrium, for every state with crystal momentum (E - I?o) that is occupied, the
state — |k — k,, ) is also occupied and these two states have opposite velocities.

Therefore in equilibrium:

, d*k (o (x
k Jc=—2exneajrkowfc(k)vc( )=0 /
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/ Electrical Conductivity: Conduction Band Enh
Now assume that an electric field is present that shifts the

Conduction
crystal momentum of all electrons: band
ky I
k(t=0)=k-S"E E
f.(k)_ ’ K, K
Vs -~ -~ N \ o
L \ ‘ \
o |k ' & kK, L'k
S ‘_fa— - x e X
E=E, %
Electron distribution in k-space Electron distribution is shifted in
when E-field is zero k-space when E-field is not zero
Distribution function: f, (E) Distribution function: fc(l? + % EJ

Since the wavevector of each electron is shifted by the same amount in the
presence of the E-field, the net effect in k-space is that the entire electron
distribution is shifted as shown

—
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Electrical Conductivity: Conduction Band

Current Density:
. &k (- ers). (-
Jo=-2ex | o fc[k+—TEJ ve(K)
near ko (271') h
Do a shift in the integration variable:

. Pk i\ (: etz
Jo=—2ex | ZE f(k)v (k——E)
c near Eo (2”)3 C( ) [ )

- 3K . L . - oer =
Jo=-2ex | L’gfc( )M'1.h(k—k°—ﬂE) fc[k+7E)
nearl?o(Zﬂ') n

~ d3k /| 4
Je=e?r|2x | L flk)|M1.E
€ |: near ko (2”)3 C( ):|

Je=ne’rM . E

Wthe conductivity is now a tensor given by: & =n ezz- M_‘I

—
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~

Electrical Conductivity Example: Conduction Band of GaA\
6
Consider the conduction band of GaAs near the I'-point: B i
GaAs

N\
Ym, 0 0 i
M= o 1Ym, 0 Isotropic! NE
0 0 1Ym, ot ﬂ /\
z - Ee
. . . E 1~ Eg
This implies: &, i .
Jo=ne*’ M. E -1
Jxe 1/m, 0 0 E, )
Jye|l=ne*r| 0 vYm, o |E, e §
Jrec 0 0 1Ym,||E, 4
E
2 x
_nher Ey =cE
me
EZ
ne%s
=>o=
mg

S—
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occur along the six I'-X directions. For the one that occurs

Electrical Conductivity Example: Conduction Band of Silich
6
In Silicon there are six conduction band minima (valleys) that 5 \
Si

along the I'-X(2x/a,0,0) direction: 4
m—p kK, =0.85 (%”,o,o) a
1'm, 0 0 Not isotropic! TE j : T E,
M=l 0 Ym0 mp=0.92m “ g £,

0 0 1m; mg=0.19m ak

This implies that for this valley: -2 -

jc=ge2‘rM_1.E

Ly o) x

Jxe Ym, 0 0 |[E,
n

Jyo|=ge7| O Ym0 |E,

Jre 0 0 Ym|E,

The factor of 6 is there because only 1/6t" of the total
conduction electron density in Silicon is in one valley
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Electrical Conductivity Example: Conduction Band of Silicon

To find the conductivity tensor for Silicon one needs to sum over the current
density contributions from all six valleys:

Iy 2/m, +4/m, 0 0 E,
Jyel|= % er 0 2/m, +4/m;, 0 E, Isotropic!
Jze 0 0 2/m,+4/m, || E,
n ez EX =
=P E, |=cE

1 1 1 2
— = —| —+— [ = Conductivity effective mass
m, 3{m, my

After adding the current density contributions from all six
valleys, the resulting conductivity tensor in Silicon is isotropic
and described by a conductivity effective mass

S—
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Electrical Conductivity: Valence Band

Consider a solid in which the energy dispersion for valence band
near a band maximum is given by: Energy
2
_. - (- -\ 1 (i @
E, (k)= Ev(ko)+?(k— k) .M. (k-k,)
The velocity of electrons is:
v,(K)=m".1n(K-k,)
The current density is (using the electron-hole transformation):
) K ¢ ()0, (K)=2ex ) ke @) (6

3 3
near k, (2”) near kg, (2”)
In equilibrium, for every state with crystal momentum (R - Eo) that is unoccupied,

(I? 5 is also unoccupied and these two states have opposite

the state — |k — k,,
velocities.

Therefore in equilibrium:
- d3k N (-
JV_2exnea{ﬁow[1_fV(k)]VV(k)_0 /

—
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°>w
x|

Valence
band

J,=-2ex

Electrical Conductivity: Valence Band E_"A
ko k

Now assume that an electric field is present that shifts the
—
E

crystal momentum of all electrons in the valence band:
Valence
band

K(t=o)=k-°"E

Rl BN )
b S o Eq, /l kx - kx
E=E, %
Hole distribution in k-space Hole distribution is shifted in k-space
when E-field is zero when E-field is not zero
Distribution function: 1—f, | k + eh—r E')

Distribution function: 1— fv(a)

Since the wavevector of each electron is shifted by the same amount in the
presence of the E-field, the net effect in k-space is that the entire electron
distribution (and hole distribution) is shifted as shown

—
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Electrical Conductivity: Valence Band
Current Density:

‘ oo [ (f e
Jy=2ex [ —=|1-f,|k+—E ||V, \k
Y near ko (271')3 Y h V( )

Do a shift in the integration variable:

Jo=2ex | P [1-, (k)] vv(k ; EJ

37 _flk 8% E
Jo=zex [ SKf-g@wta(k-k,-%TE] WfF e
nearl?o(2”) h

.

J,=-e%|2x | FK g )|m.E
near k, (2”)

J,=-pe*rmM . E

=0 .E

Where the conductivity is now a tensor given by: & =—p ezr M_1

—
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Electrical Conductivity Example: Heavy-Hole Band of GaAs
6

Consider the heavy-hole band of GaAs near the I'-point: : m/
= 1mpp, 0 0 s
v = 0 —1/mp, 0 Isotropic! N \/\
0 0 —1my, 5 ”Q /\ _
This implies: i ) E;- :
Jhn=-Ppn s M7 E s
Jx.hh -Ymp, 0 0 Ey -2
Jynn|=-Pmne’z| 0  —tYmp, 0 E, -3f
Jz.hh 0 0 -1/mp, || E, L oo x

ezr Ex =
= 7”’;; E, |=cE
hh E
z

2
_Pnn€T
Mpyp

=0

S—
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Electrical Conductivity Example: Light-Hole Band of GaAs

6
Consider the light-hole band of GaAs near the I'-point: . '_'\/
GaAs
- 1/ myp 0 0 ar-
M= 0 —-1/my, 0 Isotropic! N
0 0 -1my, ol
z ;l £
o g [ Eg
This implies: & , } .
J. = 2 mp-1 F_ _E syl
[h——p[heTM .E=0E 1
2 -2
er
—~g=Pner i
mgp
-4
The total valence band conductivity of GaAs can be written as the B S0
sum of the contributions from the heavy-hole and the light-hole kz
bands:
2 2
er er
o = Phn 4+ Pen

Mpp myp
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The Phenomenology Of Transport

The presence of external fields, and scattering, the following relations work for
electrons in any energy band near the band edge (assuming parabolic bands):

d nk(t) __, g _nlk(e)-k]

dt T
v (K(©)= M1 (k(O)-K,)

Ja(t)=-2ex Féz(::‘)i f(k) v, (K(2))=+2 € xpéz(:;;i 1-£, (k)] v (K(t))

The first two can also be written as:

.9 [ (k(ﬁ)—vn(k)] o g M [n(k())-7, (k)]

Problem: One needs simple models for current transport so that non-specialists, like
circuit designers, can understand devices and circuits without having to understand
energy bands

—
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Drift Velocity and Mobility for Electrons

We define the drift velocity for the electrons in the conduction band (for parabolic

bands) as:
Ve(t)= Ve (k(t))-v, (k)
The drift velocity is independent of wavevector for parabolic bands and satisfies:

M. d\?e(t)z_eE__M.\?e(t)

dt T “

In steady state:

Ve(t - 00) =V, (E(t - oo))—\?c(l?)= —erM . E= —He- E { He = mobility tensor

Once the drift velocity is calculated, the electron current density is: 0
. 3k (Vs (2 3k . (\ (& N
To©=-20x | OK £ ®)v,(k@)=—2ex | &K fc(k)[vc(k(t))_vc(k)%ﬁ()]
Bz (27) Bz (27)
d*k
=-2ex [ o k)o@ =n(-e)vet) ——— @
FBz (27)

Electrons in the conduction band are to be thought of as negatively charged particles.
n case of multiple electron pockets, current density contributions are calculated
arately for each and added in the end.

—
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Drift Velocity and Mobility for Holes
We define the drift velocity for the “holes” in the valence band (assuming parabolic
bands) as:
va(t)=v, (k(1)-v, (k)
The drift velocity is independent of wavevector and satisfies the equation:

(—M).%’t'(t)=+eE—M )

Where realizing that the inverse effective mass tensor will have negative diagonal
terms for valence band, | have multiplied throughout by a negative sign, with the
result that the charge “-e” becomes “+e”

In steady state: v (t - )= —er M. E= Zn-E { Hp = mobility tensor

Once the drift velocity is calculated, the hole current density is:

. d’k
Jp()=+2ex |
" rBz (27)°

[1-1,&)]v, (k)= p (+ ) vi(t) ———— @

Holes in the valence band are to be thought of as positively charged particles. In
case of degenerate valence band maxima, the heavy and light hole current density
ontributions are calculated separately and added in the end.

—
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The Case of No Scattering: Bloch Oscillations

Consider an electron in a 1D crystal subjected to a uniform
electric field. The energy band dispersion and velocity are:

Ep(ky)=Es—2 Vg, cos(kya) Energy
1dE,(k

v,(ky)= %#
X

In the absence of scattering, the crystal momentum
satisfies the dynamical equation:

= 2a Vg, sin(k,a)

d 1ke(t) _ o /
dt
:>kx(t)=e§°t+kx(t=0) —
The time-dependent velocity of the electron is: —g % X
v, (t) = 2a Vg, sin(k, (t)a) FBZ
=2aV,, sin(e ahE" t+ky(t= O)aj —_—
E=-E,x
Periodic!

—
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The Case of No Scattering: Bloch Oscillations

A periodic velocity means that the electron motion in real space is also periodic:

d);iSt) =vp(t)=2a Vg, sin(e LI ky(t= O)aj
T

= wdt:x(t=T)_x(t=o)=o where the period Tis: T = 2z h
o dt eak,

Reciprocal space:

—
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Conductivity of Electrons in Graphene

=K
(I? ~Ep, +hv\/(kx —kox ) +(ky _koy)2 } dispersion

(kx _kox))?"'(ky _koy )}7

ko
Conduction band
Ec

VC(E)=1VE Ec(k)

h ) \/(kx_kox)2+(ky_koy)2
K-k, Ak

=V ——=V—
k—ko|  |AK|

The dynamical equation for the
crystal momentum still works: K
— k - k Ak.V
T=_e,:__hk(t) LI -
T

d 7ik(t)

Ak

= K(t=w)=k-°"E K
K!
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Conductivity of Electrons in Graphene Energy
_ k—etE/n—k,

- - er = (i
k(t = =k-—E v \k(t)=v——2%
(t=w) A —) c( ()) ‘k—erE/h—ko
Velocity magnitude remains
ky the same but the velocity ky
direction changes er g k
fc(ﬁ) / h k
s~ ~ k
(7 ;> °

’ \ \
. ) ey
SNd - 4 kX —_— \\__ / kx
ko E = EXX Eo
Electron distribution in k-space Electron distribution is shifted in

when E-field is zero k-space when E-field is not zero

Distribution function: f, (E) Distribution function: fc(l? + % EJ

Current density can be obtained by the familiar expression:

2 pockets or valleys 2 spins

N/ 2% (. erE) /.
J=-ex2x2x [ K f[k+e’E]\7(k)
nearl?o(Zﬂ') h

—
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Handout 17

Lattice Waves (Phonons) in 1D Crystals: Monoatomic Basis and
Diatomic Basis

In this lecture you will learn:

* Equilibrium bond lengths

* Atomic motion in lattices

« Lattice waves (phonons) in a 1D crystal with a monoatomic basis
« Lattice waves (phonons) in a 1D crystal with a diatomic basis

* Dispersion of lattice waves

* Acoustic and optical phonons

—
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The Hydrogen Molecule: Equilibrium Bond Length

v(r
The equilibrium distance between the two E ( )
hydrogen atoms in a hydrogen molecule is

set by the balance among several different E
competing factors: B

* The reduction in electronic energy due to | |
co-valent bonding is 2V, . If the atoms 4 0 d x

are too far apart, Vg5, becomes to small

F—dx)| H | (F +dX)) ~ -V,
(1s(F — d%)| H |5 (F + dk)) sso Ep=Eis+ Vs

. 2:-E — 1:E4
« If the atoms are too close, the positively - =1s 2V
. . SSo
charged nuclei (protons) will repel each
other and this leads to an increase in the - 1:Epg

system energy

Ep =Ejs —Vsso
* Electron-electron repulsion also plays a
role

—
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A Mass Attached to a Spring: A Simple Harmonic Oscillator

Stretched position

m_zm

Equilibrium position

N\?
DA

0
Potential Energy: Kinetic Energy:
PE varies quadratically with 2
1
PE = V(u) =k u? the displacement “u ” of the KE = M(ﬂ)
2 mass from the equilibrium 2\ dt
spring constant = k position
(units: Newton/meter)
Dynamical Equation (Newton’s Second Law):
dzu dVv Restoring force varies linearly with

= =—Ku —— the displacement “u ” of the mass

=
dt du from its equilibrium position
Solution:
u(t)= Acos(aw,t)+ Bsin(aw,t) where: @, = %

—
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A 1D Crystal: Potential Energy

Atoms can move only

Consider a 1D lattice of N atoms: = -
R, =na, in the x-direction

® ® l

51 =ax X
* The potential energy of the entire crystal can be expressed in terms of the positions
of the atoms. The potential energy will be minimum when all the atoms are at their
equilibrium positions.

* Let the displacement of the atom at the lattice site given by ﬁ’n from its equilibrium
position be u(R,,

* One can Taylor expand the potential energy of the entire crystal around its minimum
equilibrium value:

V[u(ﬁ’1), u(ﬁ’z), u(f"s) ............ u(Ry)|= Vieq + Zﬂayf\,ﬂ/ou(kj)

J EQ

(f"j)“(kk)

1 o%v
+-> = = u
2 k j 6u‘RJ EU‘R‘( ,EQ
Potential energy varies quadratically with the displacements of the
atoms from their equilibrium positions

—
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A 1D Crystal: Potential and Kinetic Energies

A1D lattice of N atoms =
I Rn = 1
® ® -ﬂ1 . )%,: ® ® ® ® e
Potential Energy:
R;.t)u(Ry.1)
o%v

V=Vea+, z:z:au‘R %U‘Rk)

_VEQ+EZZK(§J-,K’,()U(R t)u(Ry.t)
kj

EQ
Ricrt KR; , Ry )= —=A "=
{ Ou\R; Jou(Ry £Q

Kinetic Energy:
m( du(R;, t)]

KE =
Z [ dt
* The kinetic energy of all the atoms is the sum of their individual kinetic energies
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A 1D Crystal: Dynamical Equation
R, =

Q)
e -
[ ]

A1D lattice of N atoms:

51=a)?

Write Newtons law for the atom sitting at the site R,

M d?u(R,,t) _
dt?

Remember that
o%v

K(kj ’ kk)z 6u‘l§l jau‘kk ’EQ

from their equilibrium positions

The restoring forces on the atoms vary linearly with the displacement of the atoms

d

\ —
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Dynamical Equation for Nearest-Neighbor Interactions

A1D lattice of N atoms:
(O0000) o CODOR0) o COVUNT) o COOOIT) o CHOIND) o CHOOHT) o CWUHIN) o CWUHIT) o (VHIT)
d?u(R,,t) oV 5 5 ) (s

e ——=—->K|\R,,R;)ulR;,t

Assume nearest-neighbor interactions:

m

K(ﬁn , §1)= -a 51',,”_1 - 5]',,,_1 +2a 5j,n
This gives:
Mdzu(fx’n,t)
dt?

The constants “a” provide restoring forces as if the atoms were connected together
with springs of spring constant “o”

= —a[U(R,,, t)— U(Rn_1 ) t)]— a[U(Rn ) t)_ U(Rn+1’ t)]

The constant «a is called “force constant” (not spring constant) in solid state physics

We have N linear coupled differential equations for N unknowns

u(Rn,t) {n=012.... (N-1)

—
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Solution of the Dynamical Equation: Lattice Waves (Phonons)

A1D lattice of N atoms: aj=ax R,=na,
—p
COO000) o CHOG0N) o CHOGIN) o (VOGN o CHOGIN) o CHOGIN) o CHHUIY) o CHHUIW) o CHOTIN)
d?ulR,,t _ _ _ _
ML) LR )0l 2. i)l

dt
Assume a solution of the form:
- Represents a wave with
u(R t)= Re[ u(ﬁ) e/d-Rn g-iot| . wavevector g, frequency @,
m and amplitude u(q)

“Rn g-Tot —— > Slight abuse of notation

Qi

or: u(ﬁ(’n, t) = u(q) e

Note that:

U(Rn+1,t)= u(g) e/ d-Rni1 g-i@t _ u(d) eié.(l-?,,+é1) e ot
=eic‘;.§1u(ﬁ) eié.R,, e—imt

u(R’,,_1,t)= u(g) el d-Rn1 g-iwt _ u(g) eic‘;.(k,,—é1) et
=e—i&.51u(q) ei&.R,, e—ia)t

—
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Solution of the Dynamical Equation: Lattice Waves (Phonons)
A1D lattice of N atoms: aj=ax R,=na

—
(O0000) o CODOR0) o COVUNT) o COOOIT) o CHOIND) o CHOOHT) o CWUHIN) o CWUHIT) o (VHIT)

m B R, - ulRyy ] (R )~ (R, )]

dt
Plug in the assumed solution: u(Rn,t) = u(q) el d-Rn g-iort g=qux
To get:
- 0? M u(g) = o] u(@)-e" ¥ u(@)|- o] u@) -9 u(g)]

Which simplifies to:
2 R,
o? = ﬁa [1-cos(g - a)]

=4—asin2(L'é1j
M 2

Since w is always positive, the

Or: 2 .
o= s sin[q : 31) _ negative sign is chosen when the
M sine term is negative

—
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Solution of the Dynamical Equation: Lattice Waves (Phonons)

A1D lattice of N atoms: ag=ax R, =n a
_—
GRBRED o CURNED o GUNNID o GONED o GRINED o GUNNED o (I o (RN o GIEIED
ionis: u(p N i Ry g-iot 4a . (4.3
Solution is: U(ant)= u(g)e n @ and o=.3 s "5
u(R,)

< 2N 2N X
,1\‘«*')1 \"./ \,/"

(EEXIEIIEERRERERENREEEISIIEIRRERRRRRERERESIIEIEE R R R R R N & o

* The lattice waves are like the compressional sound waves in the air

—
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Solution of the Dynamical Equation: Lattice Waves (Phonons)

A1D lattice of N atoms: aj=ax R,=na
—
(00000) o (AOAN0) o CHANAN) o COUNTN) o (VHVAD) o COONNN) o CHHUIT) o CHUHUN) o CAUATN)
ion i 5 iRy o-iot 4o . (q.a
Solution is: u(R,,,t)=u(q)e ‘Rn @ and o= ﬁsm SN
u(R,)

< 2N 2N ,
,1\'**«"’.] w wx

The relation:

=1, da (93 =+ 4—asin[q" a)
M 2 M 2

represents the dispersion of the lattice
waves or phonons

oz % I
a a
—
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Lattice Waves and the First BZ
~ PR . 4a . (q.a
Solution is: U(Rmt)= u(g)e' q.-Rp g-iot and »= }ﬁa sm[q 231J
Question: What is the shortest wavelength (or the largest wavevector) the lattice
waves can have? _ 1=2
A AR AN
VUVUVUVVUVUVUUVY -
=For the shortest wavelength:
A=2a @
=The largest wavevector is then:
al=2=7
T2 a ' i
—=The wavevector values can be restricted H H
to the First BZ ! | !
! ! q
* No new solutions are found for values of _z 2 x
a a

the wavevector outside the first BZ

—
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Phase and Group Velocities

Phase velocity and group velocity of lattice waves
are defined as:

Casell: Forq, a=m:

_ oy 0q) . 1D .
Vp(Q)= gq)q —_— E - I
Vg(d)=V4 0ld) —2- ;Ta;)‘( a
Case I: For g, = 0 (i.e. g, a << n):
oy 0 rive A S
M

qx

R
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Periodic Boundary Conditions

/
)

A1D lattice of N atoms: a=ax R,=na,
CRERRD o CIIRRD o CRIRRD o CRIRRD o CIIIRD o CIIIRD o (YN o (TN o CUIRRD
In the solution: )

U(R,,,t)= u(&) e/ d-Rn g-iot
allowed values of the wavevector depend on the boundary conditions
Periodic Boundary Condition:
The N-th atom is the same as the 0-th atom
This implies:
_ iR . _ i B lot N1 o 1
u(Ry,t)=u(g) e 9-Rv e 7@t — y(Ry,t) = u(G) e’ 9-Ro e~ @
iG.(Ry—Ro) _ @
=e =1 First

:>eiqua=1 BZ
m =integer
=qy="2" N gN
N a -——<m<—
2 2
7i' _'Zn ﬂ' L%
“a N a a

—
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Counting and Conserving Degrees of Freedom

A1D lattice of N atoms: aj=ax R,=na,
—

CU0000) o CHOHDTN) o CHONIN) o COOVNG) o CHUGIN) o CHOOTY) o CHTIAN) o CAUHUT) o CHOTIY)

* We started with N degrees of freedom which were related to the motion in 1D of N
different atoms

* The dynamical variables were the amplitudes of the displacements of N different
atoms

u(R,,t) {n=012....(N-1)
We then ended up with lattice waves:

u(R,,t)= Re[u(q) ol G-Rn o-i w(é)t]= Re[ u(g,f)e' 9 k,,]

* There are N different lattice wave modes
corresponding to the N different possible

wavevector values in the first BZ T IT T T
« The dynamical variables are the amplitudes of T 2z 7 9x
the N different lattice wave modes a N a a
_ m2rx N N
u(q,t =—— and —-—<m<—
(G.t) { 9 =N, 2 2

e number of degrees of freedom are the same before and after — as they should be!
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Counting and Conserving Degrees of Freedom

The atomic displacements,
u(Ry,t) {n=012....(N-1)

taken together provide a complete description of the motion of all the atoms in the
crystal

In general, one can expand the atomic displacements in terms of all the lattice wave
modes (resembles a Fourier series expansion):

u(Rn!t)= ZRe[ u(a) eid-Rn e—i a)(&)t]
GinFBZ

_ oy U@ gia.r, e—ia)(d)t+u2((7)e—i&.k,, oi 0(@)t

" §inFBZ 2
. u(q,t) ol G-Rn u'(G,t) o1d-Rn
GginFBz 2 2

Therefore, the lattice wave amplitudes also provide a complete description of the
otion of all the atoms in the crystal

—
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Lattice Waves (Phonons) in a 1D crystal: Diatomic Basis
A1D lattice of N red atoms and N blue atoms and N primitive cells: =
M1 Mz d1 az Rn =nay

2
Unit cell aq=ax 2 M x
The basis vectors are: d; d,

The nearest neighbor vectors are: ny i,

The spring model for nearest neighbor interactions:

Let the displacement of the red atom in the n-th cell be: u1(R’,, + &1, t)

Let the displacement of the blue atom in the n-th cell be: Uz(f"n + &z,t)
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Lattice Waves (Phonons) in a 1D crystal: Diatomic Basis

ﬁz ﬁ1 X
Write the dynamical equations for both the atoms assuming nearest neighbor
interactions

2 ! R q ’ ’ — - — - — — — -

M1 d th ’;’;;— d1 t =—ay [U1(Rn + d1,t)— Uz(Rn_»] + dz,t)]—a1[U1(Rn + d1,t)— UZ(Rn + dz,t)]
2 . -

Mz %;—dz,t) = —a1[u2(ﬂ’n + az, t)— U1(f\’n + 81,t)]— az[uz(f\’,, + az,t)— U1(R’n+1 + 31,t)]

The constants a; and ¢, are called “force constants” (not spring constants) in solid
state physics

Assume a solution of the form:

5 .G ¢\ (3l (R» +EI1) _iot This is again a wave-like solution
u1(R,, + d1’t)_ u1(q) e (f ) )e with a wavevector ¢ and
(R, +ds,t)=u,(g e/ G- Rn+dz) o-iot frequency @ and different
2( n 2 ) Z(q) amplitudes for the two atoms

Notice the phases

—
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Lattice Waves (Phonons) in a 1D crystal: Diatomic Basis

Plug the solutions in the dynamical equations to get:

—? My uq(q)= —a2[U1(¢7)—ei6'ﬁz"z(ﬁ)]‘%[%(ﬁ)—ei&'muz(fl)]

— w*Mj uy(g) = —a1[U2(¢7)— e’ ﬁ1"1(¢7)]— ap [Uz(ﬁ)— e'd: ﬁzu1(¢7)]

Write the equations in a matrix form:

[ otay —(a1 e'9M g, eiq'ﬁz)} {W(q)] _ wz{M" 0 ][”1(‘7)]

—(a1e‘i‘7'ﬁ1+a2 e"‘i'ﬁz) a+ o u(@)] T [0 My uy(q)

This is a 2x2 matrix eigenvalue equation that needs to be solved for each value of
the wavevector to get the dispersion of the lattice waves /

—
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/ The Dynamical Matrix \
M1 Mz (2%] o4
Q ] : : j : j ! ]

ﬁz ﬁ1 X

IR WP ) oS A
2@ ) # i)
o o [ (o)

« The matrix D (g) is called the dynamical matrix of the medium

* For any medium, in any dimension, the dispersion relations for the lattice
waves (phonons) are obtained by solving a similar matrix eigenvalue equation

—
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Optical and Acoustic Phonons

The frequency eigenvalues are:

- 1 1 1
_ a+a 1 (o + oy . .a L S
a)z(q)=( 1 2)i7 (e 22)2—16 122 gin2| 9- 31 TR AT
2m, 2 Mf MM, 2 r 1 2
(2]
FBZ , * The two frequency eigenvalues for each
Optical wavevector value in the FBZ give two phonon

bands

* The higher frequency band is called the optical
phonon band

* The lower frequency band is called the acoustic

Acoustic
phonon band

Q
X

I
0[N

—
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/ Optical and Acoustic Phonons: Special Cases

Casel: g=~0
Acoustic band:
= uy(g~0) 1
w(qzo)z\/ 2% qya [ . ]zA[

(@1 + @z XMy + M) ™ up(g = 0) 1
u1(R',,+81,t)=Ae"q'(k""m)e"""t o
u2(kn+a2’t)=Aeiq.(kn+&2) e_ia)t ;_(wés\;
Optical band: : :

) va)  [w(@~0) 1 | |
a)(q ~ 0) ~ M |: . ~ A 1 1
m, u2(q ~ 0) - M, /M, iAcoustic i

u1(R,, +&1,t)= A eid.(ﬂ’,,+31) eiot _!g '1 q
a

(f\’,, +32,t)= —AA’IZ—: oi0-(Rn+dz) g-i ot

—
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Optical and Acoustic Phonons: Special Cases

Case I: g =~ 0 Acoustic Mode i Optical i
Acoustic band (basis atoms move in-phase): : _\i
u1(§,,+&1,t)=Ae"‘i'(é"*&)e"'”’t i i
uz(R’,, + Jz,t)= Aeld(Ratda) g-iat iAcoustic i

7 x
u a a
g=0

<Q
x

(A REAEIEZILIEEERE R EERE RIS E R RE R RIS RN BN R R & o d
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Optical and Acoustic Phonons: Special Cases

Case l: g ~ 0 Optical Mode

q=0

Optical band (basis atoms move 180° out-of-phase):
u1(kn +a1,t)= A eié'(Rn+d1) eiot

UZ(Rn + az,t)= —A% ei f].(f?,,+&2) e—ia)t

2

\j
kS
=
D

a
-

Q
x

A

PO GO G 00 00 00 GO G 00 00 00 SO0 00 00 G0 00 00 00 O V00 00 00 S0 SO |—>

—
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Optical and Acoustic Phonons: Special Cases

Acoustic

<Q
x

u1(f\’n+31,t)=Aei‘7'(R"+&1)e"'“" -

— Aeid-Rotds) g-iort

POOO G000 G000 G000 G000 G000 G000 0000 0000 0000 0000 0000 00—

1 1 1 1 1
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Optical and Acoustic Phonons: Special Cases

Casell: g = Zz ,My=M, =M, a;> ay Optical Mode | ! :
a ! Optical '\@i
o(5%) i :
~ 2 1 = 1 i :
ol Fxl= % a A , I
a M 2 _eid-fiy : |
2l 2" 1 Acoustic! H
a | :
G- \Rn+d i -z z 9x
ui(Ry +dp t)= A el 9-(Fnsd) g-i ot z :

UZ(Rn + az;t)= -A e'i F"ﬁ1e’. ‘?’-(kn"'az) e—ia)t

-—A eiﬁ.(f(’,,+(71) e—ia)t

T T T T T

PO O G000 G000 G000 G000 0000 0000 0000 0000 0000 0000 0000 000>

S—
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Counting and Conserving Degrees of Freedom

x
ag=ax

* We started with 2N degrees of freedom which were related to the motion in 1D of 2N
different atoms

* The dynamical variables were the amplitudes of the displacements of 2N different
atoms

U1(Rn +&1,t) Uz(Rn + az,t) { n= 0,1,2 .......

We then ended up with lattice waves:

* There are N different modes per phonon band
corresponding to the N different possible wavevector
values in the first BZ

* There are 2 phonon bands and therefore a total of 2N
different phonon modes T
* The dynamical variables are the amplitudes of the 2N a Ta
different phonon modes

The number of degrees of freedom are the same before and after — as they shouw
—
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Counting and Conserving Degrees of Freedom
The atomic displacements,

uy(R, +ds,t) uy(R,+dp,t) {n=012....(N-1)

taken together provide a complete description of the motion of all the 2N atoms in
the crystal

In general, one can expand the atomic displacements in terms of all the lattice wave
modes — all wavevectors and all bands:

[u1 ’?" +q1’t):| = X > Re[ |:u1,,(6) eij.&j :| efd-Rn e_ia’”(q)t:|
uz

R,+dy,t)| 5=A0ginFBz uy,(g)e’ 992

i mﬂ(q)t

N\ _ig.d ~ R * =\ _—iG.d. =
1| ui(@)e’ 1:|eif:.R,. e—:m,,(q)t+;{"1n(Q)e ! 1:|e—ifl.Rn e

" p=A0GinFBZ 2 [uz”(q) el d-d2 u;,,(q) o-id-d2
1 "171(‘7”)3"6"{1 old-Rn 1 ";n(ﬁ,f)e_iq'cf1 ei-Rn
7=A,0GinFBZ 2 uz,,(&,t)e""-d2 2 u;”(q"t)e—iq.dz

Therefore, the lattice wave amplitudes also provide a complete description of the
motion of all the atoms in the crystal

—
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Handout 18

Phonons in 2D Crystals: Monoatomic Basis and Diatomic Basis

In this lecture you will learn:

* Phonons in a 2D crystal with a monoatomic basis
* Phonons in a 2D crystal with a diatomic basis

* Dispersion of phonons

* LA and TA acoustic phonons
* LO and TO optical phonons

—
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Phonons in a 2D Crystal with a Monoatomic Basis

General lattice vector:

an =n 51 +m52

Nearest-neighbor vectors:
51 =ax ﬁz = a)?
ns = —ax ny =-ay
X 3 4 y

Next nearest-neighbor vectors:

py=ax+ay Py = —ax +ay
P3=-ax—ay P4 =ax-ay

Atomic displacement vectors:

Atoms, can move in 2D therefore atomic displacements are given by a vector:

a(ﬁ,,m,t){u" }

u
y
—
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Vector Dynamical Equations
d(Ry,t)= d(Ry +m,t)

1 If the nearest-neighbor vectors are known then
the dynamical equations can be written easily.

Vector dynamical equation:
w L 0R) o [a(Rot)-o(R ). ] = 0 [y« )Ry ] )

Component dynamical equation:

To find the equations for the x and y-components of the atomic diselacement, take
the dot-products of the above equation on both sides with X and ¥, respectively:

SuRit)_, [alRy s nt)- a(Re ). ] 07.%)

M 2
dt
2 —
k m (“:,,(:w = a_[[ﬁ(fq + 1, t)— (R, t)]. ] (ri.y)
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Vector Dynamical Equations for a 2D Crystal
General lattice vector:
an =n 51 + méz
Nearest-neighbor vectors:
ﬁ1 =ax ﬁz = 3}7

ﬁ3 =-—ax ﬁ4 = —a}7
Next nearest-neighbor vectors:

X  py=ax+ay P, = —ax +ay

p3 =-ax-—ay Py = ax —ay

(0
',,_‘ & Q
A‘
(90
',,_‘ & Q
A:.’
@I,
a

Y d2i(R, .t cy 3 [[a(knm N ﬁj,t)—ﬁ(ﬁ’nm,t)]. ﬁj]ﬁj summation

dtz j=1234 over 4 nn
vz 2 alRan + £ 0)-iGom )] £11; — sumton
nn

—
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/ Dynamical Equations \
y d%i(Rym.t) . 1.

de? —a1 [[ ("m+”1 ) "(an't)]-"j]"j

+a2 [[ (nm+pJ ) (R m’t)]'ﬁi]ﬁi

If we take the dot-product of the above equation with x we get:

_T[Ux( nm>t)— tx (Rom + Pyt )]‘*z[uy o)~y (Rom + B )]

—%[Ux(_’nm’t)_ux( m + P2, )]*‘%[”y(qnm’t)‘”y(qnm+ﬁz’t)]

—0;2 [ux(ﬂnm t)‘“x(-nm‘*ﬁs,t)]‘%[“y(ﬂnm t)_”y(anm'*p‘*’t)]
(Rom:t) past)]+ Ly Rom.t)

—
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/ Dynamical Equations \
9 [
Md PRom.1) [[ ( Rpm+0j, ) (knm’t)] AJ] g

0!1 .n;|n;

+C¥2 [[ ( nm+pj ) u(knm’t)]'ﬁi]ﬁi
If we take the dot-product of the above equation with ¥ we get:

" dzuy (f\’,,m , t) ~
dt?

2 iy Ram )ty (R + 18] 2 i R ) Rom 1]

2 Ly Rty (o + B % [ Rome) - B + 0]

2 Ly R}ty R ) 2 i B t)- R+ 1]
o)ty R B [ (o )

_ ux(ﬁnmy

—
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Solution of the Dynamical Equations

Assume a wave-like solution of the form:

s o] e

uy R
Rom +n‘,,tﬂ _ [ux(ﬁ)} eiq.(k,,mmj) oot

HM’

R,
Then:
uX
uy an +n Uy(ﬁ)
—eld-f [”x(q)} Rom g 0t

u,(a)
&9 (R )

a(R,,,,,m,,r):{
J’

We take the above solution form and plug it into the dynamical equations

—
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Dynamical Matrix and Phonon Bands

4¢y sin (q)z( J+2a2[1 cos(qxa)cos(qy )] 2a, sin(qxa)sin(qya) [

20, sin(q,a)sin(qya) 4aq sin? (?J +2a,f1- cos(q,a)cos(qya)]

Compare with the standard form:

P M

Solutions:
a4 =200 N/m
0.16 o =100 N/m
X M 0.14 M =2x10"26 kg
A 0.12
> 01
2 V 3
o r 20.08
0.06
FBZ 0.04
——p
2z 0.02
a
oF X M r

—
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4a1(%) +ap [(qxa)2 + (qya)Z]

Transverse (TA) and Longitudinal (LA) Acoustic Phonons
2
a

2 . _
w(axa)aya) {ux(q)] ot [ux(q)
2 — = '
q,a u,(d) uy,(4)
2a2(qxa)(qya) 40!1(%] +a2[(qxa)2 +(qya)2] d v
Casel: qx~=0,q,=0 0.18
0.14
0.12
a1+ ag ux(qx) 1 % 01
@, = a =A =
LA(Qx) M dx |:Uy (qx) 0 2008
Longitudinal acoustic phonons: atomic motion in A
. . it 0.04
the direction of wave propagation o
Qy X [ T
ora(@x) =72 qya 4x(@))_ [0
AVIX m uy(qx) 1 M
Transverse acoustic phonons: atomic motion in the
direction perpendicular to wave propagation re——9 X
FBZ
ECE 407 — Spring 2009 — Farhan Rana — Cornell University

£} ol -y

:)
Transverse acoustic phonons: atomic motion in the
direction perpendicular to wave propagation

Transverse (TA) and Longitudinal (LA) Acoustic Phonons
4d1(£
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2aa(ax2¥ey2) [0
aY e R e
2a2(qxa)(qya) 4a1(q%] +ay [(qxa)2 + (qya)Z] 4 y
Casell: Gy ~0,q,~0 q,=q,=q e =
0.14
@) 1 0.12
o t4a; ux\q = 01 LA
@1 A (q) M qa |:uy (q) 1 2008 L o
Longitudinal acoustic phonons: atomic motion in 0.06
the direction of wave propagation 0.04 A
0.02 \)
0
a)r(q)—\/aqa u,(q) A 1 r X M
A M uy(q)

FBZ




Transverse (TA) and Longitudinal (LA) Acoustic Phonons

In general for longitudinal acoustic phonons LA
near the zone center: 0:18
0.14
uy(q) =A qx 0.12 LA
uy(@)] ldl|ay 3 o) TA
2 0.08 A
And for transverse acoustic phonons near the 0.08 A
zone center: 0.04
0.02

uy@)] A [— qy] g
== r X ] T
u,(9)| |G/| ax
In general, away from the zone center, the LA phonons are not entirely longitudinal
and neither the TA phonons are entirely transverse

—
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Transverse (TA) and Longitudinal (LA) Acoustic Phonons

0.16] LA

0.14

0.12 TA and LA
g 0.1 TA
2 0.08| TA

0.08|

0.04| A

0.02)

o X [ r

S—
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Periodic Boundary Conditions in 2D
General lattice vector: General reciprocal lattice vector inside FBZ:
R,m = n @+ ma, G=aybi+ay b, { -12<ay,a;<12

Our solution was:
ux(q) ot
nm e

(5 Uy
iR t) = {
Periodic boundary conditions for a lattice of N;xN, primitive cells imply:

uy
i(Rom + N 1) = [x(q)} 8- (Ram M) 10 _ (R, 1) [“x(qﬂ Fam 7101

@)° @)]°

k,,,,,,t

R,

HM’

:>elq.N1a1 =1

= qG.Nd; =my2z  {where m, is an integer

1 ° °_ °
=27 oy Ny=my 2z {where -§<a1si b,
by
[ ] ®
Sa=" {where MM r
N 2 2 FBZ
Similarly: m N. N. ° ° ¢
ay=-"2 {where 2 amy<2
N, 2 2
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Counting Degrees of Freedom

In the solution the values of the phonon wavevector are dictated by the periodic
boundary conditions:

G= a1 bi+a; by ST
my N, N, PPN
=— where -—"<m<—
TN { 2 2 Toii
e oo ee e o o|]FBZ
ay="2 {where Ne <my < <N
N, 2 2

=There are N,N, allowed wavevectors in the FBZ
(There are also N,N, primitive cells in the crystals)

=There are N,N, phonon modes per phonon band

Counting degrees of freedom:

* There are 2N,N, degrees of freedom corresponding
to the motion in 2D of N,N, atoms

* The total number of different phonon modes in the
two bands is also 2N,N,

—
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Phonons in a 2D Crystal with a Diatomic Basis

Atomic displacement vectors:

in 2D therefore atomic displacements are
given by a four-component column vector:

Uiy f‘inm +a1st;
[m k,,,,,+&1,t)} | gy (R +diast
n (R + d2rt)| | Unx (Rm +da t
uzy (Rpm +da, t

1st nearest-neighbor vectors (red to blue):

- ax+ay - —ax+ay
hy =212 , = X
2 2
-  —ax-ay - ax-ay
hy =——= hy =2
3 2 4 2

R,m = n a;+ ma,

The two atoms in a primitive cell can move

2
° ° °
1 y
° ° d e I_.
X
A
2nd nearest-neighbor vectors (red to red):
51 =ax ﬁz = a)?
ﬁ3 =-—ax ﬁ4 = —3}7

3rd nearest-neighbor vectors (red to red):
pq=ax+ay Py =—ax +ay

Py=-ak—aj  Py=ak-ay

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Diatomic Basis:

———

Force Constants

The force constants between the 1st
2nd and 34 nearest-neighbors need
to be included (at least)

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University




Diatomic Basis: Dynamical Equations

Dynamical equation for the red(1) atom:

2 _
A dty Rg;'fd”t =+ j=1’221’3’4[[l72(§,,m+c?1+Ej,t)—ﬂ1(ﬁ’,,,,,+J1,t)].ﬁj]ﬁj —
oy X [[ﬁ1(‘nm+a1+ﬁj’t)_ﬁ1(knm+a1’t)]'ﬁi]ﬁi
j=12,3,4
+a3 X [[U1(knm+a1+F.’j't)_ﬁ1(ﬁnm+a1't)]'ﬁj]’3]
j=12,3,4

M, o2ty (Rym +da,t =+ X [[ﬁz(ﬁ’nm +c72+ﬁj,t)_a2(§nm +c72,t)]. ﬁj]ﬁj .
dt® j=1234
ta j=1,22:,3,4[ [ az(ﬂnm +d, +ﬁj,f)—l72(§nm +c72,t)]_ ﬁj],“,j
tas j=1,22:,3,4[ [ az(knm +d, +ﬁi’t)_a2(knm +&2,t)]_ ﬁj]i’j

\_

summation
over 4 1st nn
summation
over 4 2" nn
summation
over 4 39 nn

summation
over 4 1st nn
summation
over 4 2" nn
summation
over 4 39 nn

—
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Diatomic Basis: Dynamical Equations

Cume a solution of the form:

Uqy ﬂnm + &1, t; u1x(é) ei q-di

|

iq(R d q =\, iG.d

[u1 R,,,,,+d1,t)}= Uy \Rpm +dy, t _ u1y(q)e’q 1 eit-"an -
Us\Rpm + d2,t) Uy \Rpm +da,t uzx((—i)eiq.dz
Uy \Rpm + dy,t Uy, (&)el G.ds

To get a matrix equation of the form:

u1,(q) My 0 0 0 7[u(qg)

= luy(@| 5,10 M 0 0 luy(q)
) 11 _ 9
@Dl @)= | 0 0 My, 0 ||uz(@)

uzy(c"l) 0 0 0 Mz u2y(é)

iot

—
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The matrix D(§) is:

The Dynamical Matrix

Uix ((:7) M1
2@ iie) | o
sy (6) 0

0 0 07 un(@
My 0 0 ||uy(@)
0 M, 0 ||ux(d)
0 0 M,]|uzy(q)

204 + 4ax, sin® %J +

2a; [ 1- cos(q,a)cos(qya)]

203 sin(g,a)sin(g,a)

9xa qy a
2
aq COS( jcos[ ]

204 sin(%) sin[?)

2a; sin(qg,a)sinlgya)

a
204 + 4a sin® % +

2a3 [ 1- cos(qxa)cos(qya)]

a
20, sin(%} sin[q; ]

axa aya
—2a, cos| cos
“ [ 2 J [ 2

Q

a
-2 cos(%) cos[%]

a
20, sin(%} sin[q; ]

204 + 4y sinz(%J +

2a; [ 1- cos(qxa)cos(qya)]

2a; sin(q,a)sinlqya)

. a\)_. (9y@
20, snn(%) sm[%]

axa aya
—2a,cos| —=— |cos| ——
“ [ 2 ) [ 2

2a3 sin(q,a)sinlqya)

a
204 + 4, sin® %] +

"

2a; [ 1- cos(q,a)cos(qya)]

—
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For calculations:

@ =300 N/m
ag = 200 N/m
a3 =100 N/m

One obtains:

center)

- 2 optical phonon bands (that have a
non-zero frequency at the zone

0.2 LO bands
LO LO
TO
0.15 TO
— TO
A
3 \ LA
g 01
e TA
LA TA
0.05
TA Acoustic
bands
r X M r

- 2 acoustic phonon bands (that have
zero frequency at the zone center)

Diatomic Basis: Solution and Phonon Bands \
Optical

2My =M, =4x10"26 kg

2z
FBZ __ a
———p

—
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Longitudinal (LO) and Transverse (TO) Optical Phonons

Casel: qx=0,q,=0

ur(ay) 1 _1,.1
1x\dx 1 M, M, M,
> (q zO)= % u1y(qx) A 0
LotHx M, Uz (ax) MMy |, Opica
tzy (@) 0 yAran N
Longitudinal optical phonons: atomic motion in the 0 5
direction of wave propagation and basis atoms §
move out of phase g o A
u1x(qx) 0 0.05
2o uyy, (qx) 1 TA Acoustic
~0)= |— =A bands
@10(dx =) M, uzx(ax) 0 o X "
uzy (ax) - My /M,
Transverse optical phonons: atomic motion in the M

direction perpendicular to wave propagation and
basis atoms move out of phase

To——9 X

FBZ
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Longitudinal (LA) and Transverse (TA) Acoustic Phonons

Casel: 9x~0,q,=0

Uqx (qx)

oLa(gy =0)=2?

1
Uy (qx ) —A 0
Uzx\dx 1 0.2

- bands
uzy (ax) 0 ﬁ?\
Longitudinal acoustic phonons: atomic motion in 0.18

Optical

the direction of wave propagation and basis atoms g ©
move in phase g A
u1x(qx) 0 0.05
orolas ~0)=2 4|41 A =
uzy (qx) 1
Transverse acoustic phonons: atomic motion in the M

direction perpendicular to wave propagation and
basis atoms move in phase

FBZ

S—
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Counting Degrees of Freedom and the Number of Phonon Bands

Periodic boundary conditions for a lattice of N;xN, primitive cells imply:

q=a1bi+ay by 0 P
bands
m N. N. Lo
=t {where MM 01527‘\
N, 2 2 < e
mz N2 N2 % 0.1
ay =—= where -—“<my, <—= €
27N, { 2 272 ay
0.05
—=There are N,N, allowed wavevectors in the FBZ TA Acoustic
—=There are N,N, phonon modes per phonon band or < m bands

Counting degrees of freedom:

* There are 4N,N, degrees of freedom corresponding to the motion
in 2D of 2N, N, atoms (2 atoms in each primitive cell)

* The total number of different phonon modes in the four bands is
also 4N,N,

ECE 407 — Spring 2009 — Farhan Rana — Cornell University
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Handout 19

Lattice Waves (Phonons) in 3D Crystals
Group IV and Group llI-V Semiconductors
LO and TO Phonons in Polar Crystals
and
Macroscopic Models of Acoustic Phonons in Solids

In this lecture you will learn:

 Lattice waves (phonons) in 3D crystals
* Phonon bands in group IV and group IlI-V Semiconductors

* Macroscopic description of acoustic phonons from elasticity
theory
« Stress, strain, and Hooke’s law

—
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Counting the Number of Phonon bands in 3D Crystals
Periodic boundary conditions for a lattice of N;xN,xN, primitive cells imply:
G =01 by+az by +as bs
ay=my/N; {where -N;/2 < my<N;/2
ay =my/N, {where -Ny/2<m,<N,/2
a3 =m3/N; {where -N3/2<m;<N;/2

=There are N,N,N, allowed wavevectors in the FBZ
=There are N,N,N; phonon modes per phonon band

Counting degrees of freedom and the number of phonon bands: Monoatomic Basis

* There are 3N,N,N; degrees of freedom corresponding to the motion in 3D of N,;N,N;
atoms
—=The number of phonon bands must be 3 (two TA bands and one LA band)

Counting degrees of freedom and the number of phonon bands: Diatomic Basis

* There are 6N,N,N; degrees of freedom corresponding to the motion in 3D of
2N,N,N; atoms

=The number of phonon bands must be 6 (two TA bands and one LA band for
coustic phonons and two TO bands and one LO band for optical phonons)

—
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Phonon Bands in Silicon

y

Silicon has a FCC lattice with two FBZ of Silicon
basis atoms in one primitive cell

=The number of phonon bands must be 6; two TA bands and one LA band for
acoustic phonons and two TO bands and one LO band for optical phonons /

—
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Phonon Bands in Silicon \
[ A XX K T TIT A L Calculations

i | g Data
LO | <)

15.09 X, I TO e o, (Neutron
_ TO T0 s LO scattering)
N 125+ ! LO r g
I X ]

e
E 10.0 LA I
(] | o
: 15 AN,
L 50 TA | TA L LA
X, | TA
25 I
|
N

haLo(@x = 0)=hero(qy ~0)=64 meV

S—
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Phonon Bands in Diamond

r A L r A X
14635 1400
N \LAO
1200} Py I \A\‘\A ~
TO/TO = TO/TO \\é
3 s A
o~ 1000f M &~ 1000}
£ v E |
< gl / < 00} LA
> > K Land
g LA g el
@ 600} / @ so0f I
] p——t 3 v
o P o /
o g o /
w400 L 400 T A
TAITA AT
200} 200}
haJ,_o(qx = 0) = ha)-,-o(qx = 0) =165 meV Large!!

Phonon frequencies are also expressed in units of equivalent

photon wavelength inverse:

aJLO(qX it 0) _ wTO(qx d 0) =1330 cm'1

2z c 2z c

Calculations

Data
(Neutron
scattering)

-
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Phonon Bands in GaAs

GaAs has a FCC lattice with two basis
atoms in one primitive cell

=The number of phonon bands must be 6; two TA bands and one LA band for
acoustic phonons and two TO bands and one LO band for optical phonons

FBZ of GaAs

—
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Phonon Bands in GaAs

T A X K ) r A L
10 Calculations
= o Data
84 oy, (Neutron
| TO TN scattering)
=
=
>
(5]
e -
g_ 4 LA
o
'S

~ssctosy
P
”

” TA

hapo(qy ~0) =36 meV
haoro(qy = 0)=33meV
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Optical Phonons in Polar Crystals
Consider a crystal, like GaAs, made up of two different kind of atoms with a polar

covalent bond
.~—>.
iq(R+dy,t) i dy(R+dy+1ij,t)
When the atoms move, an oscillating charge dipole is created with a dipole moment
given by:
B;(R.t)=F [y (R+dy+7i;,t)- iy (R +dy, )]
The material polarization, or the dipole moment density, is then:
PR.1)= 255, (R)="" £lip(Ro+dy +ij,6)-an(R+diy ]
where: ! !

1
N = —— = Number of primitive cells per unit volume
3

Z = Number of nearest neighbors

A non-zero polarization means an electric field!

—
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Optical Phonons in Polar Crystals: D-Field and E-Field

A non-zero polarization means an electric field! up (l':\’ + Ry, t)
How do we find it? (B =
uz(R+n2,t) ‘ (ﬁ’ t)
The divergence of the D-field is zero inside the e
crystal: L
V.D=p, =0 uz(R+n3,t) ﬁz(k+ﬁ3,t)
But inside the crystal:
D =¢g(w)E+P
SvE=_YP
&(0)
Since:
Is(k,t)= % Zﬁj(k,t)= n?f Z[ﬁz(ﬁ’+31 +ﬁj,t)— l_j1(k+a1,t)]
J J
Therefore:
E(R’,t): —m —> We must also have:

&()

VxE(f(’,t)=0
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Optical Phonons in Polar Crystals: Dynamical Equations

Dynamical equations (assuming only nearest neighbor interactions):

M%LAZ§[[a2(f\»+a1+ﬁj,t)-a1(k+&1,t)].ﬁj]ﬁj—n;E'(R,t)
M%L_n;’z§[[az(k+az,t)—a1(k+&2—ﬁj,t)].ﬁj]ﬁ,-+n;2E(ﬁ’,t)
Suppose: B _
[ﬂ1ﬁ+31,t)}= ﬂ1(¢7)e"6"‘i1 oiti.R-iot E(—,t)=E(¢7)eiq'7_im
(R +dy,t)] | diy(g)e’%2 P(R,t)=P(g) "d-R-Tot
We have:
VxE(R,t)=0 = GxE(G)=0
We also have: L L
v.é(k,t)=—JJ‘7f(:)" = a@)--"0

The above two imply that the E-field has non-zero component only in the direction
parallel to g given by: L
E(= P(q)q -
E@g)--P@)4,
£(»)

—
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Optical Phonons in Polar Crystals: TO Phonons
Subtract the two equations and take the limit g~0 to get:
LN Lo LN N oA Ta f = .
- 0y (@)~ (@)= - 2 £ 3 (@) - @) 8,1 + - EG)
rJ

Transverse Optical Phonons:
Take the cross-product of both sides with § to get:

NN BN S
- @*[15(§)- (@) G = - 7 = 82(9) - @) 4]y <G+ - E(@)xd
r ] r
o1 = - - . ba - = - ~ . ﬁj ﬁj=b
—o*[05(G)-64(@)]x G = - ~[62(d)- dr(G)]x G P
P =(AA;)A;x4)=bAxg
=w= bl For example in GaAs: ! o
M, E FA] Zhjh;
b o1 o1 /
=aro(q~0)= 5 | M=l f2= 51 100
r = |1 | 1] - =£0 10
[-1 (1] 30 0 1
P I P
SN MG _4
-1 -1 3

—
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Optical Phonons in Polar Crystals: LO Phonons

Again start from:

-0 l02(@)- 0@~ 2l 0@ 3@ 7] + - @)

r

Longitudinal Optical Phonons:
Take the dot-product of both sides with § to get:

—wz[ﬂz(ﬁ)-ﬁ1(<7)]-¢?=—Mir§[[ﬂz(‘?)-lﬂ(ﬁ)]-ﬁj]ﬁj-6+MLrE'(ﬁ)¢7

T - 1 VSN | L P
*[ty(q)-d4(q)ld = ", [42(q)-d1(9)l4 M,s(oo)[UZ(q) d1(9)}4
2 A:A:=b
= 0,0(q~0)= ba  nf” %‘I J
M, = M, s() VR
nf? Z_‘,(A.nj an.q) =bA.q
2 ~0)— o2 ~0)= J
:>wLO(q ) wTO(q ) M,g(oo)
2 2 _ nf?
= OLo — @10 M,g(oo)

—
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Optical Phonons in Polar Crystals: Dielectric Constant

Consider the response of polar optical phonons to an externally applied E-field
The total electric field (external plus internal) is:

E(R t)= E(g) e/ R-iat [ d~o0
We have:
—wZ[az(a)—a1(a)]=—iz,[[az(a)—a1(a>].ﬁ,-]ﬁ,-+Miré(a)
fE(q) ZAhjhj=
- [6(6)-5:@)] - - { ’
a’TO )
) " E()
= B(q) = nfldy(@)-ts(@)]=— "0
The D-field is: @ o

D(q) = &(=)E(@)+ P(d) = £(«)E(q)

:»o(q)—[s(oo> M]@@)

—
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Optical Phonons in Polar Crystals: Lydanne-Sachs-Teller Relation

We have: g(w) _ g(oo)_ nfz/M,
2 2
@ —adro
:>g(0)=£(oo) nf /M L?w freguency
a’To dielectric constant
2
nf 2 ! T A X K = T A L
= M =a’TO[3(0)_£(°°)] To Ll 1o
i B Lo v il i~
The LO-TO phonon frequency splitting was given by: E 7 “‘Q To
Es
2 e “NLA
nf £(0)—&(0 s \
= ofo - wfo = ofo [£(0)-o(co)] g1 9 8 E
Moe(0) " T e(w) 1 N "
2 £(0) ST R A
= wLo wro o -
&(«)
The above relationship is called the Lydanne-Sachs-Teller relation
The above relation does not change if more than nearest-neighbor interactions are
also included in the analysis
One can also write:

5(0) = 5(e0) - a’ro[g(o) 6‘(°°)]

o’ —wro

—
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Vector Dynamical Equations: Bond-Stretching and Bond-Bending

Bond-stretching
component
Bond-bending

, :’/ component
7

« In general, atomic displacements can cause both
e bond-stretching and bond-bending

R

* Both bond-stretching and bond-bending give rise
to restoring forces

Bond-stretching contribution:

w 8RR+ o) (R t)]. ]

dt?

—
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Vector Dynamical Equations: Bond-Stretching and Bond-Bending

Bond-stretching
component
Bond-bending

:// component
7

First find two mutually orthogonal unit vectors
that are also perpendicular to m

Let these be: 7y and A,

Bond-stretching and bond-bending contributions:
m udtm) o[ (R, + )Ry )] ]
+ B [[a(Ry +m,t)-a(Ry,t)]. Ay] Aq
+B[[a(Ry +m,t)-il(Ry,¢)). ;] A,

—
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Macroscopic Description of Acoustic Phonons in Solids

Acoustic phonons can also be described using a macroscopic formalism based on
the theory of elasticity

Let the local displacement of a solid from its equilibrium position be given by

the vector
Aelu (
u(f)=|u,(F .
() ()

Strain Tensor:

Consider a stretched rubber band: AL
—
—C Om
— N !
0 L L+AL X
There is a uniform strain given by:
o = duy(x) AL
xx ox L
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Stress and Strain
Strain Tensor:
The strain tensor € is defined by its 6 components:
- 6ux(F) _ 6uy(F) _ 6uz(F)
Cox = o Cw = ay €z = "5
aux('ﬂ') 6uy (F) 6uy (F) auz(F) auz(F) 6ux(F)
ey =", +t L €=+ ey =+
oy ox 0z oy ox 0z

Stress Tensor:

Stress is the force acting per unit area on any plane of the solid
It is a tensor with 9 components (as shown)

y

For example, X, is the force acting per unit area in
the x-direction on a plane that has a normal vector
pointing in the y-direction

S—
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Hooke’s Law
Stress Tensor:
In solids with cubic symmetry, if the stress tensor produces no torque (and no
angular acceleration) then one must have:
Xy=YX Yz=Zy Z, =X,
So there are only 6 independent stress tensor components:

Xy Y, Z, Y, Z, X,

Hooke’s Law:

A fundamental theorem in the theory of elasticity is Hooke’s law that says that
strain is proportional to the stress and vice versa. Mathematically, the 6 stress
tensor components are related to the 6 strain tensor components by a matrix:

Xx| [e11 €12 €13 - . C6]|€xx
Y, Cx C2 - . . . |[ley
z, e - e [- .
Y, - €yz
ZX eZX
[ Xy] 61 G2 - - - Cesl|Cxy |

Elastic stiffness constants

—
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Hooke’s Law for Cubic Materials

In solids with cubic symmetry (SC, FCC, BCC) the matrix of elastic constants have
only three independent components:

Xx| [e11 €12 €2 0 0 0 [fex
Yy| (€12 €1 €2 0 0 0 ||ey
Zz Ci2 Ci2 Cqq 0 0 0 e,
Y,|7]0 0 0 cu 0 0]lle,
Z, 0 0 0 0 c49 O €,y
_Xy_ L 0 0 0 0 0 C44 | _exy_

Elastic energy:

The elastic energy per unit volume of a strained cubic material is:

V= el vl et INCRERES
=5 C11\€%x +€)y + €% )+ Crale sy, + ey e, + e, )+ Cagley, + o5 + €%y

—
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Wave Equation for Acoustic Phonons in Cubic Solids

Consider a solid with density p
Consider a small volume of this solid that is in motion, as shown

We want to write Newton’s second law for its motion in the x-direction
First consider only the force due to the stress tensor component X,

2 _
pMAyAz%W:Ay AZ|:XX[f+%)?)—XX[

B%uy (F,t) _ X, (F)
P o ox

Now add the contribution of all forces Xy(F -5 Y
acting in the x-direction:

S%u(F,1) _ oX,(F), X, (F)  ax,(F)
ot ox oy oz

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Wave Equation for Acoustic Phonons in Cubic Solids

We have: 2 - = R -
0 ux(r’t) - 6XX(I')+ 6Xy(l')+ 6Xz(r)
ot? ax oy oz
Similarly for acceleration in the y- and z-directions we get:
luy (F,8) _ oY, (F), 0¥y (F) av,(F)  o%u,(7.0) _0Z,(F) L 02y(F) oz,(r)
ot? ox oy 0z ot ox oy oz

Using the Hooke’s law relation, the above equation for motion in the x-direction can
be written as:

FPuy(Ft) aexx(F)Nu[aeyy(f)+ aezz(F)}HM{aexy(fLaezx(F)}

ot? " ax ox ox oy oz
%u o%u, (F) o%u,(F o%u, (F) o%u,(F
- ;2( Lc‘“{ a;z( . a;Z( )}(C“Jrc““){ oxoy * axza(z)

I_ Wave equation for acoustic phonons

ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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Wave Equation for Acoustic Phonons in Cubic Solids

2 —
o%uy(F,t) _ c

ot?

LA phonons:

oy? oz2 oxdy  oOx oz

2. (7 2. (7 2. (7 82u. (r 2. (=
0 gxz(r)+c44{a uy(F), ux(r)}+(c12+c44){ uy (F) , 9%u,(F)
X

Consider a LA phonon wave propagating in the x-direction:

uy(F,t)= Ael IxXg it

Plug the assumed solution in the wave equation to get:

TA phonons:

@ = ‘n loci f =[G
= pqx —» velocity of wave = o

Consider a TA phonon wave propagating in the y-direction:

u (Ft)=Ae W eiot

Plug the assumed solution in the wave equation to get:

C [
@ = f qy — Vvelocity of wave = %

—
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Acoustic Phonons in Silicon

r A X
In Silicon:
15.0 Lo /{
apst T c11=1.66x10"" N/m?
N St
£ X C12 =0.64x10""  N/m?
> 100 i 11 2
g C4q =0.80x10"" N/m
] L
2 73 p=2330 kg/m®
(3]
& S0 TA
] X3
2.5
Results from elasticity theory

For LA phonons propagating in the I'-X direction:

velocity of wave = /% = 8.44 km/sec

For TA phonons propagating in the I'-X direction:

velocity of wave = % =5.86 km/sec

S—
ECE 407 - Spring 2009 - Farhan Rana - Cornell University
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Wave Equation for Acoustic Phonons in Cubic Solids

ot? oy? 0z? oxdy  ox oz

o2u, (F,t o%u,(F)  |o%u,(F) &%u,(F 2y (F) 8%u.(F
uy(r )=c11 g;§r)+c44l uy(r)+ uy(r) +(Crz +Ca 6ux(l’)+6 u,(r)

ot? o ox? oxdy  o0zoy
Consider a phonon wave propagating in the direction: x +2y = g=q x\-/%y

0[] e

uy (7,)| =1, (@)

Plug the assumed solution in the wave equation to get two coupled equations:

R i el

—
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Wave Equation for Acoustic Phonons in Cubic Solids

q:(cﬂ +C44) ﬁ(cm +C€44) [, (q) u,(q)
q22 ( ) :2 ( ) |:u.V (6)i| - 2 |:uy (a)i|
2 C12+Cy4 2 C11+Cy4

The two solutions are as follows:

g a4l
Fma el

LA phonon:

=
TA phonon:
=

—
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2. (% 2. (7 2. (7 2. (% 82u. (r 2. (=
d ux(r,t)=c11a g;z(r)+°44{a ux(r)+a u"(r)}+(c12+c44){ uy(r)+a uz(r)]

|
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Handout 20

Quantization of Lattice Waves:
From Lattice Waves to Phonons

In this lecture you will learn:

* Simple harmonic oscillator in quantum mechanics
« Classical and quantum descriptions of lattice wave modes
* Phonons - what are they?

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Classical Simple Harmonic Oscillator

PE Consider a particle of mass m in a parabolic potential
ke = Px(0) PE = V(%)= ) ma2 x(t)
2m 2 °

The total energy is:

2
t) 1
Erotar = %;L_ Ema’g xz(t)

In quantum mechanics, the dynamical variables and observables become operators:

x(t) o x

Px(t) < Bx
5 _ P 2 o2
Erota < H=ﬁ+5mmox

—
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Quantum Simple Harmonic Oscillator Review - |

PE
Consider a particle of mass m in a parabolic potential
~2
Px N1 2 .2
KE = =% PE=V(x)=—maj x
2m ( 2 °

-2

g_Px 1 2.2

H="*+_—mw x
2m 2%

The quantum mechanical commutation relations are:
[ X, Px ]= in

Define two new operators:

- mao, . .
a °x

1 .
“\o2n \/Zm hag Px

. ma, . .
a‘t = o % —

1 .
= i
2h \/Zm hay Px

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Quantum Simple Harmonic Oscillator Review - II

4= M2y i1 4 5+—J"’7“’°£-i 1 5
27 2m hw, 27 2m hw,

The quantum mechanical commutation relations are:

[.px ]=in = [aa*]=1
The Hamiltonian operator can be written as:

n2

g_Px 1 2.2 stz 1

H=_"*+_—maw; x“=haw,|a a+_
2m 2 °° ° 2

The Hamiltonian operator has eigenstates \n> that satisfy:

a*a|n)=n|n) {n=0123........

Hn)=1 o, [é+é+%J\n>=hwo [n+%)\n>

—
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X

Lattice Waves in a 1D Crystal: Classical Description

ﬁ,,=n51

A1D lattice of N atoms:

o
—
ot |

|
]
Q

KRy Ri)=— 0V
! oulR;)oulRy ) .,

Potential Energy:
V= VEQ + %%%K(kl , f\’k)u(f\’j,t)u(kk,t)

1 L . _
= E%ZK(RJ ’ Rk)u(Rj,t)u(Rk,t)
J
Choose the zero of energy so the constant term V4 goes away

KE=Y"
22| at

Kinetic Energy:
M[du(kj,t)jz
J

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Lattice Waves in a 1D Crystal: Classical Description

k,,:né]

[ ]
[ ]
X

A1D lattice of N atoms:
51 =ax

Potential Energy:
V= %%ZK(ﬁ’j ,Rie)u(R;,t)u(Ry.t)
J
K(R’ , R’ )— - 6j,k+1 -a 5j,k—1 +2a 6j,k _

Nearest-neighbor
interaction

K(R; . Ry

) is always a function of only the difference f"j - ﬁ’k

- V=LAl
k j

ECE 407 - Spring 2009 — Farhan Rana — Cornell University




Lattice Waves in a 1D Crystal: Classical Description

The energy for the entire crystal becomes: Atomic displacements
E =KE+PE coupled in the PE term
= 2
m(du(R;. 1)) 1 N
=) —|——| += K\R;: — Ry Ju\R;,t)u\R,,t

The atomic displacement can be expanded in terms of all the lattice wave modes:

u(Rot)= sRe|u(g)eldRn ool
GinFBZ

u(@) 1. Ry g-io@)t , U (@) -1d.R, gio(d)t
2

T ginFBZ 2

_ 5 4@t ia.g, LU @) -ig.r,
ginFBZ 2 2

- 5 u(ﬁ,t) e,'q R, +u*(_ q,t) el(; Rp
ginFBz 2 2

= SU@G.t)el R {ua.n-u'GD
GinFBZ

—
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Lattice Waves in a 1D Crystal: Classical Description
Take the expansion in terms of the lattice wave modes:

uRn)= zU@He R {UCd0=U@G
qinFBZ

And plug it into the expression for the energy:

S W2
d ulR;,t L _ .
E= §"2"["(dt1)] + %%%‘,K(Rj ~Ry)u(R;,t)u(Ry.t)
The KE term becomes:
oM (d u(f",-,t)]z _ NM dU(g,t) dU"(G,t)
j2 dt GinFBZ 2 dt dt

The PE term becomes:

Zek(R, -Ri)ulRy ulRet)- 2 NM 0*(@) 45 0 0" @, )

§inFBZ 2

N =

where: 2(g) = %%K(ﬁ’j)eiq'ﬁj - %sinz(%]

—
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From Classical to Quantum Description

So we have finally:

M du(ll:\’-,t)2 1 Ly (s B}
E=§2[dt1] +E%ZJ;K(RI-—Rk)u(Rj,t)u(Rk,t)

N dUG,t) dU"(G.t)  NM 2y o U*(d,t)}

=(«,inFBz{ 2 dt dt 2
‘ Lattice wave amplitudes

uncoupled in the PE term

Going from classical to quantum description:
The atomic displacements and the atomic momenta become operators:
uR,t) = da(R,)

Midu(g‘;mt) = ﬁ(én)

Commutation relations are:

[0(Rn) ) ﬁ(Rn)]= in

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

From Classical to Quantum Description
The amplitudes of lattice waves are now also operators:

Classical: u(f\’,,,t)= >u(g,t) efd-Rn { U(-q,t)= U*(f], t)
GinFBZ
Quantum:  G(R,)= 30@e TR { 0(-)=07(G1)
ginFBZ
Classical: p(Ry,t)= SP(G,t)e' 9 Rn { PCa,0)=P@G.1)
qinFBZ
Quantum: ﬁ(f\’n)= T P(g)e' 9 Rn { P(-G)=P*(q)
GinFBZ

The commutation relations for the lattice wave amplitudes are:
e\ (s VM - , AN Y
[6R,). B(R, )| =i 7 canholdontyit  [0(d), B* (@)= N0

The Hamiltonian operator in terms of the lattice wave amplitude operators is:

—
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From Classical to Quantum Description
Define two new operators:

@)= "Ml g g).. #w(q)ﬁ(a)

O PR

The commutation relations are:

b@.pr@l=nse = [4@).4°@) |- 3.4

Note the inverse expressions:

0(4)= m[ s(@)+a*(-a)]
B(g) = _,-W[ a(d)-a*(-q) |

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

From Classical to Quantum Description

Use the expressions:

06)= | o). 4@+ 9]
p(a@)=-i, " 129 56)- 5 ()|

in the Hamiltonian operator:

q inzI:=BZ [% p(é) P (é) * % o (&) 0((7, t) o (6’ t)i|

A
to get:

A= = hofd) (5@ a(a)+ )

—
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From Classical to Quantum Description

The final answer:
- N O |
H= 3 no(q) (a+(q) a(q)+7)
GinFBZ 2
and the commutation relations

[4(a).4*(@) ]=1

tell us that:

1) The Hamiltonians of different lattice wave modes are uncoupled
2) The Hamiltonian of each lattice mode resembles that of a simple harmonic
oscillator

Finally, the atomic displacements can be expanded in terms of the phonon
creation and destruction operators

aR;)=  0(@)e’ I
GinFBZ

h a(=Vy a0 =) | aiG-Rj
=ainzFBzV2NMw(¢7)[a(q)+a (_q)]e ’

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

What are Phonons?
Consider the Hamiltonian of just a single lattice wave mode:

=1 0(a)(4"(@ @)+ |

In analogy to the simple harmonic oscillator, its eigenstates, and the corresponding
eigenenergies, must be of the form:

‘n;’> {where ng = 0,1,2,3.............
~ Y PN | _ 1
Alng) = 1 0(@)( &"@) 4@+ ) |ng) = 0(@)| ng + ) mg)
This eigenstate corresponds to ng phonons in the lattice wave mode

* A phonon corresponds to the minimum amount by which the energy of a lattice
wave mode can be increased or decreased — it is the quantum of lattice wave energy

* A lattice wave mode with ng phonons means the total energy of the lattice wave
above the ground state energy of 7 w(q)/2 is ng h w(q)

* The ground state energy is not zero but equals 7 w((])/Z and corresponds to
quantum fluctuations of atoms around their equilibrium positions (but no phonons)

—
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What are Phonons?

In general the quantum state of all the lattice wave modes can be written as follows:

‘V/>=‘n§1>‘n(’2>‘nq‘3>‘ng’4> .......................... ‘nﬁN>=(;ir}-|I=ZB‘nd>

where the wavevectors run over all the N lattice wave modes in the FBZ, and the
total energy for this quantum state is:

)= % nof@)(5@@)e ) v)

= 3 hw(é)(nq+%]\w>

GinFBZ

“Phonons are to lattice waves as photons are to electromagnetic waves”

—
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Hamiltonian for Multiple Phonon Bands

If the crystal has multiple phonon bands (TA, LA, TO, etc) then it can be shown
that the Hamiltonian can be written as follows:

o= %ﬁinzFBzh a)”((,) (é;(q) é’l(q)+ %)

where the summation over “7” represents the summation over different phonon
bands.

Optical
0.2 LO bands
Lo LO
n=1 = TA 0.15 To TO
— TO
n=2 => LA 3 \{ LA
n=3 > TO g 01 TA
LA
n=4 = LO T
0.05
TA Acoustic
0 bands
r X M r

Phonons bands of a 2D diatomic crystal

S—
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Handout 21

Phonon Thermal Statistics and Heat Capacities

In this lecture you will learn:

* Phonon occupation statistics

* Bose-Einstein distribution

* Phonon density of states in 1D, 2D, and 3D

* Phonon thermal energy and heat capacity of
solids

Peter Debye
Born: 1884 (Netherlands)
Died: 1966 (Ithaca, NY)

—
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A Single Lattice Wave Mode
Consider the Hamiltonian of just a single lattice wave mode:

~ N oAbz ar=y 1
=1 0(a)(4"(@4(@)- |
Its eigenstates, and the corresponding eigenenergies, are:

\n) {where n=0,1,23..........
Aln) =1 of) 4(@) @)+ 3 In

=1 a)(d)[n+%j \n)
_E(n)n)

The state \n> corresponds to “n” phonons in the lattice wave mode

—
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A Single Lattice Wave Mode in Thermal Equilibrium
B _ 1
H|n) =1 o(q) (’H-Ej \n) = E(n)|n)

Thermal Equilibrium

In thermal equilibrium, let P(n) be the probability that there are “n” phonons in this
lattice wave mode

P(n) must be related to the energy corresponding to the “n” phonons:

E(n) h o(G)(n+1/2) 1
P(n)ce KT =e KT M
P(n) must be normalized properly:
5 P(n)=1 —
n=0
(1) and (2) give:
h o(g)n _ha(a)

P(n)=e KT | 1-e KT

—
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Bose-Einstein Distribution
The probability distribution given by,
_na(@n _ne(q)
P(n)=e KT | 1-e KT
is called the Bose-Einstein distribution
Average Phonon Number:

One can calculate the average phonon number in equilibrium:

* 1
n)= Y>nP(n)= _
< > n=0 ( ) eh ﬂ)(qi/KT_1
Average phonon number in any lattice wave mode depends on the phonon energy

Limiting Cases:
_ 1 _ KT -
~ & @@KT _1~ 10(4)

KT >> ho(g) = (n) (E) = ho(G)n) ~ KT

L Classical

g = 1 ~ e~ @(@)/KT equipartition
KT << ha)(q) = ()= ﬁ(ﬁm e theorem

—
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Classical Equipartition Theorem

Every independent quadratic term in position or momentum in the expression for
the energy of a system has an average value equal to KT7/2 at temperature T

* Only holds when classical statistics apply - which is generally the case at high
enough temperatures

Example: A Free Particle in 1D Example: A Free Particle in 3D
2 2 2 2
Px 1 p2 P, p 3
E="* = (E)=—KT E=Cx Y Pz o (E\=2KT
2m () 2 2m 2m 2m (E) 2

Example: A Classical Simple Harmonic Oscillator in 1D
pP: 1, ,
E="*+_kx* = (E)=KT
2m 2 (E)
Example: A Single Lattice Wave Mode of a 1D Crystal

E=%P(ﬁ,t)P*(ﬁyf)+%"’z(ﬁ)u(‘7yt) U'@G,t) = (E)=KT

—
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Acoustic Phonons in 1D: Density of States

X

Consider acoustic phonons in a N-primitive-cell 1D crystal
of length L:
L=Na

First we need to figure out how to convert a summation
over all lattice wave modes of the form:

P
qx inFBZ TTITTTIITTITITTITTITITIT
i i z 0) z  9x
into an integral for the form: _Z 2 z
z/a a N a a
[day
-r/a

We now that there are N different allowed wavevector values in FBZ (in interval 2r/a)
So in interval dq, there must be (Na/2r) dq, different wavevector values:

/a r/a
= ) — Na da, L | 9
9y inFBZ —zja 27 _1/a 270

—
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Acoustic Phonons in 1D: Density of States

7/a g 7/a g @
> ) —)NajiaLj& :w :a)—v—
qy inFBZ _x/a 27 _n/a 27 N @0 @b =V
1 1
Now we need to figure out how to convert an integral i :
of the form:
L 99 : :
T 1 1
—n/a 27 ! !
into an integral over frequency of the form: t X
? Density of states _ 7 FirstBZ 2 ax
L‘J; do gip(@) < a a
We need to know the dispersion of the phonons. We approximate it by a linear function:
D=V gy
Therefore:
r/a d z/a d L @D |d @p 1
L[i—>2LJ’ q"—)—[ q"dw—)Ljda)—
—x/a 27 0 27 7 ol dw 0 TV

The density of states function g,p(@) is the number of phonon modes per unit
frequency interval per unit length: 1

91 (a)) = v

—
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Acoustic Phonons in 1D: Debye Frequency

We know that: ! @ ! x
) =N 1 @p —— |wD = V;
qx inFBZ ' !
. . 1 1
Since: ap | |
Y =L jdo gp(o) ! !
qx inFBZ 0 1 1
1 1
We must have: | J
T First 7  9x
ap R i
L [do gip(w)=N ) a Bz a
0

Since:
op=vZ g(@)= "
D a 1D TV
It can be verified that (1) above holds
The frequency ap is called the Debye frequency (after Peter Debye — Cornell
University). It is chosen to ensure that the total number of phonon modes are

conserved when going from g-space integrals to frequency domain integrals. In 1D
this is automatic.

—
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Acoustic Phonons in 2D: Density of States

Consider acoustic phonons in a N-primitive-cell 2D
crystal of area A

We need to go from a g-space integral to a
frequency integral:

z
qinFBZ
We need to know the dispersion for the 2 acoustic

phonon bands. We assume that for both phonon
bands the dispersion is linear:

ap
- A gda) gzp(a))

o=v,q {n=12 for LA,TA
For each phonon band we get:

d?g 227 qd
D A qz A]' 7 qaq

GinFBZ FBz (27) (2/:)2

@p

N qudqdw—>AIda) .
do 0 2r Va

The question is what is o ?

— gyp(@)=

"

—
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Acoustic Phonons in 2D: Debye Frequency

To find wp we count and conserve the total number of phonon modes in each

> =N

§inFBZ

ap @
= A do
0

=N

2

2z vy

= A =N

2
4r vy

Y

ar V”A

= Op =

Each phonon band has a different Debye frequency

bal‘ld\

—
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Acoustic Phonons in 3D: Density of States
Consider acoustic phonons in a N-primitive-cell 3D crystal of volume V
We need to go from a g-space integral to a frequency integral:
@p
S - V[dogyp(w)
qinFBZ 0

We need to know the dispersion for the 3 acoustic phonon bands. We assume that
for all 3 phonon bands the dispersion is linear:

w=Vv,q {n=123 for LA, TA,TA

For each phonon band we get:

3— ? 2
y o> v 99 , y4r9adq sdq
GinFBZ FBz( ﬂ) 0 (2”)
v o ,|dq] w?
- I q? do - Vj do —— 3 _ o
2z do 2r vy gSD(w) 2.2 V,:;

The question is what is wp ?

—
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Acoustic Phonons in 3D: Debye Frequency

To find wp we count and conserve the total number of phonon modes in each band:

Yy =N r A X
qginFBZ ) LO
wz 15.0 X,
=V j do —— 3 =15t TO
2z vy z S X
3 -~ L
Y a;D2=N EIO.O LA
67 V” % 754
13 [
2,3 N > 50t TA
= @p = (6# 7 VJ L ° X;
2.5
Each phonon band has a different Debye frequency

Silicon Phonon Bands
Silicon:

In Silicon the TA phonon velocity is 5.86 km/s. The corresponding Debye
frequency is 13.4 THz. The LA phonon velocity is 8.44 km/s. The corresponding
ebye frequency is 19.3 THz.

S—
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Acoustic Phonons in 3D: Thermal Energy
Consider acoustic phonons in a N-primitive-cell 3D crystal of volume V
Also assume that all three acoustic phonon modes have
the same velocity (for simplicity)

o=vgq {for LA,TA,TA wp -+

Then for each phonon band we have:

93p(@)= 70; 3
2z°v
The energy u of the lattice per unit volume at
temperature T can be written as:

3 degenerate phonon

bands qy

1 _
u=3x— Y naw(q)(ng Ax
V ginFBZ (@){ng)

“p ho
=3x (j; dw g3D(a))W

13
op 3 {wD = (67[2 ve g)
_ 3n { do W
2”2 V3 0 eha)/KT _1

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Acoustic Phonons in 3D: Thermal Energy o
3n ®p @°

Uu=——5—— 0 ————
2”2 V3 {) eha)/KT _1 wD 1
Define dimensionless variable “x” as:
X = he = Xp = hop 'If':
KT b=kt I
To get:
XD 3
u= %(KT)"’ [dx X
2z% (hv) 0 e’ -1
qy
Casel: KT <<hwp = xp>>1 qx
3 x3

_ 4% x _ 3 4 ﬁ _7[2 (KT)4
P (nv)? (kT) {;d e* -1 272 () (kT) [15J 10 (av)?

Specific Heat or 2 o4 (T\3
Heat Capacity: C = ﬂ = 2z K (Z- ) Debye’s famous 73 law
dT  5(aw)

—
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Acoustic Phonons in 3D: Debye Temperature

o
The low temperature limit:
wop
KT << hap 2
can also be written as: LA
TA
T
T << 6p
Where 6 is the Debye temperature:
q
On = th x {
b~k

The Debye frequency thus defines a natural temperature scale for the phonon
energetics

—
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Silicon Heat Capacity

Silicon Heat Capacity r A X
LO
o 15.0§ X,
0. 5 —_ TO
E Fst X
2 E
go1s 2 10.0 LA
g o1 o
s 5 g_ 7.5t
5 005 CxT
©0.05 * E 50} TA
°X
0 3)
(0 20 40 © 60 80 100 25

In silicon where the Debye frequency for TA phonons is
13.4 THz, the corresponding Debye temperature is 643 K.
The Debye frequency for LA phonons is 19.3 THz and the

Silicon Phonon Bands

corresponding Debye temperature is 926 K aop(LA)=19.3 THz
3 . o G (LA)=926 K
The T° law for heat capacity holds well in Silicon for
temperatures less than 50 K (much less than the Debye
temperature of any phonon band) @p(TA)=13.4 THz
6(TA) =643 K

S—
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Acoustic Phonons in 3D: Classical Equipartition Theorerr\
o

Casell: KT >>hwp = T>>6p op
Xp 3 LA
U=%(KT)4 [ dx ;( TA
27% (hv) 0 e” -1 T
= e¥-1~2x
Xp 3 q
3 (kT fdx x2=— > _(kT)*XD <
0

u= X
272 (v) 272 (hv) 3 k

KT 3 N N3
= =3|— | KT _ 2 .3
272 3 @p [Vj {((JD = [67; v V]

Physical explanation: There are N/V phonon modes per band per unit volume and
each mode has energy equal to KT as per the classical equipartition theorem

Dulong and Petit Law (18‘y
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Specific Heat: C = du =3 N K
dT "4

Silicon Heat Capacity
sili . r A X
ilicon Heat Capacity
X4

1

/”'—__ 15.0 Lo
X038 — TO
3 Nsy X
06 =
% E 1001 LA
F0.4
g %’_ 75¢
002 - L

n 5.0 TAo %]
% 20 00 600 800 1000 2.5
T(K)

The Heat capacity approaches 3(N/V)K as the temperature
exceeds the Debye temperature of all acoustic phonon
bands

Silicon Phonon Bands

op(LA)=19.3 THz
6p(LA) =926 K

wp(TA)=13.4 THz
6(TA)= 643 K

S—
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Optical Phonons in 1D: Einstein Model and Density of States
Consider optical phonons in a N-primitive-cell 1D crystal of length L

Let the optical phonon frequency be @, o(q)
We want to be able to write:

?
Y =L[do gip(®)
qy inFBZ 0

We suppose that all optical phonon modes in FBZ have the same
frequency @ o (i.e. the phonon band is completely flat - Einstein model):

= gp(@)xCs(@-w o) —— Whatis C?
We know that:

(2]

. =N E First |

gy inFBZ ! BZ !

I @, 1

Therefore: —g S
®© N 1 1

L{do gip(w)=N = C=- . .

0 L ' !

Finally: ! '
N T TS
g1D(w)=Z5(w_wLO) T T2x z

a N e a

—
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Optical Phonons in 2D and 3D: Einstein Model

Consider optical phonons in a N-primitive-cell 2D (or 3D) crystal of area A (or
volume V)

For each optical phonon band we want to be able to write:

2 ?
Y =A[dw gyp(w) or Y =V[dw g3p(@)
0 0

ginFBZ ginFBZ Silicon Phonon
Bands
We suppose that each optical phonon band is completely flat
and every phonon mode in a band has the same frequency o A X
15.0 Lo
o=, {n=123 for LO,TO,TO R N o X,
N 125}
I X
N N =
gzo(w)=25(“"wn) or gsb(w)=V5(w‘“’n) 3100 LA
5 7 5 3
On can check that the number of phonon modes per g "
band is conserved: E 5.0t TA/TA
© =] ° X3
A[dw gip(w)=N or V[dw gsp(w)=N 25
0 0

dx

S—
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Heat Capacity of Optical Phonons in 2D: Einstein Model

Consider a material with two atoms per primitive cell in 2D
= There must be 2 optical phonons bands in 2D (LO and TO)

Suppose the optical phonon frequencies are @; o and wrg . Assuming Einstein model:

N N
g2p-10(@)= 25(0— »L0) 92p-10(0)= 25(0’— oL0)
Total energy per unit area in both the optical phonon modes is:
1 . 1 .
u=— Y hoolq)ng) + — X & q)(ng
AginFBz tof )< q> AginFBZ @ro )< q>

= (j;da) dap-10 (a)) m + gda) 92D—To(w) W

_N_ rheo N noro

The heat capacity is:

du N, e'oo/KT [thojz N, e'ero/KT (hwm]z

C=d7_z (eha)Lo/KT_,l)z KT ZK(eha;m/Kr_1)2 KT

—
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Appendix: Classical Equipartition Theorem

According to the canonical ensemble of statistical physics, a system at temperature T

will have energy E with the probability given by:
E

1 PR
P(E)=—e KT
(E)=e

The constant Z is determined by adding the probabilities for all possible states of the
system and equating the result to unity

1D Example: Consider a free particle in 1D with the energy given by:

2
E=Px
2m
The probability that the particle at temperature T will have momentum p,, is then:
1 _p§/2m
p (Px) = E e KT

We must have:

Tdp, P(py)=1 = Z=. 27 mKT

—00

—
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Appendix: Classical Equipartition Theorem

So we finally have for the probability distribution of the particle momentum:

_pk/2m

1 KT

Pl) = Gmkr ®

The average energy of the particle is then:

T doy PX p(p,)= kT
S X2m Y2
General Proof:

Consider a system whose total energy can be written in terms of various
independent momenta and displacements as follows:

E=Ya;p}+Tbuj
J J

The probability that the system will have some specific values for all the displacements

and momenta is:
Ta;p?+xbju?
TR R

1 -
P(p1, P2yennenliy, Uz .. )=2e KT

—
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Appendix: Classical Equipartition Theorem
Z'ajp7+z",bju;‘f
J J

1 -
P(p1,P2, ...... Uq,Ug,..... )=Ee KT

The constant Z is determined by requiring:
[+ o)
[ H(dpj) m1(du,) P(py, Payeeenligs U o) =1
-0 J r

It then follows that the average value of any one particular quadratic term in the
expression for the total energy of the system is:

2)= 7 (dp;) m(a 2 p = KT
<a,,p,,>— [ 1;[ b 1;[( U,) apP? P(Pg,P2yereiligyUzyenen) =
—00

<bn"r2:>=_°f l;l(dpj) l;l(du,) bpu? P(p4,Paseeenliy,Up,.....) = — KT

The above results follow from the properties of standard Gaussian integrals

—
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Handout 24

The Effective Mass Theorem and the Effective Mass
Schrodinger Equation

In this lecture you will learn:

* Electron states in crystals with weak potential perturbations
* The effective mass theorem

* The effective mass Schrodinger equation

* The donor and acceptor impurity levels in crystals

G. H. Wannier, Phys. Rev,, 52, 191 (1937).
J. C. Slater, Phys. Rev., 76, 1592 (1949).
J. M. Luttinger and W. Kohn, Phys. Rev., 97, 869 (1955).

—
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Perturbed Electrons in Energy Bands

1) The quantum states of an electron in a crystal are given by Bloch functions
that obey the Schrodinger equation:

Ay, i(F)=Enk)y, i (F)
where the wavevector k is confined to the FBZ and “n” is the band index

2) Under a lattice translation, Bloch functions obey the relation:
- ik.R =
Wn,E(r+R)= e Wn,E(r)
Now we ask the following question: if an external potential is added to the crystal
Hamiltonian,
H+U(rF)
then what happens? How do the electrons behave? How do we find the new
energies and eigenstates?

[4+u@) lv(F)=EvF)

The external potential could represent, for example, an applied E-field or an
applied B-field, or potentials due to impurity atoms, or inhomogeneous
nanostructures

—
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Some Preliminaries
Statement of problem: Need to solve,

[A+u@) v(F) =Ev(F)

As always, we will start from a completely different point to solve the problem
stated above

Recall that the energy bands are lattice-periodic in the reciprocal space,

En(k +G)=En(K)

When a function in real space is lattice-periodic, we can expand it in a Fourier
series,

V(F+K’)=V(F) = V(f)=§v(éj)eiéj.f—

= When a function is lattice-periodic in reciprocal space, we can also expand it in
Fourier series of the form,

E,(k+G)=E,(k) = (,;)=§ E,(R;)e' I

—
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A Brief Review

E,(k+6)=E,(K) = E,(k)= ZE( el i #

Recall the operator:
R;.V

Eq(-iv)=SE,(R;)e"
J

When we apply this operator to a Bloch function from the same band (i.e. the n-th
band) we got:

n( iv)'//,-,k(r) Z

The result above implies that the action of the operator E'n (— iV) on a Bloch function
belonging to the same band is that of the Hamiltonian!

En(- W)y, ()= Ay, ((F)=Enlk)w, ; (F)

—
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Solution Strategy
Now we come back to the problem:
[A+u@) v = Ev@)

We want to see how the Bloch function ¥, ¢ (F ) is perturbed
by the potential.

Energy

We write the solution as a superposition using Bloch
functions from the same n-th band :

v(F)=_ ¥ clk)y,:(F)

k near ko,
[A+u@) JwF) =E vF)
= [Eq(-)+UF) Jv(F)=E w(F)

where we have replaced the Hamiltonian operator by én (-iv)

x|
S

7\

to get,

We are seeking a solution near a particular point Ro in k-space. For example, near a
band extremum. For k near Kk, we can approximate all Bloch functions as,

V’n,E(F)= ol K- F un,E(F)z el K-F Uni ()= of (k=ko). F Vo, ()

—
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The Envelope Function

NG

W(F) - k ne%r K C(E)l//n,,; (F)

= 5 clk)e!®F)ry L (@)

k near k, ko
i\ ilk-ko ). F =
- Ene%l' Ra C(k) el( O) r:| W"’EO (r)

—4(F) ¥, ()

The above expression shows that we are approximating the solution as a product of
a Bloch function and another (unknown) function ¢(7‘) which is called the envelope
function. By construction the envelope function is slowly varying in space (on atomic
scale).

We use the above form of the solution in the equation,

[En(- ™)+ U(P) [6F) v, 5, ()= E 6F) v, 5, (F)

First we look at:

En-17) $F oz, ()

—
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The Effective Mass Schrodinger Equation
En- V) 6 v (F) = SEn(R;)e™ ¥ 9(F) v i (F)
i

= %En(ﬁi) #lF+ k])'//n,l?o (F+R;)

|
<
S
b]
—_
~
N
- M
m
S
_
X
L.
N—
‘bh
x|

Vi, ) %E,,(Rj)ei (ko-iv).R; #(F)

=V, (F) Enlko - 1V) (F)
This implies:

[En- ™)+ U@ |6 v, ()= E 6Py, (F)
= Vi, ()| Enllo - 1v)+ UGF) [6(F) = E 9(F) v, 4 (F)

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

The Effective Mass Theorem

Finally we have the following equation for the envelope function:

[£,(k, - %)+ UF) |¢(F) = E 4(F)

The effective mass theorem states the following:

a) In the presence of a weak perturbing potential the solution for electron states
near K, in k-space can be represented as a product of a slowly varying

envelope function and a Bloch function

V()= ) v,z ()

b) The slowly varying envelope function obeys the effective mass Schrodinger

equation:

[ £, (K, - %)+ UF) |6(F) = E 4(F)

—
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The Envelope Function Energy

[ £, (K, - %)+ UF) |6(F) = E 4(F)

Electron S\ (= (5
wavefunction W(r)_ ¢(r) Ynk, (r)

kO
/ \ -
Slowly varying envelope function Bloch function \

—0—0 00 0 0 0 0 ¢
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The Effective Mass Schrodinger Equation: An Example

Energy
Consider a conduction energy band with the dispersion:

E. 4 hz(kx - kcax)2 " hz(ky - koyy " hz(kz _koz)2
€ 2m, 2m,, 2m,,

Eq(K)=

Now suppose an external potential U(F) is present. The
electron states near the conduction band bottom in the
presence of the external potential are described by the effective
mass equation:

[Ecko - v)+U(F) Jo(F) - E 4(F)

Note that one has to make the following replacements in the energy dispersion relation:

=

N e (s o o i)
E (K)> E.(ko-V) = o = Kox =i kyakoy—l@ ky > koz =i

The operator E'c(l?o - iV) is then:

2mxx 6){2 2myy 6y2 2mzz 622
The effective mass Shrodinger equation becomes:

2 8% n? *  n? 92 N .
~2m 2 om. A2 —5+Ec+U(F)|§(F)= E ¢(r)
XX ox myy ay 2mzz 0z
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Donor Impurities in Semiconductors

One of the earliest applications of the effective mass theorem was the donor and
acceptor impurity states and energy levels in semiconductors

Consider a semiconductor (say GaAs) in which one Ga atom site is occupied by a Si
atom, as shown:

As Ga As Ga As

| | ne l | | « Silicon has one more electron in the
—Ga—As— Ga—As—Ga—AS  ,termost shell compared to Ga (4 in

| | | | Si compared to 3 in Ga)
—As—Ga— As__Ga—As—Ga

| | | | « Since only 3 electrons are needed to
—Ga—As— Si — As—Ga—As form co-valent bonds with the nearby

| | | | | As a_tt?ms, t_he extra_ electron does_ not

participate in bonding and can drift

—As—Ga— As—Ga—As—Ga away leaving behind a positively

| | | | | charged Si atom
—Ga—As— Ga—As—Ga—As

—
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Donor Impurities in Semiconductors: Effective Mass Equation

The positively charged Si atoms presents a Coulomb —Ga— As—Ga—

potential to the lattice. Therefore the potential energy is: | " | |
2 —As— Si —As—
. . . = e
Attractive positive potential: U(F)=————— | | |
4z s |r| —Ga— As—Ga—

We need to figure out how the electron states and energy levels in | |
the conduction band are modified because of this Coulomb

potential A
[H +U(F) ]'/’(F)= E y(F) Energy

We are interested in how the states near the conduction
band bottom get modified, so we assume

V()= 4(F) v 5. o(F) :

And we know that the envelope function satisfies the
effective mass Schrodinger equation

=

[E.(ko - iv)+UGF) |6(F) = E 4(F)

—
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Donor Impurities in Semiconductors: Effective Mass Equation

We seek a solution near the conduction band bottom at k, = 0 :
—Ga— As—_Ga—

= [ E.(-iv)+UF) |4(F) = E 4(F) L

The conduction band dispersion in GaAs implies: ——As— Si —As—

2,2 0 292 | | |
E(k)-E +TK Ecgﬁo/—iv)=Ec(—iV)=Ec—h v _Ga— As—Ga—
2m, 2m,

Energy

So we get the equation:

iy o= 40

{_thz e? }¢(r) (E-E.)¢(F)

2m, dregr g r

The above equation looks like the Schrodinger equation for an

electron in a hydrogen atom with the exceptions that:

i)The mass is the effective mass m, instead of the free-electron
mass m

ii)The dielectric constant is &; instead of &,

—
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Donor Impurities in Semiconductors: Hydrogenic States\
H2y2 e2 ~ —Ga— As
i |#0- £ |

2m, A4rmegr

Solutions are: | | |
¢(F) = Snim (f) = an(r)ylm(6’¢) —Ga— As_—_Ga—

Remember that the actual wavefunction is: ¥(F)= ¢(F) Ve ky=0 (F) | |

Where:
1) nisapositiveinteger>1 (n=12,......)
2) /isapostiveinteger<n (/=0/2,....(n-1) for s,p,d,f,....)
3) misaninteger suchthatim/<¢ (m=—/,..-10,+1,....+ ()

The corresponding energy eigenvalues are:

E
E—Ec_——g —— n=1,23...... 2 2
n mg e
E, ° 2h2[4m€ ]
= E-= c~ 2 s
n

—
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Donor Impurities in Semiconductors: Hydrogenic States

2
e 2
E - E -Me| €
E=Ec—n—g n—1,2,3 ...... o th [4”85
A 2
Ground state (lowest energy state): = (1 3.6 eV)(&J S0
N m Es

= n=1 /=0 m=0
4 4reg | h?
=" 2 | m
E=E.-E, e )mg

< £ m
=(0.53A)| = || —
¢1$ (F) = ¢n=1 /=0 m=0 (F) = /”1a3 e—r/ao ( ) (SOJ [me]

\_ Effective Bohr radius

In GaAs: m,=.067 m and £5=124 ¢,

2
E=E.-E,=E;- (1 3.6 GV{’;’:)(%J ~E.-5.9 meV

Es

Very large!

a, =(0.53 A) [ZSJ [”:] ~98 A
o e
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Donor Impurities in Semiconductors: Hydrogenic States

E
(13.6eV)(m,\ & Y 5.9 meV nergy
E=Ec—— 5|\ || B~ 7

n m )\ &g

n
a, =(0.53 A) [2—5] [mﬂ] ~98A
o e

$15(F) = bt 1=0 m=o (F) = \/# e~/ ‘ ¥, 5.9 meV

Ga— >
| 1.42 evl K

o The positively charge donor atoms create
As— hew quantum states whose energies are
| slightly below the conduction band edge

T VP = ) ves o)

—
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Donor Impurities in Semiconductors: N-Type Doping

Energy

/ Donor

5.9 meV
+3 ionization

* At very low temperatures the electron resides in the
donor energy level and the donor atom is neutral

* At room temperature, the electron in the donor energy
level can acquire enough energy to jump to the
conduction band

When this happens the donor is said to have ionized

* Once in the conduction band the electron can move
around and is no longer localized at the donor atom

* Donor impurities can therefore be used to dope
semiconductors n-type

—
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—As—Ga— As—Ga—As—

—Ga—ﬁs— Ga—As—Ga—

—Ga—As— Ga— As—Ga—

T T

—As—Ga— As —Ga—

Acceptor Impurities in Semiconductors: P-Type Doping

Consider a semiconductor (say GaAs) in which one As
atom site is occupied by a carbon atom, as shown:

* C has one less electron in the outermost shell
compared to As (4 in C compared to 5 in As)

* Since 4 electrons are needed to form covalent bonds
with the nearby Ga atoms, the required electron is taken
from the valence band resulting in a negatively charged
C atom and a hole in the valence band

Solution: w(F) = ¢(F) ¥ hh,K,=0 (F)
= [Ehh(—N)+U(F) ]¢(F)= E ¢(F)

2
Negative repulsive potential: U(F)= +e7Q
Ar e |F|
2,2
hh-band dispersion: E,, (4)= E, - "k
2mhh
hZVZ

= Ehh(_iv)=EV+2m

—
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Acceptor Impurities in Semiconductors: P-Type Doping
The effective mass Schrodinger equation becomes:

2y2 2
{Ev+hv+ °

Rearrange:

hZVZ e2
|:_ 2mhh - 4r Es ‘F‘

E

-E+E, =—-—2
v nz

= E=EV+E—g
n

2mhh 4z Es ‘F‘

}¢(f)=(—s+sv)¢(f)

Again we end up with a Schrodinger-like equation for a
Hydrogen atom which has the solution:

¢(F) = Gnim (F) = Rn((r)Y/m (0’ ¢)

2 k
2
° 212 4reg Acceptor
states

}¢(f>=s¢(f)

-(13.6 ev)(%J [Z]z

—
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k

Acceptor
—\ ionization

Acceptor Impurities in Semiconductors: P-Type Doping

* Acceptor atom gives rise to hydrogenic energy levels
near the valence band maximum

* At very low temperatures the hole resides in the
acceptor energy level and the acceptor atom location is
overall neutral

* At room temperature, the hole in the acceptor energy
level can acquire enough energy to jump to the valence
band

When this happens the acceptor is said to have ionized

* Once in the valence band the hole can move around
and is no longer localized at the acceptor atom

* Acceptor impurities can therefore be used to dope
semiconductors p-type

—
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/ Energy

E, [ / Donor
d ionization

Sum of all probabilities
should equal unity: =

Donor lonization Statistics

In the grand canonical ensemble the probability of a
system to have total particles N and total energy E is:

P(N,E) = Ae (E-EfNJKT
The donor level can have the following possible states:

1) No electrons present
P(IN=0,E=0) = A
2) One spin-up electron present
P(N=1E=E,) = Ae (Ea=Er)/KT
3) One spin-down electron present
P(N=1E=E,) = Ae Ea Er)/KT

4) Two or more electrons present

P(N>1 E) -0 —s Coulomb repulsion
’ does not allow it

~(Eq-Ef)/KT | _ - 1
A[1+2e ] 1= A 122 o-Ea-EJKT

—
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/ Energy

edY) Doror
ionization

Acceptor

E -
ﬁ —\ ionization

Donor lonization Statistics

Probability that the _ Probability that the
donor level is ionized ~ donor level has no
electrons
= P(N=0,E=0)
= A
1

142 e (Ea—Er)/KT
If the total donor impurity concentration is N then the
concentration of ionized donors N*; is equal to:

N+ — Nd
1+2 e_(Ed _Ef )/KT

For acceptors we have a similar relation:

- N,
N; = 1+ 2 o(Ea-EfJKT /

—
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Carrier Statistics in Doped Semiconductors

Consider a semiconductor that is doped

Energy with both donor and acceptor impurity
atoms
Donor « The total charge must be zero:
_) ionization

p Nj-N;+p-n=0

The above equation can be used to find the
£, Acceptor position of the equilibrium Fermi level
ionization since every term depends on the Fermi
level position (one equation in one
unknown)

Ny

1 + 2 e_(Ed _Ef)/KT
Na

1+2 e(EaEr)KT

N =

N2

—
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Handout 25

Semiconductor Heterostructures

In this lecture you will learn:

* Energy band diagrams in real space

* Semiconductor heterostructures and heterojunctions
* Electron affinity and work function

* Heterojunctions in equilibrium

* Electrons at Heterojunctions

\_

Herbert Kroemer
(1920-)

Nobel Prize 2000 for
the Semiconductor
Heterostructure Laser

—
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Band Diagrams in Real Space - |
N-type semiconductor P-type semiconductor

Energy Energy
n=N, e~(Ec-ErJKT
p = NV e_(Ef_EV )/KT
____-_EE__.Ef E,
E, & Er-g- 32— K

—
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Band Diagrams in Real Space - I

Electrostatic potential and electric field:
An electrostatic potential (and an electric field) can be present in a crystal:
#(F) and  E(F)=-V4(r)

The total energy of an electron in a crystal is then given not just by the energy band
dispersion E,|k)but also includes the potential energy coming from the potential:

E (k) - E,(k)-es(r)

Therefore, the conduction and valence band edges also become position dependent:

E. — E.-ey(F) E, - E,—ed(F)
Example: Uniform x-directed electric field
E.
/: —
———-----"—"F E(F)=E, %

—— % #9(F)=g(x =0)-E,x
/Ev E.(x)=E.(x=0)+eE,x

N-type semiconductor

—
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Electron Affinity and Work Function

Electron affinity “y ” is the energy required to remove an electron from the bottom
of the conduction band to outside the crystal, i.e. to the vacuum level

Energy
Vacuum

Potential in
a crystal

Conduction —»
band

0 X

Work function “W?” is the energy requiredto  -4---------- ----V
remove an electron from the Fermi level to
the vacuum level w X

£ Ee
* Work function changes with doping but -TTTTTTET E;
affinity is a constant for a given material

E,

—
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Semiconductor N-N Heterostructure: Electron Affinity Rule

Heterostructure: A semiconductor structure in which more than one semiconductor
material is used and the structure contains interfaces or junctions between two
different semiconductors

Consider the following heterostructure interface between a wide bandgap and a
narrow bandgap semiconductor (both n-type):

2
The electron affinity rule
tells how the energy band
"""" edges of the two
semiconductors line up at
21 22 a hetero-interface
Ecq
L Ec
"""" -~ TE
Egq E 2
g2
Ev1 Ev2
E(m — Spring 2009 - Farhan Rana — Cornell University
Semiconductor N-N Heterojunction
22 o
E.q Electrons Something is wrong here:
| . N | E., the Fermi level (the chemical
f1 potential) has to be the
-------- T~ T Efy same everywhere in
Eg1 Eg2 equilibrium (i.e. a flat line)
E
Ev1 | v2

* Once a junction is made, electrons will flow from the side with higher Fermi level
(1) to the side with lower Fermi level (2)

—
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potential:

Semicond:uctor N-N Heterojunction: Equilibrium

Depletion |
,{Accumulation
‘region

_______________

region

Note: the vacuum level fo'llows the electrostatic

V(x)=V(x=0)-e[§(x)-¢(x=0)]

* Electrons will flow from the
side with higher Fermi level (1)
to the side with lower Fermi
level (2)

* Electron flow away from
semiconductor (1) will result in a
region at the interface which is
depleted of electrons (depletion
region). Because of positively
charged donor atoms, the
depletion region has net
positive charge density

* Electron flow into
semiconductor (2) will result in a
region at the interface which has
an accumulation of electrons
(accumulation region). The
accumulation region has net
negative charge density

—
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Semiconductor N-N Heterojunction: Equilibrium

21 X2
Ec1
Efp-=-t-=---=-- | Ec2
eVb I- ________ b
E,, Ef,
g EgZ
Ev1 | EVZ
Depletion mmmmm e
region Ievb _/Accumulation
________ - -- region
X2
EC1 Ec2
Ef1 —— T = - -- Ef2
Ego
Eg1 EV2
v1 _j

* Electron flow from
semiconductor (1) to
semiconductor (2) continues
until the electric field due to the
formation of depletion and
accumulation regions becomes
so large that the Fermi levels on
both sides become the same

¢ In equilibrium, because of the
electric field at the interface,
there is a potential difference
between the two sides — called
the built-in voltage

* The built-in voltage is related
to the difference in the Fermi
levels before the equilibrium
was established:

eVp =Eq—Ep2

—
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Semiconductor P-N Heterojunction

/l\ Ec2

-------- - - -E¢

D
Holes

Once a junction is made:

* Electrons will flow from the side with higher Fermi level (1) to the side with lower
Fermi level (2)

* Holes will flow from the side with lower Fermi level (2) to the side with higher
Fermi level (1)

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Ev1

potential:

Semiconductor P-N Heterojunction: Equilibrium

eVb I]
’

,
4

Depletion X2
region ,/ iDepletion
______ -Y— -7 iregion
=c2
Ec1
Esq— — ———Ep
f1
EV2

g2

Note: the vacuum level follows the electrostatic

V(x)=V(x=0)-e[¢(x)-4(x=0)]

* Electron flow away from
semiconductor (1) will result in a
region at the interface which is
depleted of electrons (depletion
region). Because of positively
charged donor atoms, the
depletion region has net
positive charge density

* Hole flow away from
semiconductor (2) will result in a
region at the interface which is
depleted of holes (depletion
region). Because of negatively
charged acceptor atoms, the
depletion region has net
negative charge density

—
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Semiconductor P-N Heterojunction: Equilibrium

¢ Electron flow from
_______ | E semiconductor (1) to
€2 semiconductor (2) and hole flow
E E from semiconductor (2) to
g1 92 E semiconductor (1) continues

f2 until the electric field due to the
E,4 J Ev2  formation of depletion regions
P i S becomes so large that the Fermi
eV, /' levels on both sides become the

X2 same

Depletion

region L’/ Depletion
V______ --'—-"  region

* The built-in voltage is related

E;2 to the difference in the Fermi
E E levels before the equilibrium
c1 92 E., Was established:
Ef-=-fF========f === —===-= - == f2
E,, eV, =Ef - E
Eg1

—
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Types of Semiconductor Heterojunctions

Type-l: Straddling gap

Type-ll: Staggered gap

Type-lll: Broken gap

Ec1

g1

Ev1

—
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Band Offsets in Heterojunctions

V oo e -
21 X2
Ec1
I IAEC )
E
g1 Eg
Ey1 J IAEV Evz

The conduction and valence band offsets are determined as follows:
AE; = 23— 1

AE, = AEy - AE, = (Eg1— Egp)- AE,

—
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Electrons at Heterojunctions

Ec,

[ — IIAEc

g2

Eyq ] IAEV E,,
v

Question: What happens to the electron that approaches the interface (as shown)?
How does it see the band offset? Does it bounce back? Does it go on the under side?

The effective mass equation can be used to answer all the above questions

In semiconductor 1:

vi(F)=4(7) verz, ()
[ E.1(ko - V) + U() | 04(F) = E #4(F)

In semiconductor 2:
v2(F)= 6(F) vy (F)
[ Ecalko - 9)+ UG) |02(F) = E o(7)
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Electrons at Heterojunctions; Effect of Band Offsets

E
£ o— [TaE, c2
c1
U(F)=0 Eg1 Eg2
E,q AE,
| I v Ev2
Assume for the electron in the conduction band of semiconductor 1:
2,2 ~ .
- n‘k 2\ 4 (7 = Notice that the
— r)=g(r i r
E. (k)_ Ec1+ 2m, va(F)=(7) W°1rko=°( ) conduction band edge
12 € energy (i.e. E_4 or tEczt)
_ 2 =\ = appears as a constan
{ 2m,, V7 +Eq } #(F)=E 4(r) potential in the effective
mass Schrodinger
And for the electron in semiconductor 2: . equation
2,2
E,. (k): E.,+ 'k wa(F)=¢(F) V/cZ,Eo=0(r) Conduction band offset
2mg, at the heterojunction
72 ) - - therefore appears like a
- V4 +Es |(F)=E ¢,(F) potential step to the
2mg, electron
-~
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Electrons at Heterojunctions: Boundary Conditions

° AE,
E¢y— i
Eg Ego
Eyq AE,
x=0

Eco

Eyy

T
(1) Continuity of the wavefunction at the boundary:
'//1(’7)‘,(:0 = V’Z(Fxx=o

=

If one assumes: Verk, (7’) *¥c2k, (F)

(2) Continuity of the normal component of the probability current at the boundary:

In text book quantum mechanics the probability current is defined as:

JE) =y ()5 Vw @)+ 00 =y 7)o V(E)-w()5 Vv’ ()

Or in shorter component notation:

Jo(F)= W*(f)%aaw(fﬁ c.c.

Probability current is always continuous across a
We need an expression for the probability current

¢1(F1x=o = ¢2(F)‘x=o

boundary
in terms of the envelope function

S—
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Electrons at Heterojunctions: Boundary Conditions
Probability Current: In a material with energy band dispersion given by:
~ N 52
En(k)=Ep+" (k=Ko (K =Ko)=En+ 3 " (ko= koo ks —kop)
2 a,p Zmaﬂ

The expression for the electron probability current (in terms of the envelope function) is:
h

J,(F)=3¢ (F) .. 8 44(F)+c.c.
“ ﬂ 2'mdﬂ ﬂ E *— AE. Ecz
1™ 3
Eg Ego
E,
1 L OAEV E, .

Continuity of the probability current: T
The continuity of the normal component of the probability current across a
heterojunction gives another boundary condition for the envelope function:

1 = 1 =
Y——0ghlr =)——0 r
B mXﬂ'] ﬂ¢1( )‘x=0 B mXﬂZ 'B¢2( )‘x=0

1/mXX
For: M‘1 = 1/ m

= 1 0] _ 1 560)

4 Myxq ox ‘x:O_mxxz ox ‘x=0

1/ mZZ
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Electrons at Heterojunctions: Boundary Conditions

I
x=0 X
(1) Continuity of the envelope function at the boundary:

¢1(f)‘x=o = ¢2(F)‘x=o

(2) Continuity of the normal component of the probability current at the boundary:

1 = 1 =
Y——0ghlr =)——0 r
B mXﬂ'] ﬂ¢1( )‘x=0 B mXﬂZ 'B¢2( )‘x=0

If in both the materials the inverse effective mass matrix is diagonal then this
boundary condition becomes:

1/ mXX

M= 1my, o 1 o4(r)

m ox
1 / m,, xx1

1 6¢y(F)

x=0 Mxx2 ox x=0

—
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The Effective Mass Theory for Heterojunctions
Ecz

|1 AE,

Ec1

T X

Assume in semiconductor (1): Assume in semiconductor (2):

o’w
Il
o
X

0=0
2,2 2,2 2,2
hek% hky+hkz

E_\k)=E
02( ) ezt 2mx2 2my2 2mzz

In semiconductor (1):

[E.1(Ko -9)+ U(F) |4(7) = E 44(7)
= [Ea(-) |4(F7)=E 4(7)

—
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The Effective Mass Theory for Heterojunctions
() L L. ()
[ ]

Ec,
E 1 I IAEC i
C
I x

In semiconductor (1): 0

O Y | W)-E4()

2m,4 ox? 2my, 6y2 2my, 522 et
= i\k k k
Assume a plane wave solution: ¢(F)= e'l xaxrkyy+hsz)
. n2k2, nkZ  p2K2 A plane wave

Plugitintoget: E=E +_—*1+ y .~ "z solution works

2mx1 2my1 2mz1

We expect a reflected wave also so we write the total solution in semiconductor (1)
as:

¢1(F) _ ei (kx1x+kyy+kzz) wr ei (~kx1x+kyy+k;z)

—
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The Effective Mass Theory for Heterojunctions

#F) - L %)

E
° c2
AE,
. [TaE,
I x
In semiconductor (2): 0
P a? o 9w 8P , ,
- 2 2 ——5+Eca | $2(F)=E ()
2mx2 15)'¢ 2my2 oy zmzz 0z
- i\k k k
Assume a plane wave solution: ¢ (F)=t e'( xaXtkyyhzz)
2,2 h2k2 2,2 A plane wave
Plugitintoget: E=E_,+ k2 + LA "kz solution works
2my; 2my; 2my, here also
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Boundary Conditions at Heterojunctions
Wo) L o)
° c2
AE,
Ec1 I I c
T x
0
. . 2,2 2,2 2,2
¢1(f) _e (kx1x+kyy+kzz)+ re (-kx1x+kyy+k;2z) E=E,+ kg N ky nkz

2mx1 2my1 2mz1
¢2(F) i ei (kx2x+kyy+k;z)

2,2 2,2 2,2
Wk 17Ky | 1k;

E=E +
c2 2mx2 2my2 2mzz

(1) Envelope functions must be continuous at the interface:
#i(x =0)=4,(x=0)

ei kyy+kzz) Tr ei (kyy+kzz) -t ei (kyy+kzz)

=>1+r=t

Note that this boundary condition can only be satisfied if the components of the

wavevector parallel to the interface are the same on both sides

ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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Boundary Conditions at Heterojunctions
H(F) < — Lo 4(F)
[ ]
AE,
Ec1 I I c
T X

Wk 7ky | 7K
2mx1 2my1 2mz1

Ec2

0
¢1(f) _ ei (kx1x+kyy+kzz)+ r ei (—kx1x+kyy+kzz) —E-= Ec1 +

¢2(F) —t ei (kx2x+kyy+kzz)

2,2 p2y2 2,2
E=E2+hk"2 y+hkz

C
) 2my, 2my2 2my,,
Energy conservation:

i Tky  nkE kG kg nPkE

E=E°1+2mx1 2m,, 2my 27 2m,, 2m,;  2my,

_ 1Ky 1K _’%[1_1]_7‘12'«3[1_1}
2mx2 2mx1 ¢ 2 my2 my1 2 myz; my
nkey _ Wk

2

x1

—AVg\ky , k
2mx2 2mx1 eff( y z)

Note that the effective barrier height depends on the band offset as well as
the parallel components of the wavevector
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Boundary Conditions at Heterojunctions
#(r) L L. 6(F)
* |} AE,

Ecz

Ec1

T X
0

: : 2,2 2,2 2,2
#(F) = e (kx1x+kyy+kzz)+ re (kx1x+kyy+kzz) | E-E.+ nlkiq h°ky  hck:
2mx1 2my1 2mz1

)= t o Brax g ) LA

2mx2 2my2 2mzz

E = Ecz +
(2) Probability current must be continuous at the interface:

Conservation of

L% = L% probability current at
Myq 0X|,_o Mya 0X| _, the interface
. ikyq ei(kyy+kzz)_r ei(k_‘,y+kzz) ): ikyo ¢ ei(k_‘,y+kzz)

myq my;

= K (1-r)= Kz ¢
myq my;
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Transmission and Reflection at Heterojunctions

<r— —t>
-— Ec2
- [TaE,
C
T X
0
We have two equations in two unknowns:
1+r=t Lo (1-r)=—kx2t
x1 x2
The solution is:
2 _ 1- mx1kx2/mx2kx1

- 1+ mx1kx2/mx2kx1

- 1+ mx1kx2/mx2kx1

Where: 5 9.2
n‘k Wk

P2 2K — AVerr (k)

my, 2mx1

Special case: If the RHS in the above equation is negative, then k,, becomes imaginary
and the wavefunction decays exponentially for x>0 (in semiconductor 2). In this case:

Ir|=1
Sd the electron is completely reflected from the hetero-interface

—
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Handout 26

2D Nanostructures: Semiconductor Quantum Wells

In this lecture you will learn:

» Effective mass equation for heterojunctions
» Electron reflection and transmission at interfaces

* Semiconductor quantum wells
* Density of states in semiconductor quantum wells

Leo Eéal;i (1925-) Nick Holonyak Jr. (1928-)  Charles H. Henry (1937-)

Nobel Prize

—
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Transmission and Reflection at Heterojunctions

° " 11AE, °z
Ec
T X
0
The solution is:
2 _ 1- mx1kx2/mx2kx1

- 1+ mx1kx2/mx2kx1 - 1+ mx1kx2/mx2kx1

a2y 0 P11 _hzkf[1_1]
2mx2 2mx1 ¢ 2 my2 my1 2 my,y My

Where:

k2, n2k?
= 27*2 = 2 AV k)
my, 2""x1

Special case: If the RHS in the above equation is negative, then k,, becomes imaginary
and the wavefunction decays exponentially for x>0 (in semiconductor 2). In this case:

rf=1

d the electron is completely reflected from the hetero-interface

—
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Semiconductor Quantum Wells

Ec2 Ec2
Ec1 |_, IAEC
A thin (~1-10 nm) narrow
bandgap material AlGaAs GaAs AlGaAs
sandwiched between two E,
wide bandgap materials | |
9ap EVZ EV2

Semiconductor quantum wells can be composed of pretty much any semiconductor
from the groups I, I, IV, V, and VI of the periodic table
TEM micrograph

—» InGaAs
quantum well
(1-10 nm)

InGaAs
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Semiconductor Quantum Well: Conduction Band Solution

—>

Ec2 L £ Eco
Ec1 IA ¢
I X
Assumptions and solutions: 0
R 2.2 - h2k2
Ec1(k)=Ec1+an:e EcZ( )=Ec2+ﬁ
[Eci(-m) |0i7)=E 4u(F) [Ec2(- 1) ]6:(7)=E 42(6)
S| SV e () =E #F) o Y e |6 =E h(F)
2me c1 2me c2
Symmetric
\ +koz —a (X—L/Z) ’( yy+kzz)
4(F) = A{cos((k x)): (ky;’ :Z)) ¢2(F)=B{:—a(x—1_/z) e:( yekg) X x>L/2
sin(k, x Wyy=iez
Anti-symmetric - — e* (X+L/2) e'( yy+kzz)
#(7)=B _ealxsty2) gilyysigz) X = -L

—
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Semiconductor Quantum Well: Conduction Band Solution

Ec2 L EcZ
Ec1 |_, IAEC
I X
0
Energy conservation condition:
2(g 2 2 2 2 2
h\ky + k \-a“ +k
E=E,+ (x ”)=E02+ ( a ||)
2m, 2m, klf = kf, +k2

Sa= Z;EAEC—k,z(

The two unknowns A and B can be found by imposing the continuity of the
wavefunction condition and the probability current continuity condition to get the
following conditions for the wavevector k,:

2mg AE, - k)Z(
kLY a \ 72
tan[i) =z _\1n Wavevector k, cannot

2 k, ky be arbitrary!

2m 2 Its value must satisfy
ze AE; - ky these transcendental
= equations

k,L h
- cot[i) —
2 x kyx
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w‘Q

Semiconductor Quantum Well: Conduction Band Solution

E #(r) ~___ E
c2 o AP S— c2
_A>OQ=_ AEc

<I—>L X
Graphical solution: 0
2m, 2
[kx’-) a | hze AE; — ky Dif;erent red curves for Increasing AE values
tanl — |=—="—"F——"— ', 1 1 1 1
2 ) ky kx f | | | |
2m, 2 AN | | | |
—2AE,. -k -
cor( 4 - 2 2 Ee T NG E
—_— = — = 1 1 1 I
2 ) kx kx ! ! ! ! !
1 1 1 1 1
In the limit AE_ — = the values of k, ' ' ' ; :
are: 0 z, m  3m 2m Smy )
kxzpﬂ'/L (p=1,2,3 ........ 2: : 2: : 2 :

* Values of k, are quantized
* Only a finite number of solutions are possible — depending on the value of AE,

—
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Electrons in Quantum Wells: A 2D Fermi Gas

e - D I — -

—
T X

Since values of k, are quantized, the energy dispersion can be written as:

2,2 p2p2
E=E,;1+L ke A0 kif = ky +k;
2m, 2m,
E WK 1,2,3
= + + =1,2,3........
TP 2m, P
2 )2
In the limit AE, — = the values of E, are: E, = 7(”7) p=123.......
P 2m, L

* We say that the motion in the x-direction is quantized (the energy associated with
that motion can only take a discrete set of values)

* The freedom of motion is now available only in the y and z directions (i.e. in
directions that are in the plane of the quantum well)

* Electrons in the quantum well are essentially a two dimensional Fermi gas!
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Energy Subbands in Quantum Wells

The energy dispersion for
electrons in the quantum
wells can be plotted as
shown

It consists of energy
subbands (i.e. subbands o
the conduction band)

Electrons in each subba
constitute a 2D Fermi

S—
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Density of States in Quantum Wells

Ec, o [ O N N Ecz
Ezi UQ AE,
- — - - -

—
I
0

Suppose, given a Fermi level position E;, we need to find the electron density:
We can add the electron present in each subband as follows:

2 )2 (Ec(P"?u)-Ef)

If we want to write the above as:

n= ZZXI

n= [dE gouw(E)f(E- E;)

c1

Then the question is what is the density of states gq(E ) ? Ry

—
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Density c;f States in Quantum Wells

R h
E.(p, k)= Ec1+Ep+ o \
e
Start from: - _\_ . 4_‘_:
2
n=z2x[ 28I (Ec(p. k)~ E¢) 3 "”Qj"{“wz
R 2 O N E

o1 +E
And convert the k-space integral to energy space: e
------------------ Ecq
0
n=y IdE mez f(E—Ef) i
P Eg+Ep \Z N i
— TdE z[ ] 0(E-E.-E,)f(E-E)
E¢q h
gaw (E)
This implies: 5 Mo
m ) N Z 2T
m
gaw(E)=%| " |6(E-Ecy-Ep) | 2me |
p\zh zTh
me
"""""" P )

ot Ea+Ey En+Ey Eq+Es/

—
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Density of States: From Bulk (3D) to QW (2D)

T &4 ________ 1.
AN A A

L Gkl REEEEECEEE L LRl e e A =
K g3p(E) ky gaw (E)
Me 5 Mg 43 Me
pare s g

The modification of the density of states by quantum confinement in nanostructures
can be used to:

i) Control and design custom energy levels for laser and optoelectronic applications
ii) Control and design carrier scattering rates, recombination rates, mobilities, for
electronic applications

iii) Achieve ultra low-power electronic and optoelectronic devices

—
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Semiconductor Quantum Well: Valence Band Solution

Ev1
E
Evz L IA Y E,,
Assumptions and solutions: B , xz
- 22 . 12k
EV1(k)= EV1 - Zn,:h EVZ(k)= EV2 — zmv
[Eic1v) |(F)=E 4:(F) [E,2(-) 16:(7)=E (F)
242 n?v? oy =
o | o+ Bt 40)=E 40 o | Bt ) E 00
) Py B A Y L
:>|:_2mh - V1i|¢1(r)=—E¢1(r) 2m, v2
Symmetric - @ (x-L/2) e,( yy+k12)
41(F) = A{\cas(k x)e (kyy+k,z) #(F)= B{e“’ (-12) i(kyy+hoz) X2 L/2
s'“(kxx)e’(kyy+k12) e? (x+L/2) e’( yY+kzZ)

x<-L/

Anti-symmetric - ¢2(F) = B{_ e% (X+L/2) e ( yy+kzz)

—
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Semiconductor Quantum Well: Valence Band Solution

v1
AE,
Ev2 L I Y Ev2
I X
Energy conservation condition: 0
72(k2 + k) 2 a? +K3)
E=E, - =E,;-
2mh 2m,

—a= %AE‘,—kﬁ

The two unknowns A and B can be found by imposing the continuity of the
wavefunction condition and the probability current conservation condition to get the
following conditions for the wavevector k,:

2my, 2
kLY a \ 22 AE, ki
tan[i) =< = Wavevector k, cannot
2 ky

h
ky be arbitrary!
2my, 2
kil a \/,TZAE" ~kx
. cot[LJ 2
k ky

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Semiconductor Quanturr;_ Well: Valence Band Solution

______ S 2N AEV
EV2 —--——‘4%7—‘--— EV2

T X
Graphical solution: 0
2my, 2
[kx’-) a H2 AE, ki Different red curves for Increasing AE,, values
tanl 0— |=—="—"+——— ', 1 1 1 1
2 kx kx f | | | |
2my, 2 AN | | | |
E, -k -
cot[kaJ a _\ g2 APk NG
—_— = — = 1 1 1 1
2 k« kx : : : : :
1 1 1 1 1
In the limit AE,, — « the values of k, ' ' ' ; :
are: of = = 3m 2m 5 g
ky=pr/L (P=123....... 2! ! 2 ! 2!

* Values of k, are quantized
* Only a finite number of solutions are possible — depending on the value of AE,,

—
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Semiconductor Quantum Wells: A 2D Fermi Gas

L
E . +—
E1I vi
RS AE,
2
X

Since values of k, are quantized, the energy dispersion can be written as:

n2k2 ki
E=E, - o
2my, 2m,
n2k?
Light-hole/heavy-hole = Ev1 - Ep - I p=123.......
degeneracy breaks! th
2 T 2
In the limit AE, —> = the values of E,are: E, = | P~ p=123.....
P 2m,\ L

* We say that the motion in the x-direction is quantized (the energy associated with that
motion can only take a discrete set of values)

* The freedom of motion is now available only in the y and z directions (i.e. in directions
that are in the plane of the quantum well)

Electrons (or holes) in the quantum well are essentially a two dimensional Fermi gas

—
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Density of States in Quantum Wells: Valence Band
E,(p.ky)=E "k
viP: K| )=Eyq1— p—m K

Start from:

p= ZZXI( )2[1 f(E, (p. ki)~ ¢ )] S 3;:.5”_51

And convert the k-space integral to energy space: Er :/Z_ :;— > _\‘ E:::iz
Ey1-Ep \
sl (,, Ji-rie-e
—00
mp
This implies: e I S
Mn_
m ______ ____'2' _______________________
gQW(E)=Z[hzj e(Ev1_Ep_E) h my,
p\zh*) -~ 7 E e m ]
E-E; E,-E, E,-E E,y E

—
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Example (Photonics): Semiconductor Quantum Well Lasers

A quantum well laser (band diagram) A ridge waveguide laser structure

electrons
stimulated and

spontaneous
emission

polyimide
layer
InGaAsP quantum
substrate wells

N-doped

holes

Some advantages of quantum wells for
laser applications:

* Low laser threshold currents due to
reduced density of states

* High speed laser current modulation
due to large differential gain

« Ability to control emission

wavelength via quantum size effect ~ 1.0 um thick
polyimide layer N-InP Sub.

All lasers used in
fiber optical
communication
systems are
semiconductor
quantum well
lasers

-
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Compound Semiconductors and their Alloys: Groups IV, llI-V, lI-VI

2.8 T :
ZnSe W - 0.45
HCds

- 0.50

- 0.60

- 0.70

- 0.80

1 0.90
- 1.00

Bandgap (eV)
(wr) yjBusjanem

- 1.30
- 1.55

- 2.00

- 3.00
- 5.00

0.0 T T T T T T T T T T T
5.2 5.4 5.6 58 6.0 6.2 6.4 6.6

Lattice Constant (A)

—
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Example (Electronics): Silicon MOSFET

X4

NMOS Band diagram
Si0,

Source
~— Ec + Ez

Substrate )\ \ E, +E,
_____________________ - R

1
1 Ec
S Inversion layer
(2D Electron gas)
<>

A 50 nm gate MOS transistor

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Example (Electronics): Silicon MOSFET

For minima 1 and 2:

hZ 62 h2 62 hz 62 L ~ NMOS Band diagram Sio,
- O G E+U(F ¢(r)=E¢’zr§_
i 2m, ox* 2my gy*  2my oz ' ﬂx)/\
3 ) E.+E
4(7) = F(x)e v 7+ike? L N TS
E
[ w8 iky K2 \
-9 LU |f(x)=|E-E,-—X "%z | f(x
- 2] [ I 102
2,2
k 2,2
=>E=E_+E, + v kg X
© 2my  2my

For minima 3 and 4:

¢(F) _ g(x)eikyz+ikzz
hzk}z, n2k2

o o2 U0 g(x>=[s—ec———

2m; ox? 2m,  2m, ] 9(x)
2,2
L

%
nk E, > El x
2m, 2my z

E=E,+E +_ 7Y

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University
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Example (Electronics): Silicon MOSFET

For minima 5 and 6:
¢(f) _ g(x) eikyz+ikzz

2 2 72k2 2,2
-a a+u(f)}g(x)={s—ec—y——“z

" 2m, ox2 2m; 2m,

Jg(X)

n?k2 k2
:>E=E(;+Et+—y+M
2my 2m,

E; > E(

Advantage of Quantum Confinement and Quantization:

NMOS Band diagram Si0,

* As a result of quantum confinement the degeneracy si

among the states in the 6 valleys or pockets is lifted f(x) /\ £ LK,
C

B TR - E +E,
* Most of the electrons (at least at low temperatures) =N\ ot

E;
occupy the two valleys (1 & 2) with the lower quantized \
energy (i.e. E,)

* Electrons in the lower energy valleys have a lighter X
mass (i.e. my) in the directions parallel to the interface
(y-z plane) and, therefore, a higher mobility

—
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Example (Electronics): HEMTs (High Electron Mobility Transistors)

The HEMT operates like a MOS
transistor:

[ [
AlGaAs
InGaAs (Quantum Well)

————————— AlGaAs

Metal

Modulation doping

\ / The application of a positive or

negative bias on the gate can
increase or decrease the electron
density in the quantum well
channel thereby changing the
current density

AlGaAs

Metal

Band diagram in
equilibrium

S—
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11



Handout 27

1D and 0D Nanostructures: Semiconductor Quantum Wires
and Quantum Dots

In this lecture you will learn:

* Semiconductor quantum wires and dots
* Density of states in semiconductor quantum wires and dots

Charles H. Henry (1937-)

—
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1D Nanostructures: Semiconductor Quantum Wires

(W)ide QWR

GaAs/AlGaAs quantum wires grown
by electron waveguide confinement

200nm EWT=500k/  SignalA=lnlens  Date 22 0ct 2007
— WD= Smm  Mag=13756KX Chamber=2146-003 Pa

SEM of 20 nm diameter GaAs
nanowires

A carbon nanotube (rolled up
graphene):

S—
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Semiconductor Quantum Wires

E
AEc = Ec2 - Ec1 c2 | IE

Inside: 2,2
Ec1(ﬂ) =Egq+ i

2m, I_l
Outside:

2,2
Ec2(_’)= Eco+ Zn‘:e
Inside: -
[Eam) Joe)-E80) = | By | 0)- £ 400
Outside: €

n2v?2
2m,

[Ea-) [P -Eh() = {Ecz— }h(i)=E¢z(F)

Assumed solutions:

Inside: . Outside: .
#(F)=Af(x,y)e'*=* #(F)=Afy(x,y)e "= *

—
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Semiconductor Quantum Wires

Inside:
Plug in the assumed solution:
h2y2 . .
Eci— | fi(x.y) ™ =E fi(x,y) e
2m,
k2 n?2 % n® 82

E - - —— | fK(x,y)=E f4(x,
:{ °1+2me 2m, ox? 2meay2} 106y) (x.¥)

2 0% n? 92 h2k?
= -2 9 _ " Y lf(x,y)=| E-E. -~ "% | f(x,
|: zmeaxz zmeayz 1( y) c1 zme 1( y)

2me axz 2me 6y

Boundary conditions at the inside-outside boundary:

£106Y Jboundary = 2(X:¥ Jooundary

A is the unit vector
normal to the boundary

1 ~
= m—sz (X, .V)'n ‘boundal’y

L vk y)a
Me boundary e
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Semiconductor Quantum Wires

Solve these with the boundary conditions to get for the
energy of the confined states:

n2k?
E.(p,k;)=E,4+E,+_—2%

c(p z) cl1 p 2 m, {
The electron is free in the z-direction but its energy due

to motion in the x-y plane is quantized and can take on
only discrete set of values

The energy dispersion for electrons in the quantum
wires can be plotted as shown:

It consists of energy subbands (i.e. subbands of the
conduction band)

_______________ E
Electrons in each subband constitute a 1D Fermi gas a1
k,
—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Semiconductor Quantum Wires: Density of States
Suppose, given a Fermi level position E;, we need to find
the electron density:
E
We can add the electron present in each subband as
follows: \T EAE
© dk. N\ Z/-f-Ec1+E3
n=%2x | Z f(Ec(p’kz)_Ef) Er—Cg=2 —-Ec+E;
P —00 (2”)
e S E Ec1+E;
If we want to write the above as: E
---------- c1
)
"=Ede daw (E) f(E - Ey) K,
c1

Then the question is what is the density of states gou{E ) ?

—
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Semiconductor Quantum Wires: Density of States

n2k? E
o)ty NY/
Start from: AN /L] _E4+E
v2x [ 32 (g, (p,k,)-E;) o '\SQ:/'/‘/':Z:EZ
n= X , -
P —w(2”) o\Prfz f it e E.q+Ey
And convert the k-space integral to energy space:  _____J_____. Ey
© 2m,
n=Y |[dE e f(E - Ef)
P Eci+E, \/ 7?*2(E - Egy—Ep) k,
© 2m
= [dE ¥ e 0(E - Ec1-E, ) F(E-Ef)
£ o \#n2(E-E,-E,) c1”"p
gaw (E)
This implies:

p |72 (E-Ecq—Ep)
x6(E - Egy-Ep)

gaw(E)=% \/ 2me

L L T
Ecq E+Ey En+E; Ec1y

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Semiconductor Quantum Wire Lasers

GaAs/AlGaAs quantum wires grown
by electron waveguide confinement

A Ridge Waveguide Laser
Structure

S—
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TEM of a PbS quantum dot

0D Nanostructures: Semiconductor Quantum Dots

Core-shell colloidal quantum dots
(Mostly 1I-VI semiconductors)

CdSe

nAs quantum dots (MBE)

GaAs substrate

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University

N
&

Inside:

Inside:

Assumed solutions:

¢1(F)= A fI(X,y,Z)

Semiconductor Quantum Dots
AE; =Ecy—Ecq Fe2 | I
Ec1

Inside:
n2k?

Ec1(k)= Ec1 +ﬁ
e

Outside:
n2k?

Ec2(_.)= Eco + 2m.
e

[Eam) Jo)-£ ) = | Eu=yr| ()= £ 40
Outside:

[Eatm) J6)-£60) = | £l |60 E40)

n2v?2

Outside:
¢2(F)= A fZ(X’y!Z)

—
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Semiconductor Quantum Dots

Boundary conditions at the inside-outside boundary:

ﬁ(x’y’szwndafy =f (X’y’z)‘bOUnda’Y n is the unit vector

1 . 1 , normal to the boundary
m—Vﬂ(x,y,z).n = m—sz(x,y,z).n \boundary

e boundary e

Solve these with the boundary conditions to get for the
energy of the confined states:

E.(p)=Ex+E, { p=123....

In the limit AE_ — ~ the lowest energy level value for a
spherical dot of radius R is:

Eca n2 [”)2
Ei=—| =
. 2m,\R
The electron is not free in any direction and its energy

due to motion is quantized and can take on only
discrete set of values

—
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Semiconductor Quantum Dots: Density of States

Suppose, given a Fermi level position E;, we need to find

the electron number N: Eco
We can add the electron present in each level as follows: ‘

N = 32xf(Ec(p)- Ef)
p
If we want to write the above as:

N = [dE gop(E)f(E - Er) 9an(E)

E¢q

Then the question is what is the density of
states goudE)? e

Gap(E)=2x 2O -E,(p) [

Because the dot is such a small system, at Ecq En+Ey E+E; Enq+E
many times concept of a Fermi level may
ot even be appropriate!!

—
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Semiconductor Quantum Dot Lasers (llI-V Materials)

Some advantages of 0D quantum dots for

stimulated  |aser applications:
and

spontaneous
emission

electrons

« Ultralow laser threshold currents due to

reduced density of states

* High speed laser current modulation due

to large differential gain

* Small wavelength chirp in direct current

modulation

* Ability to control emission wavelength

via quantum size effect

— Aridge
waveguide
quantum dot
laser structure

* Only 2 electrons can occupy a single
quantum dot energy level in the
conduction band

* Only 2 holes can occupy a single
quantum dot energy level in the
valence band

ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Colloidal Quantum Dots: Wonders of Quantum Size Effect

CdTe E / photon
h2 pu 2 \
Ec(1) ~E;+ E[EJ E;q
v 4 v1 7

Photoluminescence from CdSe/ZnS Photoluminescence from
(core-shell colloidal) quantum dots of CdTe/CdSe (core-shell
different sizes (~2-6 nm) pumped with the colloidal) quantum dots of
same laser different sizes

—
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Quantum Dots: Biology Applications

CdSe/ZnS qugntum dot
coated with DHLA and
functionalized with
maltose binding protein
(MBP) and Avidin

Avidin

Motion of quantum-dot-attached-RNA
into cells monitored by the luminescence
(the quantum dots used are CdSe (core)
and ZnS (shell)

\_

—
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Quantum Dots: Biology Applications
Invitro microscopy of the binding of EGF to

erbB1

erB1 bound to eGFP (enhanced green
fluorescent protein)

EGF (epidermal growth factor) bound to
quantum dot

Movie shows binding of EGF tagged with
fluorescent quantum dots to erB1 tagged
with the green fluorescent protein

Nat. Biotechnol., 22, 198-203 (2004)

-
Polymer coating D

ZnS

Imaging of antibody (PSMA) coated
quantum dots targeting cancer tumors cells Injection
site
Nat. Biotechnol., 22, 969 (2004)

—
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Colloidal Quantum Dot Electrically Pumped LEDs

eV
ZnCdS ZnSe/CdSe/ZnS ZnCdse Vacuum level
QDs QDs QDs Op=-==mmmmmmmmommmmmmmm e
1
-1
2
0'8- n ...............
g 2 3
E 06 4 .
g -5 %
04 2
-6 N
g °
E 021 7 N
-8
00+ —— v J
PossibleH_} Possible
hole Quantum electron
Bulovic et. al. (2010) injection 9ot injection
layers  (QD) layers

-
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Handout 31

Carbon Nanotubes: Physics and Applications

In this lecture you will learn:

* Carbon nanotubes
* Energy subbands in nanotubes
* Device applications of nanotubes

Sumio lijima Paul L. McEuen i 4

(Meijo University, Japan)) (Cornell University) Mildred Dresselhaus
(MIT)

—
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Another Look at Quantum Confinement: Going to Reduced
Quantum Well Dimensions by Band Slicing Quantum Wire

Ec(P, kx’kz)=Ec1 + Ep +

2m, 2m,
T
kX zz
3
k, =2~
L
s R R N
g
E .+E o i D
cl 1 i et
E e k
[ === :";):";;’ """" k)'( """""""""""" z
/,’ /,’
k /’ /,
2 R
-7
/’ /’

S—
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y

Single wall carb
nanotube (SWNT

« Carbon nanotubes are rolled up graphene sheets

* Graphene sheets can be rolled in many different
ways to yield different kinds of nanotubes with very
different properties

—
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Graphene: n-Energy Bands

Recall the energy bands of graphene:

ky

E(K)= Ep £ Vo, (K)
f(,;)= oik-M | gik-iy | oik.fi3

v, E(F) _ eiE.iun E(F) _ ei(kxx+ky}')un E(F)

—
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‘}(}‘}‘}‘Tl
"N 0
oot 1% 0% 1o 1o 1

(¢

Graphene Edges

Armchair edge

A

Zigzag edge )

—
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Rolling Up Graphene

Zigzag
nanotube

I

Armchair
nanotube

»

ARMCHAIR

23

S—
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Zigzag Nanotubes: Crystal Momentum Quantization

L
L>>C

)

20

Circumference of the zigzag nanotube:

C=ma {m=234....

Boundary condition on the wavefunction:
= ilkyx+ky,y _
Vi (F) =y L7

The wavefunction must be continuous along the
circumference after one complete roundtrip:

V/,,,,;(X,.V +C,z)= l//n,,;(x,y,z)
ikyC _

= e 1
= k, =2”T" {n =integer, range?

The crystal momentum in the y-direction (in
direction transverse to the nanotube length)
has quantized values

y

Primitive
cell

f—
|

K

7

3a

Periodicity in the x-direction: J3a

Number of atoms in the
primitive cell:

4m

—
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Energy

Obtain all the 1D
subbands of the
nanotube by taking

2D energy band
dispersion of
graphene

k
FBZ K v

E(k)=Ep £ Vpp, [f(k)

band) for each quantized value of k

cross sections of the

But number of bands = number of orbitals per primitive cell =

K =27rn

y

Zigzag Nanotubes: 1D Energy Subbandi
y

Bz /5
K 3a
gl K’
2z ——
3alm r M
K 75” I K
| K
T T
-2 <k, <2
J3a "= 33

= Number of distinct quantized ky values must equal 2m

4m

One will obtain two subbands (one from the conduction and one from the valence

Q-

ma

14

7

—
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Zigzag Nanotubes: 1D Energy Subbandi

Energy FBZ A
4
3
k
K
X
10— [ 7y PR
———% e J3a "% " J3a
: 1
S sgk ), Suppose C=4a (i.e. m=4)
@ 27
o e ot = k,= Z”T" - ’%’ {n=-3-2,-101234
= — = 4 k k 16 1D subband
w —_—
S , > E(k)—Einpp,, ‘f(k] 161 subbands
L
\ 10\ ﬁ/ Lower 8 subbands will be completely full at T=0

15 4 05 0 05 1 15 The nanotube is a semiconductor!

s—
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Zigzag Nanotubes: 1D Energy Subbands

2z 10
ék
=

'S
3
72\

&
it L 27
3a g 2
[( § /-_\/q\ 2/
X w :

_E<kXSE \

The bandgap appears because the quantized
k, value is such that the “green line” misses
the K-point

When: R>>a (R =radius of nanotube)

2hv 1
& —— oC —
97 3R R

—
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Zigzag Nanotubes: Semiconductor and Metallic Behavior

ky Suppose C =6a (i.e. m = 6)
2zn &mn
FBZ — = k,=—="— {n=-5,..-101.,......6
— y C 3a {

Two lines for n=t4 pass through the Dirac points

[}

E(kx) - Ep (eV)
o

'
[

_— < x S [—
\/§a \/ia 24 1D subbands total, 12 lower ones will be completely
filled at T=0K, and there is no bandgap!

« All zigzag nanotubes for which m = 3p (p any integer) will have a zero bandgap

= All zigzag nanotubes with radius R = C/2n = 3pa/2r (p any integer) will have a
zero bandgap

—
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Motion of Conduction Band Bottom Electrons in Zigzag

i N
Vi) = e'(k"Hkyy)un,E(F) anotubes
o &My
= ky Z”Tn {n=-(m-1.....-10,41,.......m

For k,— K (K’) >0

* The electrons coil around the nanotube
as they move forward

* The direction of coiling can be given

by the right hand rule:
Direction of

propagation

Pz

For k,— K (K’) < 0

X or by the left hand rule

S—
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Armchair Nanotubes: Crystal Momentum Quantization_
y Primitive
L cell

CO) L>>C ) /_\_f

Circumference of the armchair nanotube:

C=mJ3a {m=234....

Boundary condition on the wavefunction:
. i\kyx+kyy =
Vo7 =y L)

The wavefunction must be continuous
along the circumference

ikxC _ 4

= e
2z n
Cc
The crystal momentum in the x-direction (in
direction transverse to the nanotube length)

has quantized values Number of atoms in the
primitive cell: 4m

> ky= {n =integer, range?

Periodicity in the y-direction: a@

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Armchair Nanotubes: 1D Energy Subbands

Energy k
D EEE——

Obtain all the 1D FBZ V" 2z
subbands of the
nanotube by taking
cross sections of the
2D energy band
dispersion of

graphene
‘ 1%
k

y /2

k™ Tk FBZ K
E(k)=Ep £ Vpp, [f(k)

One will obtain two bands for each quantized value of K,

But number of bands = number of orbitals in the primitive cell = 4m

= Number of distinct quantized k, values must equal 2m

kx=2”T" {n=—(m=1)errrc =10, 1yerererym O)c=ma y

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University




Armchair Nanotubes:

Energy

1D Energy Subbands
FBz Kyf—75:

E(ky) - Ep (eV)
o

Suppose C=4V3 a (i.e. m=4)
2mn_ 7N, 3 3 104234

'C 2/3a
E(k)= Ep £ Vpp, [F(K)

Lower 8 subbands will be completely full at T=0

= ky=

16 1D subbands
total

The nanotube has a zero bandgap!

—
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Armchair Nanotubes: Metallic Behavior
Energy

T, .
M | | | M
k
1« x
-T< ky < T 2z K
a a C
Armchair nanotubes always have a zero bandgap
Proof:
Suppose C=m\3 a
2zn 2zn
= k,=—"-= n=-(m-1),...... 1,0.1......... ,m
x="C “mj3a M=m-1
zi and the line passes through the Dirac points

Forn=m: kx=

J3a

|

FBz ky

N
A

=

%

—
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Carbon Nanotubes: Applications

o0 V. ] H
Ve CNT b
so Vi : ™l
€ o 0 i
80 f
Nanotube PN Diode ;
(McEuen et. al.) :
100 et
10 -9 8 -7 6 5 4 -3 -2-10 1 2
Ve, V)
CNT field
emission tips
for electron
guns
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Carbon Nanotubes: Applications

PHOTONICS
A Lauri o E

Nahbbhotbnics

Can Photonics Satisfy
Moore’s Law?

Lasers in Automation

Carbon Nanotube LEDs (IBM)

Electrons

2 Nanotube
Electrode

Silicon Oxide

Gate Electrode

Carbon Nanotube FET (IBM)

v

ringe
fields

Gate

Vls
f

Carbon Nanotube FET (Burke et. al.)

—
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One main obstacle to making a space
elevator is finding a material for the cable
that is strong enough to withstand a huge
amount of tension. Some scientists think

that cables made from carbon nanotubes

could be the answer......

Carbon Nanotubes: Applications

S

S R
> \““ .
)
RRNMNIEZZESS

Carbon Nanotube Space Elevator !!

—
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Handout 29

Optical Transitions in Solids, Optical Gain, and
Semiconductor Lasers

In this lecture you will learn:

* Electron-photon Hamiltonian in solids

* Optical transition matrix elements

* Optical absorption coefficients

« Stimulated absorption and stimulated emission
« Optical gain in semiconductors

* Semiconductor heterostructure lasers

—
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Interactions Between Light and Solids

The basic interactions between light and solids cover a wide variety of topics
that can include:

* Interband electronic transitions in solids

* Intraband electronic transitions and intersubband electronic transitions

¢ Plasmons and plasmon-polaritons

« Surface plasmons

¢ Excitons and exciton-polaritons

¢ Phonon and phonon-polaritons

* Nonlinear optics

* Quantum optics

 Optical spintronics

—
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Fermi’s Golden Rule: A Review
Consider a Hamiltonian with the following eigenstates and eigenenergies:

Ho |Wm)=Em|¥m) { m = integer

Now suppose a time dependent externally applied potential is added to the
Hamiltonian:

A =H,+Vy e 4V, et

Suppose at time t = 0 an electron was in some initial state k: \y/(t = 0)> = ‘y/p>

Fermi’s golden rule tells that the rate at which the electron E

absorbs energy 7w from the time-dependent potential

and makes a transition to some higher energy level is 'T

given by: 2 ) he

ﬂ' ~
WT(p)=72 ‘<'/’m Va "/’p>‘ é‘(Em_Ep_hw) ‘L

m S

The rate at which the electron gives away energy %@ E

to the time-dependent potential and makes a transition
to some lower energy level is given by:

Wy (p)= 2%% ‘<'/’m v, "/’p>‘2 5(Em —Ep+ h“’)

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Optical Transitions in Solids: Energy and Momentum Conserv%

For an electron to absorb energy from a photon E
energy conservation implies:

Em(k )= En(k,-)+ he A Intrgband

@
— X

Final Initial Photon

energy energy energy Imerband‘
Momentum conservation implies: \ k

hki = hk; + hq

— — — »
Final Initial Photon Intraband
momentum momentum Momentum

Note that the momentum conservation principle is stated in terms of the crystal
momentum of the electrons. This principle will be derived later.

Intraband photonic transitions are not possible:

For parabolic bands, it can be shown that intraband optical transitions cannot satisfy
both energy and momentum conservation and are therefore not possible

—
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Electromagnetic Wave Basics

Consider an electromagnetic wave passing through a solid with electric field
given by:

/

E(F,t)=—RE, sin(g.F-wt)

The vector potential associated with the field is:

E(r.1)=- 2400 = A(F.0)= 750 cos(.7-0 ) £ f
=hA,cos(G.F-mt)
A

The divergence of the field is zero:
V.E(F,t)=V.A(F,t)=0

The power per unit area or the Intensity of the field is given by the Poynting vector:

T = (8(7,1)) = (G, )< A(F, 1) = 6 50 = 22 {n=\/§='x

27 27

The photon flux per unit area is:

poll _on2
he  2nh

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University

\_

Electron-Photon Hamiltonian in Solids
Consider electrons in a solid. The eigenstates (Bloch functions) and eigenenergies

satisfy:

H, "/’n,:?> = En(‘;)‘ '/’n,E>
where: . oA

Flo = % + vlattice(’:')

In the presence of E&M fields the Hamiltonian is:

2
~ ,:’o_'_i P: . A(r,t)_'_i A ;"t) ﬁ Assume small
2m 2m
~ e ~f~ = =
= °+E A(r,t B N Provided: V. A(F,t)=0
er[ gld-F-iot  o-id.Friot ]
=H,+ h-P

2m

—
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Optical Interband Transitions in Solids

A, ‘Wn,k>=En(k)"//n,l?> E\
e A, eiq.ﬁ-iwt+e-iq.f+im] he
H=H,+ P.n
2m
Comparison with:
G L\ a0t \7 aiot
. H=H°+VT e +VJ« e’ Interband ’
gives: A A
R iq.F . . eAe T 5 | k
v, =25 p.i V¢=A°7P.n
2m 2m
Suppose at time t = 0 the electron was sitting in the
valence band with crystal momentum k; :

w(E=0)=|y, s

The transition rate to states in the conduction band is given by the Fermi’s
golden rule:

wi(k;)= szZf K%,kf Vi Wk, >2 5(Ec(kr)- £, (Ki)- 1a)

The summation is over all possible final states in the conduction band that have the
ame spin as the initial state. Energy conservation is enforced by the delta function.

\E

—
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Optical Matrix Element

5(E.(kr)-E, (K;)- o)

Wilk)="F 2 (ves ilvus |
X9 2
2m) i,

P x

eia'ﬁ F:’.ﬁ‘yfvji>

‘<WC!EI
Now consider the matrix element:

W, o 7P

WV,E,'>
—[d% y'ck,(F) €97 P.A

= [d% 71 Tu’ ok, (F)

. ouv,ki(f)
_Idai;e—il?f.Fu* e ig.r iki .7 | - =
= ck(F) €97 e +7k;). n ”v,k,(’
= (% e * T o (F) €T e PLA u, L (F)
— —_—
— —r— Slowly
varying in
space

S5(E. (ke )-E, (K;)-ho0)

Interband l

N
=

/

Rapidly
varying in
space

\J

—
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Optical Matrix Element

E
LG FB & . ha
<W°,kf e’ P.n WVJ‘:'> \%
=[d% e ™ Tu'ck(F) €™ TP.A u,;(F)
i (ky+a-kr)-R; 5. o+ A i &’L_.
=Ye i [d°F uck/(F) P.A uV’E,_(r i
R;j Jj-thprimitive cell
ilkj+G—ks). R; _ * N B =
=Ye (ki+a—kr). R; [d3%  uck(F) P.A u,; (F) \
Rj any one primitive cell -
- 3 * e (F) P.A F =
=Néo; .4 k [d°rF uck(F) P.i u, . (F) N = number of
77T any one primitive cell - primitive cells in the
_ 3. N A a - crystal
=05k JdFu cki(F) P.i uv,Ei(r)
entire crystal
=5Ei+fl,l?f Py -1

Interband momentum matrix element

\-

—
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Crystal Momentum Selection Rule

2 s a 2 . .
Al ,)=27”(e2':] z ‘<l//c,,;f‘elq.rp.ﬁ "/’v,k,->‘ S(E (k¢ )-E, (k;)-
2
=27”[e2‘: z Py - 84 va i, S(Ec(ke)-E, (K;)-no)
2
=%”[‘Z‘:] Py A" 8(E.(K+6)-E, (K;)- o)

Crystal Momentum Selection Rule:

)/

/

o)

h

We have the crystal momentum selection rule: ho T
Interband
K=k +G |
The wave vector of the photons is very small since
the speed of light is very large
Therefore, one may assume that:
~ ~ Optical tran
ks = ki vertical in k

A

sitions are
-space

\G

—
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Transition Rates per Unit Volume

-~ 2z
WT( ) ( ) ‘ \%
Generally one is not interested in the transition rate for any one b
Interband

particular initial electron state but in the number of transitions
happening per unit volume of the material per second

eA,

2m A’ 5(Ec(ki)— EV(E,-)—hw)

P

The upward transition R, rate per unit volume is obtained by ki
summing over all the possible initial states per unit volume
weighed by the occupation probability of the initial state and

by the probability that the final state is empty:

Ro(@) =, x wn ,)1, (6 - 7.5,

If we assume, as in an intrinsic semiconductor, that the
valence band is full and the conduction band is empty of

electrons, then:

Interband
RT(w>=3xzw¢(R,-)

ap B () o o) )0 4 >’

MM

—
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Transition Rates per Unit Volume

)= 2z zﬂ(er) o 7

5(E(k)-E, (K;)- ho) \%

Lo 5 (5m) P
2”(212"10) <‘P >2xF|£Z(erl;g 5(Ec(—l)_EV(~i)_hw)/‘
() ) 2 e

Joint density of states

The integral in the expression above is similar to the density of states integral:

- n2k?
Suppose: Ec(k)= E; + 2me
P 3/2
. 1 (2m
Then: E)=2 O\E \k)-E)=— e) E-E,
en 930( ) x IZ( )3 ( c( ) ) 2”2[ 72 c
\ /

—
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Transition Rates per Unit Volume and Joint Density of States

27z (eA, A% 2% ﬁ k)-E,(k)-
@)= (e (P ) 20 1 0 ol )1 (F)-10)
R 2,2
Suppose: Ec( )=Ec+% ( ) T Efi::t(i:\?g mass
Then:  E,(k)-E,(k)=E, th( mi Fo Zznl;rz
rio)=2 (52 (pu . #7) () oo, )

~

RT(w) Joint density of states \% Rx

Interband

.

E he

—
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Transition Rates per Unit Volume
3/2
R =27 (o) () L (2 ) o

The power per unit area or the Intensity of the E&M wave is:

Interband

a)zAg

Ry (o )—*(Zm) (2"’) <\Pcv.ﬁ2> 1(2"”)3/2 ho—-E /

wZ

Interband Momentum Matrix Elements:

Recall the result from homework 7:

1 ( 11 ] 4 [Py A
— =+ =5
m, \mg mp) m Eq

E
k
The above result assumed diagonal isotropic conduction
and valence bands and also that no other bands are
resent, and is therefore oversimplified

—
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Momentum Matrix Elements

In bulk 1lI-V semiconductors with cubic symmetry, the average value of the
momentum matrix element is usually expressed in terms of the energy Ep as,

. 2 mE
P, .A )=—F
(o ?) ="

Note that the momentum matrix elements are independent of the direction of light
polarization!

Parameters at 300K GaAs AlAs InAs InP GaP
Ep (eV) 25.7 211 22.2 20.7 22.2

Transition Rates per Unit Volume and the
Absorption or Loss Coefficient

Because of transitions photons will be lost from the E&M wave traveling inside the
solid. This loss will result in decay of the wave Intensity with distance travelled:

= I(x)=e"** I(x =0)

I(x) R+ 1(x + Ax)

= %=—a 1(x)

= I(x + Ax)-I(x)= - Ax I(x) ™ T

Loss coefficient or absorption coefficient

—
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Transition Rates per Unit Volume and Loss Coefficient N

= I(x+Ax)-1(x)=-a Ax I(x)

The wave power loss (per unit area) in small distance Ax is \% R
o Ax I(x) T
hml terband
I I nterban
1) 1 Ry | Mxrax) -

X X+ Ax \

The wave power loss in small distance Ax must also equal: 7w RT Ax

Therefore:
hae RT Ax=a Ax |

= a(w)= ho Ry(0) = Zﬂ(e)z (2—”) Py .

3/2
2
%[Zm,) hw—-E

I 2m) \ o 2722 12 g
2 3/2
e T = .2 1 (2m
=—| — P, .Nn —5 r ho—-E
(mJ & hoc ‘ e 27r2( n? J g

Values of o(w) for most semiconductors can range from a few hundred cm-! to
hundred thousand cm-*
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Loss Coefficient of Semiconductors

WAVELENGTH 3 (nm) !

| S 4 1

10° M
\ - 0.01
5
107~ :
Fo.1
~ 104 1
. 2
d 2
10 7 10 2
10°
- 100
1 ‘
1
1
o 28 Sic PbO i1
i -
T - —L
200 300 4P0 600 800 1000 1400, 2099 OO0
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Direct Bandgap and Indirect Bandgap Semiconductors

6
P (1,1
GaAs m, m, m,
4
3 If m, approaches -m,, ,
then m,becomes very
- 2 large
2 j "
E 1 E. Then, ¢ « (m,.)
k'} also becomes very
0 * large
-1
-2
-3
-4 -4
L () r (100 X L (111 r 100 X
Direct bandgap Direct bandgap
(Direct optical transitions) (Indirect phonon-assisted transitions)

S—
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Stimulated Absorption and Stimulated Emission

Throwing back in the occupation factors one can write more generally:

RT(a;)=2l(ﬁjz [Py 57 2 t, (€)= 1. (k)| (. ()~ £, (K) - o)

[ dk
h\2m rBz (27)°
Stimulated Absorption:

The process of photon absorption is called stimulated absorption (because, quite

obviously, the process is initiated by the incoming radiation or photons some of which
eventually end up getting absorbed)

An incoming photon can also cause the reverse
process in which an electron makes a downward
transition

stimulaged\% This reverse process is initiated by the term in
absorption Hamiltonian that has the ’® time dependence:

A=H,+V; e +V, et
A iq.7 . i -ig.F .
/ szwp_,n, V‘L:LP.
2m 2m

—
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=i I,

Stimulated Emission and Spontaneous Emission

Following the same procedure as for stimulated absorption, one can write the rate
per unit volume for the downward transitions as:

2z eA02<— .z> d*k . - -
R@)=22( 2] (P ) 20 1 P LR 1RoE ) E,(6)-10)
Stimulated Emission:

In the downward transition, the electron gives off its energy to the electromagnetic
field, i.e. it emits a photon! The process of photon emission caused by incoming
radiation (or by other photons) is called stimulated emission.

Spontaneous Emission:
Electrons can also make downward transitions even in the absence of any incoming
radiation (or photons). This process is called spontaneous emission.

E E
o~ N
. he
Stimulated 1 Spontaneous k
emission he emission \
S—
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Stimulated Absorption and Stimulated Emission

The net stimulated electronic transition rate is the difference between the
stimulated emission and stmulated absorption rates:

) ax ] s BR)-r]o(E)-,(k)-no)

FBZ

Ry(0)-Ry(0)= 2"

2
eA, 5
h (Zm) <‘P°V -1
And the more accurate expression for the loss coefficient is then:

()= hao (RT (@)- R, (@)

(&) s i) el AORAQRCIORAGRED

Stimulated
absorption

Stimulated \%

| ¢——

/I N

—
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Optical Gain in Semiconductors

a)=(2) 2 (P ) 20 | TE R RN )£, ) 10)

rBz (27)°
Note that the Intensity decays as: I(x) —e %X I(x = 0) E
What if ¢ were to become negative? Optical gain !! Q
a@)<0 = R()>Ry(o) ha

x|

A negative value of a implies optical gain (as opposed to
optical loss) and means that stimulated emission rate
exceeds stimulated absorption rate

Optical gain is possible if:

f,(k)-f.(k)<o  for  E.(k)-E,(k)=1re

=f(k)-f,K)>0 for  E.(k)-E,(k)=ro

—
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Optical Gain in Semiconductors

Optical gain is only possible in non-equilibrium situations when the electron and
hole Fermi levels are not the same

Suppose:
~ ~ 1 E
fC(k)_ f(EC( )_ Efe)_ 1+ eiEc(Rj Efe i/KT
- - 1
fv(k)=f(Ev(k)—th)=m(§(W i
. . fe
E.(k)-E, (k)= 1o et
Then the condition for optical gain at frequency @ is: 5
i E
i ic fh
f(E. (k)-Er )-f(E, (k)-Eg)>0
= Er — Ep > Eo(K)-E, (k)
= Efe - th >hw
The above is the condition for population inversion (lots of electrons in the
conduction band and lots of holes in the valence band)
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Optical Gain in Semiconductors
The loss coefficient is a function of frequency:
2 3z
e v 4 = .2 d°k = = = ~
aw)=|— P.n>2x f,\k)-f.\k)|S\E.\k)-E, -he
@=(3) e (o) 20 25 0l0)- 0] o), 0)- 1)
o) E
Efe
Net Loss =l P
o —
Net Gain . he k
g — Em
Increasing electron-hole
density (n = p)

Optical gain for frequencies for which:
Eg <hw< Efe —th

—
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Semiconductor PN Heterojunctions

Ec Ec,
é;, ________________ E¢q €
N-doped E; P-doped PN heterojunction
E¢
EV2 EV1 ________________ EV2
PN heterojunction
P-doped in equilibrium
Ef S o o oo o m e mmmmmmmmmmmmmmmmmommmmmmmmm - E;
N-doped
Ev2
M_ﬂron and hole Fermi level
Eg------------------d====z=c splitting PN heterojunction
Ey —E =€V P-doped in forward bias
N-doped
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Semiconductor Heterostructure Lasers
A Heterostructure Laser (Band Diagram) A Ridge Waveguide Laser Structure

Non-equilibrium electron and hole populations
can be sustained in a forward bias pn junction

electrons .
—e O ¢ /—{_stlmulated and

spontaneous

emission I
N-InP Insulator
photons layer

N-InP InGaAsP layer
substrate

= eV>hw A PunP ridge

All lasers used in fiber optical communications

are semiconductor lasers = 1.0 um thick
polyimide |layer N4nP Sub.

S— .
ECE 407 - Spring 2009 - Farhan Rana - Cornell University
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Semiconductor Heterostructure Lasers

Semiconductor
laser chip

A commercial packaged
semiconductor laser

—
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Handout 30

Optical Processes in Solids and the Dielectric Constant

In this lecture you will learn:

¢ Linear response functions

* Kramers-Kronig relations

« Dielectric constant of solids

¢ Interband and Intraband contributions to the dielectric constant of
solids

—
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Charge Dipole, Dipole Moment, and Polarization Density

A charge dipole consists of a negative and a positive charge separated by some
distance:

Dipole moment of a charge dipole is a vector p such that:
p=la/d
Polarization density vector P of a medium consisting of charge dipoles is the

product of the number N of dipoles per unit volume (i.e. dipole density) and the
strength of each dipole given by p:

P =Np=NQd

R
VUL
VLT

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University



Dielectric Constant of Non-Polar Materials

Non-Polar Dielectric Material (Non-polar Dielectric in an E-field
Insulator or Intrinsic Semiconductor)

+ +ve nucleus

‘ -ve electron
cloud (valence band

and core electrons)

Material gets polarized when placed in an electric field (i.e. develops charge
dipoles) because the electron cloud shifts relative to the nuclei

. Po=¢c, 2. E

P = Polarization density (# of dipoles N 03( e _
per unit volume times the D=g,E+P,=¢E
strength of one dipole) £=2¢&, (1 + Ze)

—
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Dielectric Constant of Polar Materials

Polar Dielectric Material
The phonon contribution The total (phonon + electron)

(Polar Insulator or L A I
Intrinsic Semiconductor) to Polarization contribution to Polarization

Call-on Anion

E

In polar materials, material polarization in an E-field has two contributions:

a) The phonon contribution: f’ph =&o Xph E

b) The electron contribution: Pe =¢€o Ye E
= D=5,E+P,+Pyp =€o(1+le +th)E
= &=6,(1+ e + Zpn)

— —
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ielectric Constant of Materials: Phonon and Electron Contribution
In general, the susceptibilities are frequency dependent:
&(@) = & (1+ 16 (@) + 2pn(@))
Electrons respond much faster than the lattice

If one is working at frequencies that are too small compared to the characteristic
frequencies of yo(@) then one may make the approximation:

&(@)= &0 (1+ 26 (0)+ 2pn (@)
If we define:
e(oo):go (1+Ze(o)) 3(0)=30 (1+Ze(o)+lph(o))
then for small frequencies:
&(@) = &(0) + £ 7pn(@)

2
. . L nf /M,
Comparing with the expression in handout 19: e(a)) = 6‘(00)— 5 3
W -
ives us:
9 nf?/m,
€o Xph (@)=~ 2 2
@ —aro

And we have finally:

nf2/m 0)-
o) 0 (14 20(0)~ 5= 1+ 4(0) -0 ) =202)
0 I_) We now find theoelectronic

contribution
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High Frequency Dielectric Constant of Solids \

Consider a sinusoidal E&M wave of frequency @ propagating in a solid:

E(F.t)= A E, cos(q.F - t)=Re{ E(F,w)e 't} E 2
Where the electric field “phasor” is:
E(F,0)=AE, 9" H

Similarly, the magnetic field phasor is:
A(F,0)=(GxA)H, e 9"
And the two field are related by the two Maxwell equations:

V x E(f’,a)) - iwﬂoI:I(F,w) Faraday’s Law

Vx H(F,0) = —io e(w) E(F,@) Ampere’s Law
These two equations together give the dispersion relation of the E&M wave:
gl c
= = q
\/E(w) Ho \/s(w)/eo

—
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Strategy to Calculate the Dielectric Constant of Materials\
1) Start with the Hamiltonian describing the interaction of the electrons with the
electromagnetic field:

er|: eiq.r—ia;t+e—iq.r+ia)t ]

H=H,+ P.A

2m

o) = ol L
2) Find out how the electron wavefunctions (i.e. Bloch

functions) get modified using standard first order he
perturbation theory:

The above procedure, although doable, is a little complicated
and we will use an alternate approach!

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Refractive Index of Solids

E
k
i = P+ c_ il )
‘Wn,k >new ‘Wn,k> E% m,k ( )‘y/m,k >
3) From the modified wavefunctions, calculate the electron
charge density, and then the dipole density

e(w
The refractive index of a material is defined as: n(w)=_|~~
€o

C
The wave dispersion relation is then: O=q—F—
n(a)
And the electric field phasor can be written as:
o ;@ n(w)
E(f,0)=nRE,e'9""=hE,e ¢

§.F

The refractive index usually has real and imaginary parts:
n(w)=n'(@)+i n"(o)

The electric field phasor is then:

The imaginary part of the index describes
wave decay (or wave amplification if gain
is present)

—
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Imaginary Part of the Refractive Index and the Loss Coefficient

We have already seen that stimulated absorption results in a wave to decay in

a medium (optical loss): (@)
a\@d) ~ -
-—F—q.r

E(Ff,0)xce 2
Where:

he (Ry -R))
a(w)=%

(0 o o) 2 5 )00

raz (27)°
E
But we also have:
on"(e) . -
~ - q.r
S YA
This means the imaginary part of the refractive index is: o

n"(w) - c @ Stimula?ed/
@ absorption

—
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High Frequency Dielectric Constant of Solids: Imaginary Part

&lo
The refractive index of a material is defined as: n(a)) =

¢o
Therefore, using the fact that: |n" (@) << |n" ()

e(0) = & N?(0) = &, [ n"(0)+in" (o) B ~ &, [ n'(0) P +i2 g,n' (0)n" (@)

= &'(0)+is"(0) = &, [ n'(0) P +i2 £,n' (0)n" (o)

This implies:

&" (@)~ 26,0’ (@)n" () and &'(@)~ & n'(w) P

Using the expression for the imaginary part of the refractive index we get:

e @=(2f 2 (pu-a?) 2 [ K [0l 0)-£,(6)-10)

Question: What is the real part of the dielectric constant?

—
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Linear Response Functions

Linear Response Functions:

In a linear time invariant (LTI) system, the stimulus phasor S(w) is related to the
response phasor R(®) by a linear response function y (®):

R(0) = r(o) S(o) { r@)=r'(0)+iy"(o)
The linear system must satisfy the following two properties:

i) It must be causal (system cannot respond before the stimulus is applied)
ii) A real stimulus S(f) must result in a real response R(f) (with no imaginary
component)

The second condition gives:
r-e)=7(@) = ylo)=r(o) and y"(-0)=-r"(»)

Most responses of solids are expressed in terms of linear response functions.
Examples include:

Conductivity: o(0) ———— J(F,0)= o(w) E(F,»)
Dielectric Constant:  g(0) ——  B(F,0) = £(0) E(F,»)

—
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Linear Response Functions and Kramers-Kronig Relations

The two conditions, listed on previous slide, dictate that the real and imaginary parts
of any response function cannot be independent — they must be RELATED!

R(0) = 7(0) S(0) {r@=r@-ir@

This relationship between the real and the imaginary parts of the response functions
is captured by the Kramers-Kronig relations:

r@)=419 @) -r@l ;2 —— O
0 QO -0

' o __ w% " "\ o'
7' (@)-7'(w)= 4‘{2” y (w;wz pe )

« If one knows the real part for all frequencies, then one can find the imaginary part
using Kramers-Kronig relations

* Conversely, if one knows the imaginary part for all frequencies, then one can find
the real part using Kramers-Kronig relations

PROOF OF KRAMERS-KRONIG RELATIONS GIVEN IN APPENDIX

—
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/ High Frequency Dielectric Constant of Solids: Real Part\
We have:

@)= () & (P i) 20 {2 [LR)- RN E)-£4(0)-10)

And from the Kramers-Kronig relations we know:

&'(w)-¢'(o)=-4 IZ—? &" (0" 2 a_fw.z {e' (0)=¢,

=>€'(“’)‘£O=—2[%J2h2 [P %) 2% § TK [ (@)1, (Ec(k)-E, ()

rBz (27)°

rBz (27)°

o o@)=0o2(2) 17 (P ) 25 1 LK [10)-1 (6] (AGEAG)N ‘

—
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/ High Frequency Dielectric Constant of Solids \

a2 (h ) 26 g LE [0yl LB

rBz (27)°

o e )b ) £ )|

FBZW

‘ (o) = (%]25 (P -

* Note that our expression for dielectric constant takes \
into account interband transitions involving only a single
valence band and a single conduction band

* A more realistic expression would include interband
transitions among all bands of the solid

N\

—
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High Frequency Dielectric Constant of Solids

g--(w):(%fﬁ x 2 ;(Z”; Bra .2 [1a () 1, ()] (&, () £4 ()~ 1a)

So)=ro-2(2) 7 £ 2x | ;’2;‘3 Bro i o)1, ()] w(Er_(“)—Es(‘T

<
()
m
[eo]
N

—~

solid

E
* The above expression includes contributions from \ /
interband transitions among all pairs of bands of the \%
* Usually the most important and dominant contribution I

at frequencies of interest comes from interband 1 1 &
transitions between the highest occupied bands (i.e. the T
valence bands) and the lowest unoccupied band (i.e. the

conduction bands) TN

—
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Bandgaps and the High Frequency Dielectric Constant

c-(2) 2 m 2 0 [P 6)- 1 ol ()£, 6) -0

2 3L
' e 2 d’k 5 .
e'w)=¢ —2(—) ey 2x ——P..n
(@)= m rs FéZ(Zﬂ')3‘ *

glo)
£"(0)

&'(@<< Eg)
ZAump “VNV e

N

AN

Frequency (hw) Frequency (hw)

—
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Bandgaps and the High Frequency Dielectric Constant

a'(a))=£°—2[%j2h2 [P %) 2% 1 TK [ (0)-1,F) (E.(k)-£, (k)"

2 @) (1) - (E.(K)-E, ()}

Make some very rough estimates:

E
Suppose: 7w << Eg
()£ 0, M
f,(k)~1 f,(k)~0 ho A
. 2 - ]

2 <‘PCV .A > d3E ~ k
=>£'(w)z50+2(%J n? 573 széZW f, (k) /\

(en?(1 . 1\n,
()

2 (m, my Ef,

R Eg +

S L2
_ + 1\ 4 <\pcv.n\>
Remember the relation from your homework 7: | —+—|=—-———+
me mpy

= Materials with larger bandgaps will have smaller real parts of dielectric constants
(and, therefore, smaller real parts of refractive indices)

—
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Semiconductor Heterostructure Lasers
A Heterostructure Laser (Band Diagram) A Ridge Waveguide Laser Structur

electrons. oo 4——

o n
YY)
[% 330’0.0.::%]
l l photons
P-doped N-InP Insulator
N-doped | 38 88 0% %88 layer
InP °°2| Em N-InP InGaAsP layer

__/ 0o O substrate
holes

In semiconductor heterostructure laser, the wider bandgap material has smaller
refractive index than the narrower bandgap material

The combination of narrow and wide bandgap materials act like a dielectric optical
waveguide that confines and guides the photons

The heterostructure not only confines the carriers but it also confines the photons!!

N

S—
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Dielectric Constant: Case of Non-Zero Conductivity

We have obtained an expression for the dielectric constant
that incorporated interband optical processes and phonons

What if the material also contained large densities of electrons
or holes or both (i.e. what if the material was doped and =\" 1
conductive)?

Go back to Maxwell equations:

Vx H(F,0) = J(®)- ioe(0) E(F,®) Ampere’s Law

New term (current density due to electrons or holes or both)
J(@) = o(0) E(0)
= Vx H(F,0) = o(0) E(w)- io &(w) E(F, )

= Vx H(F,0) = —io ge5 (@) E(F, )

Where: o(w) The second term is the
Eeff (a)) = s(w)+ i——* ———— intraband or the free-carrie
@ contribution

hmg}
Vx E(F,0) = io uH(F, o) Faraday’s Law /\

/
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et (@) = &(@) + i?

Dielectric Constant: Non-Zero Conductivity \
We have: E
7"/ &

Use the Drude model for the frequency dependent conductivity:\%

The equation for the electron drift velocity is (assuming

WJ;I»
parabolic/isotropic bands in 3D):
m, ﬂ _ mgv —_e E /\
dt T

In phasor notation (assuming a sinusoidal electric field):
V(@) =~ £()
1-iot
The current density is:
J(»)=n e V(o) = o(0) E(w)

where:
2
o-(a)) _ ne r'/me
1-iwt

—
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Assuming non-zero densities for both electrons and
holes the total conductivity becomes:

Dielectric Constant: Non-Zero Conductivity

2 2
O_(w)zne T/me+pe T/mh \%——" —Ef

We have:

Therefore:

"3
goff (@) = (@) + i? /\

1-iwr 1-iwt

Eeff (a)) =

Inter

processes and processes
phonons

&(0)+i ne"’r/me +i pezr/mh
o(1-ior)  o(1-iwr)
\_Y_I - ~ J

band optical Intraband optical

—
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Then we have:

ot (0) = (@) +1 " 7 Me ey, A

=g(
=g(

The Plasma Frequency
Suppose we have a metal or a n-doped semiconductor for which:
o7 >>1
E
7"/ £

@ >> 010, VL0

ho<< E
g 0

’a)(1—ia)r) - iwr)

2 2
w)+’. ne T/.me ~ 6‘(w)_ ne /me
o(1-iwr)

2

(0]
w)|1-—F
) w2]

K

]
“ N

Where the plasma frequency is defined as:

ne2

For metals:
wp/2n ~4x 10'S Hz (UV-blue light frequency)

“P =\ &) mg

For semiconductors:

op /21 ~ 10" -10"3 Hz (Terahertz frequency

—
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Puttin? Everything Together

5ot (@)= 8(0)+1 T2 = 2, (1+ 2 (@) + 2pn (@) +i T

=¢&o +gole(w)+golph(w)+' ( )

l_'_ll_'_l

Electronic part Phononic Conductivity part (electronic

(Interband) part intraband part or the free carrier part)
Electronic Parts:
=2 2 2 P 2 fk)=7 (k (r() s())
=2 (]9 2 2 g S 0@ AR

a(co) ; e r/me ; e 2 /m,,
@ a)(1—la)2') a)(1—la)1')

First line is the interband part and the second line is the inraband or the free-carrier part
Second line is non-zero only for conducting materials and has no zero frequency limit

Phononic Part:

nf?/M
€0Xph (0’)= - wz—/a)rzro

—
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Polaritons

Polaritons consist of electromagnetic waves coupled with some material wave or
material excitation

It is the name given to the phenomena where electromagnetic energy becomes
strongly coupled with material degrees of freedom

Some common examples of polaritons are:
1) Phonon-Polaritons

Electromagnetic waves become strongly coupled with the optical phonons of a polar
medium

2) Plasmon-Polaritons

Electromagnetic waves become strongly coupled with the plasma waves of a
conducting medium

3) Exciton-Polaritons

Electromagnetic waves become strongly coupled with excitons (bound electron-hole
airs)

—
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Transverse and Longitudinal Polaritons

For any medium: D= SOE +P= g(a))E Pp = -V.P
_ + .
V.E = M V.D= &
€o €o

Longitudinal Polaritons:
In longitudinal polaritons, the E-field has a non-zero divergence but the D-field has a
zero divergence:

. + . —
v.E=PuTPp _Pp g vh=Pui_0 = p =VP=z0
P
%o £o €o
If the E-field has a wave-like form: E = AE e/t
Then: V.E=0 = qg.n=0

= E-field has a non-zero component in the direction of wave propagation

Transverse Polaritons:
In transverse polaritons, the E-field and the D-field both have a zero divergence:

VE=0 VD=0 = p,=0
If the E-field has a wave-like form: E = AE e~/
Then: VE=0 = q.n=0

E-field has no component in the direction of wave propagation

—
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Longitudinal Polaritons
Suppose the E-field has a wave-like form:
E = AE e/d-7-iat

The D-field is given as:

D= £,E+P = eot (0)E
For longitudinal polaritons we must have:

V.E=0

V.D =g (0)V.E=0

The only way that both these equations can hold is if the frequency of the longitudinal
polaritons is such that:

Eeff (w) =0
The above equation gives the frequency of the longitudinal polaritons

—
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Longitudinal Polaritons

Longitudinal Phonon-Polaritons: Consider a non-conducting polar medium (polar
semiconductor or a polar insulator) whose dielectric constant at frequencies much
smaller than the material bandgap energies is approximately,

con)= (o) T <)o Q=N - ) @, el |
o’ wro o - a’ro
The condition, g.¢ (@) = 0 gives:
@ =000
The longitudinal phonon-polaritons are just the polar longitudinal optical phonons!

Longitudinal Plasmon-Polaritons: Consider a conducting medium (like gold, silver)
whose dielectric constant at frequencies much larger than the phonon frequencies
but much smaller than the material bandgap energies is approximately,

o-( ) nez/m, Ng(w)_nez/me

e (@) = £(0)+i1 " = g(00) +i — 2 { oz >>1
o(1-iwr)
The condition, g (@) = 0 gives:
O=0, = 7ne2
P € (°°)me
longitudinal plasmon-polaritons are just the plasma waves!
E(m — Spring 2009 - Farhan Rana — Cornell University
Transverse Polaritons
Suppose the E-field has a wave-like form:
E = AE o't {VE=0 = G.A=0

The D-field is given as:
D= £,E+P = eot (0)E
For transverse polaritons we must have:

VE=V.D=0

The electromagnetic wave equation when V.E = 0 is:
VxVx OE = a)zpoaeff(w)é
= V(}zéi— V2E = a)z,uoseff(w)é
= -V2E = o? Hoeff (w)é
The plane wave is a solution of the wave equation if:
2 Seff\?) (m)

€o
e above equation gives the dispersion of the transverse polaritons

= q3c?

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University

14



Transverse Phonon-Polaritons

Consider a non-conducting polar medium (polar semiconductor or a polar insulator)
whose dielectric constant at frequencies much smaller than the material bandgap
energies is approximately,

T o) @00 o o]

gef (@) = &(c0) - — 7
w? v? —a’ro

o
The dispersion relation:a)2 L() =q 2¢2
€o

gives the following equation:

o* - 02(0f0 + 6% 5y s()+ e 20l 5, /o() -

The resulting dispersion relation is plotted in
the Figure

Note that there is a band of frequencies in Reststrahlen band
which no electromagnetic wave can Dol—"" - / ________
propagate in the medium

Wrof--""""""""TTToTooooomooomoooes

(no propagating wave mode exists)

is band is called the Restsrahlen band q
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Transverse Plasmon-Polaritons

Consider a conducting medium (like gold, silver) whose dielectric constant at
frequencies much larger than the phonon frequencies but much smaller than the
material bandgap energies is approximately,

2
o (0)= o)1 70 o) 267 o) "M (e
The dispersion relation: o2 %”7(‘0) =q>c?
€o

gives the following equation:

2

2 2 2.2 & ne
o =w, +q°c = |
P o) {“’P (o),

The resulting dispersion relation is plotted in

@
the Figure

Note that no electromagnetic wave can

propagate in the medium with a frequency

smaller than the plasma frequency Op | ——

S—
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APPENDIX: Kramers-Kronig Relations (Proof)
In a linear time invariant (LTl) system, the stimulus phasor S(®) is related to the
response phasor R(w) by:
R(a)= 7(e) S(w)

The linear response function is y(0):  y(0)=7'(@)+i y" (@)
Reality:
Real inputs must result in a real response. This condition gives:

r-e)=r(0) = r(o)=y(e) and y"(-0)=-r"(o)
Causality:

; o w_ T deo —io(t-t)
Inverse FT gives:  R(t)= [dt' y(t—t') S(t') r(t-t)= | 27 r(w)e

—0 —0

Causality implies that the system cannot exhibit response to an input before the
input occurs:

y(t-t)=0  for t<t'
. . t
which gives: R(t)= [dt* y(t-t)S(t"

Infinite Frequency Response:
No physical system can respond at infinite frequencies, so:

7(@—> »)=0

—
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Kramers-Kronig Relations (Proof)

The causality condition is:
y(t)=0  for t<0
The function ¥ (@), when considered as an analytic function in the complex plane,

cannot have any pole in the upper half of the complex plane for the causality
condition to hold

Consider the following contour integral over the contour shown:
§@ y(wl) =0 C2
2r o-0' [
Since there are no poles in the upper half plane, TA
the closed contour contains no poles, and the (2] o'
contour integral must be zero
jdo’ rl@) _
2r o-o 0
I@M+I@M+Idly ).=°
‘w27 0-0" ¢ 2T 0-0" o, 2nO-0
© o N
= @MJrL},(w): 0

o 2w -0 2

—
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Kramers-Kronig Relations (Proof)

7 do' (@)

i
o 2w 0—-0' - —E}'(w)

Matching the real and imaginary parts on both sides gives:

* de' y"(@") Ao’ . N @
(0)=-2 [ 92 =_4{%%
y(w) _.[02” o—a ({2”7(‘0) 2_w|2

© do' y'(e' °dw' ., , 1)
do' y'(0') )5

=4
L,Zn' ?-o' !

") 2
7" (o) | Iy

Where the following relations have been used to get the second integrals:
r'(-w)=7'(@) and y"(-0)=-r"(o)

In cases where the real part of ¥ (@) may not be zero at infinite frequencies, as it
happened in the case of the dielectric constant, we just repeat the entire procedure
from the beginning with ¥ (#) — 7 ’() instead of y(w) to get:

r@=415" )7l 52

r@)-r@=-a15" r@) 2”5

—
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Polaritons

Polaritons consist of electromagnetic waves coupled with some material wave or
material excitation

It is the name given to the phenomena where electromagnetic energy becomes
strongly coupled with material degrees of freedom

Some common examples of polaritons are:
1) Phonon-Polaritons

Electromagnetic waves become strongly coupled with the optical phonons of a polar
medium

2) Plasmon-Polaritons

Electromagnetic waves become strongly coupled with the plasma waves of a
conducting medium

3) Exciton-Polaritons

Electromagnetic waves become strongly coupled with excitons (bound electron-hole
airs)

—
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Maxwell’s Equations for Polarizable Media

For any medium, Maxwell’s equations are:

E-PutPp v.D="Pu
€o €o
Pp = Charge density due to material polarization (paired charge density)
Py = Charge density due to free unpaired charge

When a medium is subjected to an electric field, it can polarize and charge dipoles are
created and the charge density associated with these dipoles is described by Pp

External charge placed inside a medium is described by p,

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University




Longitudinal and Transverse Polaritons

Longitudinal Polaritons:
In longitudinal polaritons, the E-field has a non-zero divergence but the D-field has a
zero divergence:

vE_PutPp_Pp
€o €o

[e]!

0 vh=Pu_0 = p,=-VP=z0
€o

If the E-field has a wave-like form: E = ﬁEoeiﬁ'F‘i”’t

Then: V.E=0 = qg.n=0

= E-field has a non-zero component in the direction of wave propagation

Transverse Polaritons:
In transverse polaritons, the E-field and the D-field both have a zero divergence:

VE=0 VD=0 = p,=0

If the E-field has a wave-like form: E = ﬁEoe"‘?'F‘i”’t
Then: VE=0 = q.n=0

= E-field has no component in the direction of wave propagation

N~

—
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Longitudinal Polaritons
Suppose the E-field has a wave-like form:
E = AE e/d-7-iat

The D-field is given as:

D= £,E+P = eoir (0)E
For longitudinal polaritons we must have:

V.E=0

V.D =gt (0)V.E=0

The only way that both these equations can hold is if the frequency of the longitudinal
polaritons is such that at that frequency:

Eeff (a’) =0
The above equation gives the frequency of the longitudinal polaritons

—
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Longitudinal Polaritons

Longitudinal Phonon-Polaritons: Consider a non-conducting polar medium (polar
semiconductor or a polar insulator) whose dielectric constant at frequencies much
smaller than the material bandgap energies is approximately,

con)= (o) T <)o Q=N - ) @, el |
o’ wro o - a’ro
The condition, £.¢ (@) = 0 gives:
@ =000
The longitudinal phonon-polaritons are just the polar longitudinal optical phonons!

Longitudinal Plasmon-Polaritons: Consider a conducting medium (like gold, silver)
whose dielectric constant at frequencies much larger than the phonon frequencies
but much smaller than the material bandgap energies is approximately,

o-( ) nez/m, Ng(w)_nez/me

e (@) = £(0)+i1 " = g(00) +i — 2 { oz >>1
o(1-iwr)
The condition, g (@) = 0 gives:
O=0, = 7ne2
P € (°°)me
longitudinal plasmon-polaritons are just the plasma waves!
E(m — Spring 2009 - Farhan Rana — Cornell University
Transverse Polaritons
Suppose the E-field has a wave-like form:
E = AE eIt {VE=0 = G.A=0

The D-field is given as:
D= £,E+P = eot (0)E
For transverse polaritons we must have:

VE=V.D=0

The electromagnetic wave equation when V.E = 0 is:
VxVx OE = a)zpoaeff(w)é
= V(}zéi— V2E = a)z,uoseff(w)é
= -V2E = o? Hoeff (w)é
The plane wave is a solution of the wave equation if:
2 Seff\?) (m)

€o
e above equation gives the dispersion of the transverse polaritons

= q3c?

—
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Transverse Phonon-Polaritons

energies is approximately,

cerl@)=ele)= 71

@
The dispersion relation:a)2 L() =q 2¢2
€o

gives the following equation:

The resulting dispersion relation is plotted in
the Figure

Note that there is a band of frequencies in
which no electromagnetic wave can
propagate in the medium

(no propagating transverse wave mode
xists)

is band is called the Restsrahlen band

a0
aTo

Consider a non-conducting polar medium (polar semiconductor or a polar insulator)
whose dielectric constant at frequencies much smaller than the material bandgap

T o)t @0 o el

ok —a’ro

o* — o? (a)fo +q%c?¢, /g(oo))+ q2c?w?o 6o /6(x)=0

Reststrahlen band
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Transverse Plasmon-Polaritons

material bandgap energies is approximately,

Eefr () = £(0)+i i))—e( )+:m

o(1-iwr)
The dispersion relation: o2 setr (@) =q3c?
€o

gives the following equation:

2_ 2 2.2 &
w wp+ch(oo)

The resulting dispersion relation is plotted in
the Figure

@

Note that no transverse electromagnetic
wave can propagate in the medium with a

frequency smaller than the plasma frequency @p

~ g\o)—
@)-",

Consider a conducting medium (like gold, silver) whose dielectric constant at
frequencies much larger than the phonon frequencies but much smaller than the

2
ne?/me s

S—
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Handout 22

Electron Transport: The Boltzmann Equation

In this lecture you will learn:

* Non-equilibrium distribution functions

* The Liouville equation
* The Boltzmann equation

* Relaxation time approximation
» Scattering beyond the relaxation time

approximation

Ludwig Eduard Boltzmann
(1844-1906)

—
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Note on Notation

In this handout, unless states otherwise, we will assume a conduction band

with a dispersion given by:

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University




Momentum Equation with Scattering and Problems
In any energy band the electrons obey the dynamical equation:

dnk(t) _ . g
dt

In the presence of scattering, we wrote:
dnk(t) _ _, g _("1k(t)-nk
dt T

* We need a more general and rigorous description of electron scattering than is
captured by adding damping to the momentum equation

E N

hk
~/ Electron scattering . >

Example: Electron
—1 L E scattering from fp/ I \/

impurity/defect

k

—
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The Non-Equilibrium Distribution Function

In thermal equilibrium, the electron distribution (or the electron occupation
probability) is given by the Fermi-Dirac distribution:

. 1
W)= ey
And the electron density can be written as:
di
n=2x | 9K ¢ (k)
rBz (27)

We generalize this concept to non-equilibrium situations (which happen, for
example, when electric fields are applied from outside)

The electron distribution (or occupation probability) more generally is given by a
time-dependent distribution function:
f(k,t)

that also obeys:

oy 9K L
n=2 FéZ(ZII)d (k,¢)

—
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The Non-Equilibrium Distribution Function

Consider a single electron state in k-space in the presence of an electric field

Assume no scattering

dnk(t) = Y
“at - °F : . \
\

= k(t)=k(t =0)- %E‘t —> k(t

. k(t+At)
:>I?(t+At)=I?(t=0)—%E'(t+At) | K,
E
Suppose there exists a time dependent ky R
function f(k,t) that gives the probability f(k(t ,t)
of electron occupying any state in k-space '\
= F(K(t + At),t + At)= F(K(£), t) k(e + At) t+At)
kX

—
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Case of No Scattering: Liouville Equation

Question: How does the non-equilibrium distribution function behave in time in
the absence of scattering?

ky . ® E Consider an initial non-equilibrium
H3 \ distribution at time “t ”, as shown
Kk we There is also an applied electric field, as
f(k, t) f(k’ t+ At) shown
| ke

In time “At ” each electron would have moved according to the dynamical equation:

dnk(t) = k(t) = initial momentum value
dt k(t+ At) = final momentum value

The distribution at time “t+At ” must obey the equation:

f(k(t+At), t + At) = F(k(t),t)

This is because in time “At “ the electron with initial momentum E(t) would have
gone over to the state with momentum k(t + At)

—
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Case of No Scattering: Liouville Equation
y . ® V\E
a st d nk(t) _

flk.t) F(K,t+At) dt

-eE

We have: f(k(t+At),t + At)= F(k(t),t)
= f(k(t)+ dk(t) At,t+AtJ = f(R(t), t) —_— {E(t) is arbitrary
f(l?+ d’;(t)At t+At] f(K,t)

o ) vyrlir). 2O a2

The above equation implies that the underlined term must be zero:

aff’}t, t)+ VEf(E,t). dl;gt) =0 Liouville equation

Describes the deterministic evolution of electron distribution in k-space

—
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Boltzmann’s Equation: Liouville Equation with Scattering

No Scattering With Scattering

: " / |

f(E,t+At) f(E,t) / :o\ f(R,t+At)

Now we have:

f(k(t+ At),t + At)= F(k(t),t)+ { changes due to scattering}At

= f(l? + %Y)At, t+ At) = f(E, t+ At)+ {changes due to scattering}At

= f(I?,t)+ ka(l?,t) dk(t) At + MM = f(l?,t)+ { changes due to scattering}At

dt ot
S|t g (K, t). dk(t) ={changes due to scattering} {— Boltzmann’s
ot dt equation
A\ J A - g
" ~"
Deterministic evolution Non-deterministic evolution

—
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Relaxation Time Approximation
Suppose no external fields are applied: E = 0 ~

The initial non-equilibrium distribution is given: f(k,t = 0)

Scattering must eventually restore the equilibrium distribution function

v (K.t = 0) v k.t =)= 1(k)

—

_ _ 0
Mg‘;’t)+ka(l?,t%{ changes due to scattering}

- 6fal:,t ={changes due to scattering}

Scattering must “relax” the non-equilibrium distribution to the equilibrium Fermi-
Dirac distribution at time t =«

Question: What should be the form of the expression on the RHS in the Boltzmann
equation so that equilibrium Fermi-Dirac distribution is indeed restored at time t = «

—
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Relaxation Time Approximation

Case I:

Suppose no external fields are applied: E=0 -
The initial non-equilibrium distribution is given: f(k,t = 0)

“ 1 flk,t=0) F(k,t = )= £, (K)

-

In the relaxation time approximation, the RHS is assumed to be as follows:

6fo:,1‘) ={changes due to scattering}= _M

of(k,t) [k, 1)-£,()]

ot T

Solution is: f(E,t): f(l?,t = 0) ety fo(l?) l 1-e77 J

As t > o , f(k,t)—) fo(E)

—
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DC External Electric Field

When the external field is not zero, than we get:

orlkot), o o(k,q). O __[#lk.0)-1,(6)]
ot dt

T

Casel ll:

Suppose a DC external field is applied: E
The steady state distribution function is desired

Since: m = _ﬁ
dt h
and since in steady state the distribution function cannot depend on time, we have:
_y 70 _ _ _
of _ka(ﬁ)_£=_| f!k!—f,,!k!
ot h T

erE

= f(k)=1f,(K)+vFK).

We will keep terms that are linear in the applied field (assuming the applied field is
small) and so the distribution in the second term on the RHS can be approximated
by the equilibrium distribution:

f(l?)z fo(l?)+ VEfo(I?).e ;E- Final answer

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

DC External Electric Field
erE

The final answer: f(k)z fo(E)+ \v Efo(k)_ 1t two terms of a

Taylor expansion

—

can also be written approx. as: f(R)z fo(k + e ;E] Shifted equilibrium

distribution
Initial Distribution Steady State Distribution
ky
f(k,t =0)=1f,(k)
kX
E
—

Shifted equilibrium distribution
SAME AS BEFORE!

Everything from here onwards is the same as discussed earlier...............

—
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DC External Electric Field

Steady state distribution: £(k)~f,| K+ % E ______ shifted equilibrium
/] distribution

Elastic scattering

Steady State Distribution (no energy loss)

f(k,t=oo)=fo[k+”E E

J -

h 77 ISx._ Electron

_,_C * scattering / Electro.n
= ) 7) scattering

E

—] I
T /I kX
S—L

—E

Inelastic scattering
(energy loss)

—
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DC External Electric Field — Current Density

f(ﬁ)zf,,(ﬁ)wﬁf,,(g).efzfo[w; E]

Example: Consider the conduction band of a semiconductor with the following
dispersion:

E(E):Ec+§ET.M‘1.E v(k)=m".nk

The current density becomes:

Jo2ex | O ((@Q)o(R)=—2ex | 3K f[lheTEJV(R)

rBz (27)? Bz (27)7 ° h
d%% N (-~ erE d%% =\ p o1 ~ erE

=-2ex | ——f\k)V| k- =-2ex | f, M~ .h k-

rBz (27)? o(K) [ h J rBz (27)7 o(K) h

.
2 d°k . (i\p—1 E

=e“r 2x | —f, M .E

rBZ (27)° °( )
=ne’ M. E
=5 .E

—
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Scattering Rates
Consider a single electron state in k-space:

ky R,MOR'

\0

| by

The electron in the initial state k _can scatter to another state k' witha
scattering rate given by W(k - k') due to phonons, defects, impurities, etc.

But to get the actual transition rate one must weigh W(E - R') by the probabilities
that the final state is empty and the initial state is occupied:
Rlk — k')=w(k - k') flk,t)1- (", t)|

Total transition rate out of the state k:
TRk > k')=xwWlk - k') flk,t) 1- (", t)]
k' k'

Total transition into the state K :
SR(k'— k)=3w(k — k)f(k',t)1-f(k,¢)|
k' k'

—
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Boltzmann Equation: Beyond the Relaxation Time
Approximation

.t?:o ~
k) S fletear)
| -
6f(l?,t)+v,f(,; t) @— { changes due to scattering}
ot KADET gt g ’

The term that represents the changes in the distribution due to scattering can be
written as:

oMet) (). 25O _ s (i £} (i) - (i)

ot ' - N
“sw(k > R) (ko) -1k o] ~f- L6
I's T
W(R - E') is the rate of scattering of an electron from momentum state k to k'
due to impurities, defects, phonons, etc. The RHS can be shown to reduce to the
relaxation time approximation expression in many cases of practical interest.

x|

—
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Boltzmann Equation: Beyond the Relaxation Time
Approximation

dk(t) _ %W(I?'—) K)f(k,¢)[1- (i, )]

- %w(ﬁ - &) (i, ) [1- (k" 1)] Energy

of(k,t)
ot

+V (K1)

Assume thermal equilibrium:

ho)=nk) Mg
Therefore:

. - - E(k)KT Scattering rate to lower
= W(A - ki)= fo k) 1- fak = e (‘) —> energy states is larger than
W( = k) 1—fo(k') fo\k eE(k JKT scattering to higher energy
states
ECE 407 — Spring 2009 — Farhan Rana — Cornell University
Exam 1: Results
4
AVG: 70
STD DEV: 13

Number of Students
N <

—

10 20 30 40 50 60 70 80 90
Score

ECE 407 - Spring 2009 - Farhan Rana - Cornell University



Handout 23

Electron Transport Equations

In this lecture you will learn:

* Position dependent non-equilibrium
distribution functions

* The Liouville equation

* The Boltzmann equation

* Relaxation time approximation

* Transport equations

William Schockley
(1910-1989)

—
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Note on Notation
In this handout, unless states otherwise, we will assume a conduction band
with a dispersion given by:
_ - 1=
E(k)=E, +o KT MK

= \7(*)= M .nk

In the presence of an electric field:

=

E(k,7)= Ec(f)+§l?r M

where:

VE.(F)=eE

—
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Position Dependent Non-Equilibrium Distribution Function

We generalize the concept of non-equilibrium distribution F

functions to situations where electron distributions could o
also be a function of position (as is the case in almost all °
electronic/optoelectronic devices): f(— t)

f(k,7,t)

The local electron density is obtained upon integration over | k
k-space: _
n(F,t) =2 j’ ( )d f(k,F,t)

Local Equilibrium Distribution Function:

Electrons at a given location are likely to reach thermal equilibrium among
themselves much faster than with electrons in other locations. The local equilibrium
distribution function is defined by a local Fermi-level in the following way:

= 1
f\k,r,t)= = -
°( r ) 1+ e E’FE(FO)KT
with the condition that the local Fermi level must be chosen such that:
. de% . .
n(F,t)=2x [ (k,r,t) (k,r,t)
( )" rez (27)°
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Case of No Scattering: Liouville Equation

Question: How does the non-equilibrium distribution function behave in time in
the absence of scattering?

r . Consider an initial non-equilibrium
5 distribution 2d dimensions at time “t 7, as
~ 3’ shown
flk,7,t e
( ) f(k’ rt+ At) There is also an applied electric field, as

| p> shown

In time interval “At” each electron would have moved in k-space according to the
dynamical equation:

d nk(t) E .
e —-e k(t + At) = final momentum value

k(t) = initial momentum value
But in the same time interval “At” each electron would have moved in real-space
according to the equation:

d r(t) (k(t)) F(t)=initial position value
F(t+At)=final position value

—
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Case of No Scattering: Liouville Equation

; . dnk(t) g
o dt
TN n
flk.r.t) ...f(I?,F,t+ At) d :,ft) = vlk(®))
| k

The distribution at time “t+At ” must obey the equation:

f(K(t + AL), F(t + At), t + At) = F(K(2), F(t),t)

This is because in time “At “ the electron with initial momentum R(t) and position F(t)
would have gone over to the state with momentum k(t + At) and position F(t + At)

f(k(t+ At),F(t+ At),t+ At) = F(k(¢), F(t),t)

= f(k+°6$t)At,f+‘Z(tt)At,t+At]=f(R,F,t+At)
= f(E,F,t)+V,;f(R,F,t).‘"jlg)Anvff(E,f,t).dz(:)At+af(’:;’tf’t)At f(k,7,t

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Case of No Scattering: Liouville Equation
F d nk(t) _WE

e ot eE
. _ ~ s’ .
flk.r.t) f(k,7,t+ At) d;ft) = v(k(t)
| K
We have:

- -\ dk(t -\ dF(t of\k,r,t -
f(k,7,t)+ v (K, F,t). #Anvff( JFot). ;(t Jat+ (6t’ Jat- f(k,7,t)
The above equation implies that the underlined term must be zero:

ork.r.1) (':;t hY), g k.7 ). —dﬁ?) +V#(K,7,t). dz gt) =0 comtion
T t) 5 67.). K0, 5, 1(s 1.t) o(R) -

Describes the deterministic evolution of electron distribution in k-space
and real-space

—
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Boltzmann Equation: Liouville Equation with Scattering
= No Scattering B With Scattering
r r L]
- f(k .F}A SN
f(k,7,t+At) o /\ f(k, 7.t +At)

\

Now we have:

f(k(t+ At),F(t + At), t + At) = F(k(¢), F(t),t )+ { changes due to scattering JAt

= %’tf’th ka(l?,F,t). ? +v£(k,7,t). ¥(k) = { changes due to scattering}
N— — - ~ g

Deterministic evolution Non-deterministic evolution

k Boltzmann’s
L ;
equation

—
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/ Boltzmann Equation: Relaxation Time Approximation
of(k,7,t) k
ot

+ V,;f(l?,?,t). +v;£(k,7,t). ¥(k) = { changes due to scattering}

Local Equilibrium:

 Scattering is local in space - i.e. electrons at one location do not scatter from
impurities, defects, phonons, and other electrons that are present at another location

» Scattering restores local equilibrium — i.e. it drives the distribution function at any
location to the local equilibrium distribution function at that location

{ changes due to scattering}=— [ f(R’F’t)_ f°(E’F’t) ]

T
Note that:  n(F,t)=2x | dd’i f(k,7,t)=2x | L’i £, (K, 7,t)
FBZ (27) FBZ (27)

S| 6L, grer,). KO (i, r,0). (i) - - LTl re))

Boltzmann equation in the
relaxation time approximation

—
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Transport Equations: Continuity Equation
Boltzmann equation can be manipulated to give simpler transport equations
15, 7,t). o(f) = - LFEF )= fo(R.F.1)
T

of\k,r,t
Integrate LHS and RHS over k-space, multiply by two, and use:
; d% (. . d% (.
n(r,t)=2x | flk,r,t)=2x | —— f\k,r,t
) rBz (27)7 ( ) rBz (27)7 °( )

d
JFD=2(-e)x | (‘2’”;; (k. 7.t) (k)
d k k —
) He {0

to get:
on(r,t) _ 1V. J(F,t)=0 [ Continuity equation
k ate /
o
ECE 407 — Spring 2009 — Farhan Rana — Cornell University

Transport Equations: Current Density Equation \

(ssume DC applied electric field and steady state: {dhl?(t) ——eE
dt
; ,F,t).v(l?)=_[f("’f")—rfo( ) ]

0
o a,tf,t +V i f(k,7,t) d’;gt) v:f(k
= o v,(kr). E v, r(fr).o(f)- -LEr)-Tolkor
= 0 V,#(f.r). E -9, 1(k.7). v(R)= (k)15 7)
= f(K,F)=£,(K,F)+ e v f(K,F). E -z v£(k,F). v(K)
Assumption:
Since the difference between f I?,F and fo(l?,F) will be of the order of the applied
field, it is safe replace f(E,F) by f, ﬂ, F) on the RHS in the above equation:
= f(k,F)~ £, (k,F)+ e V oo (K, F). E =2 V£, (K,F). v(K) /
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Transport Equations: Current Density Equation
= f(k,F)~ £, (K, 7 )+ o V oK, F). E—7 V5, (K,F). v(K)

Multiply both sides by 2 (—e) V(E) and integrate over k-space to get:

LHS: d% N
2(-e)xFBZ( e f(k,7)v(K)
= J(F)
RHS: o 1
First note that: f, (k,r)= 12 B E KT
= V; £,k 7). —(")=%’§_’)v [E.(F)- £/ (). 1 V4E(K)
1

= Vifolk.7). vy [Ec(F)- E¢(F)]

Therefore the RHS can be written compactly as:

2o | o )d{ £ (k. 7)+ v (K. 7). [h’:;-_%vf [EC(F)—Ef(F)]]}\?(E)
~2(-e)x %:;“d (hef—;vf (£.(7)- £/ b7 ) v(8)
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Transport Equations: Current Density Equation

~2-e)x | ("”;;f[k ST E- TV [E.()- E ) | v(R)

=2(-

£, (k.7)v [E—75+ v, [E.(F)- Ef(r)]j
For the conductlon( band of a semiconductor with parabolic dispersion:
v(k)=m" .1k
The RHS becomes 0

2ce)s | o o)A )]

- n(F)e?s M, [E‘—EV,[EC(F)— Ef(F)]] -5.E-15 .V,[E.(F)-EF)]

Finally putting together the LHS and the RHS we get:

JiF)=5. (E - gV;[Ec(F)— Ef(F)]) L, Current density equation

—
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Current Density and the Fermi Level (Chemical Potential)

The expression for the current density is:
e = (2 1 = =
)= .(E- 29/ [E()-EP)]

Therefore, currents can flow as a result of both potential gradients and Fermi-level
(or chemical potential) gradients

Since:
VE,(F)=eE

We get:

Therefore, currents flow ONLY as a result of gradients in the Fermi level (or the
chemical potential)

—
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Transport Equations: Drift and Diffusion

The current density equation:
oy = (& 1 = "
)= .(E- 19/ [E()-EP)]

can be cast in one more form that is more common

We start by relating the gradient in the Fermi level to the
gradient in the carrier density:

d%

n(F)= 2xFéZW ,(k, )
= Ven(r)-2x éz(‘z’gj Vito(fr)-2x | (‘2';';, Holkr)y, (e, ()-£,0)

(2 L —ﬂ@]vftscm—sf(f)]

rBz (27)° oE

—
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Transport Equations: Drift and Diffusion

The expression for the current density becomes:

s o= 1 ~ "
J(r)=a.E—ga.V;[Ec(r)—Ef(r)]
_ =1 o ~
=0c.E+— — — .Ven(r
e . d% (_of, k,F] rn(F)
rBz (27)° oE
J(F)=&.E+eD .V;n(F) Current density equation
Where we have the defined the diffusivity tensor as:
D= 1 o ) ;
) dj k 7 g =n(F)e“c M~
¢, d IL[_afo!k,rj] (Fle
rez (27) oE

The current density equation shows that current can result from drift when there is
an electric field (the first term on the RHS) and also by diffusion if there is a carrier

density gradient (the second term on the RHS)

—
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Diffusivity, Conductivity, and Mobility - |
We define the mobility tensor as:
g=er M { g(F)=n(F)en

Einstein Relation:
Conductivity and diffusivity are related by the Einstein relation:

ﬁ— 1 o
T a2 di i 7
¢, d I:'j[_afo‘k,r)]
rBz (27) oE

Example - Semiconductors:
Consider a semiconductor at high temperatures and assume that Maxwell-Boltzmann

statistics apply:
1 (e(e =
~e (E(k)‘Ef(’))/KT { Ec —E; >> KT

=
Then:
2 d [_afogk,fj]_@

FBZ (27[)d OE - KT
and the Einstein relation can be expressed as:

1 &  KT[ . 4 KT_
= =— M =
e2 n(F)/KT e [er ] e

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University

o




Diffusivity, Conductivity, and Mobility - Il

Example - Metals:

Consider a metal or a highly doped semiconductor at low temperatures.
Then:

llr). s(e(f)- ;)
And: (
d% ( of,(k,F)) _
w2 @) (— SE ] = gap (Er)

and the Einstein relation becomes:

p-1_9°

2 gap(Ef

~—|

—
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Handout 32

Electronic Energy Transport and Thermoelectric Effects

In this lecture you will learn:

* Thermal energy transport by electrons
* Thermoelectric effects
Seebeck Effect
Peltier Effect
* Thermoelectric coolers
* Thermoelectric power converters

Lars Onsager
(1903-1976)

—
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Note on Notation
In this handout, unless states otherwise, we will assume a conduction band
with a dispersion given by:

In the presence of an electric field:

=

E(k,7)= Ec(f)+§l?r M,

where:

VE.(F)=eE

—
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Thermoelectric Effects

There are two important effects in materials that relate electrical currents, heat
flow (or thermal currents), voltage gradients (or electric fields), and temperature
gradients:

1) Seebeck Effect

2) Peltier Effect

The Seebeck effect is important technologically since it expresses how

temperature differences can be used to generate voltage differences

The Peltier effect expresses how current flow can be used to generate
temperature differences.

—
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Electrical Currents and Thermal Currents of Electrons

ViT(F)0 E=0  V;[E.(F)-E¢(F)]=0 (or v;n(F)=0)

In the most general case, when electric field, density gradient, and/or a temperature
gradients are all present, the electrical and thermal currents can be written as,

i(F)= a(é_gvf[sc(f)_E,(f)]]_f.vfr(f)

< = n=(g 1 = " _ .
J(O)=T() & E= L9/ Ec(0)-E ()]} ¥, T ()
Or in matrix form as: ]
[y(n}:[ s j] E-1v,[6.()-E(7)]
Jth(F) T(")f —Kith V;T(f)
* The above equations show that a temperature gradient can generate an electrical

current and an electric field (or a carrier density gradient) can generate a thermal
current

* The above equations can be used to evaluate the material responses in different
situations of practical interest

* NOTE: The contribution of phonons (or the lattice) to the thermal current will be
ignored here

—
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Electrical Current from Temperature Gradient

A temperature gradient in conductive material can cause an electric current

* Consider electrons in the conduction band of a n-doped semiconductor or a metal
* There is no applied field
* There is a temperature gradient

T

.
V:T(F)=0 2

(A
&)

V:T(F)z0 E=0  V:[E.(F)-E(F)]=0

Assume for the electron density:

.
n(F)=2x | (‘2’”;; F(k,F)

The local equilibrium distribution function is: .
Temperature is

_— wgn
f (E F): _ 1 position dependent
° 1+ e EK)-Ef)KT()
E(m — Spring 2009 - Farhan Rana — Cornell University
A Physical Explanation
T = T,
VT (F)
(A)
\_/

* Electrons with energies higher than the Fermi

E level diffuse from the region of higher temperature
,>T to the region of lower temperature
Electron
diffusion * Electrons with energies lower than the Fermi level

diffuse from the region of lower temperature to
region of higher temperature

* The higher energy electrons of course win and the
current is in the direction of the temperature
gradient

(Q:What will happen in a p-doped semiconductor?)

* Fermi level can also change with temperature but
we will assume that it does not

—
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ﬁctrical Current from Temperature Gradient: Boltzmann Equm
T T,
- ViT(F) -

(A) —‘

Start from the Boltzmann equation assuming no applied field:

|

|
N

-~
P R

~!
N —

Il

o‘l\
—_—
i I TR

Multiply both sides by 2 (—e) V(R) and integrate over k-space to get:

LHS:

2(-e)< [ K15, 7)o(e)
- 3(7)
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ﬁctrical Current from Temperature Gradient: Boltzmann Equ%
T T,
: V:T(F) 2
(n) —‘
RHS: —

-
- 2(- e)xFézﬁ e Vi, (k,F). v(K) v(K)

Note that:

~ 1 , F
e 0 B (e )

Therefore, RHS becomes:
dr
=2 eréz% v, (k7). (k) v(K)

2o | 4% Ol VW€ )9, 1))

\- /

—
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Electrical Current from Temperature Gradient: Boltzmann Equation
T T,

VT (F)

(A
&)

Finally, putting LHS and RHS together we have:

oy dk  of,(k,7)(EK)-Ef)p.(; No(z). = A
J(F)=2e erIj;Z @ny S ) f [v(k) .V,:T(r)] V(k)— —& . V;T(F)
* Electrons with energies higher than the

+ E E Fermi level diffuse from the region of higher
L>T temperature to the region of lower
Electron temperature
diffusion

- * Electrons with energies lower than the Fermi

B e Nl e Gt Ef  level diffuse from the region of lower
temperature to region of higher temperature
« For n-doped semiconductor: x <0

f(E’Tz) * For p-doped semiconductor: x >0

—
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Electrical Current from Temperature Gradient: Semiconductors

s vT(0) -
®)
i()=2ecx | 4K _ oolk. ) (E(K)- £r) [V(k) v, 7)) v(k)= -7 . v,T(F)

rez (27)° OE T(7)
Example — n-doped semiconductor at high temperatures:

Consider a semiconductor at high temperatures and assume that Maxwell-Boltzmann
statistics apply:

kP 1 -(E(k)-E¢(F _
f,(k,7)= 1 e E R = (E(k)}-E¢ (/KT { E. - E; >> KT

For the conduction band of a semiconductor with the following dispersion:
2
E(K)=Ec+ " KT .M & W(K)=m" .0k
We get:

q

oK\ (Ec=Es+2.5KT) 2 p—1_ (K)\(Ec=Ef+2.5KT
e KT e KT

—
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Electrical Current from Temperature Gradient: Metals
T T,

VT (F)

(A
)

Sy d'k  of,(k,F)(EK)-Ef)p Ao(z) = )
J(F)=2e & éz(Z/r) G~ 7 (k) v; 1)) v(k)=—% . v:T(F)
Example — metal or a n-doped semiconductor at low temperatures:

_ %Zf) « o(E(K)- /)

In this case:

However, using the above approximation will give a zero for ¥ so one has to be
more careful. For the conduction band with the following isotropic dispersion:

E(k)=E, + zhzkz

Mg
One obtains after a more careful computation of the above integral:

2 2 2 2 2
__ (K e‘r z°(K\(KT \ne‘c  z°(K\(KT
w5 (o) =2 (S &) e -2 (65
e Megr 2 \e )\ Ef ) myy 2\e)\ Ef
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Thermopower: The Seebeck Effect and the Seebeck Ten§or

T — T,
V, — ViT(F)»0 E=0 Vv,

* Consider a piece of metal (or semiconductor) with its two ends kept at different
temperatures by some external means

 Since no current can flow in the external circuit, an electric field will build up
inside the material in response to the temperature gradient resulting in a voltage
difference between the two output terminals (this is the “Seebeck Effect”)

The total current density in the material can be written as:

J(F)=5.E+e i/vﬁ?f)_f.vfr(f): 0

The Thermopower tensor or the Seebeck tensor is defined as:
=1
c .

]|

Al

For the diagram above:
_aV _g dT
dx 7 dx

—
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E=5.V.T(F) = = (Vu-Vy)=-Su (lL-Ty)




The Seebeck Tensor: Metals and Semiconductors

y
T — T,
V, —oI ViT(F)z0 E=0 v,
X
CASE | - If the slab was a n-doped semiconductor (and Maxwell
Boltzmann statistics applied):
n=NeErEJKT _ g _E - KTIog[nJ
c
= —1 — K N
S=0".K D> Si-= —2[2.5+Iog(7°)]
K N
(V2 =V)= -y (1= T)= X (25109 e )7~ T)
CASE Il - If the slab was a heavily n-doped semiconductor (or a metal):
_ 2
S=c'%k = S, =”K[KT]
329 Ef T_(T2+T1)
z° K KT B 2
Vo-Vy)==-8S,, (L -T4)=——| — [T, - T4
e e
Lesson: compared to metals (in which E;>> KT), doped semiconductors will

produce a larger potential difference for a given temperature difference

—
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Measurement of the Seebeck Tensor and Thermocouple
Some care is needed in the measurement of the Seebeck Effect

Consider a setup to measure the Seebeck Effect of material A by contacting it with
leads made of material B, as shown:

T
Tz B +
A v
T B -

T

The temperature of the two ends of material A are kept at T, and T,

It is not difficult to show that in the absence of current flow, the potential V measured
in the external circuit is:

V=(Sa-Sp)(T2-T1)
Therefore, the Seebeck tensors of the materials A and B need to be significantly

different in order to obtain a large potential difference. If S, = Sg, then the voltages
generated in each material cancel when going around the loop.

he Seebeck Effect is the principle behind the operation of the temperature sensor
d the thermocouple

—
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Thermodynamics and Thermal Currents in Materials

The first law of thermodynamics relates the change dU in the internal energy of a
system to the heat energy intake dQ, the mechanical work done by the system PdV,
and the particle number change dN:

dU = dQ - PdV + udN

For electrons in semiconductors or metals, the mechanical work term can be
neglected and the chemical potential 1 equals the Fermi level Eg

dQ = dU — E;dN

Consider a slab of material in which heat energy, carried by the electrons, is flowing
from left to right, as shown:

Suppose each carrier

—> Jy J has energy E
- Jy =

= Jy=EJy
- ./,

Suppose the heat energy flux (units: Watts/cm?) is J,, the internal energy flux is
Jy (units: Watts/cm?) , and the carrier number flux is Jy, (units: #/cm?) , then:

Jin =Jy —Epdy = (E-Ef)Jy

The above relation is used to compute the thermal energy flow due to electrons
in materials

—
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Thermal Current from Temperature Gradient

A temperature gradient in a conductive material results in heat flow (thermal
current) because of electron flow

* Consider electrons in the conduction band of a n-doped semiconductor or a metal
* There is no applied field but there is a temperature gradient

« As the electrons move from the hot side to the cold side, they also transfer thermal
energy

T T,

V:T(F)=0

We have already solved for the distribution function:
flk,7)=~ f,(k,F)-z V£, (k,F). v(k)
-\ _of\k,F)Elk)-E, (e
~ £, (K, F)+ 7 °6(E ! )[ (T%F) f Jvfr(r).v(k)

The contribution to heat flow by the electrons can be obtained by multiplying the
distribution function by (E(E)— Ef)V(E) and summing over all states:

JnP)=2x | (‘2’:; r 6f°a(£'f )(E(’?(Ffff [o(&) v, 7)) v(k) =~ . v, T(F)

Here, xy, is the Thermal Conductivity tensor of the electrons

—
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Thermal Current from Temperature Gradient: Semiconductors
T T,

V‘:T(F) #0

. d9% of,(k,7)([EK)-EF (. IR i}
Jin(F)=2x Féz 22 T an ) f [v(k) .V;T(r)] v(k)— &y, - VFT(F)
Example — n-doped semiconductor at high temperatures:

Consider a semiconductor at high temperatures and assume that Maxwell-Boltzmann
statistics apply:

£ 7)) 1 _(E(R)-Ef(F))KT { _
fo(k,r)_mm,,e(()— £ (7)) E, - E; >> KT

For the conduction band of a semiconductor with the following dispersion:
- H 1 - ~ ~
E(k):Ec+7kT.M 1k v(k)=M". 1k
The thermal conductivity of the electrons comes out to be:

- =( K ) [(Ec ~E;Y+5(E, - ’f;)KT+(35/4XKT)2]nezr -

= [EJ ((Ec - Ef)2 + 5(Ec —Ef)KT+ (35/4)(KT)2] =

e2 KT
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Thermal Current from Temperature Gradient: Metals
T T,

/
N

V:T(F)=0

=2 | &% ANV EEET 50 7,700]o0) - -0 70

Example — metal or a n-doped semiconductor at low temperatures:

In this case: P
of \k,r -

-llr) ofe(h)- ;)

However, using the above approximation expression will give a zero for K, so one
has to be more careful. For the conduction band with the following isotropic
dispersion: 2,2

E(k)=Ec+ k

Metr
The thermal conductivity of the electrons comes out to be:
2 2 2( 2 2 2 (2
_ #m°(K)(2 e‘c #°(K‘T|\ne‘r z°|KT| _
Kih =—| — || = EfKT E, ="|— ==|—1|7
Kth =3 (ezj(3 f Jng( f)me” 3 ( o2 Jmeﬁ 3 [ o2 ] G

Ken 2 (K]Z
Kth _7% |0 . _
Te 3 \e — >  Wiedemann—Franz Law for metals

—
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Thermal Currents from Electric Fields and Density Gradients

V:T(F)=0 E=0 V:[E.(F)-E¢(F)]=0

* Consider electrons in the conduction band of a n-doped semiconductor or a metal
* There is no temperature gradient but there is an applied field and possibly a carrier
density gradient as well

« As the electrons move they also transfer thermal energy

We have already solved for the relevant distribution function:
sy ey fkF) ey (1 ) "
f(k,7)~ £, (k,F)+ ez aTv(k). E-_V/[E()-E(F)]

The contribution to heat flow by electrons can be obtained by multiplying the
distribution function by (E(E)— Ef) V(R) and summing over all states:

In(e)=eex 1 4% INele) g,)[ofe) (£~ 1v,le.()-£,P)] 9

(2z)? ©OE

=T f.[é-gvf[Ec(F)—Ef(f)])

Here, © is the same tensor found earlier which related electrical current to a
temperature gradient

—
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Electrical Currents and Thermal Currents

ViT(F)20 E=0 V:E(F)=0

In the most general case, when electric field, density gradient, and/or a temperature
gradients are all present, the electrical and thermal currents can be written as,

()= c:r.(::: _gvf [E.(F)-E; (f)]j _EV,T(F)
Jn(O)=T() & E= 19, Ec()- Er ()]} -7n 9T ()
Or in matrix form as:

AN —x]_{é-;vflsc(f)-sf(f)l]

Jn(F)] [TE)E - & VT (F)

Q

The above equations can be used to evaluate the material responses in different
situations of practical interest

—
ECE 407 - Spring 2009 — Farhan Rana — Cornell University

10



The Peltier Effect and the Peltier Tensor
Consider a material in which thermal (or density) gradients are not present. We have:
J(F)=57.E(r
jt(h()F) _ T((f))K_E.(f) } > Jn()=TE ke JF)=TLIF)
TI is called the Peltier tensor and is related to the Seebeck tensor. The relation,
Jen(F) = T1.J(F) -[ For an isotropic material: II=T S
implies that a thermal current accompanies an electrical current

Now consider current flow in a double junction of materials A and B, as shown below,
and suppose that I1, < Il . The electrical current J is constant everywhere.

Jins 1 Jina JinB

Jeng —Jina = (g -TI4) J Jeng —Jina = (g —T14) J

Since material B carries more thermal current than material A for the same electrical
current, the extra thermal current needs to be extracted out from the left junction
otherwise thermal energy will pile up at that junction and make it hot. Similarly, heat
must be provided to the right junction otherwise it will loose heat and become cold

This principle is used in electronic thermoelectric coolers (or Peltier coolers)

—
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Thermoelectric Coolers for Refrigeration

Te Cold Surface BiSe or BiTe
Rg Ro n A, TaT=T0-Te
G G?,,h B P | N =Number of pn units in series

R = Electrical resistance

A G = Thermal conductance (electronic
as well as lattice contributions)

Thermal energy absorbed from the n-semiconductor and top metal junction: (I1,, —I1,,)/
Thermal energy absorbed from the p-semiconductor and top metal junction: (Hp - Hm)l
Total thermal energy absorbed from the top metal in single cell: (Hp —l'[,,)l = Tc(Sp - S,,)l

Note that the Seebeck and the Peltier coefficients are negative for n-semiconductors

After taking into account Joule losses, and heat conductance, the coefficient of
performance (COP) for cooling is:

cop - Heatremoved fromcoldbody _ Tc(sp - sn)’ - (Gnth + Gpth)AT - ’Z(Rn + Rp)/2

~ Work done by the current source

B AT(S, - S, +12(R, +R,)

COP —» T TCT (Carnot limit for refrigerators)  when  R,G—0
h~'c
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Thermoelectrics for Power Generation

BiSe or BiTe
Rg R n Al o AT=Th-T.
Gpen c,j;th P P N = Number of pnunits in series
R = Electrical resistang
Rext | G = Thermal conductance (electronic
/N as well as lattice contributions)
A thermoelectric cooler operated in reverse acts like a heat engine
The power conversion efficiency is given by: R
ex AT(S,-S, )
, = Power delivered to the external load _ (N(Rn + R, )+ Rex)
Heat lost to the cold body T, (Sp - S,,)l + (G,,th +Gph )AT +1? (Rn + Rp)/z
where: | = (S5 —Sn) AT
iNiR,, +Ry )+ Roy )
n— Ta=Te (Carnot limit for heat engines) when R,G—0
h
) . - (Sp - Sn)2
A commonly used figure of merit for a pn thermoelectric is: Z =
(Rn +Rp XGnth + Gpth )

oth COP and 7 approach the Carnot values as Z — «
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Thermoelectric Figure of Merit and 3D Parabolic Band Limit

2
The FOM is usually expressed as the dimensionless product ZT: Z T = SeT

Kth
In the ideal scenario where lattice contribution to the thermal conductivity is

much smaller compared to the electronic contribution, and the semiconductor is
reasonably well doped ( E.-E;~ 0.5KT ), then:

_S%T R (0.5+5/2) _0.78 Independent of most

zT Keh (0_5 *0.5+5*0.5+ 35/4) - material parameters!

In experiments, electronic k¢, is measured
under conditions of zero current, which

gives: ’ .
measure! -0

Kth = xn(1-2ZT) 6]

1.4
1.2

Values of ZT for Various Materials

T
AgPb,_SbTe,, LAST (n)

PbTe-PbS (n) b
Ag(PbSn) SbTe, . LASTT (p)

AgSbTe -GeTe, TAGS (p)

NaPb, SbTe,, SALT (p)

= The best measured value of ZT to be

Zn,Sb, (p) Yb, MnSb__ (p)

. 1.0
expected is, k‘ BiTe (np) CeFe,Cosh,
measured ZT 0.84 si-Ge (n,p) 4
(Z T) = ﬁ — 3.55 0.6 4
0.4 4

= a value of ~3-4 is the maximum upper 02
limit for ZT for 3D parabolic band materials 001
and typically it is 2-4 times smaller due to 0 200 400 600 800 1000 1200 1400
ostly lattice thermal conductivity Temperature (K)

—
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Handout 28

Ballistic Quantum Transport in Semiconductor Nanostructures

In this lecture you will learn:

« Electron transport without scattering (ballistic transport)
* The quantum of conductance and the quantum of resistance
* Quantized conductance

Rolf Landauer (IBM) Lester F. Eastman (Cornell)
(1927-1999) (1928-)

—
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Electron Transport Physics in Nanoscale Systems

Hydrodynamic and ballistic transport

Quantized conductance

Coulomb blockage of tunneling and single electron transistors
Coherent carrier transport

Universal conductance fluctuations

Integer and fractional quantum Hall effects

Charge density wave and spin density wave transport
Anderson localization and weak localization

Metal-insulator transitions and Mott insulators

Molecular electronics and polarons

Strongly correlated electrons: Ferromagnets, aniterromagnets, and high-Tc
superconductors, spin liquids, topological insulators

—
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Conductors and Dissipation
Traditional View of Conductors:

o

v
o E=Z
J=cE
1 I=AJ=A0‘E=%V=GV=V
cA 1
c="2_1
P T TR

Power Dissipation in Conductors:

E&M (energy continuity equation) tells us that the power dissipation per

unit volume of a resistor is: J2
=JE=cE?=""_
o
Power dissipation in the entire resistor is:
2
P=JE(AL)=.12ﬁ=J2A2£=IL’R=L
o oA G
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Characteristic Velocity for Conduction

Consider a 3D solid in which the energy dispersion for k
conduction band near a band minimum is given by: _er E y
22 1 1k i T E-Ex
- n°k ~ (i > E=E x
E(k)=E.+1 = v (k)="v.E(k)="C E=E, %
2m, /]

e N
Current Density: ’ 4-\\

Jj=-2e 1(2”)3 f(k+ 3 E)vc() f(h‘”éj*—'z Ky

a3k [ A, er 2 v (k
=—2e><j'(2”)3|:f®+hE-VEf(k)i| Vc( )

—2ex d3R er = . af(E) vV ; ;

2ol n EVERT 0
~ 3k ( fF(EN[z - 2V (& | ﬂ ok
_Zezrxf(2”)3(_ oE J[E VC(k)]Vc( ) ;i p :
=ne TE I/’ ‘ '

Only electrons close to the Fermi energy contribute to the conductivity in
metals or heavily doped semiconductors at low temperatures

—
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Characteristic Velocity for Conduction and Mean Free Path
Characteristic Velocity:

The characteristic velocity is the average velocity of those electrons that contribute to

e conduety d (_of(E)\ (x) ofi
<v2>=F£Z(2”)d (_ oE J"(“)-V(k)
dk (_ 6f(E)j
rez (27)? oE

For metals and heavily doped semiconductors at low temperatures: <V2> = VE

For low doped semiconductors at high temperatures: /<v2> ~ KT
me

Mean Free Path:
The mean free path € is defined as the average distance an electron travels before it

scatters. It is given by:
= <v2> T

where 7 is the scattering time.
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Ballistic Electron Transport

The length scales involved in the smallest transistors and nanoscale devices, such as
carbon nanotubes and molecular conductors, can be small enough so that the
electrons do not scatter during the time it takes to travel through the device

Intel’s 30 nm transistor ; ‘ N
; ) source

Single atom transistor

When the length L of the conductor becomes much
smaller than the mean free path € the transport is termed
“ballistic” meaning that the electrons do not scatter
during the time it takes to travel through the conductor

Ballistic transport condition: L << /

Questions:
* What happens when L << € ?

* The formulas for conductivity that have the scattering time 7 in them are clearly no
longer valid since there is no scattering: nezr
ag =

fr > o
hat about dissipation? me

S—
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Consider a 1D conductor (example, a quantum nanowire) that is contacted at both
ends by an external circuit.

Drain

L

Ballistic Electron Transport in a 1D Conductor

Source

the quantum wire is:

10E.(k
Vibp)= 1 2els)

The electron density (

E (k;)=E.+E + 5

The dispersion relation for the electrons inside

hz k2 Assume
z only one
e subband
— hkz
mg

number per unit length) is:

n= ZX_T % f(Ec(kz)_Ef)

The length L of the wire is short enough such that:

L<</

E
Ef
___&/____. EC+E1
_______________ Ec
k,

—
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Electric Fields, Chemical Potentials, and Voltage Sources
Now suppose a voltage source is applied from outside:

L
|— Drain Source —|
(V)=
\_/
In electronics, one never applies “electric fields” nor even “electrostatic potential

differences” to circuits but only “chemical potential differences” by using voltage
sources

The voltage source will raise the chemical potential (or the Fermi level) on one side of

the conductor with respect to the other by an amount eV

E E
E
Eﬂ_ Iev R
_____\/___E_c_f’a EET_A/___.
Ec Ec
k,
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Electron Currents
At the left contact, the current due to electrons moving in the right direction is:

I ,r= (_ e)2 X I% Vc(kz) f(Ec(kz)_ EfL)

At the right contact, the current due to electrons moving in the left direction is:

0 dk
Irs = (_ e)2x ) ”z Vc(kz) f(Ec(kz)_ EfR)
I R PN Arrovys in_dicate
Drain | Source the direction of
|_ —| electron flow (not
V) the direction of
E g E current, which is
opposite)
Er
Eﬂ_ I eV
____& L. EetBr EcxEN |/
S I
k, k,

—
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Ballistic Transport

Electrons do not scatter in the quantum ] /LR
wire. Therefore: |— Drain Source [

« All electrons that enter the wire from the
left contact make it to the right contact
« All electrons that enter the wire from the
right contact make it to the left contact

Total Current:

The net current is the sum of the currents

due to the right-moving and left-moving k, k,

electrons:
I=1p+IgsL

- o[ 5 vellr) FEL(k,)~En )+ (-e2x | 5 vellr) FE(k,)-E)

=0 2x[ 5% velks) [F(Eclhe) - Ere)~F(Eclh) - En )]

—
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Ballistic Transport Conductance
Total Current:

I=e 2)(10% Vc(kz) [f(Ec(kz)_EfR)_ f(Ec(kz)_ EfL)]
=2xy T G O velk) F(E-E)-f(E- )]
—2x- % | dE [f(E-ER)-fE—Ey)] Very simple

27 h g +E,
Assume T = 0K:

UnN
e Drain Source
1= (ev) |_ _|
h
2
e
=—V

T h

Conductance:
I=cgv =m0
2 e el
e
= G=— k,
T h
o
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Quantum of Conductance
The relation:
2 /) Ip,yt
I=GVY = G-= e |— Drain [— < Source —|
wh V)
defines the quantum of conductance as: I
2
Gg=2=772x10"°s
h
The quantum of resistance is therefore: Rg = Gi = ”2h =12.95 kQ
Q €

The Quantum of Conductance:

* The quantum of conductance is the smallest possible non-zero conductance of a
completely ballistic conductor. Equivalently, the quantum of resistance is the
highest possible resistance of a completely ballistic conductor.

* All completely ballistic conductors (whether in 1D, 2D, or 3D) will have
conductance that is in multiples of the quantum conductance value (one can think
of ballistic conductance in 2D and 3D as a number of 1D conductors in parallel)

—
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The Question of Energy Dissipation

not scatter — they go ballistic. So where is the energy being dissipated?

The relation:
v 1] 1
I=GgV =_— LR RoL
Rq |— Drain [ ~—| Source —|
suggests that there should be power V)
dissipation in the conductor given by: e '
v2
P=1’Rg =
Rq

But, as we have seen, electrons do not loose any energy in the conductor — they do

Electrons loose energy and E, E,

the contact k,

E E
Answer:
- . . . EfR
The energy is dissipated in
the contact not in the En| & leV

conductor! \ E, +E, E, +;\ /

thermalize when they reach  ------|-===---- = ======7[~--~

—
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Multiple Subbands: Quantized Conductance

h2k2
3 Subbands = Ec(p,kz)=Ec+Ep+2mz {p=123
3 e
=1=%2x-2 | dE [f(E-Er)-Ff(E—Ey)]
p=1 27 hEE,
=3GgV

Conductance increases in multiples of G (quantized conductance!)

IR Ir1

|— Drain <«—|Source —|
*(v)
\—/

—
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Quantized Conductance: Experiments with 1D Quantum Wires
Semiconductor Quantum Point Contacts:

« Electrons are confined in 2D in the quantum well

* Negative bias on metal gates repel electrons from
underneath the gates creating a narrow 1D channel
for electrons in the spacing between the gates

* The gate voltage can also control how many
subbands of the 1D channel are below the Fermi GaAs

level Quantum well
12 v - - v

AlGaAs

Phys. Rev. Lett., 60, 848 (1988)

The conductance (and resistance)
is quantized so effectively in
Quantum Hall Effect that it can
give a value of the Plank’s
constant to one part in 108

-1600 -1400 -1200 -1000 -800 -600 -400

Vg (mV)

-
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Scattering and Conductance in 1D

What if there is one scatterer (like an impurity atom) in the 1D channel?

L

Quantum Mechanical Reflection and Transmission from a Potential Barrier:

Consider what happens when there is a potential barrier in the path of an electron in

a 1D quantum wire:
a r |—| Ec2 t
—

Ec1 EC1
n2k? n2k?
Ecq(ky)= Ecq+Eq+ Zm: Eco(k,)=Ecp+Eq+ 2m:
Left Side Solution: Right Side Solution:
#(F)=F(x,y) ™ +r f(x,y) e e #(F)=t f(x,y) ™

. - 2
Transmission probability: =

P v Te M Assume they are energy
Reflection probability: R, = ‘r‘z =1-T independent

—
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Conductance as Transmission: Landauer’s Formula

1= (ceex G2 velbs) T A(Eolle )~ En )+ (-e)2x | G velky) f(Exlhe)-Enm
+(-e)2x] “ZVC(k)R HE,(k;)-Erg) >
Use: R+T =1
=ezxo‘;“z Velk,) T, [F(Eo (k) - Egg )~ F(E (k;)- En )]
221 ] dE [f(E-E)-F(E-En)]
zh E.+E;
=["'21-ch Drain ::53 o Ic:: Source
o |_ o —|
2 E ~ E

e
=G=—-1T, < G
Zh © Q

Landauer’s formula

2
G= %Tc
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Conductance as Transmi7§sion: Higher Dimensions \
—C
Eq evd EfR
d-dimensional material d-dimensional materlal
~ n2\k2 +k2) p2K2
i E.(k)=E_ + (2’,‘,1: y)+znl::=Ec+Exy+Ez
=JisrtJIRL
dk,dk, = = =
=(-e)2x]| (22)? f Zve(kz) Te f(Ec(k)_EfLI1_f(Ec( )_EfR)]
dk,dk, ~ -
+(-e2x| (2 ) _I Vealks) Te (Ec(K)- EJ1-F(Ec(6)- £1. ]
dk,dk, ~
- R TR vell) T e 0)- £ ) (e 6)- )
-—e mezhg {) dE,, ‘jj dE, [f(Ec +Ey, +E,—Ep )-f(E. +E,, +E, —Eg)|

_ 2 MmeT. (Eq +Eg _
=e 2”27‘;[3 (T—Ec V—GV at T~0K

—
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