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Atom arrangements in IH-V ternary aHoy semiconductors are discussed using a 
thermodynamic analysis in which the elastic strain caused by mixing is considered as the 
mixing enthalpy. In calculating the strain energy, both bond-stretching and bond-angl.e 
distortion are taken into account, and Martin's microscopic elastic constants are used. The 
results show that there is a preference for ordering but not for clustering in III-V ternary aHoy 
semiconductors. Values of short-range order parameters which represent the degree of 
ordering are obtained for several alloy semiconductors. 

I. INTRODUCTION 
It is a great advantage of III-V alloy semiconductors 

that their properties can be designed to some extent by vary-
ing the composition of binary compound semiconductors. 
Some material parameters can be obtained rather accurately 
by linear interpolation from binary compounds, but others 
deviate from the linear relation. Moreover, there are some 
phenomena observed only in alloy semiconductors such as 
alloy scattering of carriers I and alloy broadening oflumines-
cence linewidth. 2 

Most theoretical studies of such phenomena are based 
on the virtual-crystal approximation or assume that the 
atom arrangement is completely random. For example, al-
though the probability of alloy scattering depends on the 
order parameters of the atom arrangement, these parameters 
are usually assumed to be zero. I Short- or long-range order 
has been observed for many metal alloys such as CuAu. 3 It is 
very important to investigate whether such deviations from 
randomness exist in IlI-V alloy semiconductors, since the 
deviations may affect many aspects of the material proper-
ties. 

In this paper, we propose a model for the evaluation of 
the short-range order of atom arrangement in 111-V ternary 
alloys. The quasichemical potential has been used to consid-
er the deviation from random atom arrangement. J-6 How-
ever, the quasichemical approach has not been justified yet 
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FIG. I. Tetrahedron celIs in a ternary III-V alloy semiconductor. 

for III-V ternary semiconductors, whereas it was pointed 
out by some authors that the calculated strain energy has 
close correlation with the mixing enthalpy determined by 
experiments. 7-10 Thus, we consider that the mixing enthalpy 
is caused by elastic strain. On the basis of these consider-
ations, we showed in the previous work that the structure 
with some degree of long-range order is stable below a cer-
tain temperature. I I Here, we show that there is some degree 
of short-range order in the atom arrangement ofIlI-V ter-
nary alloy semiconductors. 

II. FORMALISM OF FREE ENERGY 
A. Enthalpy 

Some papers have given the calculated strain energy of 
III-V ternary alloys using macroscopic elastic constants.7.8 
However, the strain energy becomes about four times greater 
than those determined by experiments when the calculation 
is based on a strict virtual-crystal model. 7 Recently, Mikkel-
sen9 and Fukui lO independently pointed out that the strain 
energy calculated from microscopic elastic constants de-
rived by Martin 12 agrees wen with the measured mixing 
enthalpy. Thus, Martin's microscopic elastic constants are 
used in our analysis. We choose a tetrahedral cell as the basic 
figure and take both bond-length deviation and bond-angle 
distortion into account. Five types of cells of A x C v 
or CiliA B i _" crystal are shown in Fig. 1. As in past analy-
sis, I3 it was assumed in the calculation for the strain energy 
of each cell that atoms in a mixed sublattice occupy the posi-
tion defined by the virtual-crystal approximation (VCA) 
and that the atom of the common element moves to mini-
mize the strain energy of the tetrahedron. This assumption 
can be justified by the extended x-ray absorption fine-struc-
ture (EXAFS) measurements. 14 The strain energy of each 
ceH for a whol.e composition range was calculated by extend-
ingthe past analysis, \3 and the results for an (InGa)As alloy 
are given in Pig. 2 as the functions of the average composi-
tion. II At a given average composition, the strain energy is 
minimum for the cell whose composition is closest to the 
average composition. For example, type-2 and -3 celis have 
the lowest strain energy among five cells for the average 
composition x = 0.5 and x = 0.75, respectively. Figure 2 is 
not exactly symmetric about x = 0.5 due to the d.ifference 
between the elastic constants of InAs and GaAs. 
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FIG. 2. Strain energies of five tetrahedron cells in In) _ x Gax As. Types of 
cells are illustrated in Fig. 1 where A and B atoms correspond to In and Ga. 
respectively. 

The total strain energy, which corresponds to the mix-
ing enthalpy in our analysis, is 

(1) 

where ni and €, are the number and the strain energy of type -
i cells, respectively. 

B. Entropy 
If the atom arrangement is assumed to be completely 

random (regular solution model), then the entropy is writ-
ten as 

s = - kBN [x In x + (1 - x)ln(l - x)], (2) 

where x denotes the composition of A atom as in A x B I _ x C, 
k B is the Boltzmann constant, and N is the number of atoms 
in the mixed sublattice. Although the entropy of the regular 
solution model is so simple, it is difficult to obtain an exact 
formula for the entropy as a function of the numbers of tetra-
hedra because one cannot treat them as independent entities: 
Each atom is shared by four tetrahedra and it is impossible, 
for example, that type-O and -4 cells be neighbors. To obtain 
an approximate entropy, we use the method developed by 
Kikuchi. IS The number oftype-i cells is expressed as Na,q;. 
where qi is the probability of appearance of a certain config-
uration of type-i cells and a i is the number of different con-
figurations having the same probability and given by the 
combination value of 4C" The qi'S are normalized by the 
following equation: 

and are related to the composition of the A atom, x, as 

3851 

x = qo + 3ql + 3q2 + q3' (4) 
The entropy of the face-centered-cubic lattice was de-
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rived by Kikuchi,IS but the entropy of the ternary zinc-
blende aHoy is not the same as that of the face-centered lat-
tice. In the zinc-bien de structure, there are two kinds of 
tetrahedra: One includes an atom of the other group at the 
central position, and thus four nearest-neighbor pairs 
(bonds) and six second-nearest pairs (nearest cation-cation 
or anion-anion pairs) exist, as shown in Fig. 1. The other 
kind of tetrahedron does not include any bonds and thus 
only six second-nearest pairs exist. It is considered in the 
analysis that the strain energy is stored in the bonds between 
the nearest atoms. Therefore, the distribution of the latter 
tetrahedron can be excluded when considering the entropy 
of ternary alloys. Applying the procedure lS to derive the 
entropy to ternary zinc-blende alloys, we obtain 

S =kBN(3[xlnx+ (l-x)ln(1-x)] 

- Ia;qjln qj). (5) 

When atoms are distributed completely at random, qi 
=X4-i(1_X)i. Equation (5) is reduced toEq. (2) when 

the distribution becomes completely random. 

C. Free energy and equilibrium state 
The free energy Fis given by F = H - T.S where H is the 

total enthalpy and T is the absolute temperature. From Eqs. 
( 1) and (5), the free energy is obtained as 

F =NIa;q;€/-NkBT(3[Xlnx+ (l-x)ln(1-x)] 

- Iajqi In(qj») + (const), (6) 

where (const) is the portion of a linear variation of the en-
thalpy. We obtain the values of q; 's at the thermal equilibri-
um state from the condition for a minimum free energy: 

(7) 

(8) 

(9) 
The second and the third equations are from Eqs. (3) 

and (4), respectively. The conditions are rewritten by using 
the Lagrange mUltipliers, a and b, as 

aF -a +aai+bYi=O (i=0-4), (to) 
qj 

wherey; is the coefficient of6qj inEq. (9). The equilibrium 
values, q?'s, can be calculated with the conditions ofEqs. (3) 
and (4). They are 

o 14-' (-I 14- j ) qj = CTJ, c = L... 'TJj ai' (11) 

where 'TJ = exp( - €JkB T), and 1 is exp( - b 14kB T) and 
satisfies the equation 
(1 -X)'TJo/4 + (3 - 4X)'TJ1/3 + (3 - 6x)'TJ2/2 

(12) 

To express the degree of the short-range order quantita-
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FIG. 3. Fractional values of five tetrahedron cells. Broken line: random 
arrangement. Solid line: at T = 1000 K for In, _ x Ga. As. 

tively, we use the short-range order parameter {3, defined 
as 16 

(13) 

where PAB is the probability that an A atom occupies the 
second-nearest-neighbor site of a B atom. The second-near-
est pair in the zinc-blende structure corresponds to the first-
nearest pair on the fcc sublattice; the order parameter which 
has been used for a binary alloy AxB 1 x can be applied to 
the mixed fcc sublattice of a zinc-blende structure of a ter-
nary alloy A B \1: x C or CiliA ;,B _ x' The value of /3 is 
negative when atoms tend to order, i.e., there is a preference 
for unlike second-nearest-neighbor pairs, and {3 is positive 
when like atoms tend to duster. 

The relation between /3 and q; 's can be obtained by 
counting the number of A-B pairs in each tetrahedron: 

/3=1- QI+2qZ+Q3. (14) 
xO-x) 

It can be proved by considering the number of A-B pairs 
in the tetrahedra that the lower limit of {3 is -! for ternary 
zinc-blende alloys .. 

til. SHORT-RANGE ORDER AND MIXiNG ENTHALPY OF 
THERMAL EQUILiBRIUM STATE 
A. Atom arrangement 

Figure 3 shows a relative number of various cells for an 
(InGa)As aHoy. The broken lines represent a cell distribu-
tion in a random atom arrangement and the sol.id lines at 
T = 1000 K. As it is shown in the figure, the number of the 
cell whose composition is closest to the average composition 
increases from the number for the random arrangement. For 
example, at x = 0.5, the type-2 ceIl. increases by a factor of 
1.2, while type-O and -4 cells decrease by a factor of 2 from 
the random distribution value. 
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FIG. 4. Compositional dependence of the short-range order parameter f3 
for In, _ xGaxAs. 

The compositional dependence of the short-range pa-
rameter is shown in Fig. 4. At any average composition, the 
parameter is negative, which indicates that short-range or-
dering is more probable than clustering. Figures 3 and 4 are 
slightly asymmetric about x = 0.5 because of the asymmetry 
of Fig. 1. 

In Fig. 5, the temperature dependence of the short-
range order parameter and that of the numbers of cells is 
shown for Ino.5 Gaos As. In the temperature range below 100 
K, the entropy term, TS, is negligible compared with Hm· 
Since H m is smaller at a higher ordered state, the atom ar-
rangement becomes a higher order in a short range. In the 
temperature range between 102 and 104 K, the order param-
eter decreases logarithmically with temperature. The calcu-
lated results show little order at the temperature above 104 K 
because the entropy dominates over H m' although 
100.5 Gao. 5 As is no longer solid in this temperature range. 
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FIG. 5. Temperature dependence of short-range order parameter f3 and 
fractional values of tetrahedron cells for In" , Gao. 5 As. 
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TABLE I. Calculated values of the short-range order parameter /3 at 
x = 0.5. T = 1000 K. and the relative difference oflattice constants between 
two composite binary compounds. 

/3( T = I ()()() K. 
x = 0.5) ti.a/7i 

Material (10- 2 ) (%) 

(AIGa)As 0 0.20 
(lnGa) As -9.72 6.92 
(lnGa)P - 11.6 7.39 
(AlGa)Sb -0.10 0.64 
(lnGa)Sb -7.56 6.11 
Ga(AsP) - 3.23 3.64 
Ga(AsSb) -10.8 7.52 
Ga(PSb) -18.8 11.15 
In(AsP) - 2.73 3.17 
In(PSb) - 17.0 9.88 
In(AsSb) - 9.36 6.72 

The relation between P and the relative number of cells 
is almost the same among materials. However, the relation 
between P and temperature depends very much on materi-
als. Table I lists the values of P at T = 1000 K for several 
ternary alloys of composition x = 0.5 and the rdative differ-
ence between lattice constants of two composite compounds. 
The value of IPI is large for the material with a large lattice 
mismatch, e.g., Ga(PSb), whereas it is null for lattice-
matched aUoys such as (AIGa)As. 

B. Total strain energy 
Figure 6 shows the total strain energy of the ClnGa)As 

alloy as a function of composition rate x. The broken line 
represents the value for the random case and the solid line for 
the short-range ordering at T = 1000 K. Because of order-
ing, the cell having relatively high strain energy decreases 
compared with the random case, and therefore the total 
strain decreases. 

RANDOMy '" 
/ .----" '\ 

I 
I 

/ 
I 

I 

\ 
,./' 

T = 1000 K 

0.5 
COMPOSI TION x 

FIG. 6. Compositional dependence of the total strain energy (mixing en-
thalpy) for In I _ x Ga. As. Broken line: random arrangement. Solid line: at 
T= IOOOK. 
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FIG. 7. Experimental values of interaction parameter, flu. vs theoretical 
values of fleal calculated from Eq. (15). The values of flex. are taken from 
Refs. 8 and 18. 

It should be noted that, in Fig. 6, the total strain energy 
or the mixing enthalpy is nearly proportional to x( 1 - x). 
The relation of H m ex: X (1 - x) has been used to explain the 
thermodynamical properties of binary or pseudobinary al-
loys including III-Y ternary alloys,3.17 and the interaction 
parameter defined by n = Hm/x(l -x) has been deter-
mined from the experiment. 17•

IS When the quasichemical 
method is employed, it has been shown theoretically that 
H m ex: X (1 - x) for a binary or pseudobinary aHoy. 3 The 
strain energy is also shown to be proportional to x (1 - x) 
when the macroscopic elastic constants are used.7.s In the 
analysis described in Sec. II. the relation Hm ex:x(1 - x) 
does not appear explicitly in the equation, but the total strain 
energy shown in Fig. 6 follows this dependence of H m on x. 
A similar compositional dependence of H m is also obtained 
for other alloys. However, in a highly ordered state, the com-
positional dependence of H m possess minimum values at 
x = 0.25, 0.5, and 0.75, and becomes asymmetric about 
x = 0.5. Below but near the melting temperature, the rela-
tion H", ex: X (1 - x) is almost satisfied. Because the melting 
temperatures of most of the alloys listed in Table I are 
around 1000 °e, we determined the interaction parameter 
from our strain energy calculation by using 

neal =4Hm (T= looooe, x=0.5). (15) 

The values of neal are plotted against experimentally deter-
mined n, n exp ' in Fig. 7. Both agree qualitatively, although 
neal are larger than nexp ' This discrepancy would be due to 
the assumption that the atoms of mixed sublattice are at 
yeA positions. Because of this assumption, we consider 
only the relaxation of common atoms and neglect the relaxa-
tion of higher order which could reduce the strain energy 
further. Neglecting the temperature dependence of elastic 
constants would also lead to overestimating the strain ener-
gy. In addition, energetical interaction other than strain en-
ergy would also cause the reduction of mixing enthalpy. 19 

M. Ichimura and A. Sasaki 3853 
 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  128.84.126.46 On: Tue, 12 Apr 2016

21:26:52



IV. DISCUSSION 
Thermodynamical analysis in our study shows that 

there is some degree of ordering in the atom arrangement of 
111-V ternary alloys. If the compositional fluctuation or clus-
tering occurs, the number of cells whose compositions are 
different from the average composition increases. However, 
as seen from Fig. 2, such cells have relatively high strain 
energy. In the equilibrium state, where the free energy be-
comes minimum, the cell having relatively high strain ener-
gy becomes less probable than that in the random case, as 
shown in Fig. 3. Thus, the compositional fluctuation is likely 
to be suppressed, if an alloy is grown or deposited in a quasi-
equilibrium process. 

For a binary or pseudobinary system whose mixing 
enthalpy is positive, the miscibility gap appears in the phase 
diagram in a certain temperature range] and has been experi-
mentally confirmed in some of 111-V ternary alloys.20 The 
immiscibility here denotes the macroscopic clustering. 
However, the results of our calculation show that the micro-
scopic ordering is energetically preferable to microscopic 
clustering. In order to interpret this apparent contradiction, 
we consider two different cases. In the first case, a III -V 
semiconductor crystal of composition x = 0.5 is assumed to 
decompose into two separate crystals of x = 0.4 and 0.6. 
Since the strain energy is maximum at x = 0.5 as shown in 
Fig. 6, the total strain energy is reduced by this decomposi-
tion. It should be noted that the lattice coherency is not re-
tained between two crystals of x = 0.4 and 0.6, and that their 
lattice constants are independent, determined by their re-
spective composition. In the second case, we consider a small 
crystal of composition of x = 0.4 or 0.6 embedded in a large 
crystal of x = 0.5. In this case, the small crystal is distorted 
by surrounding crystals. Ifwe take such strain into account, 
the strain energy of this small crystal of x = 0.4 or 0.6 is no 
longer smaller than that of the crystal ofx = 0.5. Thus, such 
microscopic clustering is not energetically preferable as far 
as the lattice coherency is retained. As shown in these two 
cases, the strain energy acts on the atom arrangement differ-
ently depending on whether the coherency of the lattice is 
retained or not. In the case of macroscopic phase separation, 
the lattice coherency is broken, at least partly, and thermo-
dynamical properties can be discussed by the conventional 
theory. 

If there are crystal imperfections such as dislocations 
and a surface, the lattice coherency is locally broken. These 
defects could reduce the strain energy and therefore influ-
ence the atom arrangement. Since our analysis does not take 
the effect of defects into account, we cannot completely deny 
the possibiJjty of the clustering accompanied with defects. 

The atom arrangement in alloys has often been dis-
cussed on the basis of the quasichemical method. 3--6 This 
method predicts the tendency for microscopic clustering for 
most of ru-v ternary alloys. However, it is assumed that 
only the quasichemical interaction between the second-near-
est-neighbor pair (cation-cation or anion-anion pair) causes 
the mixing enthalpy,S,6,17 and thus the change in the first-
nearest-neighbor (cation-anion) interaction is neglected. 
Since the bond length between the first-nearest pair in an 
alloy is different from that in the corresponding binary com-
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pound as revealed by the EXAFS measurement,14 it is ob-
vious that there is a change in the first-nearest interaction or 
bond energy.21 This change is taken into account as the 
strain energy, which is large enough to explain the measured 
mixing enthalpy as shown in Fig. 7. Thus, the analytical 
method presented here would be more appropriate than the 
quasichemical method, although the chemical interaction 
should also be considered for the more accurate discussion. 

Some authors7- 10 calculated the strain energy ofIII-V 
ternary alloys using different methods. As mentioned ear-
lier, the strict virtual-crystal model results in a strain energy 
four times larger than the measured mixing enthalpy.7 The 
values derived by the analysis using Martin's elastic con-
stants agree very well with the measured ones. 10 However, 
the analysis in Ref. 10 has assumed that the crystal of com-
position x = 0.5 is composed of type-2 cells only. It is diffi-
cult to expect such a complete order of atom arrangement at 
melting temperature or even at room temperature. The anal-
ysis in our study considers the strain energies oftive different 
cells and their distribution. It could give a more realistic 
understanding of aHoy semiconductors. Osamura, Naka-
jima, and Murakami calculated the strain energy using the 
continuum model. 8 Their values of n agree well with the 
experimental values of n. Using this model, the long-range 
relaxation of strain, which is neglected in our analysis, can be 
easily taken into account. However, it will be difficult to 
discuss the atomic structure using the continuum modeL 
Further study is needed to include long-range relaxation of 
strain into our model. 

V. CONCLUSIONS 
We have presented a thermodynamical analysis which 

enables us to estimate the nonrandomness of the atom ar-
rangement in III-V ternary alloy semiconductors. It has 
been considered that the mixing enthalpy is caused by the 
elastic strain. In calculating the strain energy, not only the 
bond-length deviation but also the bond-angle distortion 
have been taken into account using Martin's microscopic 
elastic constants. The values of the interaction parameter n 
obtained from our estimation of the strain energy agree qual-
itatively with the values determined from thermodynamical 
experiments. The results of our calculation show that, at a 
thermal equilibrium state, there is a preference for ordering, 
not for clustering, in most of the III-V ternary alloys. This 
does not contradict the tendency for macroscopic clustering 
if we note the strain energy reduction by the breakdown of 
the coherency of lattice. 
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