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A self-consistent, one-dimensional solution of the Schrodinger and Poisson equations is 
obtained using the finite-difference method with a nonuniform mesh size. The use of the proper 
matrix transformation allows preservation of the symmetry of the discretized Schrodinger 
equation, even with the use of a nonuniform mesh. size, therefore reducing the computation 
time. This method is very efficient in finding eigenstates extending over relatively large spatial 
areas without loss of accuracy. For confirmation ofthe accuracy of this method, a comparison 
is made with the exactly calculated eigenstates of GaAsl AIGaAs rectangular wells. An 
example of the solution of the conduction band and the electron density distribution of a 
single-heterostructure GaAsl AIGaAs is also presented. 

l. iNTRODUCTiON 
Growth of high-quality heterostructure wens, together 

with lateral feature modulation either by high-resolution 
fabrication processes 1,2 or, more recently, by innovative 
growth on tilted substrates"" are producing structures and 
devices of low dimensionality whose device implications 
may be far reaching. Full understanding of the optical and 
transport properties of these structures requires the self-con-
sistent solution of both Poisson and Schrodinger equa-
tions.5- H 

A conventional approach to the sol.ution of the Schro-
dinger equation has been the finite-difference method 
(FDM). Real space is divided into discrete mesh points and 
the wave function is solved within those discrete spacings. 
Solving the differential equation within each mesh spacing 
results in a vector solution for t/J, and a matrix formulation of 
the Schrodinger equation: 

(1) 

where A is the matrix operator and IL the energy eigenvalues. 
The implementation of FDM usually makes use of uniform 
mesh spacings so that A is real and symmetric. The mesh size 
is determined by the opposing requirements of greater accu-
racy on one hand (hence, smaller mesh size) and rapid com-
putation times on the other hand (hence large mesh size) . 

However, there are many cases where the wave function 
rapidly varies within one region, and then changes slowly 
over another region. For example, Fig. 1 (a) shows the wave 
function at the GaAsl AIGaAs single heterojunction, with 
an energy eigenvalue dose to the Fermi level. In such a case, 
the ideal situation would be to use a variable mesh size: 
smaller mesh in region I, and large spacing in region II. The 
use of a variable mesh, however, requires careful treatment 
at the juncture of two different mesh sizes and destroys the 
symmetry of the matrix A, in turn making the eigenfunction 
more difficult to compute.9 In th.is paper, we propose a sim-
ple matrix transformation that will preserve the symmetry of 
the matrix wh.ile allowing variable mesh size. If the optimal 
nonuniform mesh is used, this method will provide a compu-

tationally efficient solution of the band profile and the elec-
tron density distributed over a large spatial dimension. 

The equations used and the iterative procedure for ob-
taining self-consistent Schrodinger and Poisson solutions is 
described in Sec. II. Section HI describes the matrix trans-
formation used to preserve the symmetry of the discretized 
Schrodinger equation and the Newton method to solve the 
Poisson equation. A heterojunction quantum well and the 
single heterostructure with modulated doping are given as 
exemplary solutions in Sec. IV. Finally, the paper is sum-
marized in Sec. V. 

II. BASIC EQUATIONS 
The one-dimensional, one-electron Schrodinger equa-

tion is 

conduction 
band , 

AiGaAs 

mesh size 

mesh point index 

f2giun I i region II 
I 

GaAs 

FI G. 1. (a) Band diagram of the single-heterojunction GaAsl AIGaAs and 
its bounded state wave functions. (b) Discretization oftne potential using a 
nonuniform mesh. 
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_ fl2 ¢;(x) + V(x)¢,(x) = Et/J(x) , (2) 
2 dx m*(x) dx 

where 'I/J is the wave function, E is the energy, Vis the poten-
tial energy, Ii is Planck's constant divided by 217", and m* is 
the effective ma.<;s. The one-dimensional Poisson equation is 

-q[Np(x)-n(x)], (3) 
dx dx Eo 

where Es is the dielectric constant, tjJ is the electrostatic po-
tential, N D is the ionized donor concentration, and n is the 
electron density distribution. To find the electron distribu-
tion in the conduction band, one may set the potential energy 
V to be equal to the conduction-band energy. In a quantum 
well of arbitrary potential energy profile, the potential ener-
gy V is related to the electrostatic potential if; as follows: 

V(x) = -qif>(x)+IlEc (x), (4) 

where AEc is the pseudopotential energy due to the band 
offset at the heterointerface. The wave function tP(x) in Eq. 
(2) and the electron density n(x) in Eq. (3) are related by 

m 

n(x) = L 'l/Jt(X)'l/Jk (x)nk' (5) 

where m is the number of bound states, and nk is the electron 
occupation for each state. The electron concentration for 
each state can be expressed by 

m* f"" 1 nk =- .' dE, 
1TfI2 Ek 1 + erE - EF)ikT 

(6) 

where Ek is the eigenenergy. 
We use an iteration procedure to obtain self-consistent 

solutions for Eqs. (2) and (3). Starting with a trial potential 
Vex), the wave functions, and their corresponding eigenen-
ergies, Ek can be used to calculate the electron density distri-
bution n(x) using Egs. (5) and (6). The computed n(x) 
and a given donor concentration N D (x) can be used to cal-
culatetjJ(x) viaEq. (3). Thenewpotentiaienergy Vex) is 
then obtained from Eq. (4). The subsequent iteration will 
yield the final self-consistent solutions for V(x) and n (x) 
which satisfy certain error criteria. 

iii. NUMERICAL METHOD 
A. Formulation for the equation 

In order to numerically solve the Schr6dinger equation, 
we may discretize the differential equation (3) by using a 
three-point finite difference scheme as shown in Fig. 1 (b) : 

f/z ( 2( tPi+ 1 - t/Ji ) 
2 mit-ll2hi(hi +h i _ l ) 

_ 2('I/J;-'l/J, \) )=).'l/Ji' 
mi_ll2hi_l (hi + hi_I) 

This may be cast in the form of a matrix equation, 
n 

L AijtPj =A'l/Ji' (7) 
j= i 
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where 

if j = i + 1, 

if j = i-I, 

-Aii + 1 -Aii. I + Vi 
o 

if j= i, 
otherwise. 

(8) 
The index i identifies the grid point on the one-dimensional 
mesh. Half-integer index implies a point midway between 
the grid points, and hi is the mesh size between adjacent grid 
points Xi and x i + I' This gives a tridiagonal matrix which 
appears symmetric only if the mesh spacings hi are all uni-
form. While the use of a nonuniform mesh size might be 
preferable for certain problems, this would destroy the sym-
metry of the matrix A and hence obviate computational sim-
plifications that result from the symmetry. However, if we 
define the following parameter: 

L f = (h; + hi_I )/2, (9) 
Eq. (8) becomes 

f/2 ( 1 _1_ if j = i + 1, 
2 mt+ 1/2 hi L; 

_ If ( 1 _1_) _1_ if j = i-I, 
2 m1 1/2 hi I L 

o 
if j= i, 
otherwise. 

We set Bij = L tAij' or in matrix notation, 
B=MA, 

(8') 

(10) 

where M is the diagonal matrix whose elements are L ;. As 
the product of a diagonal and triadiagonal matix, B is tridia-
gonal. From Eqs. (9) and (8'), it is easily seen that B is 
symmetric, i.e., Bu; 1 = Bi t- Ii' This provides the desired 
transformation that allows us to solve for 

B'i' = MA 1/J = )'M\II. (11 ) 

The matrix M obtained from the FDM method is diagonal so 
that we may easily express it in the form 

M=LL, (12) 

where L is a diagonal matrix whose elements are Lt. 
Using (10), we can show that 
L - IEL lLt/J = L -. ILLA'I/J =).L - lLL'I/J, 

or 
HI'P=AI'P, (13) 

where 
H=L -lBL -I (14) 

and 

(15) 

Since the relation H = H Tholds because B is symmetric and 
L is diagonal, the matrix H is a symmetric and tridiagonal 
matrix. Equation ( 13) is now the central equation for find-
ing the eigenvalues and eigenfunctions. Therefore, instead of 
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solving Eq. (1), one may solve Eg. (13) to obtain the eigen-
valueA corresponding to the eigenfunction <P. Then one may 
use Eq. (IS) to obtain the wave function ¢from <1>. If!/J" and 
¢I are two wave functions in the potential wen, they are 
related to each other by 

T {I ifk=l, 
tPkMif;l = 0 if k # 1, 

(16) 

which means those wave functions are orthonormal to one 
another with respect to the weighting matrix M. 

It is noted that this method can be applied not only in 
one-dimensional cases but also in two-dimensional ones. U s-
ing the same approach to discretize the two-dimensional 
Schrodinger equation, we may obtain the same equation as 
( 11) in which B turns out to be banded and symmetric and 
J.f is still diagonal. Therefore, after the same matrix transfor-
mation, we may obtain Eq. (13). 

B. Formulation for Poisson's equation 
Newton's method is used in solving the nonlinear Pois-

son's equation (see the Appendix). The differential equation 
describing the incremental potential change Or/> at each iter-
ation satisfies the equation 

- difJ)+ q [ND(x) -n(xn] 
dx dx Eo 

= (€s d8¢) + ± tf/tt/Jk an k (t/Jdqo¢l¢k)' 
dx \ dx Eo k 1 BE" 

(17) 

In the equation above, we have assumed that the donors are 
completely ionized and the variation of wave function versus 
8¢ is very smaiL The term on the left-hand side of the above 
equation is the error and it is zero if the electrostatic poten-
tial ¢ is equal to the self-consistent solution. Although this 
differential-integral equation is hard to solve, a first-order 
approximation can be made by setting the integral result of 
the bra-ket to be q8¢. \0 From Eq. (6) we may also calculate 
the partial derivative, an k I aE k' Therefore, using the same 
method to discretize the Poisson equation as that used for 
the Schrodinger equation, Eq. (17) can be expressed as 

- ej = Cu+ ll)¢H 1 

where 

" ej = I Cij¢;j + q(NDi - nj )/"0, 
j= I 

2"i +- 112 

2Ei + 1/2 

o 

ifj = i + 1, 

ifj = i-I, 

ifi =j, 
otherwise. 

(18) 

(19) 

(20) 

Thus, in Eq. (18) there are n error equations with n un-
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known variables (O¢l ,8¢2 , ... ,8¢" ). They may be manipUlat-
ed as a matrix equation: 

C'o¢ = - 5, (21) 

where C' is a tridiagonal, nonsymmetric, and n X n matrix, 
/3¢; is the n X 1 vector containing the corrected potential at 
each point which must be added to the former potential pro-
files, and t is a n X 1 vector including the Poisson error at 
each point. Now, Eq. (21) is the central equation required to 
modify the former potential profile. To maximize the com-
puting efficiency and to save the memory space, Crout's re-
duction method!l is used for solving Eq. (21) where the 
matrix C' is tridiagonal. 

IV. RESULTS 
A. Rectangular quantum weU 

To evaluate the validity and the accuracy of the present 
method using the nonuniform mesh, we first consider the 
eigenstates of an electron in a simple rectangular quantum 
weB of GaAs/Alo 3 Gao.7 As, as shown in Fig. 2(a). The 
width of the well is chosen to be 56 A so that the upper (of 
two) bound energy eigenvalues is very close to the height of 
the potential barrier, so that the corresponding wave func-
tion extends over a large distance outside the welt We con-
sider the conduction band only so that the exact solutions 

t potential I energy 

__________ ______ x 

AIGaAs iGlIAs AIGaAs 

(lill 

0.15 

0.1 

-0.15 '---__ "--___ ...<..., ___ -'-___ -1 

-360 -180 0 180 
X position fA) 

360 

FIG. 2.(a) Rectangular 4uantum well of GaAs/AIGaAs:m*(GaAs) 
= 0.0671110' m*(AIGaAsl =0 O.092mo, b.E, ''''' 0.23 eV. The variable mesh 

size is chosen in different regions, ranging from 2 A inside the well to 32 A 
far away from the well. (b) The bound eigenfunctions for the rectangular 
quantum well. 
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TABLE I. Eigenenergies of GaAs/ Alo, Gao.7 As rectangular quantum well. 

Uniform mesh (4 A) Uniform mesh (8 A) Nonuniform mesh (2-32 ft.) 
Exact 

n solution No. of FDM solution/error No. of FDM solution/error No. of FDM solution/error 
(meV) meshes (meV/%) meshes (meV/%) meshes (meV/%) 

64.24722 194 63.81747/0.669 

2 220.7776 194 220.3347/0.201 

can be obtained by solving the transcendental equations and 
we can check the validity of our method. The transcendental 
equations can be obtained from the connection rules (the 
wave function and its derivative divided by the effective mass 
continuous at the heterojunction of GaAsl AIGaAs. The 
two bound wave functions are depicted in Fig. 2(b). The 
width of the total region of interest is 768 A, 13 times larger 
than that of the quantum well, to ensure the validity of the 
boundary conditions. 

Calculations using a nonuniform mesh (size ranging 
from 2 to 32 A) have been made for the same potential. The 
more standard computation, using a uniform mesh of 4 or 8 
A size, was also carried out. Table I shows the calculated 
eigenenergies of the quantum well, using both uniform mesh 
and nonuniform mesh. The corresponding errors of the ei-
genenergies, compared with the exact solutions are also list-
ed. We observe that the percent error becomes smaller as the 
the mesh size is reduced. The number of grids in the case of 
nonuniform mesh is close to that in the case of uniform mesh 
with 8 A size while the percent error of the former case is 
much smaller than the latter one. We also notice that, in all 
cases, the percent error for the second bound state is smaller 
than that for the first bound state. This is because the second 
bound state changes far less rapidly than the ground state, as 
shown in Fig. 4. 

B. Single-heterojunction GaAs/ AIGaAs 
Now, consider a modulation-doped 

GaAsl Ala.3 Gao.7 As structure as shown in Fig. 3. In this 
case, the electrons are weakly confined at the quasi-one-di-
mensional heterojunction. The wave functions rapidly vary 
within the kink of the conduction band, and then change 
slowly over a long distance because of the smooth and slow 
change of potential barrier. 

A nonuniform mesh, ranging from 2 A at the vicinity of 
the heterointerface to 32 A when the mesh is far away from 
the heterointerface, is used in implementing this method. To 
solve Poisson's equation, the boundary conditions imposed 
on the structure are that the conduction band must equal the 
barrier height at the surface, and the normal derivative must 
be zero at the substrate. Likewise, the Neumann-type 
boundary conditions have been assumed for the Schrodinger 
equation, Since only bound states are considered, both the 
wave function and its derivative should go to zero at the 
boundary. If the wave function at the edge ofthe mesh is not 
close to zero, the state is not a valid bound state. These 
boundary conditions allow a quick check of the validity of 
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97 
97 

62.56356/2.621 104 64.28038/0.052 

218.9136/0.844 104 220.6846/0.042 

both wave functions and conduction band. For convenience, 
the Fermi level in the conduction band has been chosen to be 
the reference zero point. The temperature is assumed to be 4 
K. To fulfill the requirements of the boundary conditions, 
the width of the region is 4500 A large and the number of 
mesh points is 450. The convergence criterion is that the 
minimum of o<p, should be smaller than 10 - 5 V at the last 
run of iteration. After the convergence criterion is satisfied, a 
final check of the validity of the approximation using New-
ton's method is made by comparing the ratio of the right-
hand term to the left-hand term in Eq. (3). In general, the 
difference between this ratio and 1 is smaller than 0.002 at all 
mesh points, indicating that the approximation using New-
ton's method is a good one. Once the solution for the discre-
tized Poisson's equation has been found, it should be the 
unique and self-consistent solution for both equations. 12 

There are two bound states in this case. After iterating 
between the Schrodinger equation and the Poisson equation, 
the convergent solutions of both conduction band and elec-
tron density distribution are shown in Fig. 4. We observe 
that the distance between the position of the peak electron 
density and the heterointerface is 85 A. The tail of the elec-
tron density distribution for x> 800 A primarily results 
from the electrons occupying the second bound state. 

v. CONCLUSION 
In this paper, we present a finite-difference method to 

self-consistently solve the Schrodinger equation and the 
Poisson equation. We use a simple matrix transformation 

150A GaAs N = D 
1 X1 0 1 8 r y 

x 
200;\ 18 

AIGaAs No'" 1X1O 

soA AIGaAs NiD 

scooA GaAs NID 

GaAs substrate 

PIG. 3. Structure of quasi-one-dimensional channel in the modulation-
doped GaAs/ Alo . .I Gao 7 As. 
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that allows use of nonuniform mesh size while preserving the 
symmetric property of the Schrodinger matrix equation. 
Newton's method is to solve the Poisson equation and find 
the modified conduction band. This method is especially 
suitable for finding the conduction band and the electron 
density distributed over large spatial dimensions, with high-
er computation efficiency and without loss of the accuracy. 

Although we have only discussed the one-dimensional 
Schrodinger-Poisson solver, it is straightforward to extend 
this approach using a nonuniform mesh to the two-dimen-
sional cases. We foresee that the computation efficiency of 
this method will be much higher than those using the con-
ventional finite-difference or finite-element methods. 
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APPENDIX: NEWTON'S METHOD IN SOLVING 
POISSON'S EQUATION 

We show the generalization of Newton's method to 
solve Eq. (3). Since the electron density is determined by 
solutions of the Schr6dinger equation which are in turn de-
termined by the potential ¢(x), the electron density is actu-
ally a functional of ¢ (x) via Eqs. (3), (4), and (5). Denot-
ing this functional by n [c;b]' Poisson's equation (3) can be 
written as 

..!£.(c d¢)= -q(ND-n[c;bJ). 
dx S dx Eo 

(Al) 

Let us denote the exact solution to Eq. (At) by ¢(O) (x). For 
a given trial function ¢ (x), our task is to find the correction 
function 8¢(x) so that 
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(A2) 

Substituting (A2) into (AI), we obtain 

d¢)= -q(ND-n[¢+8¢]) d8¢). 
dx dx Eo dx dx 

Defining 

n[¢ + o¢] = n[c;b] + Bn[¢], 
Eq. (A3) can be written as 

- +.i.. (ND - n[¢])] 
dx ax EI) 

d ( dB¢;) q = - €S - - - 8n [¢]. 
dx dx Eo 

(A3) 

(A4) 

(A5) 

Note that the left-hand side ofEq. (AS) is the error in Pois-
son's equation for the trial function ¢(x) which can be easily 
calculated. Assuming that B¢; (x) is small, from Eqs. (5) and 
(AS), on [¢] can be expressed as 

m 

8n[¢] = I [8(rptlbd nk + t.bt¢k 8nd, (A6) 
k -_ 1 

where 

and 

D( tl'ttl'k) = tl't[¢ + 0<;6 Nd¢ + O¢] - [¢] ¢d¢] 
(A7) 

(A8) 

Our numerical experience indicates that the first term on the 
right-hand side ofEq. (A6) is usually much smaller than the 
second one. Dropping the first term and expressing (jn k in 
terms of o¢, explicitly, usi.ng Eqs. (4) - ( 6), we obtain 
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(A9) 

where (I) is the bra-ket integral. 
Equations (AS)-CA9) are now the formula to solve for 

¢i using the Newton method. 
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