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1Harvard’s ‘Division of Engineer-
ing and Applied Sciences’ or
DEAS changed its name to SEAS,
the ‘School of Engineering and Ap-
plied Sciences’. No one wants to
create a division between applied
sciences and engineering indeed!

Fig. 1.1: A brief history of mate-
rial properties.
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1.1 Beyond belief

How does the smallest and lightest fundamental particle in nature - the electron - make
it possible for me to type these words on a computer? How did the electron help light up
the screen of my laptop? How did it help remember all of this text as the battery of my
laptop ran out? And how did it help kick those photons that powered my email to you,
and helped you download this file and read these words? Explaining this remarkable story
is what we will do in this course.

The invention of the steam engine made a mockery of what was believed to be the limit
of the speed at which heavy mechanical objects could be moved. In much the same way,
the discovery of the electron, and in particular the discovery of the class of materials called
semiconductors has made a mockery of what was believed possible for three of the deepest
and most profound human endeavors: performing logic to structure and produce infor-
mation (computation), storing information (memory), and transmitting and receiving
information (communication). Our understanding of the inner workings of electrons in
semiconductors has given us powers beyond belief. We depend on semiconductors today to
see and talk with family and/or friends on the other side of the planet. Semiconductors
empower us to generate energy from sunlight, predict weather, diagnose and treat diseases,
decode the DNA, design and discover new drugs, and guide our cars in the streets as deftly
as satellites in deep space. They have placed the entire recorded history of information
about the universe in the palm of our hands.

In this set of notes, we will dig in to understand how all of this is possible. The
semiconductor revolution is one of the most remarkable human adventures in the entire
recorded history of science. The revolution has been powered by the combined efforts
of scientists and engineers from several fields. The contributions of mathematicians and
physicists, of chemists and materials scientists, and electrical engineers have made this
possible. We all acknowledge that the artificial labeling of our skills helps with administrative
purposes1, and has no basis in science! Nowhere is this highlighted more than in the field
of semiconductors in which ‘engineers’ have been awarded Nobel prizes in Physics, and
physicists and chemists have founded successful ‘engineering’ semiconductor companies
such as Intel on their way to becoming billionaires.

1.2 A brief history of Semiconductors

Figure 1.1 shows a timeline of materials and their properties that are relevant to this
course. Insulators and metals were known centuries ago. Their properties were studied,
and theories were developed to explain them. In chapter 2, we will intercept this emerging
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Fig. 1.2: J. J. Thomson discov-
ered the electron in 1896 @ the
Cavendish Laboratory. He was
awarded the 1906 Nobel prize in
Physics. Seven of his students
went on to win Nobel prizes.

2The 2009 movie Avatar showed
humans trying to mine the
fictional material ‘Unobta-
nium’ from Pandora - a room-
temperature superconductor.

Fig. 1.3: How semiconductor tech-
nologies have changed the han-
dling of data and information over
the last two decades.

story during the period right after the discovery of the electron in 1896 by J. J. Thomson.
The concept of the electron subject to classical laws of mechanics, electromagnetism, and
thermodynamics was used by Paul Drude to explain many properties of metals that had
remained mysterious till that point of time.

It comes as a surprise to many that superconductivity was experimentally discovered in
1911, decades before semiconductors were recognized as a distinct electronic state of matter.
But our understanding of the physics of semiconductors developed much more rapidly
than that of superconductors, as did their applications - as highlighted in Figure 1.1. This
book will make the reasons clear why this is so - that electrons in semiconductors are at
first glance ‘simpler’ to understand because they act independently, whereas electrons in
superconductors pair up and are strongly correlated. However, the simplicity of electrons in
semiconductors was just a mask. Applications following the invention of the semiconductor
transistor in 1948 led to very high level of control, perfection, and understanding of
semiconductors, which has led to the discovery of several layers of richer physical behavior.

Esaki discovered electron tunneling in a solid - a genuine quantum mechanical effect
highlighting the wave-nature of electrons - in semiconductor p-n diodes in 1957, around
the same time Bardeen, Cooper, and Schrieffer proposed the eponymous BCS theory of
superconductivity. The semiconductor transistor miniaturized the vaccum tube amplifier
and made it far more compact, rugged, and energy efficient, setting up the stage for
its use for digital logic and memory, enabling computation. In much the same way, by
understanding how electrons in semiconductors interacted with photons, the invention
of the semiconductor laser diode in the 1960s and 1970s shrunk the solid-state laser and
revolutionized photonics, enabling semiconductor lighting and optical communications.

In 1980, von Kltizing discovered the integer quantum Hall effect while investigating
electron transport in the Silicon transistor at low temperatures and at high magnetic
fields. This was followed by the discovery of fractional quantum Hall effect in 1982 in
high-quality quantum semiconductor heterostructures by Tsui, Stormer, and Gossard. The
quantum Hall effect revealed a whole new world of condensed matter physics, because under
specific constraints of lower dimensionality, and electric and magnetic fields, the behavior of
electrons defied classification into any of the previously identified phases: metals, insulators,
semiconductors, or superconductors. The effort to classify the quantum Hall state has
led to new electronic and magnetic phases of electrons in solids: based on the topology of
their allowed energy bands. This line of thought has led to the discovery of Topological
Insulators, the newest addition that significantly enriches the field of electronic phases of
matter.

The discovery of high-temperature superconductors in layered cuprates in 1987 by
Bednorz and Muller again rocked the field of superconductivity, and the field of condensed
matter physics. That is because the tried-and-tested BCS theory of superconductivity
could not explain their behavior. At the forefront of experiments and theory today, there is
a delightful connection being established between topological insulators (that have emerged
from semiconductors), and superconductivity (that have emerged from metals). There
are now proposals for topological superconductivity, and semiconductor - superconductor
heterostructures that can make electrons behave in much stranger ways - in which they
pair up to lose their charge and spin identities and can ‘shield’ themselves from electric
and magnetic fields. Such particle-antiparticle pairs, called Majorana Fermions can enable
robust quantum-bits (qubits) for quantum computation in the future. If it sounds like
science fiction2 - let me assure you it is not, the race is on to experimentally find these
elusive avatars of the electron in many laboratories around the world!

1.3 Future

Semiconductors today power the ‘information age’ in which data is produced in high
volumes, and transported at the speed of light. Figure 1.3 shows the underlying structure.
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Fig. 1.4: The first centimeter-
scale point-contact transistor,
and today’s nanometer-scale Fin-
FETs.

3“It is exceedingly difficult to
make predictions, especially about
the future” - Danish proverb,
sometimes attributed to Niels
Bohr invoking the uncertainty
principle in his answer to the ques-
tion - “What will be the impact of
Quantum Mechanics on the future
of the world?”

In the 1990s, most computers were stand-alone devices that we interacted with and
programmed directly. They boasted semiconductor integrated circuit-based microprocessors
for computation, and semiconductor based random-access memories (RAMs), and magnetic
(or spin-based) hard drives or Read-Only Memories (ROMs).

Today, a large and increasing part of the computing infrastructure resides in the ‘cloud’.
The cloud is loosely also made of a large and distributed network of microprocessors and
memories that may be housed in server farms. Much of the heavy computational tasks
and memory storage is thus not performed on the computers in front of us with which we
directly interact. The communication links that connect our interface devices with the cloud
are therefore increasingly important, and their bandwidth will determine the efficiency of
such networks. The computational and memory capacity created by miniaturization of
transistors and memory elements, and large bandwidth communication links powered by
semiconductor lasers has also led, in part to an explosion of social media.

The first semiconductor ‘point-contact’ transistor of 1947 was a few centimeters in size.
Figure 1.4 shows this device in comparison to a much newer transistor - the Silicon finFET
of 2012. The transistor is so small today that you can count the number of atoms across
the fin - the scale has shrunk by a factor 107 from centimeter in 1947 to nanometer in 2012.
In the latest generation microprocessors, several billion transistors can fit into a cm-size
chip. The orders-of-magnitude increase in computational power and storage capability
is a direct result of this miniaturization. Such orders of magnitude improvements over
sustained periods of time is extremely rare in the recorded history of science.

Where are things going next? Some semiconductor experts and accomplished practition-
ers in this art will tell you that the golden era of semiconductors is over. That transistors
have reached such small dimensions and lasers are so efficient that there is not much more
one can do. Do not buy into such predictions, because most such predictions can be proven
to be wrong invoking physics3. Go back and read this chapter once more. Just like it has
happened again and again, some of you will do experiments or come up with a theory
that will make a mockery of all current belief of what is possible with semiconductors and
related materials. The future of our civilization depends on this adventure that you must
embark upon! This book is an effort to motivate you to take this journey by arming you
with the science that will serve as your fuel.

1.4 These boots are made for walking

This book is meant to be read with enjoyment and wonder, the concepts discussed in and
outside of class, in office hours, and over coffee. Every effort will be made to present the
development of the field as a uniquely human endeavor - laws and theorems did not fall
out of the sky, but are creations of precise experimental observation and recognition of
mathematical patterns - both achieved by human ingenuity. Each chapter is of a length
that should take one sitting to complete reading. Your feedback is most useful in making
sure that these lofty goals are indeed achieved.

Chapter Summary

At the end of each chapter we will summarize the major ideas in a few sentences.

Problems
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Fig. 2.1: The three pillars of clas-
sical physics

1All these properties were known
before the discovery of the elec-
tron, or the atom.

2This experimental fact is the em-
pirical Wiedemann-Franz law.

3 The word ‘electron’ represents
an indivisible portion of ‘electric-
ity’ - the word electricity predates
the word electron by several cen-
turies. It motivated a number of
‘..on’ names: photon, proton, neu-
tron, phonon, fermion, boson...
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I would like to emphasize from the beginning how experiments have driven the search
for new theories. New theories are born when experimental facts defy the sum total
of all existing theories. This happens again and again because when you perform an
experiment, you cannot stop a physical law from doing its thing. Meaning, any experiment
ever performed has measured every known law of physics, and every yet to be discovered
law of physics! So when you measure something in regimes no one has ever done before,
because of better equipment, or because you are just plain clever, new physical phenomena
reveal themselves to the careful researcher.

We will repeatedly observe this dynamics in play. In this handout we glimpse how the
pre-quantum era explained the observed properties of metals using the three pillars on
which physics rested around 1900s: Newton’s Classical Mechanics, Maxwell’s Elec-
tromagnetism, and Boltzmann’s Thermodynamics. But then clever experimentalists
pushed measurements to new regimes which revealed physical phenomena that were in
stark contradiction to these three theories. Let’s start talking about metals.

2.1 Our ancestors knew metals

Because a large number of elements in the periodic table are metals and many occur in
nature, they were discovered early, way before 1900s. Metals have been known for a very
long time to be very different from insulators by being1

• good conductors of electricity,

• good conductors of heat, and

• reflective and shiny.

Wiedemann and Franz in 1850s had even discovered a deep connection between the
thermal conductivity κ and electrical conductivity σ of metals: they had found the quantity
κ
σT ∼ 10−8( V

K )2, where T is the temperature, to be constant2 for many different metals.
But why? Though there were several attempts to explain all these physical characteristics
of metals, a truly satisfying explanation had to wait for the discovery of the single entity
responsible for each of these three features: the electron.

2.2 Discovery of the electron and its aftermath

J. J. Thomson discovered the electron3 in 1897 in the Cavendish laboratory. He found the
existence of a particle of mass me = 9.1× 10−31 kg and electrical charge q = 1.6× 10−19

Coulomb. This was followed by the discovery of the nucleus by Ernest Rutherford in 1911,

11
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4Protons help maintain charge
neutrality, and the neutrons sta-
bilize the nucleus and keeps the
atom from disintegrating.

Fig. 2.2: Paul Drude in 1900
proposed a model that combined
classical mechanics, electromag-
netism, and thermodynamics to
explain the may properties of met-
als by invoking the then newly-
discovered electron.

5Hence the name ‘electron gas’.

Fig. 2.3: Ohm’s law is V = IR,
or equivalently J = σE.

and the neutron by James Chadwick way later in 1932. In this chapter, the nucleus of the
atom will play a cameo role of passive obstructions in the path of freely moving electrons
in a metal4. It will increasingly assert its role in later chapters.

2.3 Drude’s model explains Ohm’s law

The discovery of the electron was the trigger that precipitated an explanation of most
properties of the metal discussed in section 2.1. This was achieved by Paul Drude , who
combined the notion that electrons move in a metal just like molecules move in a gas5

following the laws of classical mechanics, thermodynamics, and electromagnetism.
The first task was to explain the electrical conductivity of metals. The experimental fact

measured for metals is that the charge current I is linearly proportional to the voltage V ,
stated as the Ohm’s law V = IR, where R is the resistance of the metal. Drude imagined
that the metal is filled with electrons of volume density in cm−3 units n = N

V , where N
is the total number of electrons in the metal, and V = AL is the volume as indicated
in Figure 2.4. The current density J measured in Amp/cm2 is defined by I = JA. The

expression for the current density is J = qnv .

q →: The charge current density is given by the flux density times the charge. The flux
density of particles is the volume density times the velocity, n× v. Each electron in this
flux drags along with it a charge of q, so the current density is J = qnv. Later when we
encounter heat, spin, or other currents, we will simply multiply the particle flux density
with the corresponding quantity that is dragged along by the particle.

n→: Because the structure of the atom was not known at the time, Drude’s electron
density n is an empirical number, of the order 1023/cm3. We will see later that metals
have much more electrons - most electrons however are stuck in core states or filled bands
- which require quantum mechanics to explain. But some are free to wander around the
crystal and conduct charge current - those are the conduction electrons Drude’s quantity n
considers, the others simply do not play a role.

v →: Drude found the velocity of the electrons in the metal with the following argument.
The force on the electrons is due to the electromagnetic, or Lorentz force F = qE + v ×B.
If B = 0, let’s assume the scalar form for simplicity where E = V/L is the electric field
exerted on the electrons by the battery. Because of this force, electrons accelerate according
to Newton’s law F = dp

dt , where p = mev is the electron momentum. But as they speed
up, sooner or later they will bump into the atoms in the metal, just as a swarm of bees
drifting blindly through a forest. Whenever such a collision occurs, the electron will lose
all its momentum, and start out from zero momentum. The modified Newton’s law taking
into account the dissipation or damping of momentum every τ seconds is:

qE = me
dv

dt
− mev

τ
, (2.1)

where the increase in momentum due to the force is tempered by the decrease upon
collisions every τ seconds. If we ask what happens in the ‘steady state’, meaning we have
applied the voltage and waited long enough that all transients have died out, we can use
d
dt (...)→ 0, which yields the velocity v as

v = − qτ
me

E = µE =⇒ µ =
qτ

me
. (2.2)

The electrons achieving a steady state velocity in the presence of a constant force is
similar to a parachutist reaching a terminal velocity in spite of the constant gravitational
force. The drift velocity is proportional to the electric field, and the constant of proportion-
ality µ = qτ

me
is defined as the mobility of electrons. The concept of mobility will prove to

be more useful for semiconductors than metals, as we will see later. It is clear that if the
electron scatters less often, τ ↑ =⇒ µ ↑.
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Fig. 2.4: Electron gas moving in
response to an electric field in a
metal.

6This concept works well for large
resistors. But we will see later
that this picture will fail spec-
tacularly when the L and A be-
come very small, comparable to
the wavelength of electrons.

Fig. 2.5: James Clerk Maxwell in
1865 unified electricity and mag-
netism. By introducing the con-
cept of the displacement current,
he showed that light is an electro-
magnetic wave. He made signifi-
cant contributions to several other
fields of physics and mathematics.

7Diamond, BN, SiC, and AlN are
exceptions, to be discussed later.

Now putting together the all the above pieces, Drude found that the current density is

J = qnv =
nq2τ

me
E = σE =⇒ σ =

nq2τ

me
, (2.3)

where it is seen that the current density is proportional to the electric field, with the

proportionality constant σ = nq2τ
me

called the conductivity. The components appeal to our
intuition - more electrons, and longer scattering times should lead to higher conductivity.
The conductivity does not depend on the sign of the charge.

To close the story, we revert back to the current and see how Drude’s model explained
Ohm’s law of the electrical conductivity of metals:

I = JA = σEA = σ
V

L
A =⇒ V = I · 1

σ

L

A
= IR =⇒ R =

1

σ

L

A
= ρ

L

A
. (2.4)

The resistance R is measured in Ohms. It is related to the microscopic details provided
by Drude via the conductivity σ or the resistivity ρ = 1

σ , and to the macroscopic dimensions6

via L and A. A longer metal has more resistance because it takes an electron longer to get
through. This is the essence of classical mechanics applied to the electron.

2.4 Metals are Shiny

Why do metals reflect light? The secret lies in the swarm of conduction electrons in them!
Maxwell had shown that a beam of light is a wave of oscillating electric and magnetic
fields. The electric field of a light beam is E(t) = E0e

iωt, where the circular frequency
ω = ck = c 2π

λ = 2πf is linked to the speed of light c and its wavelength λ. If we subject
the swarm of electrons in the metal not to the constant DC voltage of a battery as we did
in section 2.3, but to this new pulsating field, we can explain why metals reflect light. This
will be done in Problem ??.

2.5 Metals conduct heat

Drude’s model of electrical conductivity leads naturally to an explanation of the thermal
conductivity of metals. Atoms likely play a small role in the thermal conductivity because
the density of atoms are similar in metals and insulators. Because typical electrical
insulators are also poor thermal conductors7, the thermal conductivity of metals must be
due to the conduction electrons.

Based on this reasoning, a model for the thermal conductivity of metals due to electrons
alone goes like this: consider a piece of metal as shown in Figure 2.6. The volume density of
electrons n = N

V is uniform across the metal, but the left end is held at a hotter temperature
T1 than the right end, which is at T2. There is a temperature gradient across the metal from
the left to the right. Drawing analogy to the charge current density Jcharge = σ · (−∇V ),
where the potential gradient −∇V = E is the electric field, and σ the electrical conductivity,
we hunt for an expression for the heat current in the form Jheat = κ · (−∇T ), where ∇T is
the temperature gradient. If we can write the heat current in this form, we can directly
read off the thermal conductivity κ. Because the heat current density Jheat has units

J
cm2s = Watt

cm2 , the thermal conductivity κ must have units of Watts
cm·K .

Looking at Figure 2.6, we zoom into the plane x, and ask how much heat energy current
is whizzing past that plane to the right. Because the density of conduction electrons is
uniform, the heat current is flowing because of a difference in energy via the temperature
gradient. Let E be the individual electron energy. The energy depends on x via the
temperature at that plane. In the plane one mean free path vxτ to the left of x, the energy
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Fig. 2.6: Figure showing how a
uniform density of electrons n in
a metal can transport heat energy
from the hot to the cold side.

8Huxley: The great tragedy of sci-
ence: the slaying of a beautiful
hypothesis by an ugly fact.

of electrons is E [T (x− vxτ)]. Electrons in this (hotter) side have energies higher than those
one mean-free path to the right of plane x, which have the energy E [T (x+ vxτ)]. Half the
carriers at x−vxτ are moving to the right, carrying a heat current density n

2 vxE [T (x−vxτ)].
Similarly, half the carriers at x+ vxτ transport heat current n

2 vxE [T (x+ vxτ)] to the left.
The net heat current at x is the current flowing to the right, minus the current flowing to
the left:

Jheat =
n

2
vx[E [T (x− vxτ)]− E [T (x+ vxτ)]]. (2.5)

Now if we assume that the mean free paths vxτ are small, we can write the heat current
as

Jheat =
n

2
vx

∆E
∆T

∆T

∆x
∆x =

n

2
vx
dE
dT

dT

dx
(−2vxτ) =⇒ Jheat =

1

3
cvv

2τ(−∇T ) . (2.6)

In writing the final boxed version of equation 2.6, we have used the fact that because

of motion of electrons in 3 dimensions, v2
x = v2

3 , and the electron heat capacity is given by

cv = 1
V
dU
dT , where U = NE is the total energy of the electron system, and n = N

V .
Thus, the Drude model of heat current carried by electrons in a metal gives us a thermal

conductivity κ = 1
3cvv

2τ by analogy to the charge current. But the Drude model did more:
it also was able to give an explanation of the ratio of electrical and thermal conductivity.

2.6 Icing on the cake: The Weidemann-Franz Law

One of the major successes of the Drude electron model of electrical and thermal conductivity
of metals achieved was to provide an explanation for the Wiedemann-Franz law, which had
languished for half a century without an explanation.

From Equations 2.3 and 2.6, we get the ratio

κ

σT
=

( 1
3cvv

2τ)

(nq
2τ

me
)T

=
( 1

3
3
2nkB

3kBT
me

τ)

(nq
2τ

me
)T

=
3

2
(
kB
q

)2 =⇒ κ

σT
=

3

2
(
kB
q

)2 = L . (2.7)

Here we have invoked the classical kinetics result that the heat capacity of electrons is

cv = 1
V
dU
dT = 1

V

d(N · 32kBT )

dT = 3
2nkB , and the velocity is obtained from the thermal energy by

the equipartition relation: 1
2mev

2 = 3
2kBT . Every microscopic detail specific to a particular

metal cancels out in the ratio above, and what remains are the two constants that underpin
classical physics: the Boltzmann constant kB , and the electron charge q. This seemed to
explain the Weidemann-Franz law beautifully. The ratio is called the Lorenz number L
with a value ∼ 10−8( V

K )2. Thus, Drude’s model of a classical electron gas seems to have
resolved the mystery we set out with in section 2.1.

2.7 All is not well

The success of the Drude model to explain the Weidemann-Franz law is remarkable, but
unfortunately it is fundamentally flawed. We will see later that there is a crucial cancellation
of two unphysical quantities that leaves the ratio intact. When experimentalists measured
the specific heat of electrons in metals, it was found to be much smaller than the classical
result cv = 3

2nkB which was used by Drude. The value was found to be much smaller.
This is a null result8 that hints at something deeper - and we will see soon that something
is quantum mechanics.
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Fig. 2.7: Figure showing how
the much higher heat capacity of
electrons comes about because of
assuming the classical Maxwell-
Boltzmann distribution in energy.
The Pauli exclusion principle of
quantum mechanics changes the
distribution to the Fermi-Dirac
distribution, which fixes the elec-
tronic specific heat anomaly of the
Drude model.

We will see in subsequent chapters that by demanding that electrons follow the rules of
quantum mechanics instead of Newtonian mechanics, the electronic heat capacity was shown

by Arnold Sommerfeld to be cv = [π
2

2 nkB ] · [kBTEF
] instead of the classical cv = 3

2nkB . Here

EF =
p2
F

2me
is the Fermi Energy, pF = ~kF the Fermi Momentum, and kF = (3π2n)

1
3

is the Fermi Wavevector. These three quantities are quantum-mechanical concepts, and
simply cannot be explained by classical physics. Aside from the constants in the correct
expression for the electron heat capacity, only a small fraction of the n conduction electrons:
kBT
EF

to be precise, seem to actually contribute to the heat capacity. We now know the
reason: electrons being fermions, are subject to the Pauli Exclusion Principle. This
principle prevents two electrons from occupying the same state in the metal.

The consequence of the exclusion principle is rather drastic on the distribution of
electrons. Figure 2.7 highlights this difference. In classical statistical physics, the number of
electrons at an energy E goes as e−E/kBT , which is the Maxwell-Boltzmann distribution. So
most electrons will pile up at the lowest allowed energies E → 0 to lower the system energy.
When extra energy is pumped into the electron system by whatever means, electrons at all
energies in the distribution have equal opportunity to increase their energy. This is what

led to the classical heat capacity cv = 1
V

d(N× 3
2kBT )

dT = 3
2nkB .

However, when electrons are forced to obey the Pauli exclusion principle, once an
allowed state at a low energy is occupied by an electron, it makes it impossible for a second
electron to occupy the same state. The second electron must occupy a higher energy state.
If we continue filling the states till the last electron, the highest energy occupied is referred
to as the chemical potential µ. At this stage, we will assume that the chemical potential
µ = EF is equal to the Fermi energy; in later chapters we will discuss their differences. The
occupation probability of a state of energy E upon enforcing the Pauli Exclusion Principle
is the Fermi-Dirac distribution, f(E) = 1

1+e
e−µ
kBT

, whose maximum value is 1. This is shown

in Figure 2.7. We will discuss this distribution in significant detail later.
The Fermi-Dirac distribution of electrons makes it clear why only a fraction kBT

EF
of

electrons in a metal can actually absorb energy and promote themselves to higher energy
states. Because of the Pauli exclusion principle, none of the electrons at energies from
0 < E < EF − 3kBT can increase their energy by absorbing kBT energy, because they are
Pauli-blocked. Electrons in only a tiny sliver of energies kBT around the Fermi energy EF
have the freedom to jump to higher energy states that are unoccupied. Thus, the electronic
heat capacity cv is much smaller than what was predicted by the Drude model. In the next
chapter, we discuss the basics of quantum mechanics and see why electrons must follow
the Fermi-Dirac distribution in the first place.

Chapter Summary

• The electronic and thermal conductivities of metals were explained by the Drude
model by attributing these properties correctly to the newly discovered particle, the
electron.

• In the Drude model, free electrons subject to the laws of classical mechanics, electro-
magnetism, and thermodynamics could explain the electronic conductivity σ, and
the thermal conductivity κ reasonably successfully.

• The Drude model also seemed to resolve a long-standing mystery of the empirical
Wiedemann-Franz law, which stated the ratio κ

σT is a constant for metals.

• The heat capacity of free conduction electrons in metals predicted by the Drude
model turned out to be inconsistent with the measured values, which were several
orders too small. It would need the full machinery of quantum mechanics and a
quarter century to resolve this discrepancy.
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Problems



Fig. 3.2: Michael Faraday, con-
sidered to be one of the greatest
experimentalists of all times. Dis-
covered the relation between elec-
tric and magnetic fields, and in-
fluenced Maxwell to discover that
light is an electromagnetic wave.
Light played the central role in the
development of quantum mechan-
ics.
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This chapter presents a very short summary of the major ideas of quantum mechanics. By
tracing the historical development of the ideas, we learn how we have learnt to treat the
dynamics of electrons by the laws of quantum mechanics rather than Newton’s laws. It
is highly recommended that you append your reading of this chapter with your favorite
quantum mechanics texts.

3.1 Photons

Fig. 3.1: Photons behaving as particles.

Time: end of the 19th century. Maxwell’s equations have established Faraday’s hunch
that light is an electromagnetic wave. However, by early 20th century, experimental
evidence mounted pointing towards the fact that light is carried by ‘particles’ that pack a
definite momentum and energy. Here is the crux of the problem: consider the double-slit
experiment. Monochromatic light of wavelength λ passing through two slits separated by
a distance d ∼ λ forms a diffraction pattern on a photographic plate. If one tunes down

17
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Fig. 3.3: Max Planck, the ‘father’
of quantum mechanics. Postu-
lated quanta of light (photons) to
explain the blackbody radiation
spectrum. Was awarded the No-
bel prize in 1918.

Fig. 3.4: Albert Einstein is consid-
ered the greatest physicist since
Newton. In addition to special
and general relativity, contributed
significantly to the development of
quantum mechanics, and all areas
of physics. Nobel prize in 1921 for
the photoelectric effect, an early
experiment confirming quantum
theory. Did not have a brother,
and certainly did not start a bagel
company.

the intensity of light in a double-slit experiment, one does not get a ‘dimmer’ interference
pattern, but discrete strikes on the photographic plate and illumination at specific points.
That means light is composed of ‘particles’ whose energy and momentum are concentrated
in one point which leads to discrete hits. But their wavelength extends over space, which
leads to diffraction patterns.

Planck postulated that light is composed of discrete lumps of momemtum p = ~k and
energy E = ~ω. Here k = (2π/λ)n̂, n̂ the direction of propagation, ~ is Planck’s constant,
and ω = c|k| with c the speed of light. Planck’s hypothesis explained spectral features
of the blackbody radiation. It was used by Einstein to explain the photoelectric effect.
Einstein was developing the theory of relativity around the same time. In this theory, the
momentum of a particle of mass m and velocity v is p = mv/

√
1− (v/c)2, where c is the

speed of light. Thus if a particle has m = 0, the only way it can pack a momentum is if its
velocity is v = c. Nature takes advantage of this possibility and gives us such particles.
They are now called photons. Thus photons have no mass, but have momentum. Thus
light, which was thought a wave acquired a certain degree of particle attributes. So what
about particles with mass - do they have wave nature too? Nature is too beautiful to
ignore this symmetry!

3.2 Wave-Particle Duality

de Broglie hypothesized in his PhD dissertation that classical ‘particles’ with mass also
have wavelengths associated with their motion. The wavelength is λ = 2π~/|p|, which
is identical to p = ~k. How could it be proven? The wavelength of light was such that
diffraction gratings (or slits) were unavailable at that time. But electron wavelengths were
much shorter, since they had substantial momentum due to their mass. Elsassaer proposed
using a crystal where the periodic arrangement of atoms will offer a diffraction grating
for electrons. Davisson and Germer at Bell labs shot electrons in a vacuum chamber on
the surface of crystalline Nickel. They observed diffraction patterns of electrons. The
experiment proved de Broglie’s hypothesis was true. All particles had now acquired a
wavelength.

Fig. 3.7: Electrons behaving as waves.
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Fig. 3.5: de Broglie proposed in
his PhD thesis that particles with
mass have wavelengths associated
with their motion. Was awarded
the Nobel prize in Physics in 1929.

Fig. 3.6: Joseph Fourier is the
best known French mathemati-
cian and physicist. Good friend
of Napoleon.

The experiment challenged the understanding of the motion or ‘mechanics’ of particles,
which was based on Newton’s classical mechanics. In classical mechanics, the question is
the following: a particle of mass m has location x and momentum p now. If a force F acts
on it, what are (x′, p′) later? Newton’s law F = md2x/dt2 gives the answer. The answer is
deterministic, the particle’s future fate is completely determined from its present. This
is no longer correct if the particle has wave-like nature. The wave-particle duality is the
central fabric of quantum mechanics. It leads to the idea of a wavefunction.

3.3 The wavefunction

If a particle has a wavelength, what is its location x? A wave is an extended quantity. If a
measurement of the particle’s location is performed, it may materialize at location x0. But
repeated measurements of the same state will yield 〈x〉 = x0 + ∆x. Separate measurements
of the momentum of the particle prepared in the same state will yield 〈p〉 = p0 + ∆p. The
‘uncertainty’ relation ∆x∆p ≥ ~/2 is a strictly mathematical consequence of representing a
particle by a wave.

Because the ‘numbers’ (x, p) of a particle cannot be determined with infinite accuracy
simultaneously, one has to let go of this picture. How must one then capture the mechanics
of a particle? Any mathematical structure used to represent the particle’s state must
contain information about its location x and its momentum p, since they are forever
intertwined by the wave-particle duality. One is then forced to use a function, not a number.
The function is denoted by ψ, and is called the wavefunction.

Fig. 3.10: Birth of the wavefunction to account for the wave-particle duality.

A first attempt at constructing such a function is ψ(x) = A cos(px/~). This guess
is borrowed from the classical representation of waves in electromagnetism, and in fluid
dynamics. The wavefunction can represent a particle of a definite momentum p. Max Born
provided the statistical interpretation of the wavefunction by demanding that |ψ|2 be the
probability density, and

∫
|ψ|2dx = 1. In this interpretation, |ψ(x)|2dx is the probability

that a measurement of the particle’s location will find the particle in the location (x, x+dx).
It is clear that |ψ(x)|2 = |A|2 cos2(px/~) assigns specific probabilities of the location of the
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Fig. 3.8: Max Born introduced
the probabilistic representation of
the quantum wavefunction. With
his student Heisenberg, discovered
matrix mechanics. Influenced and
guided several young scientists
who made contributions to quan-
tum theory. Nobel prize 1954.

Fig. 3.9: Werner Heisenberg dis-
covered matrix mechanics with
Max Born, and is an original
founder of quantum theory. No-
bel prize in 1932. Better known
in pop media for his uncertainty
principle.

particle, going to zero at certain points. Since the momentum p is definite, the location of
the particle must be equally probable at all points in space. Thus we reject the attempted
wavefunction as inconsistent with the uncertainty principle.

The simplest wavefunction that is consistent with the wave-particle duality picture is
ψp(x) = Aeipx/~. The complex exponential respects the wave-nature of the particle by
providing a periodic variation in x, yet it never goes to zero. The probability (density) is
|ψp(x)|2 = |A|2, equal at all x. Thus, complex numbers are inevitable in the construction
of the wavefunction representing a particle.

Fig. 3.11: The superposition principle allows us to create wavefunctions that can represent
as ’wave-like’ or as ’particle-like’ states we want. Wave-like states have large ∆x and small
∆p, and particle-like states have small ∆x and large ∆p. All the while, they satisfy the
uncertainty principle ∆x∆p ≥ ~/2.

3.4 Operators

Every physical observable in quantum mechanics is represented by an operator. When the
operator ‘acts’ on the wavefunction of the particle, it extracts the value of the observable.
For example, the momentum operator is p̂ = −i~∂/∂x, and for states of definite momentum
p̂ψp(x) = (~k)ψp(x). We note that (xp̂ − p̂x)f(x) = i~f(x) for any function f(x). The
presence of the function in this equation is superfluous, and thus one gets the identity

xp̂− p̂x = [x, p̂] = i~. (3.1)

The square brackets define a commutation relation. The space and momentum operators
do not commute. In classical mechanics, [x, p] = 0. Quantum mechanics elevates the ‘status’
of x and p to those of mathematical operators, preventing them from commuting. This is
referred to as the ‘first quantization’ from classical to quantum mechanics. In this scheme,
the dynamical variables (x, p) that were scalars in classical mechanics are promoted to
operators, and the wavefunction ψ is a scalar. If the number of particles is not conserved,
then one needs to go one step further, and elevate the status of the wavefunction ψ → ψ̂
too, which is called second quantization.



3.5. STATES OF DEFINITE MOMENTUM AND LOCATION 21

3.5 States of definite momentum and location

Fig. 3.12: Quantum mechanics of the particle on a ring.

The wavefunction ψp(x) = Aeipx/~ is a state of definite momentum since it is an
eigenstate of the momentum operator p̂ψp(x) = pψp(x). One may demand the location of
the particle to be limited to a finite length L. This may be achieved by putting an electron
on a ring of circumference L, which yields upon normalization A = 1/

√
L. In that case, the

wavefunction must satisfy the relation ψp(x+ L) = ψp(x) to be single-valued. This leads
to eikL = 1 = ei2π×n, and kn = n× (2π/L). Here n = 0,±1,±2, ... The linear momentum
of the electron is then quantized, allowing only discrete values. Since L = 2πR where R is
the radius of the ring, knL = 2πn→ pR = n~, showing angular momentum is quantized to
0,±~,±2~, .... This indeed is the quantum of quantum mechanics! One may then index the
wavefunctions of definite linear momentum by writing ψn(x). Expressing states of definite
momentum in terms of states of definite location similarly yields

ψn(x) =
1√
L
eiknx (3.2)

The set of wave functions [...ψ−2(x), ψ−1(x), ψ0(x), ψ1(x), ψ2(x), ...] = [ψn(x)] are spe-

cial. We note that
∫ L

0
dxψ?m(x)ψn(x) = δnm, i.e., the functions are orthogonal. Any general

wavefunction representing the particle ψ(x) can be expressed as a linear combination of
this set. This is the principle of superposition, and a basic mathematical result from
Fourier theory. Thus the quantum mechanical state of a particle may be represented as
ψ(x) =

∑
nAnψn(x). Clearly, An =

∫
dxψ?n(x)ψ(x). Every wavefunction constructed in

this fashion represents a permitted state of the particle, as long as
∑
n |An|2 = 1.

It is useful here to draw an analogy to the decomposition of a vector into specific
coordinates. The ‘hybrid’ state function ψ(x) is pictured as a vector |ψ〉 in an abstract
space. The definite momentum wavefunctions ψn(x) are pictured as the ‘coordinate’ vectors
|n〉 in that space of vectors. This set of vectors is called the basis. Since there are an infinite
set of integers n = 0,±1,±2, ..., the vector space is infinite dimensional. It is called the
Hilbert space. One may then consider the coefficients An as the length of the projections
of the state on the basis states. The abstract picture allows great economy of expression by
writing |ψ〉 =

∑
nAn|n〉. The orthogonality of the basis states is 〈m|n〉 = δmn, and thus

An = 〈n|ψ〉. Then it is evident that |ψ〉 =
∑
n〈n|ψ〉|n〉 =

∑
n |n〉〈n|ψ〉, and

∑
n |n〉〈n| = 1.
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Fig. 3.13: States of definite location and states of definite momentum.

Fig. 3.14: Vector spaces for quantum states: we can use results of linear algebra for
quantum mechanics problems.
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Fig. 3.15: Erwin Schrodinger in-
troduced ‘wave equation’ for quan-
tum mechanics. Nobel prize in
1933.

Fig. 3.16: Niels Bohr was the
original architect and ‘conscience
keeper’ of quantum mechanics,
and an intellectual leader who in-
fluenced an entire generation. No-
bel prize in 1922.

A vector may be decomposed in various basis coordinates. For example, a vector
in 3-d real space may be decomposed into cartesian, spherical, or cylindrical coordinate
systems. Similarly, the choice of basis states of definite momentum is not unique. The
wavefunctions for states of definite location are those functions that satisfy xψx0

(x) =
x0ψx0

(x), which lets us identify ψx0
(x) = δ(x− x0). Here δ(...) is the Dirac-delta function,

sharply peaked at x = x0. It is instructive to expand the states of definite location
in the basis of the states of definite momentum. From the uncertainty relation, we
expect a state of definite location to contain many momenta. The expansion yields
An =

∫ +∞
−∞ dk/(2π/L)× (eiknx/

√
L)δ(x− x0) = eiknx0/

√
L, whereby |An|2 = 1/L. Thus,

the state of definite location x0 is constructed of an infinite number of states of definite
momentum n = 0,±1,±2, ..., each with equal probability 1/L.

3.6 States of definite energy: The Schrodinger equa-
tion

States of definite energy ψE(x) are special. Unlike the states of definite momentum or
definite location, we cannot write down their general wavefunction without more information.
That is because the energy of a particle depends on its potential and kinetic components.
In classical mechanics, the total energy is p2/2m + V (x), i.e., split between kinetic and
potential energy components. Once x & p are known for a classical particle, the energy is
completely defined, meaning one does not need to ask another question. However, since x
and p cannot be simultaneously defined for a quantum-mechanical particle with arbitrary
accuracy, the energy must be obtained through operations performed on the wavefunction.

Schrodinger provided the recipe, and the equation is thus identified with his name. The
Schrodinger equation is [

− ~2

2m

∂2

∂x2
+ V (x)

]
ψE(x) = EψE(x). (3.3)

The solution of this eigenvalue equation for a V (x) identifies the special wavefunctions
ψE(x). These wavefunctions represent states of definite energy. How did we ascertain
the accuracy of the Schrodinger equation? The answer is through experiments. A major
unresolved problem at the time was explaining the discrete spectral lines emitted from
excited hydrogen atoms. Neils Bohr had a heuristic model to explain the spectral lines that
lacked mathematical rigor. The triumph of Schrodinger equation was in explaining the
precise spectral lines. An electron orbiting a proton in a hydrogen atom sees a potential
V (r) = −q2/4πε0r. Schrodinger solved this equation (with help from a mathematician),
and obtained energy eigenvalues En = −13.6/n2 eV. Thus Bohr’s semi-qualitative model
was given a rigid mathematical basis by Schrodinger’s equation. The equation also laid
down the recipe for solving similar problems in most other situations we encounter. Just
as the case for states of definite energy or definite location, one may expand any state
of a quantum particle in terms of the states of definite energy ψ(x) =

∑
E AEψE(x), or

equivalently |ψ〉 =
∑
E AE |E〉

So why do states of definite energy occupy a special position in applied quantum
mechanics? That becomes clear if we consider the time-dependent Schrodinger equation.

3.7 Time-dependent Schrodinger equation

Newton’s law F = dp/dt provides the prescription for determining the future (x′, p′) of a
particle given its present (x, p). Schrodinger provided the quantum-mechanical equivalent,
through the time-dependent equation
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Fig. 3.17: The dynamics of quantum states is governed by the time-dependent Schrodinger
equation. Note that it looks like a hybrid of the classical energy and a wave equation,
which is how it must be to account for the wave-particle duality.

i~
∂Ψ(x, t)

∂t
= [− ~2

2m

∂2

∂x2
+ V (x)︸ ︷︷ ︸

Ĥ

]Ψ(x, t). (3.4)

To track the time-evolution of quantum states, one must solve this equation and obtain
the composite space-time wavefunction Ψ(x, t). Then physical observables can be obtained
by operating upon the wavefunction by the suitable operators. Let’s look at a particular
set of solution wavefunctions which allow the separation of the time and space variables,
of the form Ψ(x, t) = χ(t)ψ(x). Inserting it back into the time-dependent Schrodinger
equation and rearranging, we obtain

i~
˙χ(t)

χ(t)
=
Ĥψ(x)

ψ(x)
= E. (3.5)

Note that since the left side does not depend on space, and the right side does not
depend on time, both the fractions must be a constant. The constant is called E, and
clearly has dimensions of energy in Joules. The right half of the equation lets us identify
that ĤψE(x) = EψE(x) are states of definite energy. Then the left side dictates that the
time dependence of these states is described by χ(t) = χ(0)e−iEt/~. Thus the particular
set of solutions

ΨE(x, t) = ψE(x)e−i
E
~ t (3.6)

now define the time evolution of the states. Here ψE(x) are states of definite energy, as
obtained by solving the time-independent Schrodinger equation.
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3.8 Stationary states and time evolution

We note that |ΨE(x, t)|2 = |ψE(x)|2, that is, the state ΨE(x, t) does not change with
time. That means that a particle prepared in a state of definite energy will stay in that
energy if there are no perturbations. Its wavefunction does evolve as exp (−iEt/~), but this
evolution is ‘unitary’ since its absolute value is unity. Notice the analogy with Newton’s
first law, which states that a particle at rest or moving with constant velocity will continue
to do so unless acted upon by a force. The states of definite energy are therefore special
since they do not evolve with time unless perturbed, and are called ‘stationary states’.
Thus the expansion may be written as

Ψ(x, t) =
∑
E

AEΨE(x, t) =
∑
E

AEψE(x)e−i
E
~ t. (3.7)

The states of definite energy form a convenient and often-used basis for expansion of
general states of a particle. That is because they are stationary states - it is simpler if the
basis states are fixed.

Consider a simple case where a hybrid state Ψ(x, t) is prepared with components
in two states |E1〉 and |E2〉. Then, the expansion is Ψ(x, t) = AE1

ψE1
(x)e−iE1t/~ +

AE2ψE2(x)e−iE2t/~. The probability density of this state then is, for real A’s

|Ψ(x, t)|2 = |AE1
|2|ψE1

(x)|2 + |AE2
|2|ψE2

(x)|2 +AE1
AE2

ψE1
(x)ψE2

(x) cos

(
E1 − E2

~
t

)
,

(3.8)

which does oscillate with time with frequency ω12 = (E1 − E2)/~. Such two-level
systems are being currently explored for making quantum-bits or qubits for a form of
analog computation called quantum-computation.

All transport and optical phenomena involve time evolution. So most of the time
in semiconductor physics we we are working with the solutions of the time-dependent
Schrodinger equation. The states of definite energy as a function of momentum E(k) that
form the energy bandstructure of the solid thus provide a most convenient basis for the
analysis of electronic and optical phenomena of semiconductors.

The time evolution of the expectation value of an operator is given by Ehrenfrest’s
theorem

d〈Â〉
dt

= − i
~
〈[Â, Ĥ]〉, (3.9)

where the operator itself is time-independent. By using Â = p̂ and Ĥ = p̂2/2m+ V (x),
Ehrenfrest’s theorem directly leads to Newton’s 2nd law. It forms the starting point for
the density-matrix formulation of the time-evolution of quantum states.

3.9 Quantum Current

In semiconductor devices, we will be deeply concerned with the flow of currents. A current
is a measure of the flow of objects from one point in space to another. The flow of electric
charges constitutes an electric current, leading to the notion of electrical conductivity. In
this chapter we develop the recipe to understand current flow from a quantum-mechanical
viewpoint. Since the physical state of particles in quantum mechanics is represented by its
wavefunction Ψ(x, t), the current must be obtained from the wavefunction.

Since |Ψ(x, t)|2 = Ψ?Ψ is the probability density, let’s examine how it changes with
time. We obtain
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Fig. 3.18: Current continuity
∂ρ
∂t = −∇ · j.

∂|Ψ(x, t)|2
∂t

= Ψ? ∂Ψ

∂t
+
∂Ψ?

∂t
Ψ, (3.10)

where we use the time-dependent Schrodinger equation i~∂Ψ/∂t = (p̂2/2m+ V )Ψ and
its complex conjugate −i~∂Ψ?/∂t = (p̂2/2m+ V )Ψ? to obtain

∂|Ψ(x, t)|2
∂t

= Ψ? (p̂2/2m+ V )Ψ

i~
+ Ψ

(p̂2/2m+ V )Ψ?

−i~ , (3.11)

which simplifies to

∂|Ψ(x, t)|2
∂t

=
1

2mi~
(Ψ?p̂2Ψ−Ψp̂2Ψ?). (3.12)

Since p̂ = −i~∇r, we recognize the resulting equation

∂|Ψ(x, t)|2
∂t

= −∇r ·
[ 1

2m
(Ψ?p̂Ψ−Ψp̂Ψ?)

]
(3.13)

as the familiar ‘continuity’ equation in disguise. A continuity equation is of the form
∂ρ/∂t = −∇r · j, where ρ is the particle ‘density’ and j is the current density. This is
illustrated in Figure 3.18.

We read off the quantum mechanical current density as

j =
1

2m
(Ψ?p̂Ψ−Ψp̂Ψ?). (3.14)

This equation provides us the required recipe for calculating the probability density flow,
or current flow directly from the quantum mechanical wavefunctions of states. We make a
few observations. If Ψ is real, j = 0. Since Ψ has dimension of 1/

√
V ol, the dimension of j

is per unit area per second. For 3D, volume is in m3 and j is then in 1/(m2· s). For 2D j is
in 1/(m · s), and it is simply 1/s for 1D. We will use this concept of currents in greater
detail in later chapters, and generalize it to charge, heat, or spin currents.

We also note that

d

dt
(

∫
space

d3r|Ψ|2) = −
∫
space

d3r∇ · j = −
∮

j · dS = 0. (3.15)

The conversion of the integral from volume to a closed surface uses Gauss’ theorem.
The value of the integral is zero because Ψ and consequently j goes to zero at infinity, and
the equality must hold for all space. This equation is a statement of the indestructibility
of the particle, which follows from

∫
space

d3r|Ψ|2 = 1. If the number of particles is not

conserved, then one needs to add recombination (‘annihilation’) and generation (‘creation’)
terms to the continuity equation. It then looks as ∂ρ/∂t = −∇ · j + (G−R) where R and
G are recombination and generation rates.

We also note that in the presence of a magnetic field B = ∇ × A, the quantum-
mechanical momentum operator p̂ → p̂ + qA where q is the magnitude of the electron
charge. This leads to an additional term in the expression of the current density

j =
1

2m
(Ψ?p̂Ψ−Ψp̂Ψ?) +

qA

m
Ψ?Ψ. (3.16)

The additional term depending on the magnetic vector potential A is useful to explain
current flow in magnetic materials, magnetotransport properties, and superconductivity.

If we want to determine the electric charge current, we realize that the current flux is
actually of electrons that have wavefunction Ψ for which we have calculated the probability
current flux j. The charge q is dragged along by the electron. So to account for the flow of
charge, the current density is simply J = qj, where q is the charge (in Coulombs) of the
charge particle. If these charge particles are electrons, q = 1.6× 10−19 C and free mass
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me = 9.1× 10−31 kg. In the absence of a magnetic field, the electric current density is then
given by

J =
q

2me
(Ψ?p̂Ψ−Ψp̂Ψ?), (3.17)

which is now in A/m2 for 3D, A/m for 2D, and A for 1D current flow, where A=C/s is
the unit of current in Amperes. The current density is expressed in terms of the electron
wavefunctions. We wish to make the expression more ‘usable’.

Consider free electrons in 1D with periodic boundary conditions between x = (0, L).
The wavefunction for a state |k〉 of definite energy E(k) is ΨE(x, t) = (1/

√
L)eikxe−iE(k)t/~.

In the QM expression for current, the time evolution portion is not affected by the
momentum operator, and therefore factors to 1. It is another illustration of the virtues of
working with states of definite energy. The current carried by state |k〉 is then obtained as
J(k) = I(k) = q~k/meL. The current density and current are the same in 1D. The current
I(k) = q~k/meL = qv(k)/L connects to the classical notion of current carried by a particle
with velocity v(k) = ~k/me traversing a distance L. Another way to picture the same
current is to split it as I = q× v(k)× n, where n = 1/L is the ‘volume density’ of particles.

So we can find the current flow due to each allowed k−state for any quantum particle.
Now let f(k) be an occupation function that determines whether that k−state is occupied
by a particle or not, and if it is, how many particles are sitting in it. To find the occupation
function f(k), we stumble upon one of the deepest mysteries that that was unearthed by
quantum mechanics.

3.10 Fermions and Bosons

Fig. 3.19: Indistinguishable particles suffer an identity crisis when we try constructing a
wavefunction for more than one particle!

Consider two quantum states |a〉 and |b〉 with real-space wavefunctions ψa(x) and ψb(x).
What is the many-particle wavefunction when two particles are put in the two states? Lets
label the locations of the two particles as x1 and x2. If the two particles are distinguishable,
such as an electron and a proton, then the composite wavefunction may be written as the
product of the single-particle wavefunctions

ψ(x1, x2) = ψa(x1)ψb(x2). (3.18)

But if the two particles are indistinguishable, such as two electrons, the wavefunction
must satisfy further requirements. Specifically, if we swap the locations of the two electrons
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Fig. 3.20: Wolfgang Pauli discov-
ered the exclusion principle for
which he won the Nobel prize in
1945. Introduced matrices for elec-
tron spin. Humorously referred to
as the imaginary part of another
notable physicist - Wolfgang Paul.

Fig. 3.21: Enrico Fermi made sig-
nificant contributions to virtually
all fields of physics. Nobel prize
in 1938. The frequency of occur-
rence of his name in this book is
proof enough of his influence.

x1 ↔ x2, the physical observables of the composite state must remain the same. This
requirement dictates that the probability density must satisfy

P (x2, x1) = P (x1, x2)→ |ψ(x2, x1)|2 = |ψ(x1, x2)|2. (3.19)

The original product wavefunction does not satisfy this requirement. It cannot represent
indistinguishable particles. A symmetrized form, however does the job:

ψ(x1, x2) = ψa(x1)ψb(x2) + ψa(x2)ψb(x1) (3.20)

because

ψ(x2, x1) = +ψ(x1, x2) (3.21)

and the probability density does not change upon swapping. We also note that both
particles may be in the same x since

ψ(x1, x1) = +ψ(x1, x1) (3.22)

is OK. Particles in nature that choose the ‘+’ sign are bosons. Multiple bosons can
occupy the sate quantum state.

The anti-symmetrized form

ψ(x1, x2) = ψa(x1)ψb(x2)− ψa(x2)ψb(x1) (3.23)

leads to

ψ(x2, x1) = −ψ(x1, x2), (3.24)

which is also permitted, since the probability density remains unaltered by the negative
sign upon swapping the particles. Particles that choose the ‘-’ sign are fermions. However,
an attempt to put both fermions in the same location leads to

ψ(x1, x1) = −ψ(x1, x1)→ ψ(x1, x1) = 0. (3.25)

This is the Pauli exclusion principle. It states the simple result that two identical fermions
(e.g. electrons) cannot be in the same quantum state. It is responsible for all chemical
behavior of matter and the existence of the periodic table of elements.

In the presence of large number of electrons, the Pauli-exclusion principle leads to an
occupation probability of quantum states. The result was first derived by Dirac, and is
called the Fermi-Dirac relation

fFD(E) =
1

1 + e
E−EF
kT

, (3.26)

where EF is the Fermi-energy, k the Boltzmann constant, and T the absolute tempera-
ture. Note that the value cannot exceed 1.

The equivalent statistical result for bosons is

fBE(E) =
1

e
E−µ
kT − 1

, (3.27)

where µ is the chemical potential. The Bose-Einstein distribution allows values larger
than 1. Dramatic effects such as the Bose-Einstein condensation (BEC), lasers, and the
existence of superconductivity occurs when many bosons can co-exist in the same state.
The bosons can be composite particles, for example Cooper-pairs in superconductors that
are electron-phonon-electron quasiparticles where electrons are ‘glued’ together by phonons.
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Fig. 3.23: Indistinguishable particles can be of two types: Bosons, or Fermions. They have
very different properties!

Fig. 3.22: Satyendra Nath Bose,
who discovered the statistics for
photons. Particles that follow
such statistics are now called
Bosons.

3.11 Spin, and the Spin-Statistics Theorem

In addition to linear momentum p = ~k and angular momentum L = r× p, electrons also
possess an extra bit of spin angular momentum. In semiconductors, electron spin plays an
important role in the electronic band structure. The net angular momentum of electron
states is obtained by adding the various components of the angular momenta.

The exclusion principle is central to the spin-statistics theorem from relativistic quantum
field-theory. It states that bosonic particles have integer spins, and fermonic particles have
half-integer spins. That means bosons have spins S = 0,±~,±2~, ..., and fermions have
spins S = ±~/2,±3~/2, .... Electrons have spin ±~/2.

The fundamental dichotomy of particles in nature has received increasing attention
the last three decades. Quasi-particle states have been observed (for example in the
fractional quantum Hall effect) that behave neither like fermions nor bosons. Swapping the
single-particle states for such quasi-particles leads to the accumulation of a phase factor:

ψ(x2, x1) = eiφψ(x1, x2). (3.28)

These particles evidently satisfy the indistinguishability criteria, but accumulate a(ny)
phase, leading to their name anyons. Anyon states can exhibit a richer range of statistics
than fermions and bosons. For anyons, commuting (or Abelian) statistics has similarity to
fermions and bosons, but non-commuting (or non-Abelian) statistics does not have such
an analog. Non-Abelian anyons are of current interest due to their proposed usage in
topological quantum computation.

3.12 The Dirac equation and the birth of particles

Dirac was not comfortable with Schrodinger’s equation since it was not consistent with
relativity, and did not predict spin of electrons. He was able to reformulate the quantum-
mechanics of electrons from Schrodinger’s equation
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Fig. 3.24: Paul Dirac unified quan-
tum theory with special relativ-
ity and discovered an equation
that predicted the spin of electron.
Shared the physics Nobel prize in
1933 with Schrodinger.

i~
∂|ψ〉
∂t

= [
p̂2

2m
+ V (r, t)]|ψ〉 (3.29)

to the Dirac equation

i~
∂|ψ〉
∂t

= [cα · p̂ + βmc2 + V (r, t)]|ψ〉 (3.30)

where c is the speed of light, and α̂, β are matrices. Before Dirac, the concept of a
‘particle’ was not very clear. Dirac’s assertion was to the effect: ‘a particle is the solution
of my equation’. Dirac’s equation described the electron energy spectrum with more
accuracy than Schrodinger’s equation, and accounted for spin naturally. It also predicted
the existence of negative energy states, or anti-electrons. This was the first prediction
of antimatter. A few years after the prediction, such particles were discovered in cloud
chambers by Carl Anderson; these particles are called positrons. Electrons and positrons
annihilate each other, emitting light of energy ~ω = 2m0c

2.
The philosophy of Dirac that ‘particles are solutions to equations’ gave rise to the

prediction of a number of new particles that have since been observed such as quarks,
gluons, Higgs boson, etc... Majorana fermions fall under the category of predicted exotic
particles, and there is intense interest in realizing such exotic states in matter for topological
quantum computation. What was exotic yesterday will become commonplace tomorrow,
so keep track of those ‘particles’ !

Chapter Summary

The five basic postulates of quantum mechanics are:
(1) The state of any physical system at a given time t is completely represented by a

state vector |Ψ〉 = |Ψ(r, t)〉.
(2) For a physically observervable quantity A there is an operator Â. The eigenvalues of

Â are the possible results of the measurements of A, that is, denoting the eigenvalues
of Â by a,

Â|a〉 = a|a〉, (3.31)

and the probability of a measurement of A yielding the value a at time t is |〈a|Ψ(t)〉|2.
The a’s, which are the results of possible measurements, must be real. This implies
that Â must be a linear hermitian operator.

(3) A measurement of |Ψ〉 that leads to an eigenvalue ai leads the quantum mechanical
system to collapse into the eigenstate |Ψi〉, which is the eigenstate corresponding to
the eigenvalue ai. So a measurement affects the state of the quantum system.

(4) There exists a hermitian operator Ĥ such that

i~
∂|Ψ(r, t)〉

∂t
= Ĥ|Ψ(r, t)〉. (3.32)

(5) Two classical dynamical variables a, b, which are conjugate in the Hamiltonian sense,

are represented by Schrodinger operators Â,B̂, which obey

ÂiB̂j − B̂jÂi = i~δij . (3.33)

Problems



Fig. 4.2: Ludwig Boltzmann, the
father of statistical mechanics and
kinetic theory of gases. He discov-
ered the formula for entropy or
disorder as a mathematical con-
cept: this formula S = kB logΩ is
inscribed on his gravestone. The
concept of entropy permeates all
branches of sciences, including
communication systems. Boltz-
mann ended his life by hanging
himself in 1906.
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In this chapter, we derive and discuss the Fermi-Dirac distribution function for fermions,
and the Bose-Einstein distribution function for bosons. These functions provide us the
statistical occupation number of quantum states for a system in thermodynamic equilibrium
with a reservoir. The Fermi-Dirac distribution is central to finding the electron distribution
over allowed energy or momentum values in various semiconductor devices. The Bose-
Einstein distribution is central to finding the distribution of photons in the electromagnetic
field, or phonons in semiconductor crystals. The two distributions together determine
electron-phonon and electron-photon interactions. The importance of this chapter simply
cannot be overemphasized! We discuss various properties of the distributions and limit-
ing cases to gain familiarity. Then, we specifically map the concept of thermodynamic
equilibrium to the fundamental semiconductor building blocks, such as the ohmic contact,
Schottky contacts, the p-n junction, and a field-effect transistor (FET).

4.1 The physics of equilibrium

Boltzmann Maxwell Fermi Dirac

Gibbs
Bose

Einstein

Boltzmann

Gibbs Fundamental law of quantum statistical mechanics

Fig. 4.1: Illustration of the processes of thermodynamic equilibrium for the Boltzmann
distribution, and the Gibbs partition function.

We begin by drawing upon a fundamental result from quantum statistical mechanics1.
The most well-known result of statistical thermodynamics is the Boltzmann distribution.
The result states the following: consider a system that in thermal equilibrium with a
reservoir at temperature T . Each of the terms in italics have very specific meanings, which
will be described shortly. Let E1 and E2 denote two energy states of the system. The

1For a detailed derivation, see Thermal Physics by Kittel and Kroemer.

31
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Fig. 4.3: Josiah Willard Gibbs
coined the word ‘statistical me-
chanics’, and with Maxwell and
Boltzmann, gave it its modern rig-
orous mathematical basis. He de-
veloped the modern form of vec-
tor calculus. Gibb’s quiet lifestyle
was in stark contrast to the eter-
nal impact of his scientific ideas
and work.

Boltzmann result asserts that the probabilities of finding the system in these energies is
related by

P (E1)

P (E2)
=
e−βE1

e−βE2
, (4.1)

where β = 1
kBT

, and kB is the Boltzmann constant. Figure 4.1 illustrates the meanings of
the terms in italics. The reservoir is a large source of particles and energy, characterized by
a temperature T . It goes by the name reservoir because it can either take in, or give out
any energy without changing its temperature T . As opposed to the reservoir, the system is
much smaller, and can be found in energy states E1, E2, E3, .... The statement that the
system is in thermal equilibrium with the reservoir means that it can exchange energy with
the reservoir, but not particles. Each energy state Ei is considered to be individually in
thermal equilibrium with the reservoir. Only under this condition is the Boltzmann result
in Equation 4.1 applicable. Since the temperature T is the measure of the energy which is
being exchanged, the reservoir and the system share the same temperature upon reaching
thermal equilibrium.

Now if we let the system exchange energy and particles with the reservoir, as indicated
in Figure 4.1, the Boltzmann relation needs to be generalized. A measure of the particle
number is the chemical potential µ, which must also appear in addition to the temperature
T in relations characterizing thermodynamic equilibrium between the system and the
reservoir. This famous generalization was done by Gibbs, who gave the modified relation

P (E1)

P (E2)
=
e−β(E1−n1µ)

e−β(E2−n2µ)
=︸︷︷︸

non-interacting

en1β(µ−E1)

en2β(µ−E2)
, (4.2)

where µ is a common chemical potential of the reservoir+system, and ni is the number
of particles in the single-particle energy state Ei. We are going to call a single particle
energy eigenstate an orbital, drawing from the language of chemistry. Only if the particles
considered are non-interacting, then the energy of the state is Ei = niEi if there are ni
particles in orbital |i〉 of eigenvalue Ei. If these conditions are met, then one defines a
Gibbs-sum, or more popularly known as the grand partition function

Z =
∑

states

∑
n

eβ(nµ−En). (4.3)

The sum runs over all states of the system, and all number of particles allowed in each
single-particle state. Note carefully what this means. For example, consider the situation
when orbital |3〉 is in equilibrium with the reservoir. Since it is not interacting with the
other orbitals (which are also separately in equilibrium with the reservoir), the partition
function for the ‘system’ consisting of a variable number of particles in |3〉 is then Z =∑n3=nmax
n3=0 eβn3(µ−E3). The ‘system’ here is the various occupation states of orbital |3〉.
When energy and particle exchange is allowed between the system and the reservoir, the

fundamental law of equilibrium statistical mechanics may be stated as the following. Under
thermodynamic equilibrium with a reservoir at temperature T , the absolute probability
that the system will be found in the state Ei = niEi with ni particles in orbital |i〉 is

P (Ei) =
eβ(niµ−Ei)

Z
=
eβni(µ−Ei)

Z
=

eβni(µ−Ei)∑ni=nmax
ni=0 eβni(µ−Ei)

. (4.4)

4.2 Partition Function for Quantum Systems

For sake of completeness and for future use, we generalize the above result for quantum
systems. This section may be skipped in an initial reading. We recognize that the
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Fig. 4.4: Richard Feynman is one
of the most well-known physicists
because of his colorful lifestyle.
Made significant contributions to
several areas, and developed the
path integral approach to quan-
tum mechanics, as a method
distinct from Schrodinger and
Heisenberg approaches. His con-
tributions to quantum electrody-
namics and the eponymous Feyn-
man diagrams won him the 1965
physics Nobel prize.

allowed orbital energies of any quantum system Ei are the eigenvalues of the single-
particle Hamiltonian Ĥ0 via Ĥ0|i〉 = Ei|i〉, the non-interacting many-particle Hamiltonian
Ĥ =

∑
Ĥ0 gives Ĥ|n1, n2, ...ni, ...〉 = (

∑
i niEi)|n1, n2, ...ni, ...〉, and the number ni of

particles in the eigenstate (or orbital) |i〉 is N̂i|n1, n2, ...ni, ...〉 = ni|n1, n2, ...ni, ...〉, where
N̂i is occupation number operator for eigenstate |i〉, and N̂ =

∑
i N̂i. Then, the expectation

value of any operator 〈Ô〉 at thermodynamic equilibrium is

〈Ô〉 =
Tr[Ôeβ(µN̂−Ĥ)]

Tr[eβ(µN̂−Ĥ)]
, (4.5)

where Tr[...] stands for the Trace of the matrix or the operator. Note that the Hamilto-
nian matrix and the number operator are exponentiated. The Trace gives the sum of the
diagonal elements, making Equation 4.5 equivalent to 4.4 in the diagonal representation.
But since the Trace is invariant between representations, Equation 4.5 also holds for
non-diagonal conditions. Feynman2 calls the fundamental results in Equation 4.4 (and
4.5) the “summit of statistical mechanics, and the entire subject either a slide-down from
the summit, or a climb up to this result”. We have not covered the climb-up, but since
we will apply the result, let us slide down by applying it to derive the Fermi-Dirac and
the Bose-Einstein distribution functions. We will use the version of Equation 4.5 in later
chapters, and focus on Equation 4.4 for this chapter.

4.3 The Fermi-Dirac Distribution

As we have discussed in Chapter 3, the number of Fermionic particles that can occupy
an energy eigenstate Ei are ni = 0 or 1 and nothing else because of the Pauli exclusion
principle. Therefore, the partition function for the state of the system corresponding to
energy Ei in thermodynamic equilibrium (in the Gibbs sense) with a reservoir of temperature
T and chemical potential µ is simply

Z =

ni=1∑
ni=0

eβni(µ−Ei) = e0 + eβ(µ−Ei) = 1 + eβ(µ−Ei), (4.6)

and the probability that the system is in a state that has ni particles in orbital |i〉 is
simply P (Ei) = eβ(niµ−Ei)/Z, where Ei = niEi is the total energy of the orbital. Note
that we are assuming that the particles that fill the orbital do not interact with each
other. Then, the thermal average number of particles 〈ni〉 in orbital |i〉 is given by
f(Ei) = 〈ni〉 =

∑
i niP (Ei), which is

〈ni〉 = f(Ei) =
0 · e0 + 1 · eβ(1·µ−1·Ei)

1 + eβ(µ−Ei)
=⇒ fFD(Ei) =

1

1 + eβ(Ei−µ)
, (4.7)

where the boxed equation is the Fermi-Dirac distribution. Note that it varies between 0
and 1, and is equal to 1

2 when Ei = µ. We will discuss this further shortly.

2Statistical Mechanics, by R. P. Feynman. About his Nobel prize in 1965, Feynman recounts: “I was
in the Cornell cafeteria and some guy, fooling around, throws a plate in the air. As the plate went up
in the air I saw it wobble, and I noticed the red medallion of Cornell on the plate going around. It was
pretty obvious to me that the medallion went around faster than the wobbling. I had nothing to do, so I
start figuring out the motion of the rotating plate. I discovered that when the angle is very slight, the
medallion rotates twice as fast as the wobble ratetwo to one. It came out of a complicated equation! I
went on to work out equations for wobbles. Then I thought about how the electron orbits start to move in
relativity. Then there’s the Dirac equation in electrodynamics. And then quantum electrodynamics. And
before I knew it the whole business that I got the Nobel prize for came from that piddling around with the
wobbling plate.” A replica of the Cornell plate is now part of an exhibit marking the centennial of the
Nobel Prize. Feynman’s Messenger lecture series at Cornell are highly receommended, and can be viewed
here: http://www.cornell.edu/video/playlist/richard-feynman-messenger-lectures
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4.4 The Bose-Einstein Distribution

Unlike Fermions, there is no restriction on the number of Bosonic particles that can occupy
an orbital |i〉. This means ni = 0, 1, ...,∞. Then, the partition function is

Z =

∞∑
ni=0

eβni(µ−Ei) =

∞∑
ni=0

[eβ(µ−Ei)]ni =
1

1− eβ(µ−Ei)
, (4.8)

where the infinite sum is a geometric series 1+u+u2 + ... = 1
1−u , valid for u = eβ(µ−Ei) < 1,

or equivalently µ ≤ Ei. The thermal average number of bosonic particles in orbital |i〉 is
then

〈ni〉 = f(Ei) =
0 · u0 + 1 · u1 + 2 · u2 + 3 · u3 + ...

(1− u)−1
=⇒ fBE(Ei) =

1

eβ(Ei−µ) − 1
, (4.9)

where the boxed equation is the Bose-Einstein distribution. In arriving at the result, we
used the relation u d

du ( 1
1−u ) = u

(1−u)2 = u+ 2u2 + 3u3 + ..., which is the sum that appears in

the numerator, whereupon 〈ni〉 = 1
u−1−1 . Note that for β(Ei − µ) >> 1, the Bose-Einstein

distribution fBE(Ei)→ 0. However, for β(Ei − µ) << 1, fBE(Ei) ≈ 1
β(Ei−µ) can increase

without bound, which is surprisingly physical and indicates a condensation of all particles
to the lowest energy orbitals. This phenomenon is related to Bose-Einstein condensation, a
topic to be discussed further later in the book.

4.5 Manifestations of the distribution functions

The key ideas and results in arriving at the distribution functions are summarized in Figure
4.1. In Figure 4.5, we plot the various distribution functions.
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Fig. 4.5: Illustration of the distribution functions and the effect of temperature.

We define the Fermi-Dirac function as

f0(x) =
1

1 + eβx
(4.10)

which takes the argument x = E − µ to give us the Fermi-Dirac distribution

fFD(E) = f0(E − µ) =
1

1 + eβ(E−µ)
. (4.11)
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3Because of Pauli Exclusion prin-
ciple, electrons that contribute
to electrical conductivity are in
the small window of energies
where the Fermi derivative func-
tion peaks. Because states of
lower energy are completely occu-
pied, and cannot move, and states
with energies too high have no
electrons. This is the same effect
as when we blow air on a bowl of
water, the surface responds, not
the interior.

4For example, the switching of
sign of the Fermi difference func-
tion will be critical to the cre-
ation of population inversion in
a LASER.

The distribution may be thought of a function of the energy E, or of the chemical potential
µ. We use the compact notation f0 = f0(E − µ) = fFD(E). The partial derivative with
respect to energy is

∂f0

∂E
= −∂f0

∂µ
= −β · eβ(E−µ)

(1 + eβ(E−µ))2
= −β · f0[1− f0], (4.12)

which can be rearranged to the form

−∂f0

∂E
= +

∂f0

∂µ
=

β

4 cosh2(β(E−µ)
2 )

. (4.13)

The derivative of the Fermi-Dirac distribution evidently reaches its maximum value of
β
4 = 1

4kT at E = µ. We have the identity
∫ +∞
−∞ du β

4 cosh2[ 1
2βu]

= 1, which indicates that in

the limit of very low temperatures 1
kT = β →∞, the derivative function should approach

a Dirac-delta function in the energy argument, i.e.,

lim
T→0

[−∂f0

∂E
] = lim

T→0
[+
∂f0

∂µ
] = δ(E − µ). (4.14)

This feature is illustrated in Figure 4.6. 3

- 0.4 - 0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(E- μ) eV

f(E
)

- 0.4 - 0.2 0.0 0.2 0.4
0

5

10

15

20

25

30

(E- μ) eV

-
∂f

0

∂E
(1
/e

V)

T=10K, 100K,
    300K, 500K

T=500K, 300K,
    100K, 10K

Approaches the
Dirac-delta function
at low temperature

Approaches the
unit-step function
at low temperature

Fig. 4.6: Illustration of the temperature dependence of the Fermi-Dirac distribution, and
its derivative.

Now considering f(u) = 1/(1 + eu) and f(v) = 1/(1 + ev), we get the identity

f(u)− f(v) = [f(u) + f(v)− 2f(u)f(v)︸ ︷︷ ︸
≥0

]× tanh(
v − u

2
) (4.15)

Since f(u), f(v) ≤ 1, the term in the square brackets is always positive. So the sign of
the Fermi difference function is determined by the tanh(...) term. The Fermi difference
function will make its appearance repeatedly when we study the optical and electronic
transport properties of semiconductors and electronic and photonic devices4.

The integral of the Fermi-Dirac function is∫ ∞
0

dEf0(E − µ) =

∫ ∞
0

dE

1 + eβ(E−µ)
=

1

β
ln(1 + eβµ), (4.16)
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5The Fermi difference function
will appear later in the problem
of electrical current flow. Elec-
trons in a metal or a semiconduc-
tor are subjected to two Fermi lev-
els when connected to a battery.
The electrons in the Fermi differ-
ence function window are those
responsible for current flow.

which leads to the very useful Fermi difference integral∫ ∞
0

dE[f0(E − µ1)− f0(E − µ2)] =
1

β
ln[

1 + eβµ1

1 + eβµ2
] = (µ1 − µ2) +

1

β
ln[

1 + e−βµ1

1 + e−βµ2
].

(4.17)
If µ1, µ2 >> kT , the second term on the rightmost side is zero, and we obtain∫ ∞

0

dE[f0(µ1)− f0(µ2)] ≈ (µ1 − µ2). (4.18)

That this relation is an identity is evident at T → 0, or β →∞. The features of the Fermi
difference function are illustrated in Figure 4.7. The integral at low temperatures is just
the area under the dashed difference curve, which is rectangular and has a energy width of
µ2 − µ1. 5
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Fig. 4.7: Illustration of the temperature dependence of the Fermi-difference distribution.
The difference is a window between µ2 − µ1 that becomes increasingly rectangular as the
temperature drops.

It is useful to define higher moment integrals of the Fermi-Dirac functions of the form

Fj(η) =
1

Γ(j + 1)

∫ ∞
0

du
uj

1 + eu−η
. (4.19)

The Fermi-Dirac integral is rendered dimensionless by scaling the chemical potential
η = βµ, and the energy u = βE by the thermal energy kT = 1

β . Since we are integrating

over u, the Fermi-Dirac integral Fj(η) is a function of the chemical potential µ. The
denominator is a normalizing Gamma function Γ(n) =

∫∞
0
xn−1e−xdx with the property

Γ(n+ 1) = nΓ(n), which means if n is an integer, Γ(n) = (n− 1)!. A useful value of the
Gamma function for a non-integer argument is Γ( 1

2 ) =
√
π. For η << −1, the exponential

in the denominator is much larger than unity. An excellent approximation of the Fermi-
Dirac integral then is Fj(η) ≈ eη, irrespective of the value of j. In the other extreme, when

η >> 1, an excellent approximation is Fj(η) ≈ ηj+1

Γ(j+2) . Due to the high importance of

Fermi-Dirac integrals in semiconductor devices, we collect the results:

Fj(η) =
1

Γ(j + 1)

∫ ∞
0

du
uj

1 + eu−η
, Fj(η) ≈︸︷︷︸

η<<−1

eη , Fj(η) ≈︸︷︷︸
η>>1

ηj+1

Γ(j + 2)
. (4.20)
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Fig. 4.8: Fermi-Dirac integrals and their non-degenerate (η << −1) and degenerate
(η >> 1) approximations, illustrating Equation 4.20.

6The Fermi-Dirac integrals in Fig-
ure 4.8 are central to understand-
ing the operation of electronic
switches, or transistors. The cur-
rent flowing in a transistor is pro-
portional to a Fermi-Dirac inte-
gral in the y-axis, while the volt-
age controlling the current is pro-
portional to the x−axis. As a
result, we will see in later chap-
ters that vast, orders of magni-
tude changes in current can be
obtained by small changes in the
voltage. The high-current is the
on-state, and the low-current will
be the off-state of the transistor
switch.

From Equation 4.16, we have an exact analytical result for the Fermi-Dirac integral for
j = 0: it is F0(η) = ln(1 + eη). The validity of the approximations in Equation 4.20 are
easily verified for this special case. 6 No exact analytical expressions for other orders
(j 6= 0) exist. The approximations in Equation 4.20 then assume increased importance for
analytical evaluation of various physical quantities such as the mobile carrier densities in
semiconductor bands, transport phenomena, and optical properties. The order j depends
on the dimensionality of the problem. Figure 4.8 illustrates the cases of the Fermi-Dirac
integrals and their approximations for the cases of j = 0 and j = 1

2 .

4.6 Meaning of equilibrium in semiconductor devices

You may skip this section in an initial reading. If you are familiar with semiconductors,
will find the discussion easygoing and useful. If you are not familiar with semiconductors,
please come back to this section after reading about bandgaps and energy-band diagrams.
I will refer to this section later when you are ready.

Let us now consider a few semiconductor devices to develop a deeper understanding of
the meaning of equilibrium in semiconductor devices. The first and simplest example is a
1D semiconductor (for example a carbon nanotube or a thin nanowire), which has ohmic
contacts to two metal electrodes. The allowed energy eigenvalues in the semiconductor
channel are those in the valence and conduction bands with band edge energies Ev, Ec,
separated by a bandgap Eg, as indicated in Figure 4.9. Consider the 1D semiconductor to
be doped n-type, with mobile electrons in the conduction band, and no mobile carriers
in the valence band. Then the true meaning of an ohmic contact is the following: the
electrons in the conduction band of the semiconductor are in thermodynamic equilibrium
with the electrons in the metal contacts, in the Gibbs-sense. The conduction band states
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(or orbitals) in the semiconductor can freely exchange particles (electrons) and energy with
the states or orbitals in the contacts, which is the reservoir. Connect this concept of Gibbs
equilibrium in Figure 4.9 with the picture we used earlier in Figure 4.1. Note here we have
two reservoirs. The particles in the left contact (reservoir) are in equilibrium with each
other, and those in the right contact are in equilibrium with each other. When no external
voltage is applied across them, the contacts are also in thermodynamic equilibrium with
each other.

Ohmic Schottky

Fig. 4.9: Illustration of the concept of equilibrium for Ohmic and Schottky contacts between
metals and semiconductors.

Inside the semiconductor connecting the contacts, there are particles that are moving
to the right, and those moving to the left. Let us consider the situation where the left- and
right-going carriers do not mix, i.e., there is no scattering of carriers. This is referred to
as the ballistic case, and is approximately realized for very short semiconductor lengths.
Consider the electrons moving to the right in the semiconductor. These electrons can only
enter the semiconductor from the left contact. Then the electrons moving to the right are
in thermodynamic equilibrium with the left contact. Similarly, carriers moving to the left
in the semiconductor are in equilibrium with the right contact. Being in thermodynamic
equilibrium in the Gibbs sense means the right-moving electron states share the same
chemical potential µ and temperature T as the electrons in the left contact metal. This is
an extremely important consequence of thermodynamic equilibrium. Similarly the carriers
in the semiconductor moving to the left could only have entered from the right contact,
which keeps them in equilibrium with that contact and share µ and T . As long as the
chemical potentials of the contacts are the same, the net current flow due the left and right
moving carriers in the semiconductor exactly cancel, because they share the same µ.

When a voltage is applied between the contacts, the chemical potential of one contact
is µL − µR = qV larger than the other. This in turn breaks the delicate balance of left-and
right-moving carriers inside the semiconductor. The imbalance of the left and right moving
carriers as indicated in Figure 4.9 thus is the driver of an electric current through the
semiconductor, completing the circuit. We will use this picture to calculate the current
through a ballistic semiconductor channel in Chapter 10, and show that the conductance
is quantized. Then we will use this idea in Chapter 11 in the three-terminal Ballistic
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transistor switch.
If the chemical potential potential of the metal lines up with energies in the bandgap of

the semiconductor, a Schottky contact results, as indicated in Figure 4.9. The figure shows
again a semiconductor in contact with two metals: the left contact is now Schottky, and the
right contact is ohmic to the conduction band electrons in the semiconductor. Going back
to our discussion of equilibrium in Section 4.1, we realize that the left-moving electrons in
the semiconductor are in thermodynamic equilibrium with the right contact. But the right
moving electrons in the semiconductor are not in thermodynamic equilibrium with the
left contact in the Gibbs sense, because there is a barrier between them that prevents free
particle exchange. When a voltage is applied across the two metal contacts, the stronger
imbalance of equilibrium between the left-and right-going carriers in the semiconductor
cause a high asymmetry in the current flow as a function of the voltage. For the ‘forward’
bias condition shown, the left-moving carriers in the semiconductor that make it over
the barrier to the metal are in equilibrium with the right contact. Since their chemical
potential changes linearly with voltage, their concentration increases exponentially with
voltage, causing a characteristic exponential turn-on of the diode. We will discuss this
quantitatively in later chapters.

Fig. 4.10: Illustration of the concept of equilibrium for p-n junctions.

Figure 4.10 shows a semiconductor p-n junction. Note the reservoirs are metals, but
clearly we have chosen two different metals to form ohmic contacts individually to the
p-side and the n-side of the semiconductor. An ohmic contact between a semiconductor
and one metal electrode is possible for carriers in only one of the semiconductor bands,
not both. This means with the proper choice of metals, we can form an ohmic contact to
the conduction band of a n-type semiconductor for a n-type ohmic contact, and to the
valence band of a p-type semiconductor for a p-type ohmic contact separately. So the holes
in the valence band of the p-type semiconductor layer are in thermodynamic equilibrium
with the p-ohmic metal (left), and the electrons in the n-type semiconductor layer are in
thermodynamic equilibrium with the n-contact metal. Note now we also have two types of
carriers - electrons in the conduction band, and holes in the valence band. When no voltage
is applied, the holes in the p-side are in thermodynamic equilibrium with the electrons in
the n-side - because they are in turn in equilibrium with their respective ohmic contact
metal reservoirs. So they share a common chemical potential. However, when a voltage
is applied, as indicated in Figure 4.10, the equilibrium is broken; the chemical potentials
of the conduction band electrons in the n-side and valence band holes in the p-type now
differ by µn − µp = qV . This again is responsible for current flow, as will be discussed in
later chapters.

As a final example, consider a 3-terminal device, the field-effect transistor (FET) shown
in Figure 4.11. The carriers in the inversion channel have ohmic contacts to the source
and drain contacts, but a Schottky-type contact through an additional insulating barrier
layer to the gate metal reservoir. So the carriers in the semiconductor channgel can be
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in thermal equilibrium with the carriers in the gate metal, but not in thermodynamic
equilibrium in the Gibbs sense because the exchange of particles between the gate metal
and the semiconductor channel is explicitly prohibited. The right-going carriers are again
injected from the left contact, and the left-going carriers are injected from the right contact.
But the carrier density in the semiconductor is controlled by the gate voltage capacitively.
We will use this picture in Chapter 11 to discuss the Ballistic FET in detail. The FET is
the most commonly used semiconductor device today.

Fig. 4.11: Illustration of the concept of equilibrium for a 3-terminal MOSFET device.

Chapter Summary

• When many indistinguishable Fermions such as the electron are allowed to dis-
tribute in energy, the occupation function is given by the Fermi-Dirac distribution

fFD(E) =
1

1 + eβ(E−µ)
. Here β = 1/kBT indicates that the electrons are in Gibbs

equilibrium with a reservoir of electrons at temperature T , and the number of
Fermions (or electrons) determines the chemical potential µ. Pauli exclusion principle
clamps the maximum occupation of an orbital to 1.

• When many indistinguishable Bosons such as the electron are allowed to dis-
tribute in energy, the occupation function is given by the Bose-Einstein distribution

fBE(E) =
1

eβ(E−µ) − 1
. The Bosons of this system are in Gibbs equilibrium with a

reservoir of Bosons at temperature T .

• In semiconductors, electrons are the prototype Fermions. The fundamental electronic
and photonic properties will be predominantly determined by the Fermi-Dirac function.
The Bose-Einstein distribution function will make its appearance when we discuss
the interaction of photons with electrons, or of phonons with electrons. Photons
and phonons are Bosons. Excitons, which are electron-hole quasiparticles, behave as
composite Bosons.
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• In semiconductor electronic and photonic devices, the occupation functions are
controlled by applying voltages, currents, or shining light.

Problems
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In this chapter we subject the electron to the laws of quantum mechanics embodied
by the Schrodinger equation, and quantum statistics embodied by the Pauli exclusion
principle as indicated by Fig 5.1. We discover that by upgrading classical mechanics and
thermodynamics to their quantum versions, we can explain a vast array of experimental
facts for which the classical Drude model of the electron failed. In the process, we encounter
a few exactly solved problems of quantum mechanics. The set of exactly solved problems
is precious, because they form a rigorous underpinning on which rests the edifice of
condensed matter physics and the physics of semiconductor nanostructures. We introduce
the techniques to find the physical dynamics of single electrons - such as its momentum,
energy, and the current it carries - all now in the significantly updated quantum version
where the wave-nature is imposed on the electron from the beginning. Then we find that
because of the Pauli exclusion principle, many-electron systems have an ‘internal’ energy
that is both very large and very bewildering, because is has simply no counterpart in
classical mechanics. We introduce the concept of the density of states, and our bewilderment
turns to joy as we realize that we can not only explain the failures of the Drude model, but
have discovered a powerful new bag of tricks that explain and predict a far richer range of
physical behavior of electrons in bulk materials and in nanostructures.

Fig. 5.1: New quantum mechanical rules that govern the behavior of the electron.

5.1 In Schrodinger’s equation we trust

As we discussed in Chapter 3, all physically measurable information about the
quantum states of the electron are buried in the state vector |ψ〉. By projecting the state
vector to the real space we get the wavefunction ψ(x) = 〈x|ψ〉. In this chapter, we learn
how to extract useful information from ψ(x) by applying the corresponding operators of
physical observables on them. To do that, we have to first solve the time-independent
Schrodinger equation for an electron in various potentials V (x):

− ~2

2me

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x). (5.1)

The set of solutions 〈x|n〉 = ψ(n, x) will then be the eigenfunctions corresponding
to states of definite energy with corresponding eigenvalues En. As we learnt in Chapter

43
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1The Schrodinger equation can be
solved exactly only for a very few
potentials. We will cover most of
them here.

Fig. 5.2: Free electron in 1D.
The energy dispersion is parabolic,
and all k and all E > 0 are al-
lowed.

3, the states of definite energy are also stationary states. They form the most
convenient basis for describing the situations when the potential deviates from the ideal,
i.e., if V (x)→ V (x) +W (x, t). Thus, the states of definite energy form the basis to uncover
what happens when we perturb the quantum system.

In the next few sections we will pick a few potentials V (x) that are central to semicon-
ductor physics. For these potentials, we repeat the following procedure to extract physical
information:

• solve the Schrodinger equation exactly to obtain the wavefunction ψ(x) 1,

• the allowed momentum px,

• the allowed energy eigenvalues E,

• the quantum current J ,

• the Density of States g(E), and

• the total energy U , average energy u, and energy density uv of many electrons.

We begin with the simplest of potentials: when V (x) = 0.

5.2 The free electron

For V (x) = 0, the Schrodinger equation reads

− ~2

2me

d2

dx2
ψ(x) = Eψ(x). (5.2)

The equation has the most general solution of the form

ψ(x) = Aeikx +Be−ikx , (5.3)

where

k =

√
2meE

~2
=

2π

λ
. (5.4)

We emphasize that the allowed wavelengths λ can take any value. Thus, the allowed k
values are continuous. The allowed energy eigenvalues are

E(k) =
~2k2

2me
. (5.5)

Figure 5.2 shows this parabolic energy dispersion of the free electron. It would not
be a stretch to say that this simplest energy dispersion is also one of the most important
in all of condensed matter physics. The curvature of the parabola is the inverse mass of
the quantum particle. If the particle is heavy, the energies are lower, you can imagine
the parabola being pulled down by the heavy mass. Later we will see that the allowed
energy eigenvalues of the electron in a semiconductor crystal will develop bands and gaps
because of the formation of standing electron waves. Even so, within each electron band,
the energy dispersion will again assume a parabolic form at the band edges, but with a
different effective masses than the free electron mass because of the presence of a periodic
crystal potential.

We note that the general solution in Eq. 5.3 represents a superposition of two waves:
one going to the right (ψ→(x) = Aeikx) and the other to the left (ψ←(x) = Be−ikx). Since
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2If you are uncomfortable with
this statement, I am with you.
n ∼ |A|2 is true only if the parti-
cle is confined, as we will see in
the next section. The completely
free electron wavefunction is not
normalizable!

3This periodic boundary condi-
tion also is referred to as the Born
von-Karman boundary condition.
It is mathematically distinct from
the ‘hard-wall’ boundary condi-
tion what we will impose for the
particle in a box problem, but the
physics of the interior will not be
affected by this choice.

it is a ‘mixed’ state, clearly it is not a state of a definite momentum. We verify this by
operating upon the wavefunction by the momentum operator:

p̂xψ(x) = −i~ d

dx
ψ(x) = −i~(ikAeikx − ikBe−ikx) = ~k(Aeikx −Be−ikx) 6= pψ(x) (5.6)

but... for just the right going state we get

p̂xψ→(x) = −i~ d

dx
ψ→(x) = −i~(ikAeikx) = ~kψ→(x) = pψ→(x) (5.7)

and it is a state of definite momentum. For a rightgoing momentum eigenstate |+ k〉,
whose wavefunction is ψ(x) = Aeikx, we find that the quantum charge current density is

J(+k) =
q

2me
(ψ?p̂xψ − ψp̂xψ?) =⇒ J(+k) = q|A|2 ~k

me
. (5.8)

Note that the units are in Amps, because |A|2 has units of 1/length. Similarly, for a
left-going state | − k〉 with wavefunction ψ(x) = Be−ikx, the charge current density is

J(−k) =
q

2me
(ψ?p̂xψ − ψp̂xψ?) = −q|B|2 ~k

me
. (5.9)

From an analogy to the ‘classical’ charge current density J = qnv, where n ∼ |A|2 or
n ∼ |B|2 is the particle density2, we identify that the state |+ k〉 has a velocity ~k

me
, and

the mirror-reflected state | − k〉 has a velocity − ~k
me

. Just like in classical mechanics, the
velocity seems to be proportional to the slope of the energy dispersion curve E(k). In
classical mechanics of particles, the kinetic energy is E = p2/(2m), and the velocity is
v = dE/dp. In quantum mechanics, the particle has a wave-like nature, and by analogy we
cautiously define the group velocity of a quantum particle as

vg(k) = ∇pE(p) =
1

~
∇kE(k) . (5.10)

We suspend further discussion of this definition till later. Using the group velocity, we
can write the charge current as J(k) = qvg(k)f(k), where f(k) is the occupation probability
of state |k〉. Using this procedure, we can find the quantum charge current carried by any
superposition state |ψ〉 =

∑
k Ak|k〉 we can cook up.

The free electron wavefunction cannot be normalized, because it extends over all space
from −∞ ≤ x ≤ +∞. To normalize it, we wrap the infinitely long line and join the
infinities to form a circle. Physical quantities that have to do with density, such as the
‘density of states’ or the ‘energy density’ of the completely free electron are ill defined
because of the infinite volume it lives in. So we first put the electron in a circular ring to
calculate these quantities.

5.3 Not so free: particle on a ring

Figure 5.3 shows an electron restricted to move on a circular ring of circumference L, with
V (x) = 0. Though it is not exactly a 1D problem, we assign one linear coordinate x to the
particle’s location. We demand all solutions to the Schrodinger equation to be single-valued
functions of x. Because the loop closes on itself, the electron wavefunction must satisfy3

ψ(x+ L) = ψ(x)→ eik(x+L) = eikx → eikL = 1→ kL = 2nπ (5.11)

to be single-valued. This is only possible if
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Fig. 5.3: Putting the electron
on a ring quantizes the allowed
wavevectors kn, and as a result
the momentum, the angular mo-
mentum, and the energy of the
particle are quantized. The den-
sity of states for the electron on a
ring with parabolic energy disper-
sion goes as 1/

√
E, counting how

the allowed eigenvalues distribute
in energy if we were to put many
electrons on the ring.

kn =
2π

L
n , n = 0,±1,±2, ... (5.12)

where ψn(x) = Aeiknx. We see that for the particle on a ring, the set of allowed kn are
discrete as indicated in Figure 5.2, and thus the allowed momentum are discrete:

pn = ~kn =
h

2π

2π

L
n = n

h

L
, (5.13)

and the allowed values of the momentum are quantized. The smallest spacing of the
allowed wavevectors is precisely ∆k = kn+1 − kn = 2π/L.

Because the angular momentum is L = r× p, we find that

Ln = r× p = ~kn ×
L

2π
ẑ =

2π~
L
n× L

2π
ẑ =⇒ Ln = n~ , (5.14)

i.e. like the linear momentum, the angular momentum of the electron on a ring is also
quantized, and can only take values ...,−2~,−~, 0,+~,+2~, .... We gain a physical intuition
of what Planck’s constant ~ actually means - it is a measure of the angular momentum of
a quantum particle. For example, if I tie a 1 kg mass to a 1 m string and spin it at 1 m/s,
the angular momentum is Lcl = 1 J·s. So for this classical situation, I will be providing the
mass n ∼ 1034 quanta - and I may feel like Superman in the quantum world. But what this
example really tells us is precisely how small a quantum of angular momentum actually is!

As promised, the eigenfunctions of the particle on a ring can be normalized:

∫ L

0

dx|ψn(x)|2 = 1→ |A|2 × L = 1→ A =
1√
L
→ ψn(x) =

1√
L
eiknx (5.15)

Note that n = 0 is allowed as a result of the periodic boundary condition. We observe
that the set of functions [..., ψn−1(x), ψn(x), ψn+1(x), ...] are mutually orthogonal because

〈m|n〉 =
∫ L

0
dxψ?m(x)ψn(x) =

∫ L
0
dx e

i 2π
L

(n−m)x

L = 0 for n 6= m, and = 1 for n = m. Because
the states are orthogonal, we can write

〈m|n〉 =

∫ L

0

dx〈m|x〉〈x|n〉 =

∫ L

0

dxψ?m(x)ψn(x) = δn,m. (5.16)

We also make a note that this set of linearly independent functions is complete, meaning
if you give me any function f(x) in 1D, I can write the function as f(x) =

∑
cnψn(x) with

suitable coefficients cn. This is what we mean by linear superposition: the amazing thing
about quantum mechanics is the electron on the ring is allowed to be in any state that is a
linear superposition of the eigenstates.

The allowed energy eigenvalues are

En =
~2k2

n

2me
= n2 (2π~)2

2meL2
= n2 h2

2meL2
. (5.17)

The energy eigenvalues are also quantized, and grow as n2. Because the electron is
allowed to be in the n = 0 state, the minimum energy allowed is E = 0. This will not be
the case if we put the particle in a box in section 5.7. Two important physical intuition we
should take away from this example are:

• The smaller the circle, the larger the allowed energies (L ↓ =⇒ En ↑), and

• The smaller the mass, the larger the allowed energies (m ↓ =⇒ En ↑).
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4The justification came from Lev
Landau, and goes under the um-
brella of what is called the Fermi-
liquid theory. We will encounter
it at a later point.

Fig. 5.4: Enrico Fermi, a tower-
ing figure whose contributions ex-
tended into all areas of physics.
Nobel prize recipient in 1938.

5If we pack even more Fermions
in small volumes, the Fermi en-
ergy is much larger. For example,
because of the tight packing of
Fermions - protons and neutrons
- in the nucleus of an atom, the
Fermi energy reaches 40 MeV -
yes, Mega eV!

The first statement is one of quantum confinement: the smaller the space we fit a
quantum particle into, the larger will be its energy. This is because the wavelength must
become very small to fit in the space, which means high k = 2π/λ, and higher energy.

A glance at the density of energy eigenvalues in Figure 5.3 shows that they are more
densely spaced at low energies, and become sparse at higher energies. We can guess that
the dependence with energy must go as 1/Eη, where η > 0. To find the 1D density of
states quantitatively, we note that between k → k + dk, there are dk

2π
L

allowed states. The

total state density G1d(E) in energy is then

gsgv
2dk
2π
L

= G1d(E)dE =⇒ g1d(E) =
G1d

L
=

2gsgv

2π dEdk
=⇒ g1d(E) =

2gsgv
2π

(
2me

~2
)

1
2

1√
E
.

(5.18)
Because in 1D, the electron could be moving clockwise or counterclockwise, we use

2dk to account for the two dk’s for +k and −k wavevectors. We have introduced a spin
degeneracy gs, which is typically = 2 for up and down spins, and a valley degeneracy which
is the number of copies of such parabolic dispersions that may be present in the k−space.
Till we introduce crystals, gv = 1, and we assume gs = 2 till we need to consider situations
where it does not hold. We note that the 1D DOS decreases as 1/

√
E, and has a singularity

as E → 0.
Now if instead of a single electron, we fill the ring with N electrons, what would be

the total energy of the ensemble? If there are N electrons in the ring, their 1D density is
n = N/L. We will first completely neglect the Coulomb interaction between the electrons.
Though this sounds like heresy, let me assure you that it is actually OK4. Besides, the
discussion here is equally applicable to neutrons - which do not have charge. Because
electrons are Fermions, the moment we go to two, Pauli exclusion principle kicks in; the
electron occupation function must follow the Fermi-Dirac distribution f(E). Let us look
at the T = 0 K situation, when f(E) = 1 for 0 ≤ E ≤ EF and 0 elsewhere. The electrons
then must fill up to a Fermi wavevector kF and Fermi level EF such that

gsgv × 2kF
2π
L

= N =⇒ kF =
π

2
n =⇒ EF =

~2π2n2

8me
. (5.19)

This is a remarkable result: the ground state of the electron ensemble, at T = 0 K,
already has a large amount of energy. For example, if we have n ∼ 108/cm which is
typical for a metal, then the electron states with the highest energy have λF ∼ 0.4 nm
and EF ∼ 10 eV. This is the energy picked up by an electron in a 10 Volt potential 5. If
we were to provide this energy in the form of heat, kBT = EF would lead to T ∼ 105 K.
Where did all this energy come from?

This root of this energy reserve is the Fermionic nature of the electron, and the Pauli
exclusion principle. There is simply no classical explanation of this energy, it is of a pure
quantum origin. We will shortly see that the very high conductivity of metals even at the
lowest temperatures is a direct result of these high-energy electrons. And the electrons at
the highest energy are fast: the Fermi velocity is vF = ~kF

me
= hn

4me
∼ 5× 107 cm/s.

The total energy U of the ensemble of electrons of density n at T = 0 K, and the
average energy u = U/N are then given by

U =

∫ EF

0

dE · E ·G1d(E) =⇒ u1d =
U
N

=

∫ EF
0

dE · E ·G1d(E)∫ EF
0

dE ·G1d(E)
=

1

3
EF , (5.20)

and the energy density per length uv = U
L is then given by uv(1d) =

1

3
nEF . That the
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Fig. 5.5: Periodic boundary con-
ditions in 2D leads to a Torus.

average energy of the 1D electron distribution 1
3EF is less than 1

2EF is easily understood
from the shape of the DOS g1d(E), which is weighted heavier for lower energies.

5.4 The electron steps into a higher dimension: 2D

Now let the electron move in two dimensions - say in a square box of side L and area
A = L2. The spatial coordinate is now a vector r = (x, y), and the wavevector k = (kx, ky).
Learning from the 1D particle on a ring, by subjecting the electron to the Schrodinger
equation in two dimensions with V (r) = 0, we find that the allowed wavefunctions are

ψ(r) =
1√
L2
ei(kxx+kyy) =

1√
A
eik·r . (5.21)

The periodic boundary condition in the k-space leads to a torus (Figure 5.5). This
leads to the allowed wavevectors

k = (knx , kny ) =
2π

L
(nx, ny) =⇒ p = ~k, |p| = h

L

√
n2
x + n2

y , (5.22)

where nx, ny are independent integers ...,−2,−1, 0, 1, 2, .... In the k−space, the allowed
set of points form a rectangular grid, each of area ( 2π

L )2. Each point in this grid defines an
allowed state for electrons. The allowed energy of each such point is

E(kx, ky) =
~2

2me
(k2
nx + k2

ny ) = E(nx, ny) = (n2
x + n2

y)
h2

2meL2
=

~2|k|2
2me

. (5.23)

To find the 2D DOS g2d(E), we try our intuition like in the 1D case, but we must be
careful. Indeed the energies bunch up as we approach (kx, ky) = (0, 0), but we must not
forget that unlike the 1D case where there were mere two points, we have an entire circle
of equal-energy states in 2D. In the 2D case, these effects cancel out, giving us a DOS that
is independent of electron energy:

gsgv
2πkdk

( 2π
L )2

= G2d(E)dE =⇒ G2d(E)

L2
= g2d(E) =

gsgvme

2π~2
Θ(E) . (5.24)

Here 2πkdk is the area of the thin ring of thickness dk around the circle of radius k.
Because each state occupies an area (2π

L )2 in the k−space, there are 2πkdk
( 2π
L )2 energy states in

the ring, from which we get the DOS g2d(E). We also note that because for a free electron,
gs = 2 and gv = 1, the 2D DOS is typically written as g2d(E) = me

π~2 for E > 0.
The fact that the 2D DOS for a parabolic energy dispersion is a constant in energy

plays a very important role in semiconductor field-effect transistors, where the conducting
channel is a 2D electron gas. Moving to the many-electron picture in 2D, let us put N
non-interacting electrons in the area A so that the density per unit area is n = N/A. At
T = 0 K, we apply the Pauli exclusion principle again and find that we must fill the states
from the center k = (0, 0) to a sharply defined Fermi circle of radius kF given by

gsgv
πk2

F

( 2π
L )2

= N =⇒ kF =

√
4πn

gsgv
. (5.25)

If gs = 2 and gv = 1, we the expression for the Fermi wavevector is kF =
√

2πn. For
example, in semiconductor field-effect transistors, typical sheet densities of 2D electron
gases (2DEGs) is n ∼ 1012/cm2. The Fermi wavevector is then kF ∼ 2.5× 108/m, implying
a Fermi wavelength of λF = 2π

kF
∼ 25 nm. On the other hand, for a 2D metal with

n ∼ 1016/cm2, the Fermi wavelength is much shorter, λF ∼ 0.25 nm.
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For non-zero temperatures, the smearing of the Fermi-Dirac distribution near E = EF
makes the Fermi-circle diffuse. To get the electron density in a 2DEG at any temperature
T , we use the 2D DOS and use the fact that the electron density does not change with
temperature to get the Fermi level EF thus:

n =

∫ ∞
0

dE · g2d(E) · f(E) =
gsgvmekBT

2π~2
ln(1 + e

EF
kBT ) =⇒ EF = kBT ln(e

n
nq − 1) ,

(5.26)

where we have defined a ‘quantum’ 2D electron concentration nq = gsgvme
2π~2 kBT . If

the temperature is low enough so that n >> nq, then the Fermi level is given simply by
EF ∼ n

g2d
, or n = g2dEF . The meaning of this relation: electron density = ( DOS ) × (

Energy window ).

We can then obtain the total energy U and the average electron energy u at T = 0 K as

U =

∫ ∞
0

dE · E ·G2d(E) · f(E) =⇒ u2d =
U
N

=

∫∞
0
dE · E ·G2d(E) · f(E)∫∞

0
dE ·G2d(E) · f(E)

=
1

2
EF ,

(5.27)

which could have been guessed without the math: because of the constant DOS, the
average energy is exactly half the maximum energy EF at T = 0 K. The temperature-
dependent average energy requires a bit more work, which we will do for the 3D electron

gas. The energy density per unit area at T = 0 K is then given by uv(2d) =
1

2
nEF .

Before we move to the 3D electron gas, we discuss the quantum current carried by the
2DEG. The wavefunction of a state (nx, ny) is ψ(k, r) = 1√

A
eik·r. The quantum current

due to this state can be obtained from the wavefunction using Equation 3.17:

J(k) =
q

2me
(ψ?p̂ψ − ψp̂ψ?) = q · 1

A
· ~k

me
= q(

1

A
)vg(k). (5.28)

We can recognize the group velocity appear in the expression of the current. Note that
the unit of 2D current density is Amp/m, or current per unit width. A state |k〉 has a
group velocity vg(k) = ~k

me
pointing radially outwards from the origin in the k−space. At

thermal equilibrium, the occupation of k−space is symmetric around the origin. Thus, for
every carrier moving radially outward in one direction, there is an exactly equal current in
the opposite direction, which means the net current is zero. But the individual currents
carried by the k-states are substantial!

To find the total current of all occupied electron states, we can sum the currents carried
by each k−state:

J = gsgv
∑
k

qvg(k)f(k) = gsgvq

∫
d2k

(2π)2
vg(k)f(k) . (5.29)

5.5 Electrons in a 3D box

The electron is now in a cubic box of side L and volume V = L3 with a spatial coordinate
vector r = (x, y, z), and a wavevector k = (kx, ky, kz). For V (r) = 0, the allowed
wavefunctions are

ψ(r) =
1√
L3
ei(kxx+kyy+kzz) =

1√
V
eik·r . (5.30)
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The allowed wavevectors are

k = (knx , kny , knz ) =
2π

L
(nx, ny, nz) =⇒ p = ~k, |p| = h

L

√
n2
x + n2

y + n2
z , (5.31)

where nx, ny, nz are again independent integers ...,−2,−1, 0, 1, 2, .... In the k−space,
the allowed set of points now form a 3D grid, each of volume ( 2π

L )3. The allowed energy of
each such allowed point is

E(kx, ky, kz) =
~2

2me
(k2
nx + k2

ny + k2
nz ) = (n2

x + n2
y + n2

z)
h2

2meL2
=

~2|k|2
2me

. (5.32)

The 3D DOS g3d(E):

gsgv
4πk2dk

( 2π
L )3

= G3d(E)dE =⇒ G3d(E)

L3
= g3d(E) =

gsgv
4π2

(
2me

~2
)

3
2

√
E . (5.33)

Here 4πk2dk is the volume of the thin shell of thickness dk around the sphere of radius

k. Because each state occupies a volume (2π
L )3 in the k−space, there are 4πk2dk

( 2π
L )3 energy

states in the shell.
Because the 3D volume increases as k3, there are more energy states at higher energies;

the g3d(E) ∼
√
E increase in the 3D DOS is a characteristic feature of 3D electron systems

with parabolic dispersion: a result well worth remembering. For the many-electron picture
in 3D, we put N non-interacting electrons in the volume V so that the density per unit
area is n = N/V . At T = 0 K, the Pauli exclusion principle suggests states must fill from
the center k = (0, 0, 0) to a sharply defined Fermi Sphere of radius kF given by

gsgv

4
3πk

3
F

( 2π
L )3

= N =⇒ kF = (
6π2n

gsgv
)

1
3 . (5.34)

If gs = 2 and gv = 1, the Fermi wavevector is kF = (3π2n)
1
3 . In a metal with

n ∼ 1024/cm3, the Fermi wavevector is kF ∼ 3 × 1010/m, and the Fermi wavelength is
λF ∼ 0.2 nm. The Fermi surface of the 3D electron gas is the surface of this Fermi sphere.
It holds the secrets to most of its properties. For free electrons in 3D, the Fermi surface is
spherical. When we introduce atoms in a crystal, the surface will deform and assume a
rich range of shapes.

For non-zero temperatures, the smearing of the Fermi-Dirac distribution near E = EF
makes the Fermi-circle diffuse. The electron density at a temperature T is constant:

n =

∫ ∞
0

dE · g3d(E) · f(E) =
gsgv
4π2

(
2me

~2
)

3
2

∫ ∞
0

dE ·
√
E · f(E) = n3dF 1

2
(η), (5.35)

where the dimensionless Fermi-Dirac integral Fj(η) is used to define an effective 3D

DOS n3d = gsgv
4π2 ( 2mekBT

~2 )
3
2 , and η = EF /kBT .

The total energy U and the average electron energy u at T = 0 K is

U =

∫ ∞
0

dE · E ·G3d(E) · f(E) =⇒ u3d =
U
N

=

∫∞
0
dE · E ·G3d(E) · f(E)∫∞

0
dE ·G3d(E) · f(E)

=
3

5
EF .

(5.36)
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Fig. 5.6: Arnold Sommerfeld
first introduced elliptical orbits to
Bohr’s model of the atom. Intro-
duced the quantum electron the-
ory of for metals, and resolved the
discrepancies of the Drude model.
Was the advisor and mentor of a
large cohort of Nobel prize win-
ners, but was never awarded the
prize in spite of being nominated
∼80 times!

Fig. 5.7: Electron in a box.

Because the DOS increases with E, the average energy is above 1
2EF at T = 0 K. The

energy density per unit area at T = 0 K is then given by uv(3d) =
3

5
nEF .

The temperature-dependent average energy requires a bit more work. This was first
done famously by Arnold Sommerfeld, who obtained the result for the 3D Fermi gas

EF (T ) ≈ EF [1− 1

3
(
π

2

kbT

EF
)2] for kBT << EF .

The quantum current carried by the 3DEG is To find the total current of all occupied
electron states, we can sum the currents carried by each k−state:

J = gsgv
∑
k

qvg(k)f(k) = gsgvq

∫
d3k

(2π)3
vg(k)f(k) . (5.37)

which has units of Amp/m2, or current per unit area. Similar to the 2D case, a state
|k〉 has a group velocity vg(k) = ~k

me
pointing radially outwards from the origin in the

k−space, and net current at thermal equilibrium is zero because for every | + k〉 state,
there is a corresponding | − k〉 state. This delicate balance is broken when an electric field
is applied, which we turn to next.

Following text till the left arrows is work in progress → →.

5.6 Resolving Drude’s dilemma in the Quantum World

5.7 The particle in a box

V (x) = 0, 0 ≤ x ≤ L (5.38)

V (x) =∞, x < 0, x > L (5.39)

The major change is that ψ(x) = 0 in regions where V (x) =∞.

ψ(x) = Aeikx +Be−ikx → ψ(0) = 0 = A+B,ψ(L) = AeikL +Be−ikL = 0 (5.40)

A

B
= −e−i2kL = −1→ 2kL = 2nπ → kn = n

π

L
, n = ±1,±2,±3, ... (5.41)

Note that n = 0 is not allowed, because then ψ(x) = 0 and there is no particle. The
wavefunction after normalization over the length L is

ψ(n, x) =

√
2

L
sin(n

π

L
x) =

√
2

L
sin(knx) (5.42)

En = n2 (π~)2

2meL2
= n2 h2

8meL2
(5.43)

5.8 The Dirac-Delta Function

To be written.
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5.9 The harmonic oscillator

V (x) =
1

2
meω

2x2 (5.44)

En = (n+
1

2
)~ω (5.45)

a =

√
mω

2~
(x̂+

i

mω
p̂) (5.46)

a† =

√
mω

2~
(x̂− i

mω
p̂) (5.47)

x̂ =

√
~

2mω
(a† + a) (5.48)

p̂ = i

√
mω~

2
(a† − a) (5.49)

[a, a†] = 1 (5.50)

a|n〉 =
√
n|n− 1〉 (5.51)

a†|n〉 =
√
n+ 1|n+ 1〉 (5.52)

...

Fig. 5.8: XX.

5.10 The Hydrogen atom

V (r) = − q2

4πε0r
(5.53)

5.11 Origin of the Elements: The Periodic Table

Closed shells, periodic repeat of active and “noble” gases...
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5.12 Origin of the Chemical Bond

Ionic, covalent, van der Waals, hydrogen, etc. Strive to become noble!!

5.13 Electrons in a periodic potential: Bloch Theorem

We finally consider an electron in a periodic potential,

− ~2

2me

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x), (5.54)

where V (x+ a) = V (x). In the absence of the potential V (x), the wavefunctions were
of the form ψ0(x) = Aeikx, where k was allowed to take all values. If we considered a
ring of length L, then kn = 2π

L n, and ψ(n, x) = 1√
L
eiknx. Imagine the ring has a periodic

lattice, such that L = Na. Then, kn = 2π
a
n
N , where n = 0, 1, ..., N − 1.

← ← Preceeding text till the right arrows is work in progress
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Fig. 6.1: David Hilbert, a German
mathematician in Gottingen who
among many other subjects, de-
veloped the idea of Hilbert spaces,
which are infinite dimensional ma-
trices with special significance in
quantum mechanics. In a delight-
ful story which remains to be con-
firmed, Hilbert had promised a
seminar in the USA on the solu-
tion of the famous Fermat’s last
theorem, to which Fermat had
claimed he had a proof but the
margin was too small to hold it.
The packed audience was disap-
pointed that his seminar had noth-
ing to do with the Fermat’s theo-
rem. When asked, Hilbert replied
his seminar title was just in case
his plane crashed.
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Prior to Schrodinger’s differential equation form of ‘wave-mechanics’ for finding the
allowed quantum states of electrons, Heisenberg, Born, and Jordan had developed the first
complete form of quantum mechanics, but in the form of matrices. They had named it
Matrix Mechanics. With the goal to explain the experimentally observed sharp and
discrete spectral lines of the Hydrogen atom, Heisenberg hit upon the crucial idea that if
the dynamical variables of the electron such as its location [x] and its momentum [p] were
matrices instead of numbers, then its energy would be a found from a matrix eigenvalue
equation, which can yield discrete transition energies. Today we all know that matrices can
have discrete eigenvalues, but this connection was not clear in the 1920s when matrices were
rarely used in physics. John von Neumann, who was David Hilbert’s (Figure 6.1) student,
later proved the complete equivalence of Heisenberg’s matrix mechanics, and Schrodinger’s
wave mechanics. In Chapter 5, we became acquainted with the wave-mechanics method
of Schrodinger and applied it to the free electron in various dimensions, and a few other
problems. In this chapter, we befriend the Matrix method of solving for the quantum
mechanical states and energies of electrons. For most numerical solutions, this is the
method of choice. With further judicious choice, the matrix equation can give analytical
solutions, as we will see in several following chapters for the electron bandstructure in
periodic potentials, the situation encountered for semiconductors. We first motivate matrix
mechanics by discussing one of the most important and least emphasized principles of
quantum mechanics.

6.1 The Expansion Principle

Fourier’s theorem mathematically guarantees that any well-behaved function f(x) can be
expressed as a sum over a complete set of trigonometric functions (or complex exponentials):
f(x) =

∑
k ake

ikx. Note that any complete set of eigenfunctions [ . . . , eikx, . . .] works!
This set has an infinite number of elements and is called the Hilbert space. In practice
we typically use a restricted set for most problems. To find the Fourier coefficients, we
use the ‘filtering’ property of complex exponentials akn =

∫
dxf(x)e−iknx. If we tweak the

function f(x)→ f(x) + δ(x) = h(x), then h(x) =
∑
k a
′

ke
ikx is still a valid expansion; the

Fourier coefficients will be tweaked from ak → a
′

k. But note that the perturbed function
can still be expanded in terms of the original complete set of eigenfunctions. This idea
leads to the Expansion Principle in quantum mechanics.

Here is the Expansion Principle of quantum mechanics: Any quantum state ‘vector’
|Ψ〉 may be expanded as a linear superposition of the eigenvectors of any Hermitian operator
|Ψ〉 =

∑
n an|n〉. For most problems, the Hermitian operator of choice is the Hamiltonian

55
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Fig. 6.2: Pascual Jordan, who
with Heisenberg and Max Born
in Gottingen developed the first
consistent version of quantum me-
chanics in its matrix form, and
named it Matrix Mechanics. Jor-
dan also did seminal work on
quantum field theory. Had he not
associated himself with the Nazi
party, he would have been recog-
nized today as well as Heisenberg
and Born.

operator Ĥ = p̂2

2m0
+ V (r), but it need not be. We choose the Hamiltonian operator since

there exist a few problems which we encountered in Chapter 5 for which we know the set of
exact eigenvectors [. . . , |n− 1〉, |n〉, |n+ 1〉, . . .]. These sets of eigenvectors are complete. We
also discussed in chapter 5 that this choice of eigenstates are stationary. For example, we

found the 1D electron on a ring problem with Ĥ = p̂2

2m0
: gave eigenvalues E(k) = ~2k2

2m0
, and

corresponding eigenvectors |kFE〉 projected to real space 〈x|kFE〉 = 1√
L
eikx. This eigenstate

basis [. . . , eikx, . . .] is complete, where k takes all allowed values.
Now consider any state of a harmonic oscillator |ψHO〉. The Expansion Principle

guarantees that we can expand any harmonic oscillator state in the basis of the free electron
|ψHO〉 =

∑
k ak|kFE〉. We can do the reverse too: expand the free electron states in terms

of the Harmonic oscillator. This is allowed as long as the potential term in the Hermitian
operator does not blow up. For example, we can expand the particle in a box states in
terms of the free electron states |ψbox〉 =

∑
ak|kFE〉, but not the other way around because

the particle in a box potential blows up outside the box. This should be obvious because
the eigenfunctions of the particle in a box are all ZERO outside the box, and no matter
how clever one is, it is not possible to linearly combine zeroes to produce a function that
takes non-zero values outside the box.

The Expansion Principle is the backbone of perturbation theory, which underpins the
quantum mechanics in semiconductor physics. In this chapter, we set up the framework
for using it by describing the matrix representation of quantum mechanics.

6.2 Matrix Mechanics

Since we can express any quantum state as an expansion in the eigenvectors |Ψ〉 =
∑
n an|n〉,

we can arrange the expansion coefficients as a column vector

|Ψ〉 =


a1

a2

a3

...

 =


〈1|Ψ〉
〈2|Ψ〉
〈3|Ψ〉

...

 . (6.1)

The Hermitian conjugate is obtained by transposing and taking term-by-term complex
conjugation:

〈Ψ| =
[
a?1 a?2 a?3 · · ·

]
, (6.2)

which is a row vector. If the state |Ψ〉 is normalized, then clearly 〈Ψ|Ψ〉 = 1, which
requires

∑
n |an|2 = 1. Upon measurement, the state will always materialize one of

the eigenstates |n〉. Then |an|2 should be interpreted as the probability the quantum
state materializes in state |n〉, and an is the corresponding probability amplitude. The
normalization condition

∑
n |an|2 = 1 makes sure that the probabilities add up to one, and

the particles are neither created nor destroyed, but their number stay fixed. Also, the state
of eigenvectors |n〉 can always be chosen to be mutually orthogonal, i. e., 〈m|n〉 = δmn.
This is the basis we will work with.

Also note that projecting |Ψ〉 =
∑
n an|n〉 on state 〈n| yields the coefficients an = 〈n|Ψ〉.

Then, we can write the expansion as |Ψ〉 =
∑
n |n〉〈n|Ψ〉, which means that∑

n

|n〉〈n| = 1. (6.3)

This is the ‘closure’ relation of eigenvectors that are discrete. If the eigenvectors were
continuous, then the corresponding closure relation is∫

dx|x〉〈x| = 1. (6.4)



6.2. MATRIX MECHANICS 57

Fig. 6.3: Three ways of saying the
same thing. The operator Â ro-
tates a state vector |Ψ〉 into |Φ〉.
The pictorial depiction is equiv-
alent to the algebraic operator
equation, which in turn is equiva-
lent to the matrix form [A][Ψ] =
[Φ].

The fact that the two closure relations are unity allows us to insert them wherever they
will help in the evaluation of matrix elements. Consider now an operator Â acting on the
state vector |Ψ〉. It will try to ‘rotate’ the state vector in the Hilbert space to a state |Φ〉
as shown pictorially in Figure 6.3 . We write this as

Â|Ψ〉 = |Φ〉. (6.5)

By the expansion principle, we can expand the new state |Φ〉 =
∑
m bm|m〉. Then, if

we project this state on |m〉, we have

〈m|Φ〉 = 〈m|Â|Ψ〉 → bm =
∑
n

an〈m|Â|n〉 =
∑
n

Amnan. (6.6)

We see that the operator is equivalent to a matrix Â ≡ Amn = [A]. The elements of
the equivalent matrix are the terms Amn = 〈m|Â|n〉, obtained by the operator acting on
eigenstates on both sides. We call them matrix elements for obvious reasons.

For example, if we choose the momentum operator acting between states |k〉 and 〈k′|
of the free electron, we get pkk′ = 〈k′|p̂|k〉 =

∫
dx〈k′|x〉〈x|p̂|k〉 = ~kδk′,k. Note that the

‘abstract’ operator p̂ has the matrix representation 〈x|p̂|x〉 = −i~ ∂
∂x in real space. The

example shows that since the free-electron energy eigenstates are simultaneously momentum
eigenstates, the momentum operator acting between two eigenstates extracts the value of
the momentum only if the two states are identical. This is the momentum matrix element.

One of the most important operators is the Hamiltonian operator, which ‘extracts’
the energy of the state it is acting on. If the state |n〉 happens to be an eigenstate, the
Hamiltonian operator extracts its energy eigenvalue: Ĥ|n〉 = En|n〉. Visualize Ĥ|n〉 as a
new vector whose ‘direction’ is the same as the eigenvector |n〉, but the length determined
by the eigenvalue En. So the action of the Hamiltonian operator leaves the ‘direction’ of
the eigenvector |n〉 unaffected.

If the state is not an energy eigenstate but is a linear superposition |Ψ〉 =
∑
n an|n〉, then

the time-independent Schrodinger equation states that Ĥ|Ψ〉 = E|Ψ〉, which is equivalent to
Ĥ
∑
n an|n〉 = E

∑
n an|n〉. When we project this new state vector Ĥ|Ψ〉 on the eigenvector

〈m|, we get an algebraic equation∑
n

〈m|Ĥ|n〉an = Eam, (6.7)

for each m. Note the appearance of the matrix elements Hmn = 〈m|Ĥ|n〉. If we write
this out for m = 1, 2, . . ., we get the set of linear equations

H11a1 +H12a2 +H13a3 . . . = Ea1

H21a1 +H22a2 +H23a3 . . . = Ea2

H31a1 +H32a2 +H33a3 . . . = Ea3

... =
...

(6.8)

which is best captured as a matrix equation
H11 H12 H13 . . .
H21 H22 H23 . . .
H31 H32 H33 . . .

...
...

...
. . .



a1

a2

a3

...

 = E


a1

a2

a3

...

 . (6.9)

Note that the Hamiltonian operator becomes a square matrix, and the state |Ψ〉 becomes
a column vector. This matrix equation contains the same information as the algebraic time-
independent Schrodinger equation. If we choose to work with a restricted set of say 10 states,
then we have a 10x10 matrix with 10 eigenvalues and their corresponding eigenfunctions.
Figure 6.4 shows a few examples of matrix evaluations using the Mathematica package.
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Fig. 6.4: Examples of 2x2, 3x3, and 5x5 Matrix eigenvalue and eigenfunction calculations
in Mathematica. The 2x2 Hamiltonian is general and one of the most important in all
of quantum mechanics. The 3x3 matrix is a numerical example, and the 5x5 matrix of
a 5-site circular ring tight-binding Hamiltonian model. Note that the eigenvectors (or
eigenfunction coefficients an are evaluated for each eigenvalue, which is very nice.

Indeed, historically Heisenberg developed quantum mechanics in its matrix represen-
tation and called it ‘matrix mechanics’. Schrodinger found the algebraic version which
appealed more to researchers since we are trained much better in algebra since high school
than in matrices. But they are one and the same thing.

6.3 Matrices and Algebraic Functions

Numbers are solutions to algebraic equations. We start our education learning about
integers because they quantify the fingers on our hand, and soon expand into the regime
of real numbers. Soon, we realize there are algebraic equations such as x2 + 1 = 0 which
have solutions that are not real numbers, and realize there must be new kinds of numbers.
Complex numbers contain i =

√
−1, which (unfortunately1) is called an imaginary number.

We learn how to add, subtract, multiply, divide, take square roots, exponentiate, etc...
with numbers.

One can visualize a matrix as an extension of the concept of a ‘number’. For example,
the algebraic equation ax = b has the solution x = b/a, a number. A set of algebraic
equations with multiple variables can be written in the form AX = B has the solution
X = A−1B. Somewhere along the line, if we do not use matrices, we forget their power
and beauty! We get busy using algebraic equations extensively. Turns out every algebraic
equation may be written as a matrix equation. Then we can use powerful theorems of
matrices to solve or analyze them. Indeed, most numerical approaches to solving equations
have to go through the matrix route. Consider the equation of a unit circle

x2 + y2 = 1. (6.10)

1One might think ... that imaginary numbers are just a mathematical game having nothing to do with
the real world. From the viewpoint of positivist philosophy, however, one cannot determine what is real.
All one can do is find which mathematical models describe the universe we live in. It turns out that a
mathematical model involving imaginary time predicts not only effects we have already observed but also
effects we have not been able to measure yet nevertheless believe in for other reasons. So what is real and
what is imaginary? Is the distinction just in our minds? - Stephen Hawking
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This may not look like a matrix equation at all, till we define the coordinate ‘vector’

X =

[
x
y

]
. Its transpose is a row vector XT = [x, y], and the matrix version of the

equation of the unit circle is then

XTX = 1. (6.11)

Now consider the equation

x2 + axy + y2 = 1, (6.12)

which can be written as

[
x y

] [ 1 u
a− u 1

] [
x
y

]
= XTAX = 1. (6.13)

This works for any value of u. So for the unit circle, A = I, where I is the unit matrix.
The matrix A captures the geometric property of the curve - whether it is a circle, or
a more complex shape. Later in this book we will investigate how such decompositions
actually help understand the curvature of a function, where A will take the form of a
Hessian matrix, and find the ‘curvature’ of the allowed eigenvalues of a quantum problem.

The strangest and most striking property of matrices is that they do not necessarily
commute. Which is to say that in general for square matrices, AB 6= BA. As a mathematical
object, therefore they are quite distinct from real or complex numbers. Matrices thus
form the natural objects for non-commutative algebra. Therefore they are central to the
tenets of quantum mechanics, which is built upon the non-commutativity of operators as
embodied by x̂p̂x − p̂xx̂ = i~, which actually was derived by Heisenberg and Born for the
first time in its matrix form [x][p]− [p][x] = i~[I].

A square matrix A has eigenvalues λi and eigenvectors [xi] which are obtained by
solving the equation

A[x] = λ[x]→ [A− λI][x] = 0 (6.14)

After finding the eigenvalues and eigenvectors, the square matrix can be re-written in
it’s ‘spectral’ decomposition

A = UDU−1, (6.15)

where D is the diagonal matrix

D =

λ1 0 · · ·
0 λ2 · · ·
...

...
. . .

 (6.16)

and the unitary transformation matrix U is formed by arranging the eigenvectors in
the same order as the eigenvalues

U =
[
[x1] [x2] · · ·

]
(6.17)

Note that U is invertible, meaning its determinant cannot be zero.
Now lets say the square matrix A is actually the Hamiltonian matrix of a quantum

mechanics problem. Then solving the time-independent Schrodinger equation is equivalent
to diagonalizing the Hamiltonian matrix by solving the matrix equation

H11 H12 H13 . . .
H21 H22 H23 . . .
H31 H32 H33 . . .

...
...

...
. . .



a1

a2

a3

...

 = E


a1

a2

a3

...

 . (6.18)
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Clearly, it is equivalent to
H11 − E H12 H13 . . .
H21 H22 − E H23 . . .
H31 H32 H33 − E . . .

...
...

...
. . .



a1

a2

a3

...

 = 0. (6.19)

If instead of the infinite matrix, we choose a restricted eigenbasis set of N , then the
solutions of the corresponding algebraic equation Det[H − EI] = 0 yield N eigenvalues
En. Corresponding to each eigenvalue En, there is an eigenvector |n〉 which is a column
vector. We then construct the unitary operator U by collecting the eigenvectors and write
the Hamiltonian matrix in its diagonal form as


H11 H12 H13 . . . H1N

H21 H22 H23 . . . H2N

H31 H32 H33 . . . H3N

...
...

...
. . .

...
HN1 HN2 HN3 . . . HNN

 = U


E1 0 0 . . . 0
0 E2 0 . . . 0
0 0 E3 . . . 0
...

...
...

. . .
...

0 0 0 . . . EN

U−1 (6.20)

This is the ‘spectral’ decomposition of the Hamiltonian H = UDU−1 where D is a
diagonal matrix whose elements are the energy eigenvalues. The exact solution requires the
matrices to be infinite-dimensional, but for most practical cases we work with a restricted
set.

Now lets imagine that the Hamiltonian matrix is perturbed to H → H0 + W . The
eigenvalues and eigenfunctions will change. But the expansion principle tells us that the
new state vector of the perturbed system can still be expanded in terms of the unperturbed
eigenvectors, or the matrix U . The matrix formalism makes such perturbations easy to
deal with. We will return to this problem in the next chapter.

The sum of the diagonal elements of a square matrix is called its trace, Tr[H] =
∑
nHnn.

For square matrices A,B, Tr[AB] = Tr[BA]. Thus, we get Tr[H] = Tr[UDU−1] =
Tr[U−1UD] = Tr[D] =

∑
nEn. The trace of the Hamiltonian is the sum of its eigenvalues.

The quantum states are represented as column vectors |Ψ〉 =

 a1

a2

...

, as discussed earlier.

Consider another quantum state |Φ〉 =

 b1
b2
...

. If we take the projection 〈Φ|Ψ〉 =
∑
n anb

?
n,

we get a number. This is analogous to taking the dot product of two vectors, and is called
the ‘inner’ product for Dirac notation. But we can also take an ‘outer’ product

|Ψ〉〈Φ| =


a1

a2

...
aN

 [ b?1 b?2 . . . b?N
]

=


a1b

?
1 a1b

?
2 a1b

?
3 . . . a1b

?
N

a2b
?
1 a2b

?
2 a2b

?
3 . . . a2b

?
N

a3b
?
1 a3b

?
2 a3b

?
3 . . . a3b

?
N

...
...

...
. . .

...
aNb

?
1 aNb

?
2 aNb

?
3 . . . aNb

?
N

 , (6.21)

which is no longer a number but a matrix. This matrix clearly contains information of
the phases of each quantum state and their respective projections on eigenstates, which
is lost in taking the inner product. The outer product leads to the concept of density
matrices, which keep track of the phase relationships and interferences of quantum states.
An interesting result is that the trace of the inner and outer products are the same, i.e.
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Tr[|Ψ〉〈Φ|] = Tr[〈Φ|Ψ〉] =
∑
n anb

?
n. The mathematical name for objects like the outer

product |m〉〈n| is a dyadic, it is a tensor constructed out of two vectors.
That the outer product is a matrix implies we can think of it as an operator. In fact, we

can construct operators of the form Â =
∑
an|n〉〈n| with suitable coefficients an. One such

construction will prove rather useful. Consider the Schrodinger equation Ĥ|n〉 = En|n〉
with eigenvalues En and eigenvectors |n〉. We define a new operator

Ĝ(E) =
∑
n

|n〉〈n|
E − En

, (6.22)

where the coefficients are an = 1/(E −En), with units of inverse energy. This operator
is called the Green’s function operator. We will use it in the later chapters. For now, note
that it blows up every time E = En, and changes sign as E crosses En. Note what happens
when the Green’s function operator acts on an eigenstate |m〉:

Ĝ(E)|m〉 =
∑
n

|n〉〈n|
E − En

|m〉 =
∑
n

|n〉
E − En

〈n|m〉 =
1

E − Em
|m〉. (6.23)

This happens for every eigenvalue, because |m〉 can be any of the eigenvectors. We can
picturize the Green’s function operator as a ‘energy-eigenvalue detector’. As we sweep the
energies, every time E = Em, there is a very large response since Ĝ(Em)|m〉 → ±∞. The
response is low between eigenvalues is low. This is analogous to the concept of a ‘impulse
response’ in linear systems.

The Schrodinger equation may be written as (E − Ĥ0)|ψ〉 = 0. Then note that if we
apply the Green’s function operator on the left side of the equation, we get

Ĝ(E)(E − Ĥ0)|ψ〉 =
∑
n

|n〉〈n|
E − En

(E − Ĥ0)|ψ〉 =
∑
n

|n〉〈n|ψ〉 = |ψ〉. (6.24)

From the above, it is clear that Ĝ(E) = (E − Ĥ0)−1, i.e., the Green’s function operator
is the inverse operator of (E − Ĥ0). You can think of this in terms of matrices to make
it more concrete. Also, the right side of the Schrodinger equation was zero, meaning
Ĝ(E)0 = |ψ〉. This may seem weird because the Green’s function operator seems to act
on ‘zero’ to create the state |ψ〉. We will return to this strange behavior in chapter ?? to
explore what it is trying to say.

6.4 Looking ahead

What is the advantage of the spectral decomposition of a matrix A = UDU−1? Let’s
observe what happens when we try to square the matrix A.

A2 = UD(U−1U)DU−1 = UD2U−1 = U

λ
2
1 0 · · ·

0 λ2
2 · · ·

...
...

. . .

U−1. (6.25)

U−1U = I contracts the expansion, and we only have to square the diagonal matrix,
which is trivial since we just square the eigenvalues! Think of any higher order power of the
matrix: the U ’s always contract, so AN = UDNU−1! If we visualize matrices as extensions
of real and complex numbers, we should be curious about doing similar operations on them.
For example, what is the square root of a matrix? What is the exponential or logarithm of
a matrix? Can we take sines and cosines of matrices? The answer to all of these questions
is yes, and the spectral decomposition is the first step to such fun. In this chapter, we
discussed the linear properties of matrices, which will help us get started with perturbation
theory.
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Chapter Summary
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In chapter 5 we discussed a few exactly solved problems in quantum mechanics. We
also found that the many applied problems may not be exactly solvable in an analytical
form. The machinery to solve such problems is called perturbation theory. In chapter
6, we developed the matrix formalism of quantum mechanics, which is well-suited to
handle perturbation theory. Sometimes we will be able to reduce the matrix solutions to
closed-form algebraic forms which always helps in visualization. in this chapter, we develop
an additional analytical tool for perturbation theory which is indispensable in the insight
it provides.

Let Ĥ0 be the Hamiltonian for the solved problem. Then the time-dependent Schrodinger
equation is i~ ∂

∂t |Ψ〉 = Ĥ0|Ψ〉. The eigenstates of definite energy are also stationary states

〈r|n〉 = ψE(r)e−iEnt/~, where |n〉 are the eigenvectors and En the corresponding eigenvalues.
Note that all the solved problems we discussed in chapter 5 such as the harmonic oscillator
or the particle in a box had time-independent potentials. Many real-world situations involve
time-dependent potentials. For example, imagine a field-effect transistor whose gate voltage
is being modulated by an ac signal. That will create a potential variation for electrons of
the form V (r)eiωt. A similar variation will be experienced by electrons interacting with
photons of an electromagnetic wave, or with phonons of lattice vibrations. Consider the
limit of very small frequencies ω → 0, or a ‘dc’ potential. Then, the potential only has a
spatial variation. A dc voltage is not truly time-independent because it has to be turned on
or off at some time. But most of the physics we are interested in this and a few following
chapters happens when the perturbation has been ‘on’ for a ling time in the past, and
things have reached steady-state. It is in this sense that we discuss time-independent
perturbation theory. We defer explicitly time-varying or oscillatory perturbations to later
chapters.

7.1 Degenerate Perturbation Theory

The time-independent Schrodinger equation for the solved problem is

Ĥ0|n〉 = E0
n|n〉, (7.1)

where Ĥ0 is the unperturbed Hamiltonian. That means we know all the eigenfunctions
|n〉 and their corresponding eigenvalues E0

n. This is shown in Fig 7.1. Lets add a perturba-
tion W to the initial Hamiltonian such that the new Hamiltonian becomes Ĥ = Ĥ0 +W .
The new Schrodinger equation is

(Ĥ0 +W )|ψ〉 = E|ψ〉. (7.2)

63
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The perturbation W has changed the eigenvectors |n〉 → |ψ〉. The corresponding
eigenvalues may not be eigenvalues of the new Hamiltonian. Some eigenvalues increase in
energy, some decrease, and others may not be affected. This is illustrated in Fig 7.1. So
we have to solve for the new eigenvalues E and obtain the corresponding eigenvectors.

Fig. 7.1: The initial eigenstates and eigenvalues of a quantum system change upon applica-
tion of a perturbation W .

At this stage, we invoke the Expansion Principle introduced in chapter 6. It states
that the perturbed state vector |ψ〉 can always be written as a linear superposition of the
unperturbed eigenvectors |n〉, since the unperturbed eigenstates form a complete basis set.
It is the same philosophy of expanding any function in terms of its Fourier components.
Thus we write

|ψ〉 =
∑
n

an|n〉, (7.3)

where an’s are (in general complex) expansion coefficients. The coefficients are obtained
by taking the projection 〈m|ψ〉, which yields an = 〈n|ψ〉. Then equation 7.2 reads∑

n

an(Ĥ0 +W )|n〉 = E
∑
n

an|n〉. (7.4)

We can visualize the new state vector as the original eigenvector ‘rotated’ by the
perturbation W , as we had introduced in Chapter 6, and specifically in Figure 6.3. Lets
project the new state vector on 〈m| to get∑

n

an〈m|(Ĥ0 +W )|n〉 = Eam, (7.5)

which is a matrix when m takes values 1, 2, . . . N


E1 +W11 W12 W13 . . . W1N

W21 E2 +W22 W23 . . . W2N

W31 W32 E3 +W33 . . . W3N

...
...

...
. . .

...
WN1 WN2 WN3 . . . EN +WNN




a1

a2

a3

...
aN

 = E


a1

a2

a3

...
aN

 . (7.6)

The eigenvalues and the corresponding eigenvectors of this matrix equation are obtained
by diagonalization, as discussed in chapter 6. The new eigenvalues E

′

n thus depend on the
matrix elements Wmn = 〈m|W |n〉 of the perturbation. Note that if some eigenvalues of the
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unperturbed Hamiltonian happened to be degenerate, the matrix diagonalization method
takes that into account naturally without problems. In that sense, the matrix formulation
of perturbation theory is sometimes referred to as degenerate perturbation theory. But the
matrix formulation handles non-degenerate situations equally well, and is more general.

In case we did not start with a diagonal basis of the unperturbed Hamiltonian H0, then
we have the Schrodinger equation


H0

11 +W11 H0
12 +W12 H0

13 +W13 . . . H0
1N +W1N

H0
21 +W21 H0

22 +W22 H0
23 +W23 . . . H0

2N +W2N

H0
31 +W31 H0

32 +W32 H0
33 +W33 . . . H0

3N +W3N

...
...

...
. . .

...
H0
N1 +WN1 H0

N2 +WN2 H0
N3 +WN3 . . . H0

NN +WNN




a1

a2

a3

...
aN

 = E


a1

a2

a3

...
aN

 .
(7.7)

The solutions thus reduce to diagonalizing the corresponding perturbed matrices. Many
of the perturbation matrix elements Wmn = 〈m|W |n〉 can be made zero by suitable choice
of bases, which reduces the work involved in diagonalization. Note that we can easily obtain
the eigenvalues, the eigenvectors typically require more work. But with the availability
of math packages such as Mathematica and MATLAB, this is done in a jiffy for most
situations we will deal with.

An important question in applying degenerate perturbation theory is: which states
should be included in the N ×N matrix? At this stage, we state the guiding principles, we
will see the proof of the principle in the next section on non-degenerate perturbation theory.
The first principle is that states with eigenvalues widely separated in energy En − Em
interact weakly by the perturbation. The second principle is states get pushed around by
the perturbation depending upon the matrix element squared |Wmn|2. Quantitatively, the
perturbation in energy of a state with energy E is ∆E ≈ |Wmn|2/(E − En) by interacting
with state |n〉. Thus, states for which Wmn terms are small or zero may be left out. If we
are interested in a set of energy eigenvalues (say near the conduction and valence band
edges of a semiconductor), energies far away from the band edges may also be left out. We
will see the application of these rules in many following chapters.

We will see examples of degenerate perturbation theory in the next chapter (chapter
8), where we will apply it to the problem of a free electron. That will require us to solve
either 2×2 matrices, or higher order, depending on the accuracy we need. Later on, we
will also encounter it when we discuss the k · p theory of bandstructure to deal with the
degeneracies of heavy and light valence bands. For now, we look at particular situations
when we have ‘isolated’ eigenvalues that are non-degenerate.

7.2 Non-Degenerate Perturbation Theory

Schrodinger’s crowning achievement was to obtain an algebraic equation, which when
solved, yields the quantum states allowed for electrons. Schrodinger’s equation is called
the ‘wave’-equation because it was constructed in analogy to Maxwell’s equations for
electromagnetic waves. Heisenberg was the first to achieve the breakthrough in quantum
mechanics before Schrodinger, except his version involved matrices. Which is why he called
it matrix-mechanics. That is why it was not as readily accepted - again because matrices
are unfamiliar to most. It was later that the mathematician von Neumann proved that
both approaches were actually identical from a mathematical point of view.

So at this point, we will try to return to a ‘familiar’ territory in perturbation theory
from the matrix version presented in the previous section. We try to formulate an algebraic
method to find the perturbed eigenvalues and eigenvectors.

Consider a perturbation Ŵ added to the solved (or unperturbed) Hamiltonian Ĥ0.
Schrodinger equation is
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Fig. 7.2: The perturbation rotates the eigenvector |u〉 to |ψ〉. If we forego normalization
of |ψ〉, we can find a vector |φ〉 orthogonal to |u〉 such that 〈u|φ〉 = 0, and consequently
〈u|ψ〉 = 1.

(Ĥ0 + Ŵ ))|ψ〉 = E|ψ〉, (7.8)

and the unperturbed state |u〉 satisfied

Ĥ0|u〉 = Eu|u〉. (7.9)

The new quantum state differs from the unperturbed state, so we write

|ψ〉 = |u〉+ |φ〉. (7.10)

We can picturize the final state |ψ〉 as a ‘vector’ sum of the unperturbed state |u〉 and
the vector |φ〉. This is schematically shown in Fig 7.2. In particular, if we are willing to not
normalize the final state, then we can always choose |φ〉 to be orthogonal to |u〉, leading to
〈u|φ〉 = 0 and 〈u|ψ〉 = 1. We can then project equation 7.8 on 〈u| to obtain the energy
equation

E = Eu + 〈u|W |ψ〉 = Eu︸︷︷︸
unperturbed

+ 〈u|W |u〉︸ ︷︷ ︸
∆E(1)

+ 〈u|W |φ〉︸ ︷︷ ︸
higher orders

. (7.11)

Note that we obtain the ‘first-order’ energy correction: they are the diagonal matrix
elements of the perturbation with the unperturbed states. Think of a ‘dc’ perturbation
- say a voltage V0 that depends neither on space nor time - then all the initial energy
eigenvalues get shifted by the corresponding energy: Eu → Eu + qV0 due to the first order
term since 〈u|qV0|u〉 = qV0. We will shortly see that for this particular perturbation, the
higher order terms are zero because they depend on the cross-matrix terms of the kind
〈m|qV0|n〉 = qV0〈m|n〉 = 0. An example of such a situation is when a voltage is applied
across a gate capacitor to a semiconductor - the entire bandstructure which consists of the
allowed En’s shift rigidly up or down. We call this energy band-bending in device physics.
Such a ‘dc’ perturbation does not couple different energy states for the above reason, and
results in only a first-order rigid shift.

Most perturbations are not the ‘dc’-kind, and we need the higher order terms for them.
To do that, it is useful to define

E′u = Eu + 〈u|W |u〉. (7.12)

We then split the diagonal and off-diagonal elements of the perturbation just like writing
a signal as a ‘dc’ + a ‘ac’ terms. Think of Ŵ as an operator, and hence a matrix that we
are splitting it into two:
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Ŵ = D̂ + Ŵ ′, (7.13)

and the total Hamiltonian then is

Ĥ = Ĥ0 + D̂︸ ︷︷ ︸
Ĥ(d)

+Ŵ ′, (7.14)

The reason for doing this is that the unperturbed eigenvalues are going to shift by the
diagonal part of the perturbation without interacting with other states. The off-diagonal
terms will further tweak them by interactions with other states. To move further, we write

(Ĥ(d) + Ŵ ′)|ψ〉 = E|ψ〉, (7.15)

and rearrange it to

(E − Ĥ(d))|ψ〉 = Ŵ ′|ψ〉, (7.16)

At this stage, our goal is to find the perturbation vector |φ〉 = |ψ〉 − |u〉. How can we
obtain it from the left side of equation 7.16 in terms of the perturbation on the right?
Recall in chapter ?? we discussed the Green’s function operator briefly. We noticed that it
is an ‘inverse’ operator, meaning we expect

Ĝ(E)(E − Ĥ(d))|ψ〉 =
∑
m

|m〉〈m|
E − E′m

(E − Ĥ(d))|ψ〉 =
∑
m

|m〉〈m|ψ〉 = |ψ〉. (7.17)

So to get |φ〉 = |ψ〉 − |u〉, perhaps we should use the operator

Ĝ(E)− |u〉〈u|
E − E′u

=
∑
m 6=u

|m〉〈m|
E − E′m

. (7.18)

Operating on the LHS of equation 7.16 we obtain

∑
m 6=u

|m〉〈m|
E − E′m

(E−Ĥ(d))|ψ〉 =
∑
m 6=u

|m〉〈m|ψ〉 = (
∑
m

|m〉〈m|ψ〉)−|u〉〈u|ψ〉 = |ψ〉−|u〉 = |φ〉,

(7.19)
which is what we wanted. Now we use the same operator on the right of equation 7.16

to finish the job. Since Ŵ ′ consists of only off-diagonal cross matrix elements, we write
it in its outer product form as Ŵ ′ =

∑
m

∑
m 6=n |m〉〈m|Ŵ |n〉〈n|, and apply the ‘reduced’

Green’s function to get

|φ〉 =
∑
l 6=u

∑
m

∑
n6=m

|l〉〈l|
E − E′l

|m〉〈m|Ŵ |n〉〈n|ψ〉 =
∑
m 6=u

∑
n 6=m

|m〉 〈m|Ŵ |n〉
E − E′m

〈n|ψ〉, (7.20)

Thus, we obtain the perturbed state |ψ〉 = |u〉+ |φ〉 to be

|ψ〉 = |u〉+
∑
m6=u

∑
n 6=m

|m〉 〈m|Ŵ |n〉
E − E′m

〈n|ψ〉︸ ︷︷ ︸
|φ〉

. (7.21)

As a sanity check, we note that if Ŵ = 0, |ψ〉 = |u〉, as it should be. Next, we note that
this is a recursive relation, meaning |ψ〉 also appears inside the sum on the right side. Thus,
it can be taken to many orders, but we are going to retain just up to the 2nd order. That
means, we will assume that the perturbation is weak, and so we are justified in replacing
the |ψ〉 inside the sum on the right side by the unperturbed state |u〉.
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Fig. 7.3: Leon Brillouin, as in the
Brillouin function, and the Bril-
louin zone in solid state physics,
is also the ‘B’ of the WKB approx-
imation. Discovered one of the
three fundamental light-matter
scattering processes (the other
two being Rayleigh and Raman
scattering).

7.3 The Brillouin-Wigner Perturbation Results

From the above considerations, we get the result for the perturbed eigenstates

|ψ〉 ≈ |u〉+
∑
m 6=u

〈m|Ŵ |u〉
E − E′m

|m〉︸ ︷︷ ︸
φ(1)

. (7.22)

The perturbed state vector given by equation 7.25 now is in a way that can be used for
calculations. That is because every term on the right side is known, except for the energy
E in the denominator. To obtain the perturbed eigenvalues E, we substitute equation 7.2
into the expression for energy E = Eu + 〈u|W |u〉+ 〈u|W |φ〉 to obtain

E ≈ Eu + 〈u|W |u〉︸ ︷︷ ︸
∆E(1)

+
∑
m 6=u

|〈m|Ŵ |u〉|2
E − E′m︸ ︷︷ ︸

∆E(2)

. (7.23)

This result is called the Brillouin-Wigner (BW) perturbation theory. Note that the
BW algebraic solution for determining the unknown eigenvalues E require us to solving
for it. But for multiple states, the solution would require a high order polynomial, since
equation 7.23 is indeed a polynomial. For example, lets say we were looking at a 3-state
problem with unperturbed energies Eu1, Eu2, Eu3, and we want to find how eigenvalues of
state u = 2 got modified by the perturbation. Then, the 2nd energy energy correction has
2 terms, since m 6= 2. The equation then becomes a 3rd-order polynomial with three roots,
which are the desired eigenvalues.

7.4 Rayleigh-Schrodinger Perturbation Results

The BW perturbation results require us to solve the polynomial equations for the perturbed
energies. This can be avoided if we are willing to compromise on the accuracy. If so, the
unknown energy term E in the denominator of the 2nd order correction term may be
replaced by the unperturbed value, E → Eu. Then the energy eigenvalues are obtained
directly from

E ≈ Eu + 〈u|Ŵ |u〉+
∑
m6=u

|〈m|Ŵ |u〉|2
Eu − E′m

, (7.24)

and the eigenfunctions are

|ψ〉 ≈ |u〉+
∑
m 6=u

〈m|Ŵ |u〉
Eu − E′m

|m〉︸ ︷︷ ︸
φ(1)

. (7.25)

This set of perturbed eigenfunction and eigenvalues is called the Rayleigh-Schrodinger
(RS) perturbation theory. Note that in this form, we know all the terms on the right side.
It was first derived by Schrodinger right after his seminal work on the wave equation of
electrons. The RS-theory is not applicable for understanding perturbation of degenerate
states, as the denominator En − E′m can go to zero. But BW-theory applies for degen-
erate states too, and one can always resort back to the degenerate perturbation theory.
Schrodinger originally derived this result and referred to Rayleigh’s (Figure 7.6) work on
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Fig. 7.4: Eugene Wigner, a
mathematical physicist who intro-
duced seminal notions of symme-
try in atomic spectra, quantum
mechanics, and solid-state physics.
Wigner was awarded the 1963 No-
bel prize in physics. Wigner’s
memorable statement: ‘It is nice
that the computer understands
the problem. But I would like
to understand it too’. Dirac was
Wigner’s brother-in-law.

classical perturbation theory of the effect of inhomogeneities on the vibration frequencies
of mechanical strings. The quantum naming scheme pays homage to the quantum and the
classical versions.

Fig. 7.5: Illustration of revel repulsion due to perturbation.

In the treatment of degenerate perturbation theory earlier, we discussed the strategy to
follow to choose which states to include in the matrix. The last term in the BW or RS
perturbation theory results provides the guiding principle. Note that this term goes as
the perturbation matrix element squared, divided by the energy difference. In the absence
of the perturbation, the eigenvectors corresponding to the eigenvalues were orthogonal,
meaning they did not ‘talk’ to each other. The perturbation mixes the states, and makes
them talk. The magnitude by which the energy of a state |u〉 changes due to interactions
with all other states upon perturbation is ∆E(2) ≈∑m 6=u |Wmu|2/(Eu − E′m).

We also note the nature of the interaction. If a state Eu is interacting with states
with energies E′m lower than itself, then ∆E(2) > 0, the perturbation pushes the energy
up. Similarly, interactions with states with higher energies pushes the energy of state Eu
down. Thus, the second-order interaction term in perturbation is repulsive. Figure 7.5
illustrates this effect schematically. This repulsive interaction is the key to understanding
curvatures of energy bands and the relation between effective masses and energy bandgaps
of semiconductors. Clearly if two states were non-degenerate and the strength of the
perturbation is increased from zero, the energy eigenvalues repel stronger, and the levels
go farther apart. Then they cannot cross each other. This is a case of what goes by the
name of no level crossing theorem in perturbation theory.

In this chapter, we developed the theoretical formalism for handling time-independent
perturbation theory. The matrix formalism is well-suited for uncovering the effect of
perturbation on eigenvectors and eigenvalues. It works for problems where the unper-
turbed states are either degenerate, or non-degenerate energy states. For non-degenerate
eigenstates, algebraic solutions can be obtained in the Brillouin-Wigner (BW), or the
Rayleigh-Schrodinger (RS) theories. The analytical solutions offer further insights into the
effect of the perturbation on the physical parameters of interest in the problems. In the
next few chapters, we apply both degenerate and non-degenerate perturbation theories to
understand electron bandstructure in semiconductors, and its various ramifications.
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Fig. 7.6: Lord Rayleigh the
co-discoverer of Argon, and of
Rayleigh scattering of long wave-
length light waves from matter
that explains why the sky is blue.
The perturbation problem is es-
sentially also a scattering prob-
lem in disguise, because one can
imagine the uperturbed states be-
ing scattered into new states be-
cause of the perturbing poten-
tial. Rayleigh was awarded the
1904 Nobel prize in Physics. J.
J. Thomson, the discoverer of the
electron, was Rayleigh’s student.

Fig. 7.7: A perturbation to the
particle-in-a-box problem.

1This is a complicated way of
writing a rectangular barrier, the
meaning is very simple!

7.5 The Hellmann Feynman Theorem

The following theorem sometimes is useful for obtaining quick estimates of the magnitude
and direction of the shift in energy eigenvalues upon perturbation. Let Ĥ0(λ)|k〉 = Ek(λ)|k〉
be the exactly solved problem with normalized eigenstates |k〉, where the Hamiltonian
Ĥ0(λ) and its resulting eigenvalues Ek(λ) depend on a parameter λ. When we change the
parameter λ in the Hamiltonian operator Ĥ0(λ), how do the eigenvalues Ek(λ) change?

Because the original eigenstates are orthonormal, we have 〈k|k〉 = 1. Differentiating
with respect to the parameter λ, we have d

dλ 〈k|k〉 = 0. Now, applying the chain rule for
differentiation,

d

dλ
Ek(λ) =

d

dλ
〈k|Ĥ0(λ)|k〉 = 〈 d

dλ
k|Ĥ0(λ)|k〉+ 〈k| d

dλ
Ĥ0(λ)|k〉+ 〈k|Ĥ0(λ)| d

dλ
k〉, (7.26)

and because Ĥ0(λ)|k〉 = Ek(λ)|k〉 and 〈k|Ĥ0(λ) = Ek(λ)〈k|, we get

d

dλ
Ek(λ) = 〈k| d

dλ
Ĥ0(λ)|k〉+ Ek(λ)[〈 d

dλ
k|k〉+ 〈k| d

dλ
k〉︸ ︷︷ ︸

d
dλ 〈k|k〉=0

] =⇒ dEk(λ)

dλ
= 〈k|dĤ

0(λ)

dλ
|k〉 .

(7.27)
The boxed equation above is the statement of the Hellmann-Feynman theorem. It

states that we can get the perturbation in the energy eigenvalues due to a parameter λ by
finding the inner product of the derivative of the Hamiltonian operator with respect to the
variable λ.

7.6 Perturbation Theory Example

Consider the particle-in-a-box problem shown in Figure 7.7. Here is the question: we
know the exactly solved particle in a box eigenfunctions of state |n〉: 〈x|n〉 = ψn(x) =√

2
L sin(n πLx) and corresponding eigenvalues En = ~2

2me
(n πL )2. If we introduce a tiny

perturbation potential of strength W (x) = +W0 over a length a << L, and W0 << E1.
Find the perturbed values of the eigenvalues and eigenfunctions for the states |1〉 and |2〉.

Brillouin-Wigner and Rayleigh-Schrodinger Perturbation theories: Because
the perturbation is1 W (x) = W0[Θ(x− L−a

2 )−Θ(x− L+a
2 )] the new eigenvalues from the

more general BW theory are

E = Eu + 〈u|W (x)|u〉+
∑
m 6=u

|〈u|W |m|2
E − Eu

. (7.28)

Denoting u = n as the unperturbed state, we find the first order perturbation shift:

Wnn = 〈n|W (x)|n〉 =
2W0

L

∫ L+a
2

L−a
2

dx sin2(n
π

L
x) = W0

a

L
[1− cos (nπ)

sin(n πLa)

(n πLa)
] (7.29)

We note that for even n = 2, 4, 6, ..., cos(nπ) = +1, and for odd n = 1, 3, 5..., cos(nπ) =
−1. Because we have assumed the perturbation extends over a small length a << L, we

can use sin x
x ≈ 1− x2

6 + ... to get for even n states 〈n|W (x)|n〉 ≈W0
a
L

(n πLa)2

6 = W0
n2π2a3

6L3 .
This is a very small change, which goes as ( aL )3 compared to the odd states for which we

get 〈n|W (x)|n〉 ≈ W0
a
L [2 +

(n πLa)2

6 ] ≈ 2W0
a
L , which goes as a

L . Why are the odd states
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Fig. 7.8: Unperturbed eigenfunc-
tions and probabilities. Symme-
try determines if the perturba-
tion affects certain eigenvalues, or
not. The n = 1 state is strongly
affected because its probability
peaks at the location of the pertur-
bation. Because the probability of
the n = 2 state is a minimum at
the location of the perturbation,
it gets very minimally affected.

Fig. 7.9: Allowed and forbidden
matrix elements obtained from
the symmetry of eigenfunctions
and the perturbation.

so strongly perturbed compared to the even states? The answer lies in the symmetry
of the eigenfunctions of the unperturbed states. Because the first order perturbation
〈n|W (x)|n〉 is due to the perturbation potential W (x) coupling the eigenstates |n〉 with
itself, from Figure 7.8 we see that the perturbation potential is at the maxima of the odd
eigenfunctions (odd around x = 0, but even around x = L/2), but at the nodes or zeroes of
the even eigenfunctions (even around x = 0, but odd around x = L/2). Because the square
integral of the even eigenfunctions is non-zero for the small interval (L−a2 < x < L+a

2 ),
the even eigenfunctions still get perturbed, but by a minuscule amount. Because the odd
eigenfunctions reach their maxima in the same interval, they are perturbed by a large
amount.

The matrix element in the second-order eigenvalue perturbation term 〈n|W (x)|m〉 is
then

Wnm = 〈n|W (x)|m〉 =
2W0

L

∫ L+a
2

L−a
2

dx sin(n
π

L
x) sin(m

π

L
x) (7.30)

We can evaluate the integral and get a most general analytical expression which is long
and uninspiring. But by invoking symmetry, we can predict the fate of the eigenvalues due
to the second order perturbation terms. Consider Figure 7.9. Since the perturbation is
symmetric around x = L

2 , we argue that the integral is zero whenever n is odd and m is
even, or if n is even and m is odd. The matrix element is non-zero only when both n,m
are odd or even. This means the perturbation potential is capable of only coupling say
state |1〉 with |3〉, |5〉, ..., but state |1〉 cannot couple to (or ‘talk to’) states |2〉, |4〉, ... This
is an example of a selection rule for coupling.

Let us find the matrix elements for the ground state |1〉. The matrix elements needed

are Wm1 = 〈m|W (x)|1〉 = 4W0
sin(mπ2 )

(m2−1)π [m cos(πa2L ) sin(mπa
2L )− sin(πa2L ) cos(mπa

2L )]. Because

for even m, the term sin(mπ2 ) = 0, state |1〉 does not couple to any other even state due
to the perturbation. For all m =odd states, we make use of the small arguments of the
sine and cosine above to estimate Wm1 ≈ 2

LW0a, and write the second order perturbation

terms as |Wm1|2
E−Em .

Brillouin-Wigner Perturbation Theory: We then combine the first and second
order perturbation terms to write the perturbed eigenvalue to be

E ≈ E1 +
2a

L
W0 +

∑
m=3,5,...

( 2aW0

L )2

E − [ ~2

2me
(mπL )2 + 2a

LW0]
. (7.31)

This is the BW result. To make progress, we must solve the above polynomial equa-
tion. Let us denote E0 = 2a

LW0 If we consider only m = 3 in the second order sum and
neglect m = 5, 7, ..., we get (E − E1 − E0)(E − E3 − E0) ≈ E2

0 , which give the eigen-
values E′1 = 1

2 [(E1 + E3) + 2E0 −
√

(E3 − E1)2 + 4E2
0 ], and E′3 = 1

2 [(E1 + E3) + 2E0 +√
(E3 − E1)2 + 4E2

0 ]. If E0 = 0, we recover the original eigenvalues. Since the unperturbed
energy eigenvalues are non-degenerate in this problem, it is illuminating to apply the RS
perturbation theory.

Rayleigh-Schrodinger Perturbation Theory: The RS theory from Equation 7.24
gives the perturbed ground state energy

E′1 ≈ E1 + E0 +
∑

m=3,5,...

E2
0

E1

1−m2 − E0

E1

≈ E1 + E0 −
E2

0

8E1
. (7.32)

Because m2 increases rapidly with m and far exceeds 1 − E0

E0
, we get an acceptable

estimate by retaining only the m = 3 term: E′1 ≈ E1 + E0 − E2
0

8E1
. The two perturbation
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Fig. 7.10: Unperturbed eigenval-
ues increasing as m2. Diagonal
or 1st-order perturbation Wmm al-
ternates between strong and weak
before stabilizing for higher states
at the spatially averaged pertur-
bation ≈W0

a
L . Off-diagonal ma-

trix elements Wm1 of the ground
state u = 1 with higher states
m. 2nd order perturbation shift
decays rapidly with increasing en-
ergy separation.

terms can be now understood: the first-order ‘dc’ shift due to the perturbation is E0, and
the second order downward energy shift −E2

0/8E1 is because the perturbation couples
state |1〉 with state |3〉, the interaction is always replusive, and state |3〉 pushes state |1〉
energy down. The denominator 8E1 = E3 −E1 is the energy separation of the two states
that are interacting due to the perturbation.

We can also find the change in the eigenfunction using Equation 7.25. To find how the
ground state wavefunction has changed, we write

|ψ〉 = |1〉+
∑

m=3,5,...

E0

E1(1−m2 − E0

E1
)
|m〉 =⇒ ψ(x) = ψ1(x)+

∑
m=3,5,...

E0

E1(1−m2 − E0

E1
)
ψm(x)

(7.33)

Because the unperturbed eigenfunctions are ψn(x) =
√

2
L sin(n πLx), we can make a plot

of the new eigenfunction, and specifically its square to find the probability distribution
of the ground state. Figure 7.11 shows that the peak at the center x = L/2 is reduced
from the unperturbed value. The perturbing potential at the center of the well pushes the
ground state away from the center.

Matrix Method: As the most general method of perturbation theory, we apply the
Matrix method to obtain the perturbed eigenvalues and eigenfunctions. Let us consider
the states m = 1, 2, 3, and write down the matrix for the perturbed Hamiltonian H0 + Ŵ :

Ĥ0 +W =


|1〉 |2〉 |3〉

〈1| E1 + E0 0 E0

〈2| 0 E2 0
〈3| E0 0 E3 + E0

, (7.34)

and either by hand, or with a package, find the Eigensystem of this set. We did an
example shown in Figure 6.4 in Chapter 6. Now this is a very powerful technique, and
matrix algorithms implemented on computers are efficient and fast. Though we are doing
this example with a restricted basis of 3 states, it scales to larger basis sets reasonably well.

Figure 7.12 shows the outputs of the matrix perturbation theory with the three-set
problem. The perturbed eigenvalues are plotted as a function of the perturbation strength.
The values of the strain are greatly exaggerated for this example, but the beauty of the
Matrix version is that it is NOT restricted like the BW or RS versions are. The only
approximation here is that we are choosing a restricted basis set.

The effect of the perturbation are evident in the movement of the eigenvalues with
W0. State |2〉 energy is unperturbed, because of symmetry arguments made above. States
|1〉 and |3〉 are pushed up in energy due to the perturbation potential. However, due to
the mutual repulsion between states |3〉 and |1〉, state |3〉 is pushed up, and state |1〉 is
pushed down, leading to noticeable curvatures. Finally, we note that when the perturbation
becomes extremely strong, state |1〉 merges with state |2〉. This is the limit of a Dirac-delta
potential at the center of a particle-in-a-box problem: only the even eigenvalues are allowed
because the wavefunction must go to zero at the location of the Dirac delta potential.
The shift in the wavefunction and probability distribution for the ground state due to
perturbation calculated from the Matrix method is shown in Figure 7.12 too. These are
approximate because of the small basis set, but tell the correct story.

Chapter Summary

By combining the Matrix method, the Brillouin-Wigner method, and the Rayleigh-
Schrodinger method, we learnt a powerful bag of tricks in this chapter to apply to
quantum mechanical problems that are not analytically solvable by dividing the problem
to an analytically solvable part, and treating the rest as a perturbation.
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Fig. 7.11: The perturbation
pushes some of the probability
out from the center as is expected
from purely classical grounds.

Fig. 7.12: The perturbation of the
three lowest eigenvalues neglect-
ing all higher states. The effect
on the 2nd state is forbidden by
symmetry, and the repulsive inter-
action between states m = 1 and
m = 3 are evident. The matrix
formulation also gives the expan-
sion coefficients for the perturbed
wavefunctions from which the new
eigenfunctions can be created.

Problems
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Fig. 8.1: Alan Wilson in 1930s
explained how the number of elec-
trons and periodic arrangement
of atoms decides if a solid is a
metal, a semiconductor, or an in-
sulator. The idea is similar to
the formation of open and closed
shells for electrons in atoms pe-
riodically as the electron number
increases. The formation of a crys-
tal causes the formation of bands
and gaps for electron energies; par-
tially filled bands are conductive,
similar to chemically reactive el-
ements with open shells. If the
highest band is completely filled
with a significant energy gap, it is
an insulator.
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Sommerfeld (and Bethe) theory of electrons in a metal could explain most measured
properties of a metal. However, even in late 1930s, the theory gave no hint whatsoever
about the existential question: why are some solids metals, and others insulators? The late
1930s was when most of quantum mechanics was formalized by the likes of Schrodinger,
Heisenberg, and Dirac. A rather remarkable yet bewildering logical consequence of the
wave nature of electrons when they are put in a periodic potential was discovered by
Felix Bloch. Bloch showed that if V (x+ L) = V (x), then the wavefunction is of the form
ψk(x) = eikxuk(x), where uk(x + L) = uk(x). However, we will come back to Bloch’s
approach only at the end of this chapter, from a perturbative route.

We discussed in Chapters 3 and 5 how the Pauli exclusion principle led to the elements
of the periodic table. To fill the allowed electron shell orbitals allowed by the Schrodinger
equation, as we add electrons to the orbitals (and protons and neutrons to the nucleus)
to create new elements, every now and then there are situations when a shell becomes
completely filled, and the element becomes unreactive. That was the reason behind the
existence of the Noble gases He, Ne, Ar, ...

If we extend this concept to the conduction electron states in a crystal, it may be
possible that as we increase the electron concentration, the conductivity increases, but at a
certain level the conductivity decreases and the ‘electron shells’ in a crystal ‘closes’, and
the electrons become inert, or in other words, we have an insulating solid. This should
periodically repeat. Could be the explanation for the periodic occurence of metallic and
insulating crystals as we traverse the periodic table? Alan Wilson (Figure 8.1) explained
how electrons in solids lead to metallic, semiconducting, or insulating behavior depending
on their number, and the presence of the periodic potential due to the atoms in the crystal.

In Chapter 7, we developed the formalism for time-independent perturbation theory. In
this chapter, we apply the theory to a free electron perturbed by a periodic potential.
The results we obtain will highlight most of the fundamental properties of semiconductors.
These include their energy bandstructure E(k) and opening of bandgaps Eg, evolution
of effective masses m? of various bands, work function, interactions between electron
states in solids, and the role of defects on the interactions between electron states. In
brief, the chapter will capture the essence of time-independent semiconductor physics.
Much of the following chapters are detailed treatments of increasing levels of sophistication,
till we need time-dependent behavior which will require new concepts. The central time-
independent phenomena are captured in this chapter. We start from the free electron
problem.

75
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8.1 The free-electron

In earlier chapters we have discussed the electron-in-a-ring or free electron in a periodic
1D circle problem in quantum mechanics. The potential term in the Schrodinger equation
is zero V (x) = 0. The eigenvectors |k〉 are such that their real-space projection yields the
plane wave-function

〈x|k〉 = ψk(x) =
1√
L
eikx, (8.1)

with corresponding eigenvalues

E0(k) =
~2k2

2m0
, (8.2)

where m0 ∼ 9.1× 10-31kg is the free-electron mass. We work in a periodic-boundary
condition picture, which requires ψ(x+L) = ψ(x), which requires that the k’s are discrete,
given by kn = (2π/L)n where n is any integer. We note immediately that a cross-matrix
element of the type

〈km|kn〉 =

∫
dx〈km|x〉〈x|kn〉 =

∫ L

0

dxψ?km(x)ψkn(x) =
1

L

∫ L

0

dxei2π(n−m)x = δn,m

(8.3)
is a Kronecker-delta function. This is of course how it should be, since the eigenvectors

states |kn〉 and |km〉 are mutually orthogonal if (n,m) are different, and the states are
normalized to unity. The Hamiltonian matrix is thus diagonal, with the diagonal matrix
elements 〈k|Ĥ0|k〉 = E0(k) given by the free-electron bandstructure in equation 8.2. The
off-diagonal elements 〈km|Ĥ0|kn〉 = En〈km|kn〉 are zero because of equation 8.3.

8.2 Periodic perturbation

In a crystalline solid, the electron experiences a periodic potential. To model the situation
for the electron on the ring, let’s add a perturbation to the free electron in the form of a
periodic potential. The perturbation potential is

W (x) = −2UG cos(Gx) = −UG(eiGx + e−iGx), (8.4)

where UG is the ‘strength’ in units of energy, and G = 2π/a, where a is the lattice-
constant of the perturbation. This periodic potential is shown in Fig 8.2. The lowest
energy of a classical particle in this potential landscape is clearly −2UG, at the bottom

of a valley. The new Hamiltonian is then Ĥ = Ĥ0 + W (x) = − ~2

2m0

∂2

∂x2 − 2UG cos(Gx).
In principle this 1D Schrodinger-equation can be solved numerically to a large degree of
accuracy directly without perturbation theory. But we are going to apply perturbation
theory to highlight the insights it affords.

We can find the entire Hamiltonian matrix if we find the matrix elements 〈k2|Ĥ0 +
W (x)|k1〉 = E0(k1)δk1,k2

+〈k2|W (x)|k1〉. The first term is the unperturbed diagonal matrix
element, and the second term is due to the perturbation. The perturbation matrix element
evaluates to

〈k2|W (x)|k1〉 = −UG
L

∫ L

0

dxei(k1−k2)x(eiGx + e−iGx) = −UGδk1−k2,±G. (8.5)

The Kronecker-delta implies that the perturbation only couples states |k1〉 and |k2〉 if
their wavevector difference is k1 − k2 = ±G, the reciprocal lattice vector of the perturbing
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Fig. 8.2: A periodic potential W (x) = −2UG cos(Gx) acts as a perturbation to the free
electron.

potential. Recall from chapter 7 that we can find the perturbed eigenvalues by the matrix
method, which works both for degenerate and non-degenerate states. But if we were to
consider all the |k〉 states, the matrix would be ∞-dimensional. So we should choose a
restricted set for identifying the eigenvalues.

8.3 Degenerate Perturbation Theory

It is clear from equation 8.5 that a state |k〉 will interact due to the periodic perturbation
with only two other states |k +G〉 and |k−G〉 directly. This will require us to solve a 3×3
Hamiltonian for the three states |k −G〉, |k〉, and |k +G〉. But also recall in chapter 7 the
result of non-degenerate perturbation theory told us that the changes in eigenvalues for
states widely separated in energy goes as |W12|2/(E1 − E2). So the states that interact
most strongly due to the perturbation must be close (or degenerate) in energy, but their
wavevectors should still follow k1 − k2 = ±G. Clearly, two such states are |+G/2〉 and
|−G/2〉. This is illustrated in Fig 8.3. To locate states that have non-zero matrix elements,
one has to imagine sliding the double-headed arrow of length G along the k−axis. Two
situations are shown, one when the unperturbed states are degenerate, and one when they
are not. Also remember the repulsive nature of the interaction: in Fig 8.3 we expect state
|k1〉 to be pushed down, and state |k2〉 to be pushed up due to their mutual interaction.

The unperturbed eigenvalue of the two degenerate states is E0(G/2) = ~2G2/8m0 = F .
Clearly this is a case for the application of degenerate perturbation theory1. The problem
is rather simple, since the Hamiltonian is a 2×2 matrix:

Ĥ0 +W =

( |+ G
2 〉 | − G

2 〉
〈+G

2 | F −UG
〈−G2 | −UG F

)
, (8.6)

where we write out the ket and bra states explicitly to highlight where the matrix
elements come from. The eigenvalues of this matrix are obtained by solving the determinant
of the matrix: (F −E)2−U2

G = 0, which yields E± = F ±UG. This implies the degenerate
unperturbed states E0(+G/2) = E0(−G/2) = F have now been split to two energies E+

and E− with the difference E+ − E− = 2UG by the periodic perturbation. This is the
opening of a bandgap in the allowed energies for the electron, and is highlighted in Fig 8.3.

1We will see later that the Brillouin-Wigner (BW) non-degenerate perturbation theory also can give
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Fig. 8.3: Bandgap opening in the energy spectrum of a free electron upon perturbation by
a periodic potential.

We note here that the general eigenvalues of the 2×2 Hamiltonian matrix[
H11 H12

H21 H22

]
(8.7)

are

E± =
H11 +H22

2
±
√

(
H11 −H22

2
)2 + |H12|2, (8.8)

the corresponding eigenvectors are

[
a1

a2

]
±

=

 H12√
|H12|2+(E±−H11)2

E±−H11√
|H12|2+(E±−H11)2

 (8.9)

Since we expand the perturbed states as |ψ〉 =
∑
n an|n〉, for the degenerate states, we

obtain the perturbed eigenvectors as

|±〉 = a1±|+
G

2
〉+ a2±| −

G

2
〉. (8.10)

For the degenerate states we get a1+ = −1/
√

2 and a2+ = +1/
√

2, and a1− = −1/
√

2
and a2− = −1/

√
2. The identification of the coefficients helps us convert the perturbed

eigenvectors into the eigenfunctions

〈x|+〉 = ψ+(x) = (− 1√
2

) · (e
iG2 x√
L

) + (+
1√
2

) · (e
−iG2 x√
L

) = −i
√

2

L
sin(

G

2
x), (8.11)

and

〈x|−〉 = ψ−(x) = (− 1√
2

) · (e
iG2 x√
L

) + (− 1√
2

) · (e
−iG2 x√
L

) = −
√

2

L
cos(

G

2
x). (8.12)

This is illustrated in Fig 8.4. Note now the properties of |ψ+(x)|2 = (2/L) sin2(Gx/2)
and |ψ−(x)|2 = (2/L) cos2(Gx/2). The probability densities for the higher energy states

the same result.
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E+ = F +UG go as sin2(Gx/2), meaning they peak at the highest points of the perturbing
potential. The high potential energy is responsible for the high net energy of these states.
Similarly, the lower energy states E− = F − UG pile up in the valleys, and consequently
have lower energies. Note that due to the perturbation, the new eigenfunctions of the
degenerate states no longer have a uniform probability distribution in space.

Fig. 8.4: Probability pileups of band-edge states.

But what about states that are not degenerate? Let’s look at the states |k2〉 = |G2 + k′〉
and |k1〉 = | − G

2 + k′〉, for example those shown in Fig 8.3. By tuning the magnitude of k′,
we can move as close to the ±G/2 states as possible. The perturbed Hamiltonian is

Ĥ0 +W =

( |+ G
2 + k′〉 | − G

2 + k′〉
〈+G

2 + k′| E0(+G
2 + k′) −UG

〈−G2 + k′| −UG E0(−G2 + k′)

)
, (8.13)

where we write the diagonal unperturbed eigenvalues as

E0(±G
2

+ k′) =
~2G2

8m0︸ ︷︷ ︸
F

+
~2k′

2

2m0︸ ︷︷ ︸
E(k′)

± ~2Gk′

2m0︸ ︷︷ ︸
2
√
FE(k′)

= F + E(k′)± 2
√
FE(k′). (8.14)

The eigenvalues then are obtained from equation 8.8 as

E±(k′) = F + E(k′)±
√

4FE(k′) + U2
G ≈ F + E(k′)± UG(1 +

2FE(k′)

U2
G

), (8.15)

where we have expanded the square root term using (1 + x)n ≈ 1 + nx+ . . . for x << 1
assuming 4FE(k′)/U2

G << 1. The energy dispersion then becomes

E±(k′) ≈ (F ± UG) + (1± 2F

UG
)
~2k′

2

2m0
, (8.16)

from where we choose the + sign as a ‘conduction’ band with lowest energy Ec(0) =
F + UG, and the − sign as the ‘valence’ band with highest energy Ev(0) = F − UG. We
rewrite the energy dispersions as

Ec(k
′) ≈ Ec(0) + ~2k′2

2m?c

Ev(k
′) ≈ Ev(0) + ~2k′2

2m?v

(8.17)
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where the conduction band effective mass is m?
c = m0

1+ 2F
UG

, and the valence band effective

mass is m?
v = m0

1− 2F
UG

. We note immediately that the effective mass of carriers at the

band-edges is different from the mass of the free-electron. The conduction band edge
effective mass is lower than the free electron mass; the electron moves as if it is lighter.
If we assume that UG << F , we can neglect the 1 in the denominator, and we get the
interesting result that m?

c ∼ (UG/2F )m0, that is, the effective mass is proportional
to the energy bandgap. We will see later in later chapters in the k · p theory that for
most semiconductors, this is an excellent rule of thumb for the conduction band effective
mass.

The valence band effective mass under the same approximation is m?
v ∼ −(UG/2F )m0,

i.e., it is negative. This should not bother us at least mathematically, since it is clear that
the bandstructure curves downwards in Fig 8.3, so its curvature is negative. Physically,
it means that the electron in the valence band moves in the opposite direction to an
electron in the conduction band in the same |k〉 state. This is clear from the group velocity
vg = ~−1dE(k)/dk: the slopes of the states are opposite in sign.

Are there k−states other than | ± G/2〉 at which energy gaps develop due to the
perturbation? Let’s examine the states | ± G〉, with unperturbed energy 4F . Clearly,
k2−k1 = 2G, so there is no direct interaction between the states. But an indirect interaction
of the form |−G〉 ↔ |0〉 ↔ |+G〉 is possible. This is illustrated in Fig 8.5. The eigenvalues
for such an interaction are found by diagonalizing the 3× 3 perturbation Hamiltonian

Ĥ0 +W =


| −G〉 0 |+G〉

〈−G| 4F −UG 0
〈0| −UG 0 −UG
〈+G| 0 −UG 4F

, (8.18)

which yields the perturbed eigenvalues 4F, 2F ±
√

4F 2 + 2U2
G. If the perturbation

potential is weak, i. e., UG << F , then we can expand the square root to get the three
eigenvalues 4F, 4F +U2

G/2F,−U2
G/2F . We note that there indeed is a splitting of the |±G〉

states, with an energy bandgap U2
G/2F . Similarly, gaps will appear at ±mG/2, due to

indirect interactions | −mG/2〉 ↔ | − (m/2 + 1)G〉 . . .↔ |+mG/2〉, with a bandgap that
scales as UmG . For example, the indirect interaction | − 3G/2〉 ↔ | −G/2〉 ↔ |+G/2〉 ↔
|+ 3G/2〉 is depicted schematically in Fig 8.5.

Fig. 8.5: Indirect coupling via intermediate states. Each coupling has a strength −UG.

We also note that the intermediate state |k = 0〉 which had a zero unperturbed energy
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now has been pushed down, and has a negative energy of −U2
G/2F . Thus the ground

state energy of the electron is now negative, implying it is energetically favorable that the
electron be in this state. This idea develops into the concept of a work-function of a solid:
it takes energy to kick out an electron from the ground state into the free-electron state,
which has a minimum of zero. The work-function is schematically illustrated in Fig 8.3.

8.4 Non-degenerate Perturbation Theory

A number of results that we obtained in the previous section may be obtained using
non-degenerate perturbation theory. Recall non-degenerate perturbation theory in chapter
7 Equation 7.23, provided the Brillouin-Wigner (BW) result

E ≈ Eu + 〈u|W |u〉+
∑
m 6=u

|〈m|Ŵ |u〉|2
E − E′m

, (8.19)

with the Rayleigh-Schrodinger result obtained by simply replacing E → Eu on the right
side. Let us investigate whether we can apply it to the electron in a periodic potential
problem.

If we apply the BW-theory to the states |u〉 = |±G/2〉, we identify Eu = F , 〈u|Ŵ |u〉 = 0,
and 〈−G/2|Ŵ |+G/2〉 = −UG, the sum in the RHS of equation 8.19 has just one term,
and we get

E ≈ F +
U2
G

E − F =⇒ E ≈ F ± UG, (8.20)

which actually yields the same result as obtained by degenerate perturbation theory
in the last section. The two degenerate states are split, with a gap of 2UG. This is an
advantage of the BW-theory: it works even for degenerate states, though it is typically
classified under non-degenerate perturbation theory. Note that we had to solve the same
quadratic equation as the 2 × 2 matrix in the degenerate theory. They are the same
thing. The disadvantage of the BW theory is that it requires us to solve for the roots of a
polynomial equation.

Clearly the RS-theory

E ≈ Eu + 〈u|W |u〉+
∑
m 6=u

|〈m|Ŵ |u〉|2
Eu − E′m

, (8.21)

cannot be applied to degenerate states, since the the denominator in the sum on the
RHS will become zero. But it is well-suited for non-degenerate states. For example, if we
ask the question how is state |0〉 perturbed by its interaction with states | −G〉 and |+G〉,
we get

E ≈ 0 + 0 +
U2
G

0− 4F
+

U2
G

0− 4F
= −U

2
G

2F
, (8.22)

which is the approximate result we had obtained by diagonalizing the perturbation
matrix in equation 8.18. For small perturbations, this result is a good approximation. But
if UG increases, it is easy to see that the minimum energy −U2

G/2F can become lower than
the classically minimum energy allowed in the system, which is −2UG. This should be
clear from Fig 8.2. The minimum energy allowed for the electron should be larger than
−2UG because of quantum confinement, implying UG << 4F .

Application of the BW theory removes this restriction, since it requires the solution of

E ≈ 0 + 0 +
U2
G

E − 4F
+

U2
G

E − 4F
= − 2U2

G

E − 4F
, (8.23)
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Fig. 8.6: Felix Bloch showed math-
ematically that electron waves can
propagate in a crystal with no
scattering, by introducing a wave-
function that electrons experienc-
ing a periodic potential must sat-
isfy. Bloch was awarded the No-
bel Prize in physics in 1952 for
his work on nuclear magnetic res-
onance.

which yields the same result as the non-degenerate matrix method for state |0〉: E ≈
2F −

√
4F 2 + 2U2

G. This root is clearly always greater than −2UG, since it asymptotically

approaches −
√

2UG when UG is large. But note that too large a UG compared to F makes
the ‘perturbative’ treatment not valid in the first place.

8.5 Glimpses of the Bloch Theorem

Consider the free electron state |k〉 with real-space projection ψk(x) = 〈x|k〉 = eikx/
√
L.

Due to the periodic potential W (x) = −2UG cos(Gx), this state couples to the states
|k +G〉 and |k −G〉. What is the perturbed wavefunction in real space?

From Equation 7.25 in chapter 7, we write the perturbed state vector |k′〉 as

|k′〉 ≈ |k〉+
〈k +G|W |k〉

E(k)− E(k +G)
|k +G〉+

〈k −G|W |k〉
E(k)− E(k −G)

|k −G〉 (8.24)

where we have used the Rayleigh-Schrodinger version. The matrix elements are −UG;
projecting the perturbed state on 〈x| we get the perturbed wavefunction to be

ψk′(x) = 〈x|k′〉 ≈ eikx√
L
− UG
E(k)− E(k +G)

ei(k+G)x

√
L

− UG
E(k)− E(k −G)

ei(k−G)x

√
L

(8.25)

from where we split off eikx to write the wavefunction as

ψk′(x) ≈ eikx ·
[

1√
L
−
(

UG
E(k)− E(k +G)

)
eiGx√
L
−
(

UG
E(k)− E(k −G)

)
e−iGx√

L

]
︸ ︷︷ ︸

uk(x)

. (8.26)

Note that the wavefunction is of the form eikxuk(x), where the function uk(x) has
the property uk(x + a) = uk(x), because e±iGa = 1. This is really the statement of
the Bloch theorem: the eigenfunctions for an electron in the presence of a periodic
potential can be written in the form ψk(x) = eikxuk(x), where uk(x + a) = uk(x) has
the same periodicity as the potential. A more complicated periodic potential such as
W (x) = −2[UG1 cos(G1x) + UG2 cos(G2x) + ...] will lead to more couplings, and create
more terms in uk(x), but the Bloch decomposition of the wavefunction in Equation 8.26
will still remain true. We call this a ‘glimpse’ of the Bloch theorem because of the ‘≈’ sign
in Equation 8.26; in the next chapter this sign will be rigorously turned into an equality.
The Bloch theorem is a non-perturbative result: it does not depend on the strength of
the periodic potential. But of course we just saw it naturally emerge as a result from
perturbation theory.

8.6 Non-periodic potentials and scattering

We make a few observations of the material covered in this chapter. First, the application
of a periodic potential −2UG cos(Gx) of reciprocal lattice vector G could only directly
couple states that followed k2 − k1 = ±G. This caused the appearance of bandgaps
due to direct interaction at states |k〉 = | ± G/2〉. But due to indirect interactions,
bandgaps also appeared at | ± mG/2〉. If the periodic potential instead was W (x) =
−2[UG1

cos(G1x) + UG2
cos(G2x)], we expect direct gaps at more k−points, and more

direct and indirect coupling of states. The nature of the periodic potential will thus
determine the bandstructure. We show this schematically in Figure 8.7

If instead of a periodic potential, we had a localized potential, say W (x) = V0e
−x/x0 ,

then we can Fourier-expand the potential to obtain W (x) =
∑
G UG cos(Gx), and the
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Fig. 8.7: Periodic potentials only scatter states separated by specific G values, and thus
open bandgaps at specific k values because they have spectral weight only for specific
k′s. Non-periodic potentials on the other hand can scatter a state |k〉 into several states
depending on the weight of the potential in the k−space.

expansion coefficients will dictate the strength of the couplings. We immediately note that
since a localized potential will require a large number of G’s, it will effectively couple a
wide range of k−states, as shown in Figure 8.7. This is why any deviation from periodicity
will couple a continuum of k−states, a phenomena that is responsible for scattering and
localization.

Applications of non-degenerate and degenerate perturbation theory can explain a host
of phenomena in semiconductors, and other quantum systems. In this chapter, we applied
the techniques to the ‘toy-model’ of an electron in a 1D periodic potential. In the next
chapter, we investigate this technique to develop a rather useful model for the electronic
bandstructure of realistic semiconductors.

Chapter Summary

• A free electron can occupy states that have a continuum of energy eigenvalues.

• In a periodic potential, free electron states whose wavelengths are resonant with the
periodic potential undergo diffraction and scattering, and form standing waves.

• The strong interaction opens bandgaps by forbidding propagating states of electrons
within a band of energies, opening bandgaps.

• The total number of states do not change due to the periodic potential. Thus, the
states bunch up, and the bands curve near the edges of the gap.

• The curvature of the bands near the gap are called the effective masses.

• Because of level repulsion, larger the gap, larger the effective mass.

• Because periodic potentials couple state |k〉 with several other states |k ±G〉 where
G is the reciprocal lattice vector, the new allowed states of the electron take the form
of a Bloch function.
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• Periodic potentials scatter specific electron states because of the large spectral
potential at specific k = G.

• Aperiodic, localized, or random potentials scatter electrons into several states.

Problems
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9.1 Perturbation theory

For the k · p theory of semiconductor bandstructure, we recap the results of time-independent
perturbation theory. There are two levels of the solution - the first is degenerate perturba-
tion theory, and the next non-degenerate theory. For k · p theory, the non-degenerate case
is important.

Assume that we have solved the Schrodinger equation for a particular potential with
Hamiltonian H(0)

H(0)|n〉 = ε(0)
n |n〉, (9.1)

and obtained the eigenfunctions |n〉 and eigenvalues ε
(0)
n . Now let us see how the solution

set (eigenfunction, eigenvalue) changes for a potential that differs from the one we have
solved for by a small amount. Denote the new Hamiltonian by H = H(0) +W , where W is
the perturbation.

If the eigenvalues are non-degenerate, the first order energy correction is given by

∆ε(1)
n ≈ 〈n|W |n〉, (9.2)

and there is no correction (to first order, in the absence of non-diagonal matrix elements)
in the eigenfunction. This is just the diagonal matrix element of the perturbing potential.
The second order correction arises from from non-diagonal terms; the energy correction is
given by

∆ε(2)
n ≈

∑
m 6=n

|〈n|W |m〉|2

ε
(0)
n − ε(0)

m

, (9.3)

where |m〉 are all other eigenfunctions. The correction to the eigenfunction is

|p〉 = |n〉+
∑
m6=n

〈m|W |n〉
εn − εm

|m〉. (9.4)

Thus, the total perturbed energy is given by

εn ≈ ε(0)
n + ∆ε(1)

n + ∆ε(2)
n = ε(0)

n + 〈n|W |n〉+
∑
m 6=n

|〈n|W |m〉|2

ε
(0)
n − ε(0)

m

, (9.5)

and the perturbed eigenfunction is given by the the equation before last.
Some more facts will have a direct impact on bandstructure calculation by k · p method.

The total second-order perturbation ∆ε
(2)
n arises due to the interaction between different

85
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eigenvalues. Whether interaction between states occurs or not is determined by the matrix
elements 〈n|W |m〉; if it vanishes, there is no interaction. Whether the states vanish or not
can typically be quickly inferred by invoking the symmetry properties of the eigenfunctions
and the perturbing potential W .

Let us look at the effect of interaction of a state with energy ε
(0)
n with all other

eignestates. Interacting states with energies ε
(0)
m higher than ε

(0)
n will lower the energy εn

by contributing a negative term; i.e., they push the energy down. Similarly, states with

energies lower than ε
(0)
n will push it up. The magnitude of interaction scales inversely with

the difference in energies; so, the strongest interaction is with the nearest energy state.

This is all the basic results that we need for k · p theory. The last homework that needs
to be done is a familiarity with the consequences of symmetry, which we briefly cover now.

9.2 Symmetry

A brief look at the symmetry properties of the eigenfunctions would greatly simplify solving
the final problem, and greatly enhance our understanding of the evolution of bandstructure.
First, we start by looking at the energy eigenvalues of the individual atoms that constitute
the semiconductor crystal. All semiconductors have tetrahedral bonds that have sp3

hybridization. However, the individual atoms have the outermost (valence) electrons in in
s- and p-type orbitals. The symmetry (or geometric) properties of these orbitals are made
most clear by looking at their angular parts -

s = 1 (9.6)

px =
x

r
=
√

3 sin θ cosφ (9.7)

py =
y

r
=
√

3 sin θ sinφ (9.8)

pz =
z

r
=
√

3 cos θ. (9.9)

x

y

z

x

y

z

x

y

z

x

y

z

s - orbital px - orbital py - orbital pz - orbital

Fig. 9.1: s- and p-orbitals of atomic systems. The s-orbital is spherical, and hence symmetric
along all axes; the p-orbitals are antisymmetric or odd along the direction they are oriented
- i.e., the px orbital has two lobes - one positive, and the other negative.

The spherical s-state and the p-type lobes are depicted in Figure 2. Let us denote the
states by |S〉, |X〉, |Y 〉, |Z〉.

Once we put the atoms in a crystal, the valence electrons hybridize into sp3 orbitals
that lead to tetrahedral bonding. The crystal develops its own bandstructure with gaps
and allowed bands. For semiconductors, one is typically worried about the bandstructure
of the conduction and valence bands only. It turns out that the states near the band-edges
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|S> u|S>+v|P>
More indirect -> more |P>

Linear combination
of p-type states of the
form a|X> + b|Y> + c|Z>

Direct
gap

Indirect
gap

valence
bands

conduction
band

bandgap

HH

LH

SO

E

k

Fig. 9.2: The typical bandstructure of semiconductors. For direct-gap semiconductors, the
conduction band state at k = 0 is s-like. The valence band states are linear combinations
of p-like orbitals. For indirect-gap semiconductors on the other hand, even the conduction
band minima states have some amount of p-like nature mixed into the s-like state.

behave very much like the the |S〉 and the three p-type states that they had when they
were individual atoms.

For direct-gap semiconductors, for states near the conduction-band minimum (k = 0),
the Bloch lattice-function uc(k, r) = uc(0, r) possesses the same symmetry properties as
a |S〉 state1. In other words, it has spherical symmetry. The states at the valence band
maxima for all bands, on the other hand, have the symmetry of p-orbitals. In general,
the valence band states may be written as linear combinations of p-like orbitals. Figure 3
denotes these properties. So, we see that the Bloch lattice-functions retain much of the
symmetries that the atomic orbitals possess. To put it in more mathematical form, let us
say that we have the following Bloch lattice-functions that possess the symmetry of the s-
and px, py, pz-type states - us, ux, uy,&uz. Then, we make the direct connection that uc
is the same as us, whereas the Bloch lattice-functions of the valence bands usv are linear
combinations of ux, uy,&uz.

Without even knowing the exact nature of the Bloch lattice-functions, we can imme-
diately say that the matrix element between the conduction band state and any valence
band state is

〈uc|uv〉 = 0, (9.10)

i.e., it vanishes. This is easily seen by looking at the orbitals in Figure 2; the p-states
are odd along one axis and even along two others; however, the s-states are even. So, the
product, integrated over all unit cell is zero. Note that it does not matter which valence
band we are talking about, since all of them are linear combinations of p-orbitals.

Next, we look at the momentum-matrix element, 〈uc|p|uv〉 between the conduction and
valence bands. Since we do not know the linear combinations of ux, uy,&uz that form the
valence bands yet, let us look at the momentum-matrix elements 〈us|p|ui〉, with i = x, y, z.
The momentum operator is written out as p = −i~(x∂/∂x + y∂/∂y + z∂/∂z), and it is
immediately clear that

〈us|p|ui〉 = 〈us|pi|ui〉 ≡ P, (9.11)

i.e., it does not vanish. Again, from Figure 2, we can see that the momentum operator
along any axis makes the odd-function even, since it is the derivative of that function. The

1If the semiconductor has indirect bandgap, the conduction-band minimum state is no longer |S〉-like; it
has mixed |S〉 and p-characteristics.
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matrix-element is defined to be the constant P . We also note that

〈us|pi|uj〉 = 0, (i 6= j). (9.12)

To go into a little bit of detail, it can be shown2 that the valence band states may be
written as the following extremely simple linear combinations

uHH,↑ = − 1√
2

(ux + iuy), (9.13)

uHH,↓ =
1√
2

(ux − iuy), (9.14)

uLH,↑ = − 1√
6

(ux + iuy − 2uz), (9.15)

uLH,↓ =
1√
6

(ux − iuy + 2uz), (9.16)

uSO,↑ = − 1√
3

(ux + iuy + uz), (9.17)

uSO,↓ =
1√
3

(ux − iuy − uz) (9.18)

and note that
〈us|p|ui〉 = 0, (9.19)

which in words means that Bloch lattice-functions of opposite spins do not interact. With
a detailed look at perturbation theory and symmetry properties, we are in the (enviable!)
position of understanding k · p theory with ease.

9.3 k · p theory

Substituting the Bloch wavefunction into Schrodinger equation, we obtain a equation
similar to the Schrodinger equation, but with two extra terms -

[H0 +
~
m0

k · p +
~2k2

2m0︸ ︷︷ ︸
W

]u(k, r) = ε(k)u(k, r), (9.20)

where u(k, r) is the Bloch lattice function.

9.4 No spin-orbit interaction

Let us first look at k · p theory without spin-orbit interaction. We will return to spin-orbit
interaction later. In the absence of spin-orbit interaction, the three valence bands are
degenerate at k = 0. Let us denote the bandgap of the (direct-gap) semiconductor by Eg.

Let us look at the eigenvalues at k = 0, i.e., at the Γ point for a direct-gap semicon-
ductor. So the Bloch lattice functions are u(0, r). We assume that we have solved the
eigenvalue problem for k = 0, and obtained the various eigenvalues (call then εn(0)) for
the corresponding eigenstates (call them |n〉). We look at only four eigenvalues - that of
the conduction band (|c〉) at k = 0, and of the three valence bands - heavy hole (|HH〉),
light hole (|LH〉) and the split-off band (|SO〉). In the absence of spin-orbit interaction,
they are all degenerate. The corresponding eigenvalues for a cubic crystal are given by
(εc(0) = +Eg, εHH(0) = 0, εLH(0) = 0, εSO(0) = 0) respectively, where Eg is the (direct)
bandgap.

2Broido and Sham, Phys. Rev B, 31 888 (1986)
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Fig. 9.3: k · p bandstructure in the absence of spin-orbit coupling.

Using the two results summarized in the last section, we directly obtain that the nth

eigenvalue is perturbed to

εn(k) ≈ εn(0) +
~2k2

2m0
+

~2

m2
0

∑
m6=n

|〈un(0, r)|k · p|um(0, r)〉|2
εn(0)− εm(0)

, (9.21)

which can be written in a more instructive form as

εn(k) = εn(0) +
~2k2

2m?
, (9.22)

where
1

m?
n

=
1

m0
[1 +

2

m0k2

∑
m6=n

|〈un(0, r)|k · p|um(0, r)〉|2
εn(0)− εm(0)

] (9.23)

is the reciprocal effective mass of the nth band.
Let us look at the conduction band effective mass. It is given by

1

m?
c

=
1

m0
[1 +

2

m0k2
[
1

2
(
k2P 2

Eg
) +

1

6
(
k2P 2

Eg
) +

1

3
(
k2P 2

Eg
)]. (9.24)

Here we have used to form of Bloch lattice functions given in Equations (17)-(22). Cancelling
k2, and recasting the equation, we get

m?
c ≈

m0

1 + 2P 2

m0EG

. (9.25)

To get an estimate of the magnitude of the momentum matrix element P , we do
the following. Looking at the momentum matrix element, it is in the form 〈uc|p|uh〉.
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The momentum operator will extract the k−value of the state it acts on. Since the
valence (and conduction) band edge states actually occur outside the first Brillouin Zone
at |k| = G = 2π/a and are folded back in to the Γ-point in the reduced zone scheme, it
will extract a value |P | ≈ ~ · 2π/a, where a is the lattice constant of the crystal. Using this
fact, and a typical lattice constant of a ≈ 0.5nm we find that

2P 2

m0
=

8π2~2

m0a2
≈ 24eV. (9.26)

In reality, the momentum matrix element of most semiconductors is remarkably constant!
In fact, it is a very good approximation to assume that 2P 2/m0 = 20eV , which leads to
the relation

m?
c ≈

m0

1 + 20eV
EG

, (9.27)

which in the limit of narrow-gap semiconductors becomes m?
c ≈ (Eg/20)m0, bandgap in

eV. This is a remarkably simple and powerful result!
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Fig. 9.4: Conduction band effective masses predicted from k · p theory. Note that the
straight line is an approximate version of the result of k · p theory, and it does a rather
good job for all semiconductors.

It tells us that the effective mass of electrons in a semiconductor increases as the bandgap
increases. We also know exactly why this should happen as well: the conduction band
energies have the strongest interactions with the valence bands. Since valence band states
are lower in energy than the conduction band, they ‘push’ the energies in the conduction
band upwards, increasing the curvature of the band. This directly leads to a lower effective
mass. The linear increase of effective mass with bandgap found from the k · p theory is
plotted in Figure 5 with the experimentally measured conduction band effective masses.
One has to concede that theory is rather accurate, and does give a very physical meaning
to why the effective mass should scale with the bandgap.

Finally, in the absence of spin-orbit interaction, the bandstructure for the conduction
band is

εc(k) ≈ Eg +
~2k2

2m?
c

, (9.28)
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where the conduction band effective mass is used. Note that this result is derived from
perturbation theory, and is limited to small regions around the k = 0 point only. One rule
of thumb is that the results from this analysis hold only for |k| � 2π/a, i.e., far from the
BZ edges.

9.5 With spin-orbit interaction

What is spin-orbit interaction? First, we have to understand that it is a purely relativistic
effect (which immediately implies there will be a speed of light c somewhere!). Putting it
in words, when electrons move around the positively charged nucleus at relativistic speeds,
the electric field of the nucleus Lorentz-transforms to a magnetic field seen by the electrons.
The transformation is given by

B = −1

2

(v ×E)/c2√
1− v2

c2

≈ −1

2

v ×E

c2
, (9.29)

where the approximation is for v � c. To give you an idea, consider a Hydrogen atom -
the velocity of electron in the ground state is v ≈ αc where α = 1

137 is the fine structure
constant, and the consequent magnetic field seen by such an electron (rotating at a radius
r0 = 0.53Å) from the nucleus is - hold your breath - 12 Tesla! That is a very large field,
and should have perceivable effects.

Spin-orbit splitting occurs in the bandstructure of crystal precisely due to this effect.
Specifically, it occurs in semiconductors in the valence band, because the valence electrons
are very close to the nucleus, just like electrons around the proton in the hydrogen atom.
Furthermore, we can make some predictions about the magnitude of splitting - in general,
the splitting should be more for crystals whose constituent atoms have higher atomic
number - since the nuclei have more protons, hence more field!
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Fig. 9.5: The spin-orbit splitting energy ∆ for different semiconductors plotted against
the average atomic number Zav. It is a well-known result that the spin-orbit splitting for
atomic systems goes as Z4; the situation is not very different for semiconductors.

In fact, the spin-orbit splitting energy ∆ of semiconductors increases as the fourth power
of the atomic number of the constituent elements. That is because the atomic number is
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equal to the number of protons, which determines the electric field seen by the valence
electrons. I have plotted ∆ against average atomic number in Figure 6, and shown a rough
fit to a Z4

av polynomial. For a detailed account on the spin-orbit splitting effects, refer to
the textbooks (Yu and Cardona) mentioned in the end of this chapter.

Let us now get back to the business of building in the spin-orbit interaction to the
k · p theory. Spin-orbit coupling splits the 3 degenerate valence bands at k = 0 into a
degenerate HH and LH states, and a split-off state separated by the spin-orbit splitting
energy ∆. The eigenvalues at k = 0 are thus given by (εc(0) = +Eg, εHH(0) = 0, εLH(0) =
0, εSO(0) = −∆) respectively.

These bandgap Eg, the spin-orbit splitting ∆, and the momentum matrix element P
(or, equivalently, the conduction-band effective mass m?

c) evaluated in the last section are
the inputs to the k · p theory to calculate bandstructure - that is, they are known.
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Fig. 9.6: k · p bandstructure with spin-orbit splitting.

Using the same results as for the case without spin-orbit splitting, it is rather easy now
to show the following. The bandstructure around the Γ point for the four bands and the
corresponding effective masses can be written down. For the conduction band, we have

εc(k) ≈ Eg +
~2k2

2m?
c

, (9.30)

where the effective mass is now given by

1

m?
c

=
1

m0
[1 +

2

m0k2
[
1

2
(
k2P 2

Eg
) +

1

6
(
k2P 2

Eg
) +

1

3
(
k2P 2

Eg + ∆
)], (9.31)

which can be re-written as

m?
c ≈

m0

1 + 2P 2

3m0
( 2
Eg

+ 1
Eg+∆ )

, (9.32)
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which is the same as the case without the SO-splitting if one puts ∆ = 0. 2P 2/m0 ≈ 20eV
is still valid.

Spin-orbit splitting causes changes in the valence bandstructure. We chose not to talk
about valence bands in the last section, since the degeneracy prevents us from evaluating the
perturbed eigenvalues. However, with spin-orbit splitting, it is easy to show the following.

The HH valence bandstructure is that of a free-electron, i.e., the effective mass is the
same as free-electron mass; so,

εHH(k) = −~2k2

2m0
, (9.33)

and the light-hole bandstructure is given by

εLH(k) = − ~2k2

2m?
LH

, (9.34)

where the light-hole effective mass is given by

m?
LH =

m0

1 + 4P 2

3m0Eg

. (9.35)

Finally, the split-off valence bandstructure is given by

εSO(k) = −∆− ~2k2

2m?
SO

, (9.36)

where the split-off hole effective mass is given by

m?
LH =

m0

1 + 2P 2

3m0(Eg+∆)

. (9.37)

This model is known as the Kane-model of k · p bandstructure, after Kane’s celebrated
paper3 of 1956. There is a very good section on the uses of this form of bandstructure
calculation in the text by S. L. Chuang (Physics of Optoelectronic Devices, 1995). k · p is
very useful in calculating optical transition probabilities and oscillator strengths.

The effects of strain can be incorporated into the k · p theory rather easily, and the shifts
of bands can be calculated to a great degree of accuracy. The theory is easily extendable to
heterostructures, in particular, to quantum wells for calculating density of states, gain in
lasers, and so on. The most popular k · p calculations employ what is called a 8-band k · p
formalism. Where do the eight bands come from? We have already seen all 8 - it is the
four bands we have been talking about all along, with a spin degeneracy of 2 for each band.

To make the calculations more accurate, one can include bands higher than the conduc-
tion band and lower than the valence band. However, the effects of these distant bands are
weak, and scale inversely as the energy separation, as we have seen. Thus, they are rarely
used.

9.6 Further reading

As Kittel states in his text on Solid State Physics, learning how to calculate bandstructure
is an art, not learnt from book only, but by experience. My personal favorites for band-
structure theory and applications are two books -

1) Fundamentals of Semiconductors (Yu and Cardona, Springer, 1999).
Chapter 2 in this comprehensive text has one of the best modern treatments of semicon-
ductor bandstructure. It makes heavy usage of group theory, which can be intimidating for

3E. O. Kane, J. Phys. Chem. Solids, 1, 82 (1956)
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beginners, but nevertheless very rewarding. The authors do not assume that you come all
prepared with results from group theory - they actually have ‘crystallized’ the results that
are needed from group theory in the chapter.

2) Energy Bands in Semiconductors (Donald Long, Interscience Publishers, 1968).
An old and classic monograph, it still remains one of the few books entirely devoted to the
topic. The theory is covered in 80 pages, and the rest of the book analyzes bandstructures
of specific materials.
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In this chapter, we discuss a non-perturbative or exactly solvable model of electron
bandstructure in a crystal. It is the celebrated Kronig-Penney model. The purpose of the
solution is to illustrate much of bandstructure physics and also to develop a bag of useful
concepts that permeate much of solid state physics.

10.1 Exact Solution: The Kronig-Penney Model

An exactly solvable periodic potential problem in quantum mechanics for the electron is
the Kronig-Penney model. The problem is exactly solvable in all dimensions - we consider
the 1D case. The periodic potential is modeled as a series of Dirac-delta functions

V (x) =
∑
n

Sδ(x− na), (10.1)

where a is the lattice constant, and S is the strength of the perturbation. The sum over
n runs over all lattice sites. For example, for a 1D closed ring of length L with N = L/a
lattice points and lattice constant a, 0 ≤ n ≤ N − 1. This is schematically represented in
Figure 10.1.

Now we in the Math primer (**cite**), we have seen the identity
∑
n δ(x − na) =∑

n
1
ae
−i 2π

a nx. Using this relation with Gn = 2π
a n and substituting in the Schrodinger

equation, we get

[− ~2

2m

d2

dx2
+
S

a

∑
n

e−iGnx]ψ = Eψ. (10.2)

The wavefunctions are Bloch functions, which are Fourier expanded in Gm = 2π
a m as

ψk(x) = eikxuk(x) = eikx
∑
m

uGme
iGmx =

∑
m

uGme
i(k+Gm)x, (10.3)

Note that ψ(x = 0) =
∑
Gm

uGm , the sum of all the Bloch coefficients, in other words,
as long as G’s are reciprocal lattice vectors,

∑
G uG = ψ(0). Now substituting 10.3 in the

Schrodinger equation, we get

∑
m

~2(k +Gm)2

2m
uGme

iGmx +
S

a

∑
m

∑
n

uGme
i(Gm−Gn)x = Ek

∑
m

uGme
iGmx, (10.4)

Multiplying by e−iGx and integrating over all x, we use to identity
∫ L

0
ei(G

′−G)xdx =
LδG,G′ to get

95
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Fig. 10.1: The Kronig-Penney “Dirac” comb periodic potential for a particle on a ring.
Left: positive or repulsive potential for S > 0, and Right: Negative or attractive potentials
for S < 0.

~2(k +G)2

2m
uG +

S

a

∑
n

uGn+G = EkuG, (10.5)

Solving for uG yields

uG =
S

a

∑
Gn+G uG

Ek − ~2(k+G)2

2m

, (10.6)

Now for a very useful trick: summing both sides over G′s cancels the uG terms because∑
Gn+G uG =

∑
G uG = ψ(x = 0), leaving us with the identity

1 =
S

a

∑
G

1

Ek − ~2(k+G)2

2m

. (10.7)

This is a rather fancy way of writing unity! Note that this is an exact form of the
solution of Schrodinger’s equation for the periodic potential problem. Inverting it into the
form

a

S
=
∑
G

1

Ek − ~2(k+G)2

2m

, (10.8)

we are in a position to investigate the aftermath of the solution in Equation 10.7.
Figure 10.2 shows a graphical solution of Equation 10.8 plotted as a function of the

energy Ek for two values of k. When the strength of the potential S > 0, a/S > 0, and is
the constant shown in red in the Figure. The RHS is a complex function of energy Ek,

with a number of poles located at Ek = ~2(k+G)2

2m , where the RHS diverges. There are
several points of intersection - one of which is highlighted. The energies Ek corresponding
to these intersection points are the only allowed eigenvalues for the problem. There are
several allowed eigenvalues: in fact, there are exactly N distinct eigenvalues corresponding
to n = 0, 1, ..., N − 1 values of Gn = 2π

a n.
If we turn the strength of the potential down by taking S → 0, the red line corresponding

to a/S goes off to +∞, and the intersections of the RHS and LHS then are exactly at
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Fig. 10.2: A graphical solution scheme for the repulsive Kronig-Penney Dirac comb. Note
that the lowest energy is larger than zero.

the N energies for which the RHS blows up. Clearly, these energy eigenvalues are at

Ek = ~2(k+G)2

2m , and we have recovered the nearly free-electron model of the electron.

If the strength is made negative by letting S < 0, it is clear that the red line a/S < 0,
and there is an energy intersection for energy that is negative, i.e., Ek(min) < 0. This is a
“bound” state... or weakly mobile state.

Figure 10.3 shows the calculated energy bandstructures for S > 0 (left) and S < 0

(right). The axes are in units of F = ~2

2m ·(πa )2 for energy, and 2π
a for k. The solid lines in the

figure represents several important features of any bandstructure in the presence of a non-
zero periodic potential. This is superposed on the dashed line plot of bandstructure when
the periodic potential is turned off (S = 0), but the electron wavefunction is still required
to satisfy the lattice periodicity and symmetry, the ‘nearly’ free-electron (NFE) model

with E = ~2(k+G)2

2m . Note that for a repulsive potential with S > 0, the Kronig-Penney
bandstructure energies are higher than the NFE values at all values of k except at the
Brillouin zone center and edges k = 0,±πan. The highest eigenvalue of each Kronig-Penney
band is degenerate with the NFE eigenvalues of E(k = nπa ) = n2 · F , where n = 1, 2, ...,
locating energy eigenvalues F, 9F, ... at k = ±πa at the BZ edge, and 4F, 16F, ... at k = 0
as the maxima of the corresponding bands.

That the energy eigenvalues for S > 0 are higher (or equal to) than the NFE values is
guaranteed by the Hellmann-Feynman theorem. The Hellmann-Feynman theorem states

that the eigenvalues Ek of any Hamiltonian Ĥ satisfy ∂Ek
∂λ = 〈k|∂Ĥ∂λ |k〉. Imagine the

Kronig-Penney potential as a perturbation to the NFE Hamiltonian Ĥ = Ĥ0 + λŴ
where W (x) = S

∑
n δ(x − na), and Ĥ0|k〉 = E0

k|n〉, the eigenvalues of the NFE model

E0
k = ~2(k+G)2

2m shown by the dashed lines in Figure 10.3. Then, we must have ∂Ek
∂λ =

〈k|∂(Ĥ0+λW )
∂λ |k〉 = 〈k|W |k〉 =

∫
dx|ψk(x)|2W (x) = SN |uk(0)|2 ≥ 0, and the perturbed

eigenvalue Ek ≥ E0
k. This remains true at all points in k−space except at points of

degeneracy, as indicated by an arrow in the left figure of Figure 10.3. At k−points were
eigenvalues are degenerate, the splitting is such that for S > 0, one eigenvalue increases,
while the other stays put. The lowest energy allowed is E+

min > 0 for S > 0, and the lowest
band is rather narrow. This means the electron is ‘sluggish’ in this band, and it has a large
effective mass. As we move up to higher energies, the points of degeneracy develop sharper
curvatures and the bands become wider, making the electron effective mass lighter.

Note the differences for the attractive delta potential (S < 0) band structures highlighted
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shown as dashed lines. The allowed energy bands are indicated in gray along with the
energy gaps.
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by the right panel in Figure 10.3, and drawn at exactly the same scale for easy comparison.
The lowest energy allowed now is E−min < 0 for S < 0, i.e.. it is negative in stark contrast
to the situation for S > 0. The Hellmann-Feynman theorem now guarantees that the
eigenvalues are lower than the NFE case. At the k−points of degeneracy, the splitting is
such that one eigenvalue stays put again, but the other is pushed down, exactly opposite
to the case of S > 0. The lowest eigenvalue of each Kronig-Penney band is degenerate
with the NFE eigenvalues of E(k = nπa ) = n2 · F again, where n = 1, 2, ..., locating energy
eigenvalues F, 9F, ... at k = ±πa at the BZ edge, and 4F, 16F, ... at k = 0 as now the minima
of the corresponding bands.

10.2 Tight-binding models emerge from Kronig-Penney

We will now see that an approximate method to calculate bandstructures called the
tight-binding method emerges naturally from the exact Kronig Penney model. Apply
the trigonometric identity cot(x) =

∑+∞
−∞

1
nπ+x on the right hand side of the central

Kronig-Penney eigenvalue equation 10.8, using the fact Gn = n 2π
a . A few trigonometric

identities later, equation 10.8 transforms into:

cos(ka) = cos(qa) +
mSa

~2
· sin(qa)

qa
, (10.9)

where q =
√

2mEk/~2. This is still an exact solution of the Schrodinger equation. Now
the values of Ek that satisfy this equation will form the energy bandstructure Ek for each
k. The left hand side is limited to −1 ≤ cos(ka) ≤ +1, but the RHS of equation 10.9 can
reach values up to 1 + mSa

~2 = 1 + C which can clearly exceed unity. This restricts the

allowed values of q for real energy eigenvalues E = ~2q2

2m for each k. Figure 10.4 shows the
‘bands’ of q where the RHS lies between −1 ≤ RHS ≤ +1, and real energy eigenvalues are
allowed.

Now the zeroes of sin(x)
x occur at x = nπ where n = ±1,±2, .... It is clear that a

band of q−values, and corresponding energies are allowed near the zeroes of the RHS as
indicated in Figure 10.4 (left). Let us find an approximate solution for the first band E1(k)
by expanding the RHS for a large strength, or C = mSa

~2 >> 1 near the first zero at n = 1,

around qa = π. Using δ = π − qa, the expansion yields cos(qa) + C · sin(qa)
qa ≈ −1 + C

π δ,
which when used in equation 10.9 yields

E1(k) ≈ E0 − 2J(1 + cos ka), (10.10)

where E0 = π2~2

2ma2 coincides with the NFE energy at k = π
a , and the “hopping” or

tunneling term is J = π2~4

2m2a3S = E0

C . This is clearly in the form of a tight-binding model!
Now we really don’t need to stop at the first root - expanding around qa = nπ, and
retaining only the linear expansion terms, we get a more comprehensive tight-binding
bandstructure of the nth band as:

En(k) ≈ n2E0

[
1− 1

C
+

(−1)n

C
cos(ka)

]2
. (10.11)

Figure 10.4 shows a plot of the first three bands for the dimensionless strength C = 10.
Note that the energy eigenvalues at the BZ edges co-incide with the free-electron values.
This is similar to the case for S > 0 in the Kronig Penney model in Figure 10.3 (Left).

Now we can write down a more general tight-binding model by starting from orbitals
that are localized at each lattice point, and by trying linear combinations of such orbitals
in the Bloch-form to coax out the E(k) eigenvalues and corresponding eigenfunctions. We
write the linear combination of atomic orbitals (LCAO) ansatz wavefunction as
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Fig. 10.4: The left figure shows a plot of the RHS of Equation 10.9 with x = qa, and the
LHS is limited to −1 ≤ LHS ≤ +1. The narrow bands within which the two sides are
equal are highlighted; each leads to an allowed energy band. Because the intersections are
near x = nπ where n = ±1,±2, ..., an approximate analytical expression of all the bands
can be obtained (see Equation 10.11). This first three tight-binding bandstructures are
plotted in the right panel. Compare with Figure 10.3.
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|ψ〉 =

N∑
m=1

eik·Rm

√
N
|m〉, (10.12)

where we have initially assumed just one orbital per lattice site, and ψ(r) = 〈r|ψ〉
and φm(r) = 〈r|m〉 is the orbital centered at site m. This way or writing the ansatz
ensures it is indeed a Bloch function, which is verified by checking r → r + R leads to
ψ(r + R) = eik·Rψ(r). We feed this ansatz into the Schrodinger equation, cancel

√
N from

each side, and get the relation for energy eigenvalues E(k) for each value of k:

Ĥ

N∑
m=1

eik·Rm |m〉 = E(k)

N∑
m=1

eik·Rm |m〉, (10.13)

We note that Ĥ does not affect eik·Rm , it acts only on |m〉. Next we project both

vectors on to the ansatz
∑N
n=1 e

ik·Rn〈n|, and rearrange to get the central result of the
tight-binding energy bandstructure:

E(k) =

∑N
n,m=1 e

ik·(Rm−Rn)〈n|Ĥ|m〉∑N
n,m=1 e

ik·(Rm−Rn)〈n|m〉
, (10.14)

where ... Now it is clear that there are N2 terms in the double sum. Out of these, the N
‘diagonal’ terms are obtained when n = m, for which we have eik·(Rm−Rn) = eik·(0) = 1 and
the diagonal matrix elements are all equal: 〈n|Ĥ|n〉 = E0. This energy is slightly lower in
energy than the original ‘atomic’ orbital energy because each electron orbital also sees nearby
atomic potentials. In the denominator, the diagonal sum gives just

∑
eik·(0)〈n|n〉 = N .

Let us now look at the rest N2 −N off-diagonal terms in the numerator and denominator.
Now considering a 1D lattice of lattice constant a, for the 1st nearest neighbors, we have

N terms for which the terms in the numerator take the form
∑N
n=1(e+ika〈n|Ĥ|n + 1〉+

e−ika〈n−1|Ĥ|n〉) = −2Nt1 cos (ka), where the hopping integral t1 = 〈n|Ĥ|n+1〉. Similarly,
the denominator gives the sum of the N 1st nearest neighbor terms as +2Ns1 cos (ka),
where s1 = 〈n|n + 1〉 is clearly very small because of decaying wavefunctions that are
tightly bound to the lattice sites.

There are N more terms for the 2nd nearest neighbors characterized by the hopping
integral t2 = 〈n|Ĥ|n+ 2〉 and the overlap integral 〈n|n+ 2〉 = s2. And then for the 3rd
nearest neighbor, and so on... It is intuitively clear that the successive terms tn and sn
decay fast. Now we can write the expression for the tight-binding bandstructure as:

E(k) =
E0 − 2t1 cos (ka)− 2t2 cos (2ka)− 2t3 cos (3ka)...

1 + 2s1 cos (ka) + 2s2 cos (2ka) + 2s3 cos (3ka)...
≈ E0 − 2t1 cos (ka). (10.15)

If instead of 1D, we are in 2D or 3D, then there are more nearest neighbors and the
bands acquire more “structure”.

10.3 Point defects in Kronig-Penney Models

Now imagine that in the Kronig-Penney model, only one of the N sites has a potential
that is different from the other sites. Let us call this difference in the strength U0, meaning
at this particular site, the delta-function strength is S + U0 instead of S, where U0 can be
positive or negative. What is the effect on the energy eigenvalues and the eigenstates due
to the presence of this ‘defect’?

This problem can now be solved because the exact solution of the Kronig-Penney model
without the defect has given us the eigenvalues for each k−state in the BZ as EKP (k) - for
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Fig. 10.5: Figures showing the effect of defect states on the allowed energy eigenvalues as
a function of the defect potential strength. The left figure shows the graphical solution
to the Kronig-Penney type solution, and in particular illustrates the splitting off of one
eigenvalue - the highest eigenvalue of the band for positive defect potentials, and the lowest
energy eigenvalues for negative defect potentials. This is further highlighted in the figure
on the right, where the eigenvalue spectrum is plotted as a function of the defect potential.
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example - shown in Figure 10.3. Then, we go through exactly the same procedure that led
to the Kronig-Penney solution in Equation 10.8, and end up with the new solution

Na

U0
=
∑
k

1

Ek − EKP (k)
, (10.16)

where k are the allowed states in the 1st BZ, N is the number of lattice sites, and
therefore Na = L is the macroscopic length. Clearly, in the absence of the defect, U0 → 0,
and the LHS→∞. This happens exactly N times in the RHS when the allowed energies
Ek = EKP (k), i.e., we recover the original Kronig-Penney solution without the defect, as
we should.

But when U0 6= 0, the allowed energies Ek must deviate from EKP (k) to satisfy
the exact solution above. To illustrate the solution graphically, we plot the RHS and
the LHS in Figure 10.5. We will see in the next section that the RHS of Equations
10.16 and 10.8 are actually the Trace of the Green’s function matrix of the problem, i.e.,∑

k
1

Ek−EKP (k) = Trace[Ĝ(E)]. The plot in Figure 10.5 for a few-site chain shows the

effect of the defect on the eigenvalue spectrum clearly. The figure on the right illustrates
the movement of the eigenvalues as the strength of the defect is tuned from zero to large
positive and large negative. The eigenvalues at U0 = 0 constitute the band without the
defect. When the defect strength is +ve and strong, the LHS L/U0 line moves closer to
the x−axis (left figure), and it is clear that one of the intersections - at the top of the
energy band splits off from the band rapidly, whereas all other eigenvalues do not change
as much. Any change is positive, as guaranteed by the Hellmann-Feynman theorem. This
is a characteristic feature - similarly, for a negative U0, the lowest eigenvalue of the band
splits off and leaves other eigenvalues mostly unchanged.

We will see later that U0 > 0 ‘defects’ explain the formation of acceptor states at
the top of valence bands, and are designed such that the splitting energy is less than
kT for room-temperature generation of holes. Similarly, the bottom of the band with
U0 < 0 models donor states and electron doping at the bottom of the conduction band of
semiconductors.

10.4 Green’s functions and Kronig-Penney for higher-
dimensions

We noted the repeated appearance of sums over the Brillouin zone of the kind
∑
k

1
E−E(k)

which have units of (energy)−1. This may be thought of as a function of the variable E, or
energy. The reason why such sums permeate exact solutions of problems will now become
clear: and will lead us to define Green’s functions.

Consider the Schrodinger equation

i~
∂

∂t
Ψ = ĤΨ→ [i~

∂

∂t
− Ĥ]Ψ = 0. (10.17)

Let us think of the equation as the product of the operator (or matrix) i~ ∂
∂t − Ĥ

with Ψ. For this product to be zero, either i~ ∂
∂t − Ĥ or Ψ, or both should be zero. The

only interesting case here is when we actually have a quantum object with a nonzero
wavefunction, Ψ 6= 0. Thus, i~ ∂

∂t − Ĥ should be zero. Now we have learnt that if the

quantum object is in a state of definite energy, i~ ∂
∂tΨn = EnΨn, Ψn, and En is a real

eigenvalue representing the energy of the state. Let us generalize this and write i~ ∂
∂t = E,

where E is a variable. We can then write the Schrodinger equation as [EI − Ĥ]Ψ = 0,
where I is an identity operator, or the identity matrix when the equation is written out
for any chosen basis. However, the equation in this form does not hold true for all E, but
only for certain E = En - only when the variable E matches up with an allowed eigenvalue.
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Now let us think of EI − Ĥ as a function of E. When we vary E, this function has very
sharp responses when E = En: the function is a ‘detector’ of eigenvalues - it detects an
eigenvalue by vanishing. At those sharp energies, Ψ = Ψn 6= 0 is an eigenfunction, so the
function provides the eigenfunction as its ‘residue’. Now with this qualitative picture in
mind, let us solidify the concept of the Green’s function of the system.

We like detectors to ‘scream’ when they detect, rather than to go silent. So, can we
find a function Ĝ that instead of solving the equation [EI − Ĥ]Ψ = 0, solves the equation
[EI − Ĥ]Ĝ = I instead? Formally, the function is clearly Ĝ = [EI − Ĥ]−1. This function
clearly blows up when E = En, and is indeed the screaming detector we are looking for.
It is the Green’s function for the Hamiltonian Ĥ. Let us assume that we know all the
eigenvalues of a particular Hamiltonian Ĥ0 to be En and the corresponding eigenfunctions
are |n〉. The Green’s function can then be written out as a matrix form

Ĝ0(E) =
∑
n

[EI − Ĥ]−1|n〉〈n| =
∑
n

|n〉〈n|
E − En

. (10.18)

It is clear that the Green’s function is actually a matrix, and sums of the kind that
appeared earlier in the solution of the Kronig-Penney and the defect problems are the sum
of the diagonal terms in a diagonal basis. Now it turns out that the sum of the diagonal
terms is invariant with what basis one writes the matrix - which is why it goes by a name -
the Trace. Thus, we have a very important relation

Trace[Ĝ(E)] =
∑
k

1

E − E0(k)
(10.19)

where E0(k) are the allowed eigenvalues of the system. The solution of the Kronig-
Penney model is thus very compactly written in the formal way as Trace[Ĝ0(E)] = a

S , where

Ĝ0(E) = (EI − Ĥ0)−1, and Ĥ0|k〉 = E0(k)|k〉 are the nearly-free electron eigensystem,

with E0(k) = ~2(k+G)2

2m . The solution of a single-site defect state of strength S0 is then

written as Trace[Ĝ(E)] = Na
S0

, where now the Green’s function is for the exactly solved

Kronig-Penney eigensystem Trace[Ĝ(E)] = (EI − Ĥ)−1, where Ĥ|k〉 = EKP (k)|k〉, and
EKP (k) are the Kronig-Penney eigenvalues.

More on Green’s functions - relation to DOS, etc to be written...

We can write the Green’s function in a non-diagonal basis as well. For example, we can
write instead,

Ĝ0(l, l′;E) =
∑
n

〈l[EI − Ĥ]−1|n〉〈n|l′〉 =
∑
n

〈l|n〉〈n|l′〉
E − En

, (10.20)

which includes both diagonal and off-diagonal terms of the matrix. Since this form
does not require us to start with a diagonal basis, it is therefore preferred.

At this point we make the connection with the Kronig-Penney model by identifying the
eigenvalue index n as the allowed k−points in the Brillouin zone - there are N of them.

We have also written the Wannier wavefunction at site l′ as 〈n|l′〉 =
∑
k
eik·Rl′√

N
φ0(x). So

the Green’s function can then be written as

Ĝ0(l, l′;E) =
∑
k

eik(Rl−Rl′ )

E − E(k)
=

∫ +π
a

−πa

dk
2π
L

eik(Rl−Rl′ )

E − E(k)
, (10.21)

Following text till the left arrows is work in progress → →.
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10.5 Branch points of bandstructure and band-alignments

There exists an unique energy value EBP for any bandstructure, for which we have the
condition ∑

k

[EBP − Elower(k)] =
∑
k

[Ehigher(k)− EBP ] (10.22)

which in some sense is the ‘weighted average’ energy level. Let there be n+ bands with
higher energy than EBP and n− bands with lower energy. The sum over k runs over the
entire Brillouin zone, say over N states, which is equal to the macroscopic number of lattice
points in the crystal. Then, we have

N · n− · EBP −
∑
k,i

Elower,i(k) =
∑
k,j

Ehigher,j(k)−N · n+ · EBP , (10.23)

which gives us the Branch point at

EBP =

∑
k,iElower,i(k) +

∑
k,j Ehigher,j(k)

N(n− + n+)
, (10.24)

← ← Preceeding text till the right arrows is work in progress
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11.1 Effective Mass Approximation, Envelope Functions

Before we jump into considering real semiconductors with impurities and corresponding
perturbations from perfect periodic potentials, it is worthwhile to develop a very powerful
formalism that greatly simplifies our treatment of transport properties. So long as the
perturbations of the crystal potential is not drastic, one can re-cast the Schrödinger equation
in a form that is very useful for discussing transport and device applications. One runs into
a fundamental problem in dealing with a particle location in real space and its momentum
at the same time. To do that, the concept of a wave packet is necessary. Wave packets,
unlike pure Bloch-eigenstates, have a finite spread both in the momentum and real space.
A wave packet is nothing but a linear combination of Bloch eigenstates for small k−values
around a region of interest in the Brillouin zone. For most cases, it suffices to investigate
properties of electrons and holes located very close to the band extrema in the k−space;
therefore, one collects Bloch eigenstates around such points, and creates a wavepacket by
taking their linear combinations.

To illustrate this, let us consider the 1-dimensional case. We construct a wavepacket by
taking a linear combination of Bloch eigenstates φnk(x) from the nth band with wavevector
k. The sum is over the whole BZ.

ψ(x) =
∑
n

∑
k

C(k)φnk(x) =
∑
n

∫
dk

2π
C(k)φnk(x) (11.1)

We now make two crucial approximation -
a) We assume that wavefunctions from only one band play a part in the wavepacket, and
thus drop the sum over all bands.
b) We assume that in the single band we are interested in, wavevectors from a small region
say around k0 = 0 are important (see Figure 11.1).

Then, Bloch functions can be written as φnk(x) = eikxunk(x) ≈ un0(x)eikx = φn0(x)eikx.
Then the wavepacket takes the form

ψ(x) ≈ φn0(x)

∫
dk

2π
C(k)eikx = φn0(x)︸ ︷︷ ︸

Bloch

· C(x)︸ ︷︷ ︸
envelope

, (11.2)
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Fig. 11.1: A wavepacket is constructed by taking Bloch functions from a small region of
the reciprocal space, and summing them with weights. The weights C(k) have a small
extent ∆k in reciprocal space; when carried over to real space, the spread is large, since
∆r ∼ 1/∆k; thus the wavepacket has a finite spread in real space, and represents the
wavefunction of a particle. If we restrict the sum in reciprocal space to 1% of the BZ, the
wavepacket spreads over 1/0.01 = 100 atoms in real space. The real space wavefunction is
given by the Bloch wavefunction at the k0 point, modulated by an envelope function C(r),
which is the Fourier transform of the weights C(k).

where the integral term is identified as the Fourier transform of the weights C(k)↔ C(x).
The real-space function C(x) which is a Fourier transform of the weights of the wavepacket
is called as the envelope function; since the weights C(k) are over a small region in
k−space, C(x) is spread over real space. It is typically a smooth function spreading over
several lattice constants. This is illustrated in Figure 11.2.

How does the wavepacket behave when we apply the periodic crystal Hamiltonian H0 on
it? Since φnk(x) are Bloch-eigenfunctions of this Hamiltonian, H0φnk(x) = En(k)φnk(x),
and we recover

H0ψ(x) =

∫
dk

2π
C(k)En(k)φnk(x) ≈ φn0(x)

∫
dk

2π
C(k)En(k)eikx. (11.3)

We now write out the energy eigenvalues as a Taylor-series of small wavevectors around
k = k0 = 0,

En(k) =
∑
m

amk
m (11.4)

and Schrödinger equation becomes

H0ψ(x) ≈ φn0(x)
∑
m

∫
dk

2π
C(k)amk

meikx. (11.5)

We now use a property of Fourier transforms - if f(k) ↔ f(x), then kf(k) ↔
(−id/dx)f(x), and in general, kmf(k)↔ (−id/dx)mf(x). Thus,∫

dk

2π
kmC(k)eikx ↔ (−i d

dx
)mC(x), (11.6)
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Fig. 11.2: Envelope function C(r) modulates the Bloch function φn0(x) to produce the
wavefunction of the wavepacket ψ(x).

and the Schrödinger equation is recast as

H0ψ(x) ≈ φn0(x)En(−i∇)C(x), (11.7)

which can be generalized to the 3-D case. Thus, in the energy term, we make the
substitution k → i∂/∂r, making it an operator that acts on the envelope function only.
This step is crucial - the Bloch function part has been pulled out as a coefficient; no
operators act on it.

Now, instead of the periodic potential Hamiltonian, if we have another potential (say a
perturbation) W (r) present, Schrödinger equation becomes

H0φn0(r)C(r) +W (r)φn0(r)C(r) = Eφn0(r)C(r), (11.8)

and using Equation 11.7, it becomes

[En(−i∇) +W (r)]C(r) = EC(r), (11.9)

where the Bloch functions do not appear at all! Furthermore, if we already know the
bandstructure of the semiconductor, then we can write the energy around the point k0 = 0
of interest in terms of the effective mass, and the operator En(−i∇) thus becomes

En(k) ≈ Ec(r) +
~2k2

2m?
→ En(−i∇) ≈ Ec(r)−

~2

2m?
∇2, (11.10)

and the Schrödinger equation takes the enormously simplified form

[− ~2

2m?
∇2 +W (r)]C(r) = [E − Ec(r)]C(r), (11.11)

which is the celebrated “Effective Mass Approximation”. Take a moment to note what
has been achieved. The Schrodinger equation has been re-cast into a much simpler problem
of a particle of mass m?, moving in a potential Ec(r) +W (r)! All information about the
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bandstructure and crystal potential has been lumped into the effective mass m?. The
wavefunctions are envelope functions C(r), from which one recovers the real wavefunction of
the wavepacket by multiplying with the Bloch function - ψ(r) ≈ φn0(r)C(r) = un0(r)C(r).
The envelope functions C(r) can be actually determined for any potential - it amounts to
solving the Schrödinger equation for a particle in the potential Ec(r) +W (r). Note that
the envelope function in the absence of any impurity potential W (r) = 0 is given by

C(r) =
1√
V
eik·r, (11.12)

and the corresponding eigenvalues of the Schroödinger equation are given by

E = Ec(r) +
~2|k|2
2m?

. (11.13)

If we consider electrons at the bottom of the conduction band, Ec(r) is the spatial
variation of the conduction band edge - exactly what one draws in band diagrams. An
impurity potential can now be included as a perturbation to the periodic crystal, and the
new energy eigenvalues can be found. As an example, consider an ionized impurity, which
has a Coulomb potential. The effective mass equation takes the form

[− ~2

2m?
∇2 − e2

4πεr
]C(r) = (E − Ec)C(r), (11.14)

which is identified as the same as the classic problem of a hydrogen atom, albeit with
two modifications - the mass term is an effective mass instead of the free electron mass,
and the dielectric constant is that of the semiconductor. Then, the new energy levels that
appear are given by

E − Ec = E∞
m?

ε2r
, (11.15)

and the effective Bohr-radius is given by

a?B = aB
εr
m?

(11.16)

In bulk semiconductors, the band-edge variation in real space can be varied by applying
electric fields, or by doping variations. In semiconductor heterostructures, one can further
engineer the variation of the band-edge Ec(r) in space by quasi-electric fields - the band
edge can behave as quantum-wells, wires, or dots, depending upon composition of the
semiconductor. The effective mass approximation is a natural point of departure, where
analysis of such low-dimensional structures begins.

11.2 3D, 2D, 2D, 0D: Heterostructures

With the explosion of usage of semiconductor heterostructures in a variety of applications,
low-dimensional structures such a quantum wells, wires and dots have become important.
They come in various avatars - these structures can be grown by compositional variations
in epitaxially grown semiconductor layers by MBE/MOCVD techniques, or nanowires /
nanotubes / nanocrystals can be grown by bottom-up approaches (by CVD techniques, or
by solution chemistry). So, understanding bandstructure of these artificially engineered
materials is of great interest.

The goal of many clever expitaxial/bottom-up techniques to create nanostructures
amounts to modifying the bandstructure of the constituent bulk semiconductor material.
Many of these designer materials have niche applications, and have a potential to perform
functions that are difficult, if not impossible to achieve in bulk materials. An example is
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the semiconductor (diode) laser. The first semiconductor lasers were band-engineering by
doping (i.e., they were p-n junctions).

We have derived the effective mass equation for carriers in bulk semiconductors in the
envelope-function approximation. The three-dimensional effective mass equation is

[− ~2

2m?
∇2 + V (r)]C(r) = (E − Ec(r))C(r). (11.17)

Here, C(r) is the envelope function of carriers in the band under consideration. The
Schrödinger equation is thus re-cast in a form which is identical to that of an electron in a
total potential V (r) + Ec(r), determined by the band-edge behavior. It has mapped the
complex problem of an electron moving through a crystal experiencing very complicated
potentials to a textbook-type ‘particle in a well-defined potential’ problem, which is solvable.
The particle mass is renormalized, absorbing the details of the crystal potential. The real
wavefunction of the wavepacket that models the particle-like nature of the electrons is
given by ψ(r) ≈ un0(r)C(r), where un0(r) is the periodic part of the Bloch eigenstates
of the crystal that result from the periodic crystal potential. However, the beauty of the
effective mass approximation is that the envelope function is all that is needed to find
the bandstructure of the low-dimensional structures1! The envelope function concept is a
powerful tool, as is demonstrated in its use in determining bandstructure modifications
due to quantum confinement of carriers in low-dimensional structures.

11.3 Bulk Bandstructure

In a bulk semiconductor in the absence of external fields, V (r) +Ec(r) = Ec0 is a constant
energy (flatband conditions), and thus the solution of the effective mass equation yields
envelope functions

C(r) =
1√
V
ei
~k·~r, (11.18)

and energies

E(k) = Ec0(r) +
~2k2

2m?
= Ec0(r) +

~2

2
(
k2
x

m?
xx

+
k2
y

m?
yy

+
k2
z

m?
zz

). (11.19)

One should not forget that even thought the ks is written as a continuous variable, they
are actually quantized, assuming values

kx = ky = kz =
2π

L
m (11.20)

where m = 0,±1,±2, .... Since L is a macroscopic length, the quantization is very fine,
and for all practical purposes, ks can be assumed continuous.

The density of states (DOS) is given by

g3D(E) =
1

2π2
(
2m?

~2
)3/2

√
E − Ec0, (11.21)

from which one gets a carrier concentration in the conduction band

n =

∫ ∞
0

dEfFD(E)g3D(E) = N3D
C F1/2(

EC − EF
kBT

) ≈ N3D
C e

−EC−EFkBT , (11.22)

1Note that the bulk bandstructure is assumed to be known. The effective mass contains information
about the bulk bandstructure.
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Fig. 11.3: Density of States of bulk (undoped), moderately doped and heavily doped
semiconductors.

where Fj(...) is the Fermi-Dirac integral function. The approximation holds only when
Fermi-Dirac distribution can be approximated by a Maxwell-Boltzmann form. Here, it is
easily shown that N3D

C is a effective band-edge DOS is

N3D
C = 2(

m?kBT

2π~2
)

3
2 . (11.23)

Similar results hold for valence bands, where the contributions from the Light and
Heavy hole bands add to give the total DOS. This is shown schematically in Figure 11.3.

11.4 Doped Semiconductors

Doping adds states in the bandgap of the semiconductor. A shallow dopant adds states
close to the band-edges. Considering a shallow donor, the Hydrogenic-model solution from
the effective mass equation

[− ~2

2m?
∇2 − e2

4πεr
]C(r) = (E − Ec)C(r) (11.24)

showed that the eigenvalues were similar to that of a hydrogen atom, given by En =
Ec0 −Ry?/n2, where Ry? = 13.6× (m?)/ε2r is the modified Hydrogenic energy levels. The
ground-state envelope functions around the donor atoms

C(r) ∼ e−r/r0 (11.25)

is spread over many lattice constants (r0 = aB(εr/m
?) � a); this implies that in

k-space, the donor states are localized to ∆k ∼ 1/r. If the donor electron envelope function
is spread over 1000 atoms in real space, in k-space it will be restricted to ∼1/1000 of the
volume of the Brilloiun zone. Thus, for all practical purposes, the donor states are assumed
to be “atomic-like”. Energy separations between these individual atomic-like states is very
small.

For heavy doping however, many changes can occur. The adjacent radii of electrons
associated with adjacent donors can overlap, leading to formation of impurity bands. Then,
the semiconductor acquires metal-like properties, since thermal activation of carriers into
the bands is not necessary for transport. The effects of moderate and heavy doping on the
DOS of bulk semiconductors is shown in Figure 11.3.
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11.5 Quantum Wells

Quantum wells are formed upon sandwiching a thin layer of semiconductor between wider
bandgap barrier layers. The finite extent of the quantum well layer makes the conduction
band profile mimic a one-dimensional quantum well in the direction of growth (z−direction),
leaving motion in the x− y plane free. Thus, the square-well potential (with reference to
the conduction band edge Ec0) is written as

V (x, y, z) = 0, z < 0 (11.26)

V (x, y, z) = 0, z > W (11.27)

V (x, y, z) = −∆Ec, 0 ≤ z ≤W. (11.28)

Using the effective mass equation with this potential, it is evident that the envelope
function should decompose as

Cnz (x, y, z) = φ(x, y)χnz (z) = [
1√
A
ei(kxx+kyy)] · [χnz (z)] (11.29)

If the quantum well is assumed to be infinitely deep, by simple wave-fitting procedure2

the z−component of the electron quasi-momentum is quantized to

knz =
π

W
nz, (11.30)

where nz = 1, 2, 3, . . .. From simple particle-in-a-box model in quantum mechanics, the
normalized z−component of the envelope function is

χnz (z) =
2√
W

sin
πnzz

W
. (11.31)

The bandstructure is the set of energy eigenvalues is obtained from the effective mass
equation, given by

E(k) = Ec0 +
~2

2
(
k2
x

m?
xx

+
k2
y

m?
yy

)︸ ︷︷ ︸
E2D(kx,ky

+
~2

2m?
zz

(
πnz
W

)2︸ ︷︷ ︸
E1D(nz)

(11.32)

which evidently decomposes to a free-electron component in the x − y plane and a
quantized component in the z− direction. The bandstructure consists of multiple bands
E2D(kx, ky), each indexed by the quantum number nz; this is shown in Figure 11.4.

The DOS of electrons confined in an ideal 2-D plane is a constant, given by g2D(E) =
m?/π~2. In the quantum well, each subband corresponding to an nz is an ideal 2-D system,
and each subband contributes g2D(E) the the total DOS. This is shown schematically in
Figure 11.4. Thus, the DOS of the quantum well is

gQW (E) =
m?

π~2

∑
nz

θ(E − Enz ), (11.33)

where θ(. . .) is the unit step function. The carrier density of an ideal 2D electron system
is thus given by

n2D =

∫ ∞
0

dEfFD(E)g2D(E) =
m?kBT

π~2︸ ︷︷ ︸
N2D
C

ln(1 + e
EF−E1
kBT ), (11.34)

2Only waves that satisfy nz(λ/2) = W fit into the well of width W , leading to knz = 2π/λ = (π/W )nz .
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Fig. 11.4: Bandstructure, and DOS of realistic heterostructure quantum wells.

where E1 is the ground state energy, EF is the Fermi level, and N2D
C is the effective

band-edge DOS, the 2-dimensional counterpart of N3D
C defined in Equation 11.23. (Verify

the units of each!)
For the quantum well, which houses many subbands, the DOS becomes a sum of each

subband (Figure 11.4), and the total carrier density is thus a sum of 2D-carriers housed in
each subband -

n2D =
∑
j

nj = N2D
c

∑
j

ln(1 + e
EF−Ej
kBT ). (11.35)

Note that for a 2D system, no approximation of the Fermi-Dirac function is necessary
to find the carrier density analytically.

It is important to note that if the confining potential in the z−direction can be engineered
almost at will by modern epitaxial techniques by controlling the spatial changes in material
composition. For example, a popular quantum well structure has a parabolic potential
(V (z) ∼ z2), which leads to the Enz values spaced in equal energy intervals - this is a
characteristic of a square, or Harmonic Oscillator potential. Another extremely important
quantum well structure is the triangular well potential (V (z) ∼ z), which appears in
MOSFETs, HEMTs, and quantum wells under electric fields. The triangular well leads to
Enz values given by Airy funtions. Regardless of these details specific to the shape of the
potential, the bandstructure and the DOS remain similar to the square well case; the only
modification being the Enz values, and the corresponding subband separations.

11.6 Quantum Wires

Artificial quantum wires are formed either lithographically (top-down approach), or by
direct growth in the form of semiconductor nanowires or nanotubes (bottom-up approach).
In a quantum well, out of the three degrees of freedom for real space motion, carriers were
confined in one, and were free to move in the other two. In a quantum wire, electrons
are free to move freely in one dimension only (hence the name ‘wire’), and the other two
degrees of freedom are quantum-confined. Assume that the length of the wire (total length
Lz) is along the z−direction (see Figure 11.5), and the wire is quantum-confined in the
x− y plane (Lx, Ly � Lz). Then, the envelope function naturally decomposes into

C(x, y, z) = χnx(x) · χny (y) · ( 1√
Lz
eikxx), (11.36)
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Fig. 11.5: Bandstructure, and DOS of realistic quantum wires.

and the energy eigenvalues are given by

E(nx, ny, kz) = E(nx, ny) +
~2k2

k

2m?
zz

. (11.37)

If the confinement in the x − y directions is by infinite potentials (a useful model
applicable in many quantum wires), then similar to the quantum well situation, a wave-
fitting procedure gives

knx =
π

Lx
nx, (11.38)

kny =
π

Ly
ny, (11.39)

where nx, ny = 1, 2, 3, . . . independently.
The eigenfunctions assume the form

Cnx,ny (x, y, z) = [

√
2

Lx
sin(

πnx
Lx

x)] · [
√

2

Ly
sin(

πny
Ly

y)] · [ 1√
Lz
eikxx], (11.40)

and the corresponding bandstructure is given by

E(nx, ny, kz) = [
~2

2mxx
(
πnx
Lx

)2] + [
~2

2myy
(
πny
Ly

)2]︸ ︷︷ ︸
E(nx,ny)

+
~2k2

z

2m?
zz

. (11.41)

Multiple subbands are formed, similar to the quantum well structure. A new subband
forms at each eigenvalue E(nx, ny), and each subband has a dispersion E(kz) = ~2k2

z/2mzz

(Figure 11.5).
The DOS of electrons confined to an ideal 1-D potential is given by
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g1D(E) =
1

π

√
2m?

~2

1√
E − E1

, (11.42)

where E1 is the lowest allowed energy (ground state). Due to multiple subbands, the
DOS acquires peaks at every eigenvalue E(nx, ny). Since there are two quantum numbers
involved, some eigenvalues can be degenerate, and the peaks can occur at irregular intervals
as opposed to the quantum well case. The general DOS for a quantum wire can thus be
written as

gQWire(E) =
1

π

√
2m?

~2

∑
nx,ny

1√
E − E(nx, ny)

, (11.43)

which is shown schematically in Figure 11.5.

11.7 Quantum Dots

The quantum dot is the ultimate nanostructure. All three degrees of freedom are quantum
confined; therefore there is no plane-wave component of electron wavefunctions. The
envelope function for a “quantum box” of sides Lx, Ly, Lz (see Figure 11.6) is thus written
as

C(x, y, z) = χnx(x)χny (y)χnz (z), (11.44)

and if the confining potential is infinitely strong, we have kni = (π/Li)ni for i = x, y, z.
The envelope functions are thus given by

C(x, y, z) = [

√
2

Lx
sin(

πnx
Lx

)] · [
√

2

Ly
sin(

πny
Ly

)] · [
√

2

Lz
sin(

πnz
Lz

)], (11.45)

and the energy eigenvalues are given by

E(nx, ny, nz) =
~2

2mxx
(
πnx
Lx

)2 +
~2

2myy
(
πny
Ly

)2 +
~2

2mzz
(
πnz
Lz

)2. (11.46)

Note that the the energy eigenvalues are no more quasi-continuous, and are indexed
by three quantum numbers (nx, ny, nz). Thus, it does not make sense to talk about
“bandstructure” of quantum dots; the DOS is a sum of delta functions, written as

gQDot =
∑

nx,ny,nz

δ(E − Enx,ny,nz ). (11.47)

This is shown schematically in Figure 11.6. Since there is no direction of free motion,
there is no transport within a quantum dot, and there is no quasi-continuous momentum
components. Fabricating quantum dots by lithographic techniques is pushing the limits
of top-down approach to the problem. On the other hand, epitaxial techniques can coax
quantum dots to self-assemble by cleverly exploiting the strain in lattice-mismatched
semiconductors. On the other hand, bottom-up techniques of growing nanocrystals in
solution by chemical synthetic routes is becoming increasingly popular.
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12.1 Introduction

In this chapter, we apply the formalism we have developed for charge currents to understand
the output characteristics of a field-effect transistor. Specifically, we consider the situation
when transport of electrons in the transistor occurs without scattering due to defects, i.e.,
ballistically from the source contact to the drain. The ballistic characteristics highlight
various quantum limits of performance of a transistor. They guide material and geometry
choices to extract the most of such devices. In this process we develop powerful insights
into the inner workings of the remarkable device that powers the digital world.

12.2 The field-effect transistor

Figure 12.1 illustrates a typical field-effect transistor. A 2-dimensional electron gas (2DEG)
at the surface of a semiconductor (or in a quantum well) is the conducting channel. It is
separated from a gate metal by a barrier of thickness tb and dielectric constant εb. The
gate metal electrostatically controls the 2DEG density via the capacitance Cb = εb/tb. The
source and the drain metals form low-resistance ohmic contacts to heavily doped regions
indicated in gray. The FET width in the y-direction is W , which is much larger than the
source-drain separation L and the barrier thickness tb.

The 2DEG density at different points x of the channel from the source to the drain
depends on the relative strength of the electrostatic control of the three contacts. We
assume that the source contact is grounded. Vds is the drain potential and Vgs is the gate
potential with respect to the source. When Vds = 0 V, the 2DEG forms the lower plate of
a parallel-plate capacitor with the gate metal. A threshold voltage VT is necessary on the
gate to create the 2DEG. Once created, the 2D charge density ns in the 2DEG changes
as qns ≈ Cg(Vgs − VT ), where Cg = CbCq/(Cb + Cq), where Cq is a density-of-states or
‘quantum’ capacitance. Note that qns ≈ Cg(Vgs − VT ) is true only in the ‘on-state’ of the
transistor, and will not give us the sub-threshold or off-state characteristics. The quantum
capacitance arises because the density of states of the semiconductor band is lower than the
metal: this forces a finite voltage drop in the semiconductor to hold charge. It may also be
pictured as a finite spread of the 2DEG electrons, whose centroid is located away from the
surface, adding an extra capacitance in series to the barrier capacitance. We will use the
zero-temperature limit of Cq ≈ q2 × ρ2d for our purposes here, where ρ2d = gsgvm

?/2π~2

is the DOS for each subband of the 2DEG. Since Vds = 0 V, no net current flows from
the source to the drain. However, when the 2DEG is present, the electrons are carrying
current. The microscopic picture is best understood in the k−space.
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Source Drain

Gate

2DEG channel

barrier

Right-going
carriers

Left-going
carriers

Fig. 12.1: Field effect transistor, energy band diagram, and k−space occupation of states.

The states of the first subband of the 2DEG are illustrated in the real-space energy
band diagram and the occupation picture in k−space in Figure 12.1. When Vgs > VT , a
quantum-well is created with the z−quantization resulting in a ground state energy Enz .
The total energy of electrons in this 2DEG subband is given by

E(kx, ky) = Ec + Enz +
~2(k2

x + k2
y)

2m?
, (12.1)

where Ec is the conduction band edge energy at the interface, and m? is the effective
mass of the sub-bandstructure. We choose Ec = 0, and m? to be isotropic. When Vds = 0
V, the 2DEG electrons are in equilibrium with the source and drain. So the Fermi-level of
the 2DEG electrons EF is the same as the source and the drain. The band edge Ec and
quantization energy Enz have to adjust to populate the channel with the charge dictated by
the gate capacitor qns = Cg(Vgs − VT ). The Fermi-Dirac distribution dictates the carrier
distribution of the 2DEG in the k−space. It is given by

f(kx, ky) =
1

1 + exp [( ~2

2m? (k2
x + k2

y)− (EF − Enz ))/kT ]
=

1

1 + exp [
~2(k2

x+k2
y)

2m?kT − η]
,

(12.2)
where we define η = (EF − Enz)/kT . Since the Fermi-level is controlled by the gate

alone when Vds = 0, we should be able to write η as a function of the gate voltage Vgs.
The relation comes about by summing all occupied states in the k−space:

Cg(Vgs−VT ) = q
gsgv
LW

∫
dkx
2π
L

dky
2π
W

1

1 + exp [
~2(k2

x+k2
y)

2m?kT − η]︸ ︷︷ ︸
ns

= q
gsgv
(2π)2

∫ ∞
0

∫ 2π

0

kdkdθ

1 + exp [ ~2k2

2m?kT − η]
.

(12.3)
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We made the substitution kx = k cos θ and ky = k sin θ. Pictorially, we are summing
the states, or finding the ‘area’ of occupied states in the k−space in Figure 12.1. At zero
temperature, the shape is a circle with a sharp edge indicated by the dashed circle. At
higher temperatures, the edge is diffuse, and the occupation probability drops exponentially
as it is crossed. The spin-degeneracy of each state is gs, and the semiconductor has gv
equivalent valleys, each with the same bandstructure.

The integral in Equation 12.3 is evaluated by first integrating out over θ which gives a
factor 2π, and then making the substitution u = ~2k2/2m?kT . Doing so with Vth = kT/q
yields

Cg(Vgs − VT ) = q
gsgvm

?kT

2π~2

∫ ∞
0

du

1 + exp [u− η]︸ ︷︷ ︸
F0(η)

= CqVthF0(η), (12.4)

where we identify Cq ≈ q2ρ2d = q2gsgvm
?/2π~2 as the quantum capacitance, and the

integral F0(η) as a special case of generalized Fermi-Dirac integrals of the form

Fj(η) =

∫ ∞
0

du
uj

1 + exp [u− η]
, (12.5)

with j = 0. The zeroth order Fermi-Dirac integral evaluates exactly to F0(η) =

ln[1 + exp(η)]. At this stage, it is useful to define ηg = Cb
Cb+Cq

(
Vgs−VT
Vth

). Thus the gate

voltage Vgs tunes the Fermi level EF of the 2DEG according to the relation

η =
EF − Enz

kT
= ln (eηg − 1). (12.6)

For Vgs − VT >> Vth, ηg >> 1, and we obtain η ≈ ηg, implying EF − Enz ≈
q(Vgs − VT )× Cb/(Cb + Cq). In other words, at a high gate overdrive voltage, the Fermi
level changes approximately linearly with the gate voltage, as one would expect in a parallel
plate capacitor. The capacitance factor is less than one, indicating a voltage division
between the barrier and the channel. A part of the voltage must be spent to create the
2DEG since the density of states of the semiconductor conduction band is much smaller
than a metal, as is apparent from the energy band diagram along the z−direction in Figure
12.1.

If we are interested in evaluating the sub-threshold characteristics of the ballistic FET,
Equation 12.4 must be modified. It is evident that the RHS of this equation is always
+ve, but when Vgs < VT in the sub-threshold, the LHS is -ve. To fix this problem, by
looking at the energy band diagram in Figure 12.1 we rewrite the division of voltage drops
as qVb + (EF − Enz ) = q(Vgs − VT ), where VT now absorbs the surface barrier height, the
conduction band offset between the barrier and the semiconductor, and the ground state
quantization energy (Enz − Ec). The term Vb is the voltage drop in the barrier given by
Vb = Fbtb = (qns/εb)tb = qns/Cb. The resulting relation between ns and Vgs is then

q2ns
Cb

+ kT ln (e
qns
CqVth − 1) = q(Vgs − VT ) =⇒ e

qns
CbVth (e

qns
CqVth − 1) = e

Vgs−VT
Vth (12.7)

This is a transcendental equation, which must be numerically solved to obtain ns as a
function of Vgs to get the functional dependence ns(Vgs). Note that since ns > 0, both
sides of the equation always remain +ve. As Vgs − VT becomes large and negative, ns → 0
exponentially but never reaches 0. This is the sub threshold characteristics of the ballistic
transistor. In Equation 12.7, two characteristic carrier densities appear: nb = CbVth/q and

nq = CqVth/q; the equation then reads e
ns
nb (e

ns
nq − 1) = e

Vgs−VT
Vth . For Vgs − VT >> Vth, the

1 in the bracket may be neglected, and qns ≈ CbCq
Cb+Cq

(Vgs − VT ). On the other hand, when

Vgs − VT << 0, the RHS is small. Since ns > 0, it must become very small. Expanding
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the exponentials and retaining the leading order, we obtain ns ≈ nqe
Vgs−VT
Vth . In the sub

threshold regime, the carrier density at the source-injection point decreases exponentially
with the gate voltage, and is responsible for the sharp switching of the device. Figure
12.2 illustrates this behavior. For the rest of the chapter, we focus on the on-state of the
ballistic FET.
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Fig. 12.2: Illustrating the dependence of the 2DEG sheet density at the injection point on
the gate voltage.

At this stage, it is instructive to find the right-going and left-going components of the
net current at Vds = 0 V, even though the net current is zero. We derived the general
quantum-mechanical expression for current flowing in d−dimensions earlier as

Jd =
qgsgv
(2π)d

∫
ddk× vg(k)f(k), (12.8)

where we assumed the transmission probability T (k) = 1. For the 2DEG here, d = 2 and
the group velocity of state |k〉 is vg(k) = ~k/m?. From Figure 12.1, this velocity component
points radially outwards from the origin in k−space. Clearly evaluating this integral will
yield zero since there is a | − k〉 state corresponding to each | + k〉 state. So instead,
we evaluate the current carried by electrons moving only in the +kx = |k| cos θ = k cos θ
direction. This is obtained from Eq. 12.8 by restricting the k−space integral to the right
half plane covered by −π/2 ≤ θ ≤ +π/2 and using the velocity projected along the kx axis
vg = ~k cos θ/m? to obtain

J→2d =
qgsgv~

(2π)2m?

∫ ∞
k=0

∫ +π
2

θ=−π2

(k cos θ)kdkdθ

1 + exp [ ~2k2

2m?kT − η]
=
qgsgv

√
2m?(kT )

3
2

2π2~2︸ ︷︷ ︸
J2d

0

F 1
2
(η), (12.9)
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where F1/2(η) is the dimensionless Fermi-Dirac integral of order j = 1/2, and the

prefactor J2d
0 has units of A/m or current per unit width. Since J→2d = J←2d = J2d

0 F1/2(η),
the net current is zero. Another way to visualize this is to think of the right-going carriers
as being created by injection into the 2DEG channel from the source, and thus the right-half
carriers in k−space are in equilibrium with the source. This statement is quantified by
requiring E→F = EFs. Similarly, the left-going carriers are injected from the drain contact,
and are consequently in equilibrium with the drain E←F = EFd. Since the source and the
drain are at the same potential EFs − EFd = qVds = 0 V, the right going and left going
carriers share a common Fermi level. Notice that we have defined two quasi-Fermi levels
E→F and E←F and have thus split the carrier distribution into two types that can be in
equilibrium amongst themselves, but out of equilibrium with each other. The current is
zero at Vds = 0 V due to the delicate balance between the left- and right-going current
that exactly cancel each other.

This delicate balance is broken when a drain voltage is applied to the transistor.

12.3 Ballistic current-voltage characteristics

Source Drain

Gate

2DEG channel

barrier

Right-going
carriers

Left-going
carriers

Fig. 12.3: Field effect transistor, energy band diagram, and k−space occupation of states.

When a voltage Vds is applied on the drain, the energy band diagram looks as indicated
in Figure 12.1. Now the band edge Ec(x) varies along the channel, with a maximum in
the x − y plane occurring at x = xmax, which is referred to as the ‘top-of-the-barrier’
(TOB) plane. The ground state of the quantum well Enz (x) also varies along x depending
upon the local vertical electric field, but has the fixed value Enz (xmax) at the TOB plane.
Interestingly, there is no x−oriented electric field at xmax. The energy band diagram along
the z−direction in the TOB plane is also indicated in Figure 12.1. Let’s focus on this plane
exclusively.

At Vds = 0 V, there was a unique EF at xmax, but the quasi-Fermi levels of the right-
going carriers and left-going carriers are no longer the same, since EFs −EFd = qVds. Due
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to +ve drain voltage, it has become energetically unfavorable for the drain contact to inject
left-going carriers. In the absence of any scattering in the channel, the right-going carriers
are still in equilibrium with the source, and the left-going carriers are still in equilibrium
with the drain. Thus, the current components now become J→2d = J2d

0 F1/2(ηs) and

J←2d = J2d
0 F1/2(ηd). Here ηs = [EFs − Enz (xmax)]/kT and ηd = [EFd − Enz (xmax)]/kT =

ηs − vd, where vd = qVds/kT . The net current of the ballistic transistor is then given by
J2d = J→2d − J←2d as

J2d =
qgsgv

√
2m?(kT )

3
2

2π2~2
[F 1

2
(ηs)− F 1

2
(ηs − vd)] = J2d

0 [F 1
2
(ηs)− F 1

2
(ηs − vd)]. (12.10)

The first term is the right-going current carried by the larger gray half-circle in k−apace
in Figure 12.1, and the second term is the smaller left-going current carried by the left-going
carriers. To evaluate the current, we need to find the dependence of ηs on the gate and
drain voltages Vgs and Vds.

When Vds = 0 V, we found the relation between the unique η and Vgs in Eq. 12.6.
How do we determine ηs when the carrier distribution looks as in Figure 12.1 with the
asymmetric left-and right-going occupation? Here we make the assumption that the
net 2DEG density in the TOB plane at x = xmax is completely controlled by the gate
capacitance. This means the net 2DEG density in the TOB plane has not changed from
the Vds = 0 V case. Experimentally, this is possible when the transistor is electrostatically
well designed, with negligible short-channel effects. Let us assume that such design has
been achieved.

Then, just like for the current, we split the carrier distribution equation Cg(Vgs−VT ) =
CqVthF0(η) from Equation 12.4 into the right-going and left-going carriers as

Cg(Vgs − VT ) = CqVthF0(η)→ CqVth[
F0(η→) + F0(η←)

2
]. (12.11)

Identifying η→ = ηs and η← = ηs − vd and using F0(x) = ln[1 + exp(x)], we get the
relation

ln[(1 + eηs)(1 + eηs−vd)] =
2Cg
Cq

(
Vgs − VT
Vth

) = 2ηg = ln[e2ηg ], (12.12)

which is a quadratic equation in disguise. Solving for ηs yields

ηs = ln[
√

(1 + evd)2 + 4evd(e2ηg − 1)− (1 + evd)]− ln[2], (12.13)

which reduces to Equation 12.6 for vd = 0. The expression for ηs with J2d(Vgs, Vds) =
J2d

0 [F 1
2
(ηs) − F 1

2
(ηs − vd)] provides the complete on-state output characteristics of the

ballistic FET at any temperature. Note that the expression depends on the values of
Fermi-Dirac integrals of order j = 1/2. At Vds = 0 V, the drain current is zero, as it should
be.

Because of the use of Equation 12.11, just as in Equation 12.4, Equation 12.13 works
only for the ‘on-state’ of the ballistic transistor. The advantage of this form is that the
current can be calculated directly. However, if the off-state characteristics of the ballistic
FET are desired, one must find the charge self consistently from Equation 12.7 which read

e
qns
CbVth (e

qns
CqVth − 1) = e

Vgs−VT
Vth and gave us ns(Vgs). Then, the expression to use for the

entire ‘on-state’ and ‘off-state’ or sub-threshold behavior of the ballistic FET is simply

ηs = ln[

√
(1 + evd)2 + 4evd(e

2ns(Vgs)

nq − 1)− (1 + evd)]− ln[2], (12.14)

where we have simply replaced ηg → ns(Vgs)/nq in Equation 12.13. Based on this
general expression, we can evaluate the entire on-state and off-state characteristics of the
ballistic FET.
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12.4 Examples

The derived expression of the current of the ballistic FET does not depend on the gate
length L. This is a consequence of ballistic transport. Figure 12.4 illustrates the entire
output characteristics of a ballistic Silicon transistor. The left figure shows the ‘transfer’
characteristics in log scale, and the middle figure shows the same in linear scale. Note
that Equation 12.14 must be used to obtain the on-off switching characteristics exhibited
in this figure. Note that the switching is much steeper at a lower temperature, since the
subthreshold slope is ∼ 60 · (T/300) mV/decade. The right figure shows the drain current
per unit width Id/W as a function of the drain voltage Vds. When Vds is much larger than
kT , vd >> 1, and ηs → ln[e2ηg − 1]. The current then becomes independent of Vds, i.e.,
saturates to J2d → J2d

0 F1/2(ln[e2ηg − 1]).
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Fig. 12.4: Ballistic Silicon FET. The device dimensions are tb = 1 nm, εb = 10ε0, and for
Silicon, m? = 0.2m0 and gv = 2.5 are used.
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Fig. 12.5: Ballistic FET characteristics at T = 300 K for Si, GaN, and In0.53Ga0.47As
channels.

The ballistic FET current expression in equation 12.10 is used to plot a few representative
cases. The results at room temperature are shown in Figure 12.5. The barrier thickness
for all three FETs is chosen to be tb = 2 nm, of a dielectric constant of εb = 10ε0. The
channel materials chosen are Si, GaN, and In0.53Ga0.47As. For Si, an effective valley
degeneracy of gv = 2.5, and an effective mass m? ≈ 0.2m0 is used. For GaN, gv = 1, and
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m? ≈ 0.2m0, and for In0.53Ga0.41As gv = 1, and m? ≈ 0.047m0 are used. Note that these
are representative material parameters, for correlation with experiments, one must make
accurate extraction of band parameters from the electronic bandstructures.

The current in Si channels is higher than GaN and In0.53Ga0.47As channels at low Vds,
since it takes advantage of multiple valleys. At high drain bias voltages, the on-current is
higher for low effective-mass materials for the same gate overdrive voltage Vgs − VT . This
boost is due to the higher velocity of carriers due to the low effective mass. For example, at
Vgs − VT = 0.5 V, the higher saturation currents in GaN and In0.53Ga0.47As channels are
shown by arrows in the Figure. However, it takes higher Vds to attain current saturation.

Due to the ultra thin gate and high gate overdrive voltages, the on-currents predicted
are rather high. Experimental highest on-current densities approach ∼ 4 mA/micron
for nanoscale GaN HEMTs, and lower for Si MOSFETs. The experimental currents are
limited by source/drain ohmic contact resistances, and gate leakage. These effects have
been neglected in the treatment of the ballistic FET.

However, it is remarkable that even for a ballistic FET with zero source and drain
contact resistances and no scattering, the low-Vds regime of the ballistic FET has linear
Id − Vds characteristics and looks like a resistor. One can extract effective on-resistances of
the order of ∼ 0.05 Ω−mm from the linear regions. The origin of this resistance goes back
to the limited number of |k〉 states available for transport in the 2DEG channel.



Fig. 13.2: Transmission proba-
bility T = |r|2 as a function
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the electron wavevector is real at
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13.1 Tunneling and Transmission

Fig. 13.1: Tunneling and transmission of electrons through a single potential barrier.

Figure 13.1 above shows the transmission of an electron over a barrier, and the quantum
mechanical tunneling of an electron through the barrier. For an electron of mass m and
kinetic energy E, the boundary conditions at the two barrier interfaces x = ±a/2 give
us four equations and four unknowns: the coefficients r, b, c, and t as indicated in the
figure. Using boundary conditions that the wavefunction and its derivative are continuous
at x = +a/2 and at x = −a/2 we get 4 equations. Solving these 4 equations yields the 4
unknown coefficients, solving the problem completely.

Since we are interested in the tunneling probability T (E) = |t|2, the above calculation
yields

127
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T (E) =
1

1 +
V 2

0

4E(E−V0) sin2 (kba)
(13.1)

Note that when the kinetic energy of the electron is lower than the barrier, kb is
imaginary, and sin(iy) = i sinh(y). Figure 13.2 shows plots of the tunneling probability
as a function of the electron energy E for a fixed barrier height V0 = 1 eV and barrier
thicknesses of a = 10 nm and a = 1 nm. Note how sensitive tunneling is to thickness, and
the resonances when E > V0. These values are routinely encountered in semiconductor
devices and nanostructures.

T (E) =
1

1 +
V 2

0

4E(V0−E) sinh2 (kba)
≈ 16E(V0 − E)

V 2
0

e−2kba (13.2)

The boxed expression above is the exact tunneling probability for the rectangular barrier,
and the approximation will be seen to be equivalent to the WKB approximation, which is
the technique that can be applied to potential barriers or arbitrary shapes.

13.2 The WKB Method

The WKB method is a recipe for solving the time-independent Schrodinger equation
for arbitrary potentials. There is typically a misconception that this method is a crude
approximation. Far from it. Consider the time-independent Schrodinger equation in 1D:

− ~2

2me

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) (13.3)

rewritten in the form

ψ′′(x) = Q(x)ψ(x), (13.4)

with

Q(x) =
2me

~2
(V (x)− E). (13.5)

This is in general analytically unsolvable, except for the few cases considered in this
chapter such as the harmonic oscillator, or the hydrogen atom. George Green (the same
person who is credited with Green’s functions) had a brilliant insight to crack into an
asymptotic approach to a solution. He suggested that we try a solution of the form

ψ(x) = eS(x) (13.6)

Substituting, we obtain (S′′ + (S′)2)eS = QeS which leads to

S′′ + (S′)2 = Q (13.7)

Note that this is exact. But unfortunately we have just converted the already unsolvable
Schrodinger equation into another insolvable equation: the Riccati equation. It is also a
non-linear equation!

Green made the crucial observation that if S(x) = axb where b < 0, then S′′ << (S′)2

for small x. This makes the asymptotic form of Eq. 13.7

(S′)2 ∼ Q, (13.8)

which leads to
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S′ ∼ ±
√
Q, (13.9)

and

S(x) ∼ ±
∫ x

a

du
√
Q(u). (13.10)

Here a is any chosen constant. Now lets write

S(x) = ±
∫ x

a

du
√
Q(u)︸ ︷︷ ︸

S0(x)

+ C(x)︸ ︷︷ ︸
S1(x)+S2(x)+S3(x)+...

(13.11)

Now we have gone back from an asymptotic form to an exact form here. Note that
the leading functional form is defined S0(x) = ±

∫ x
a
du
√
Q(u). Consequently, we have the

relations

S
′

0(x) = ±
√
Q(x) (13.12)

S
′′

0 (x) = ± Q′(x)

2
√
Q(x)

(13.13)

Now we substitute S = S0 + C into 13.7 to get

S
′′

0 + C ′′ + (S
′

0 + C ′)2 = Q. (13.14)

Note that this is back to being exact. Writing it out, we get

S
′′

0 + C ′′ + (S
′

0)2 + (C ′)2 + 2S
′

0C
′ = Q, (13.15)

and substituting all terms related to S0(x) and its derivatives, we get

± Q′(x)

2
√
Q(x)

+ C ′′ +Q+ (C ′)2 ± 2
√
Q(x)C ′ = Q. (13.16)

This is still exact. Note the crucial cancellation of Q. The result is a differential
equation, but now for the correction function C(x):

± Q′(x)

2
√
Q(x)

+ C ′′ + (C ′)2 ± 2
√
Q(x)C ′ = 0 (13.17)

But this equation is not very different from the Riccati equation either! Now we step
back to asymptotics again: since S0(x) is the leading order or dominant function, we have
the relations C(x) << ±

∫ x
a
dt
√
Q(t), and consequently

C ′(x) << ±
√
Q(x), (13.18)

C ′′(x) << ± Q′(x)

2
√
Q(x)

, (13.19)

As a result, we may throw away the C ′′ and (C ′)2 terms to obtain:

C ′(x) ∼ −Q
′(x)

4Q(x)
, (13.20)

which yields
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C(x) ∼ −1

4
lnQ(x) = −1

4
lnQ(x)︸ ︷︷ ︸
S1(x)

+S2(x) + S3(x) + ..., (13.21)

Thus, the solution to the Schrodinger equation is

ψ(x) = eS(x) = eS0(x)+S1(x)+S2(x)... = eS0(x)eS1(x)eS2(x)+... (13.22)

Substituting the values of S0 and S1, we obtain

ψ(x) = eS(x) = e±
∫ x
a
du
√
Q(u)e−

1
4 lnQ(x)eS2(x)+... (13.23)

which is rewritten in the form

ψ(x) = eS(x) =
1

(Q)
1
4

e±
∫ x
a
du
√
Q(u)eS2(x)+... (13.24)

This process may be repeated again and again. Each step will generate new functional
forms S2(x), S3(x).... Green’s method extracts out the “non-Frobenius” and “non-Fuchs”
terms, and thereafter the series becomes rational powers of x: D(x) = S2(x) +S3(x) + ... =∑
n an(

√
x)n. But this is rarely necessary in our work. For most cases, it turns out that

D(x) << 1, and the ‘WKB’ approximation to use looks like

ψ(x) ≈ K

Q(x)
1
4

e±
∫ x
a
du
√
Q(u). (13.25)

where K is a constant.

One can mechanize the extraction of the successive functions Sn(x) by the following
perturbative approach. We recast the Schrodinger equation as a function of a parameter ε
of the form ε2ψ′′ = Qψ, and assume a solution

ψ(x) = eS = e
1
ε

∑∞
n=0 Snε

n

= e
1
εS0+S1+S2ε+S3ε

3+... (13.26)

Substituting this form into the Schrodinger equation ε2ψ′′ = Qψ leads to the set of
equations defined by

(S′0 + S′1ε+ S′2ε
2 + S′3ε

3)2 + (S′′0 ε+ S′′1 ε
2 + S′′2 ε

3 + ...) = Q, (13.27)

from where we equate like powers of ε on both sides of the equation to obtain

(S′0)2 = Q for ε0 (13.28)

2S′0S
′
1 + S′′0 = 0 for ε1 (13.29)

2S′0S
′
2 + S′′1 + (S′1)2 = 0 for ε2 (13.30)

2S′0S
′
n + S′′n−1 +

n−1∑
j=1

S′jS
′
n−j = 0 for εn (13.31)

So what is this ε? One way to look at it is to ‘relate’ it to ~, which is a small number.
But ε is a variable in the above formulation, which renders the Schrodinger equation into a
polynomial series, enabling the WKB evaluation.



13.3. WKB METHOD FOR SEMICONDUCTOR TRANSPORT 131

13.3 WKB Method for Semiconductor Transport

Now consider the effective mass equation for an electron in the conduction band of a
semiconductor where the band edge Ec(x) varies smoothly in space. Then, the effective
mass equation for the electron is

[En(−i∇)]C(r) = [E − Ec(x)]C(x) =⇒ d2

dx2
C(x) = −2m?

c

~2
[E − Ec(x)]︸ ︷︷ ︸
Q(x)

C(x), (13.32)

where C(x) is the envelope function, and the full wavefunction of the wavepacket
representing the electron is ψ(x) ≈ C(x)uk(x). This is clearly in the form of the WKB
formulation; the solution is

C(x) ≈ K

Q(x)
1
4

e±
∫ x
a
du
√
Q(u). (13.33)

where K is a constant. Now if the energy of the wavepacket is larger than the conduction

band edge E > Ec(x), Q(x) < 0 and
√
Q(x) = ik(x), where k(x) =

√
2m?c
~2 (E − Ec(x)) is

a spatially varying wavevector. Then, the envelope function varies in space as

C(x) ≈ K ′√
k(x)

e±i
∫ x
a
duk(u), (13.34)

which looks like a plane wave whose wavelength is smoothly varying in space, and the
amplitude is decreasing as the wavevector increases. This situation is shown in Figure 13.3.

Fig. 13.3: Electron transport and approximate wavefunction in smoothly varying potentials.

The wavevector k(x) =
√

2m?c
~2 (E − Ec(x)) is large for x where the net kinetic energy

E − Ec(x) is large; the electron is moving fast at those points. Near the classical turning
points where E−Ec(x)→ 0, k(x) decreases, the wavelength stretches out, and the electron
slows down. The classical analogy of a ball rolling up and down the valley should be clear.
Just as in the classical situation, the probability of finding the particle is low at x locations
where it is moving fast. This feature is captured in the quantum mechanical wavefunction,
since the probability density goes as |C(x)|2 ∝ 1

k(x) as indicated by the dashed line.
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Fig. 13.4: Transport of an ef-
fective mass electron wavepacket
in the conduction band in a
smoothly varying potential. The
group velocity v(x) ∼ k(x) in-
creases as the kinetic energy in-
creases, but the carrier density
n(x) = |C(x)|2 ∼ 1/k(x) de-
creases, keeping the net current
J(x) ∼ n(x)v(x) constant.

The dynamics of a quantum particle represented by the wavefunction ψ(x, t) is governed
by the time-dependent Schrodinger equation

[− ~2

2me

d2

dx2
+ V (x)]ψ(x, t) = i~

∂

∂t
ψ(x, t) =⇒ j =

ψ?p̂ψ − ψp̂ψ?
2me

(13.35)

.
where the quantum mechanical probability current density j is obtained from the

wavefunction. Note that the electron mass is in the denominator, and ψ is the complete

wavefunction. Now we recognize the effective mass equation Ec(−i∇) = Ec(x)− ~2

2m?c

d2

dx2

which makes the effective mass equation mathematically identical to the free-electron
Schrodinger equation:

[− ~2

2m?
c

d2

dx2
+ Ec(x)]C(x, t) = i~

∂

∂t
C(x, t) =⇒ j = − i~

2m?
c

[C?
∂C

∂x
− C ∂C

?

∂x
]. (13.36)

and the quantum mechanical probability current density j is thus obtained directly
from the effective mass parameters, by using the envelope function C(x) and the effective
mass m?

c instead of the free electron mass.
Now since the charge current carried by an effective mass state is

J = qgsgv
∑
k

jk = gsgv
∑
k

vg(k)|C(x)|2, (13.37)

we get from equation 13.34 for a purely right-going WKB state C(x) = Kei
∫x
a k(u)du√
k(x)

in a smoothly varying conduction band profile Ec(x). Because near the band edge the

bandstructure is Ec(k) = Ec(x) + ~2k(x)2

2m?c
, the group velocity of the effective mass state is

vg(k) = 1
~
∂Ec(k)
∂k = ~k(x)

m?c
The charge current density is then found to be

J = qgsgv
~k(x)

m?
c︸ ︷︷ ︸

v(x)

|C(x)|2︸ ︷︷ ︸
n(x)

= qgsgv
~k(x)

m?
c

|K|2
k(x)

= qgsgv
~|K|2
m?
c

, (13.38)

showing how the net current is conserved in transport across a smoothly varying
potential profile. This is shown in Figure 13.4 for an effective mass electron wavepacket in the

conduction band of a semiconductor. The envelope carrier density n(x) = C?(x)C(x) = |K|2
k(x)

decreases when the group velocity ~k(x)
m?c

increases, keeping their product J(x) ∼ n(x)v(x)
constant.

13.4 Tunneling transport using the WKB method

The electron may encounter potential barriers whose height is larger than the kinetic energy,
i.e. E < V (x) as indicated in Figure 13.5. In such a situation, the term Q(x) = κ(x) =

− 2m?c
~2 (E − Ec(x)) > 0, and the WKB solution of Equation 13.33 is

C(x) ≈ K√
κ(x)

e±
∫ x
a
κ(u)du. (13.39)

If the classical turning points are x = x1 and x = x2 as indicated in Figure 13.5, we
can write the ratio of the coefficients approximately as

C(x2)

C(x1)
≈ e−

∫ x2
a

κ(u)du

e−
∫ x1
a

κ(u)du
≈ eiφe−

∫ x2
x1

κ(u)du
, (13.40)
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Fig. 13.5: WKB tunneling through a potential barrier.

where φ is a possible phase factor accumulated in the oscillatory part. Because the
tunneling probability is proportional to the square of the wavefunction, we obtain

|C(x2)

C(x1)
|2 ≈ e−2

∫ x2
x1

κ(u)du
=⇒ Twkb ≈ e−2

∫ x2
x1

dx
√

2m?c
~2 [Ec(x)−E]

. (13.41)

This approximate equation holds for tunneling within a single band. It is not exact, but
provides a reasonable estimate of the tunneling probability. It may be compared with the
exact tunneling probability obtained in the rectangular barrier in Equation 13.2. Using the

physical constants, we obtain Twkb ≈ e−(
tb

0.1 nm )
√

(
m?c
me

)·( V0
1 eV ). For example, the tunneling

probability for a barrier tb = 1 nm thick and uniform barrier height V0 ∼ 1 eV, with a
conduction band edge effective mass m?

c ∼ 0.09me is Twkb ≈ e−3 ∼ 1/20, rather high
number because of the thin barrier and the light effective mass. The tunneling probability
is extremely sensitive to the thickness, barrier height and the effective mass. This sensitivity
is also a reason the tunneling currents can be used to measure these parameters.

13.5 Interband ‘Zener’ Tunneling

At high electric fields In semiconductors, tunneling of electrons can occur from the valence
band to the conduction band. Such interband tunneling may only be loosely modeled
by the above effective mass formalism, because the effective mass approximation works
best for electron transport within the same band. Let us first develop a very approximate
method to estimate the interband tunneling currents, and then refine it in successive steps.
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Fig. 13.6: Interband Zener tunneling in bulk semiconductors, p-n junctions, and hetero-
junctions.

Fig. 13.7: A simple model for calculating the interband tunneling current density in
semiconductors.
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Fig. 13.8: Interband tunneling probabilities.

Fig. 13.9: Calculation of interband tunneling current with lateral momentum conservation.
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Fig. 13.10: Interband tunneling current densities at low and high reverse bias voltages.

Fig. 13.11: Negative differential resistance in interband tunneling in degenerately doped
Esaki diodes.
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Fig. 13.12: The Landau-Zener approach to interband tunneling as a time-dependent
perturbation problem.

Fig. 13.13: The Landau-Zener approach to interband tunneling as a time-dependent
perturbation problem.
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14.1 Introduction

In this chapter, we derive a very useful result for estimating transition rates between
quantum states due to time-dependent perturbation. The results will be used heavily
in subsequent chapters to understand the optical and electronic transport properties of
semiconductors.

14.2 Fermi’s Golden Rule

Consider an unperturbed quantum system in state |Ψt0〉 at time t = t0. It evolves to the
state |Ψt〉 at a future instant t. The time evolution of the state vector is governed by the
unperturbed Hamiltonian H0 according to the time-dependent Schrodinger equation

i~
∂

∂t
|Ψt〉 = H0|Ψt〉. (14.1)

If the system was in an eigenstate |Ψt0〉 = |0〉 of energy E0 at time t0, then the state at
a future time differs from the initial state by a phase factor

H0|Ψt0〉 = E0|Ψt0〉 =⇒ |Ψt〉 = e−i
E0
~ (t−t0)|Ψt0〉. (14.2)

This is a stationary state; if the quantum state started in an eigentstate, it remains in
that eigenstate as long as there is no perturbation. But the eigen-state vector still ‘rotates’
in time with frequency ω0 = E0/~ in the Hilbert space as indicated schematically in Figure
14.1. It is called stationary because physical observables of the eigenstate will require not
the amplitude, but the inner product, which is 〈Ψt|Ψt〉 = 〈Ψt0 |Ψt0〉. This is manifestly
stationary in time.

Now let us perturb the system with a time-dependent term Wt. This perturbation can
be due to a voltage applied on a semiconductor device, or electromagnetic waves (photons)
incident on a semiconductor. The new Schrodinger equation for the time evolution of the
state is

i~
∂

∂t
|Ψt〉 = [H0 +Wt]|Ψt〉. (14.3)

In principle, solving this equation will yield the complete future quantum states. In
practice, this equation is unsolvable, even for the simplest of perturbations. Physically, the
perturbation will ‘scatter’ a particle that was, say in state |0〉 to state |n〉. However, we
had noted that even in the absence of perturbations, the eigen-state vectors were already

139
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State vectors rotate in time State vectors do not rotate in time

Schrodinger picture Interaction picture

Transformation

Fig. 14.1: Schrodinger vs. Interaction pictures of time-evolution of quantum state.

evolving with time in the Hilbert space. For example, state vector |0〉 was rotating at an
angular frequency ω0, and state vector |n〉 at ωn. This is shown schematically in the left of
Figure 14.1. It would be nice to work with unperturbed state vectors that do not change in
time, as in the right of Figure 14.1. This calls for a transformation to a vector space that
‘freezes’ the time evolution of the unperturbed eigen state-vectors. Such a transformation
is achieved by the relation

|Ψt〉 = e−i
H0
~ t|Ψ(t)〉, (14.4)

where H0 is the Hamiltonian operator. Note that the operator now sits in the exponential,
but it should not worry us much. We will see that it is rather useful to have it up there. The
reason for this non-obvious transformation is because when we put this into the Schrodinger
equation in Equation 14.3, we get

i~
(
− i
~
H0e

−iH0
~ t|Ψ(t)〉+ e−i

H0
~ t ∂

∂t
|Ψ(t)〉

)
= [H0 +Wt]e

−iH0
~ t|Ψ(t)〉, (14.5)

and there is a crucial cancellation, leaving us with

i~
∂

∂t
|Ψ(t)〉 = [e+i

H0
~ tWte

−iH0
~ t]|Ψ(t)〉 = W (t)|Ψ(t)〉 (14.6)

where W (t) = e+i
H0
~ tWte

−iH0
~ t. Can we take the operator e−i

H0
~ t from the left to the

right side as e+i
H0
~ t? Yes we can, because e+i

H0
~ t · e−iH0

~ t = I, the identity operator.
The boxed form of the time-evolution is called the interaction picture, as opposed to

the conventional form of Equation 14.3, which is called the ‘Schrodinger’ picture. Note

that if there is no perturbation, Wt = 0 =⇒ W (t) = 0 =⇒ i~∂|Ψ(t)〉
∂t = 0. Then,

|Ψ(t)〉 = |Ψ(t0)〉, and we have managed to find the state vector representation in which the
unperturbed eigenvectors are indeed frozen in time.
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Now lets turn the perturbation Wt on. Formally, the state vector at time t in the
interaction representation is obtained by integrating both sides:

|Ψ(t)〉 = |Ψ(t0)〉+
1

i~

∫ t

t0

dt′W (t′)|Ψ(t′)〉, (14.7)

and it looks as if we have solved the problem. However, there is a catch - the unknown
state vector |Ψ(t)〉 appears also on the right side - inside the integral. This is also a
recursive relation! It reminds of the Brilloiun-Wigner form of non-degenerate perturbation
theory. Let’s try to iterate the formal solution once:

|Ψ(t)〉 = |Ψ(t0)〉+
1

i~

∫ t

t0

dt′W (t′)

[
|Ψ(t0)〉+

1

i~

∫ t′

t0

dt′′W (t′′)|Ψ(t′′)〉
]
, (14.8)

and then keep going:

|Ψ(t)〉 = |Ψ(t0)〉︸ ︷︷ ︸
∼W 0

+
1

i~

∫ t

t0

dt′W (t′)|Ψ(t0)〉︸ ︷︷ ︸
∼W 1

+
1

(i~)2

∫ t

t0

dt′W (t′)

∫ t′

t0

dt′′W (t′′)|Ψ(t0)〉︸ ︷︷ ︸
∼W 2

+...

(14.9)
We thus obtain a formal perturbation series to many orders. The hope is that the series

converges rapidly if the perturbation is ‘small’, because successive terms increase as a power
law, which for a small number gets even smaller. Let’s accept that weak argument now
at face value, and we return later to address, justify, and where possible, fix this cavalier
approximation.

Let |Ψ(t0)〉 = |0〉 be the initial state of the quantum system. The perturbation is
turned on at time t0. The probability amplitude for the system to be found in state |n〉 at
time t(> t0) is 〈n|Ψt〉. Note the Schrodinger representation! But the transformation from

Schrodinger to interaction picture helps: 〈n|Ψt〉 = 〈n|e−iH0
~ tΨ(t)〉 = e−i

En
~ t〈n|Ψ(t)〉. This

implies |〈n|Ψt〉|2 = |〈n|Ψ(t)〉|2 - for all eigenstates |n〉. Let us make an approximation in
this section and retain only the first order term in the perturbation series. We will return
later and discuss the higher order terms that capture multiple-scattering events. Retaining
only the terms of Eq. 14.9 to first order in the perturbation W gives

〈n|Ψ(t)〉 ≈ 〈n|0〉︸ ︷︷ ︸
=0

+
1

i~

∫ t

t0

dt′〈n|W (t′)|0〉 =
1

i~

∫ t

t0

dt′〈n|e+i
H0
~ t′Wt′e

−iH0
~ t′ |0〉. (14.10)

Let us assume the perturbation to be of the form Wt = eηtW representing a ‘slow turn
on’, with η = 0+, and W = W (r) a function that depends only on space. If η = 0, then
the perturbation is time-independent. But if η = 0+, then eηt0 → 0 as t0 → −∞. This
construction thus effectively kills the perturbation far in the distant past, but slowly turns
it on to full strength at t = 0. We will discuss more of the physics buried inside η later.
For now, we accept it as a mathematical construction, with the understanding to take the
limit η → 0 at the end. Then, the amplitude in state |n〉 simplifies:

〈n|Ψ(t)〉 ≈ 1

i~

∫ t

t0

dt′ 〈n|e+i
H0
~ t′︸ ︷︷ ︸

e+i
En
~ t′ 〈n|

eηt
′
W e−i

H0
~ t′ |0〉︸ ︷︷ ︸

e−i
E0
~ t′ |0〉

=
〈n|W |0〉

i~

∫ t

t0

dt′ei(
En−E0

~ )t′eηt
′
,

(14.11)
and the integral over time may be evaluated exactly to yield
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∫ t

t0

dt′ei(
En−E0

~ )t′eηt
′

=
ei(

En−E0
~ )teηt − ei(

En−E0
~ )t0eηt0

i
(
En−E0

~
)

+ η
=︸︷︷︸

t0→−∞

ei(
En−E0

~ )teηt

i
(
En−E0

~
)

+ η
. (14.12)

The amplitude then is

〈n|Ψ(t)〉 ≈ 〈n|W |0〉
i~

· e
i(En−E0

~ )teηt

i
(
En−E0

~
)

+ η
= 〈n|W |0〉 · ei(

En−E0
~ )teηt

(E0 − En) + i~η
. (14.13)

The probability of the state making a transition from |0〉 to |n〉 at time t is

|〈n|Ψt〉|2 = |〈n|Ψ(t)〉|2 ≈ |〈n|W |0〉|2 e2ηt

(E0 − En)2 + (~η)2
. (14.14)

The rate of transitions from state |0〉 → |n〉 is

1

τ|0〉→|n〉
=

d

dt
|〈n|Ψ(t)〉|2 ≈ |〈n|W |0〉|2

(
2η

(E0 − En)2 + (~η)2

)
e2ηt. (14.15)

Now we take η → 0+. The third term e2ηt → 1, but we must be careful with the quantity
in the bracket. When η → 0, this quantity is 0, except when the term E0 − En = 0; then
the term seems indeterminate. By making a plot of this function, we can convince ourselves
that it approaches a Dirac delta function in the variable E0 − En. The mathematical
identity limη→0+

2η
x2+η2 = limη→0+

1
i [

1
x−iη − 1

x+iη ] = 2πδ(x), where δ(...) confirms this: in
the limit, the term indeed becomes the Dirac-delta function.

Then, using δ(ax) = δ(x)/|a|, the rate of transitions is given by

1

τ|0〉→|n〉
≈ 2π

~
|〈n|W |0〉|2δ(E0 − En), (14.16)

which is the Fermi’s golden rule. The general form is 2π/~ times the transition matrix
element squared, times a Dirac-delta function as a statement of energy conservation.

14.3 Perturbations oscillating in time

Now suppose the perturbation potential was oscillating in time. We will encounter such
perturbations frequently, in the form of electron-photon, or electron-phonon interactions.
The mathematical nature of such perturbations with a slow turn-on is

Wt = 2Weηt cos(ωt) = eηtW (eiωt + e−iωt) (14.17)

which leads to a |0〉 → |n〉 transition amplitude

〈n|Ψ(t)〉 ≈ 〈n|W |0〉
i~

(∫ t

t0

dt′ei(
En−E0+~ω

~ )t′eηt
′
+

∫ t

t0

dt′ei(
En−E0−~ω

~ )t′eηt
′
)
, (14.18)

Similar to Equations 14.12 and 14.13, evaluating the integral with t0 → −∞, we get
the amplitude for transitions

〈n|Ψ(t)〉 ≈ 〈n|W |0〉 ·
(

ei(
En−E0+~ω

~ )teηt

(E0 − En + ~ω) + i~η
+

ei(
En−E0−~ω

~ )teηt

(E0 − En − ~ω) + i~η

)
. (14.19)

The probability is then
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|〈n|Ψ(t)〉|2 ≈ |〈n|W |0〉|2 · [ e2ηt

(E0 − En + ~ω)2 + (~η)2
+

e2ηt

(E0 − En − ~ω)2 + (~η)2
+

e2iωte2ηt

(E0 − En + ~ω + i~η)(E0 − En − ~ω − i~η)
+

e−2iωte2ηt

(E0 − En + ~ω − i~η)(E0 − En − ~ω + i~η)
]

(14.20)

The rate of transition is then

d

dt
|〈n|Ψ(t)〉|2 ≈ |〈n|W |0〉|2 · [ 2ηe2ηt

(E0 − En + ~ω)2 + (~η)2
+

2ηe2ηt

(E0 − En − ~ω)2 + (~η)2
+

2(η + iω)e2iωte2ηt

(E0 − En + ~ω + i~η)(E0 − En − ~ω − i~η)
+

2(η − iω)e−2iωte2ηt

(E0 − En + ~ω − i~η)(E0 − En − ~ω + i~η)
].

(14.21)

Notice that the last two (interference) terms are a complex conjugate pair, which they
must be, because the rate of transition is real. The sum is then 2× the real part of either
term. After some manipulations, one obtains

d

dt
|〈n|Ψ(t)〉|2 ≈

〈n|W |0〉|2e2ηt ·
(

2η

(E0 − En + ~ω)2 + (~η)2
+

2η

(E0 − En − ~ω)2 + (~η)2

)
[1− cos(2ωt)]+

2 sin(2ωt)

(
E0 − En + ~ω

(E0 − En + ~ω)2 + (~η)2
− E0 − En − ~ω

(E0 − En − ~ω)2 + (~η)2

)
.

(14.22)

Note that the rate has a part that does not oscillate, and another which does, with twice
the frequency of the perturbing potential. If we average over a few periods of the oscillation,
〈cos(2ωt)〉t = 〈sin(2ωt)〉t = 0. Then, by taking the limit η → 0+ in the same fashion as in
Equation 14.16, we obtain the Fermi’s golden rule for oscillating perturbations:

1

τ|0〉→|n〉
≈ 2π

~
× |〈n|W |0〉|2 × [δ(E0 − En + ~ω)︸ ︷︷ ︸

absorption

+ δ(E0 − En − ~ω)︸ ︷︷ ︸
emission

]. (14.23)

The Dirac-delta functions now indicate that the exchange of energy between the quantum
system and the perturbing field is through quanta of energy: either by absorption, leading
to En = E0 + ~ω, or emission, leading to En = E0 − ~ω. The rates of each individual
processes are the same. Which process (emission or absorption) dominates depends on the
occupation functions of the quantum states.

14.4 Transitions to a continuum of states

The Fermi golden rule results in Equation 14.16 and 14.23 are in a form suitable for
tracking transitions between discrete, or individual states |0〉 and |n〉. For many situations
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encountered in semiconductors, these transitions will be between states within, or between
energy bands, where a continuum of states exist. In those cases, the net transition rate will
be obtained by summing over all relevant states. Even the transition between manifestly
discrete states - for example the electron ground state of hydrogen atom to the first excited
state - by the absorption of a photon - occurs by the interaction between the discrete
electron states and the states of the electromagnetic spectrum, which forms a continuum.

As an example, consider the transitions between electron states in the conduction band
due to a point scatterer in a 3D semiconductor. Let us say the point scatterer potential is
W (r) = V0δ(r), with V0 in units of eV·m3. This is not an oscillating potential, so we use
the golden rule result of Equation 14.16. We first find the matrix element between electron
states |k〉 and |k′〉:

〈k′|V0δ(r)|k〉 =

∫
d3r

(
e−ik

′·r
√
V

)
V0δ(r)

(
e+ik·r
√
V

)
=
V0

V
, (14.24)

where we have used the property that the Fourier transform of a Dirac-delta function
is equal to 1. Then, the transition (or scattering) rate to any state |k′〉 is

1

τ(|k〉 → |k′〉) =
2π

~

(
V0

V

)2

δ(Ek − Ek′). (14.25)

The net scattering ‘out’ of state |k〉 into the continuum of states |k′〉 is then given by

1

τ(|k〉) =
∑
k′

1

τ(|k〉 → |k′〉) =
2π

~

(
V0

V

)2∑
k′

δ(Ek − Ek′)︸ ︷︷ ︸
D(Ek)

, (14.26)

where we note that the sum over final states of the Dirac-delta function is the density
of states D(Ek) in units eV−1 of the electron at energy Ek. This procedure illustrates an
important result - the scattering rate for continuum of states is in general proportional to a
density of states relevant to the problem. The strength of scattering increases as the square
of the scattering potential. The occurrence of the (volume)2 term in the denominator may
be disconcerting at first. However, the macroscopic volume (or area, or length) terms will
for most cases cancel out because of purely physical reasons. For example, for the problem
illustrated here, if instead of just one point scatterer, we had N , the density of scatterers is
nsc = N/V . Together with the conversion process

∑
k′ → V

∫
d3k′/(2π)3, we obtain

1

τ(Ek)
=

2π

~

(
V0

V

)2

nscV

∫
d3k′

(2π)3

V

δ(Ek − Ek′) =
2π

~
V 2

0 nscg(Ek). (14.27)

Here the density of states g(Ek) is per unit volume, in units 1/(eV.m3), as is standard
in semiconductor physics. The scattering rate is linearly proportional to the density of
scatterers. What is not immediately clear is how can we capture the effect of N scatterers
by just multiplying the individual scatterer rate by N . This can be done if the scatterers
are uncorrelated, as will be discussed in the transport chapters. For now, note that the
macroscopic volume has canceled out, as promised.

14.5 Higher order transitions: Dyson series and Dia-
grams

In going from Equation 14.9 to 14.10, we had unceremoniously abandoned the higher
order interaction terms. For most cases, this will serve us well. For the rest of the cases,
here is how things can be made to work. Rewriting Equation 14.9 with the slow-turn on
perturbation potential Wt = eηtW , we get:
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〈n|Ψ(t)〉 =
1

i~

∫ t

t0

dt′〈n|W (t′)|0〉+
1

(i~)2

∫ t

t0

dt′〈n|W (t′)

∫ t′

t0

dt′′W (t′′)|0〉+ ... (14.28)

In class, we used the interaction representation to write the perturbed quantum state at

time t as |ψt〉 = e−i
H0
~ t|ψ(t)〉, where H0 is the unperturbed Hamiltonian operator. This step

helped us recast the time-dependent Schrodinger equation i~ ∂
∂t |ψt〉 = (H0 +Wt)|ψt〉 to the

simpler form i~ ∂
∂t |ψ(t)〉 = W (t)|ψ(t)〉, where W (t) = e+i

H0
~ tWte

−iH0
~ t is the time-evolution

operator. This equation was integrated over time to yield the Dyson series

|ψ(t)〉 = |0〉︸︷︷︸
|ψ(t)〉(0)

+
1

i~

∫ t

t0

dt′W (t′)|0〉︸ ︷︷ ︸
|ψ(t)〉(1)

+
1

(i~)2

∫ t

t0

dt′
∫ t′

t0

dt′′W (t′)W (t′′)|0〉︸ ︷︷ ︸
|ψ(t)〉(2)

+
1

(i~)3

∫ t

t0

dt′
∫ t′

t0

dt′′
∫ t′′

t0

dt′′′W (t′)W (t′′)W (t′′′)|0〉︸ ︷︷ ︸
|ψ(t)〉(3)

+...,

(14.29)

where |ψ(t0)〉 = |0〉 is the initial state. Restricting the Dyson series to the 1st order
term in W for a perturbation of the the form Wt = eηtW (r), we derived Fermi’s golden

rule for the transition rate Γ
(1)
0→n = 2π

~ |〈n|W (r)|0〉|2δ(ε0 − εn). We used the relation

limη→0+
2η

x2+η2 = 2πδ(x) in this process.

The second and third order terms in W in the Dyson series lead to a modified golden
rule result

Γ0→n =
2π

~
|〈n|W |0〉+

∑
m

〈n|W |m〉〈m|W |0〉
ε0 − εm + iη~

+
∑
k,l

〈n|W |k〉〈k|W |l〉〈l|V |0〉
(ε0 − εk + 2iη~)(ε0 − εl + iη~)

+...|2δ(ε0−εn),

(14.30)
where in the end we take η → 0+. We identify the Green’s function propagators of the

form G =
∑
m

|m〉〈m|
ε0−εm+iη~ . Thus, the result to higher orders may be written in the compact

form

Γ0→n =
2π

~
|〈n|W +WGW +WGWGW + ...|0〉|2δ(ε0 − εn). (14.31)

‘Feynman’ diagrams1 corresponding to the terms in the series can now be sketched
for the problem, showing the virtual states explicitly for the higher order terms. (To be
drawn.)

14.6 Fate of the initial state: Self Energy

Now for something as trivial as profound: time-independent perturbation theory is a limiting
case of time-dependent perturbation! Well, well - we now see that we can recover all of time-
independent perturbation theory such as the Rayleigh-Schrodinger and Brillouin-Wigner
theories by extending the time-evolution operator.

What is the probability that at time t after turning on a perturbation Vt, we can
still find the state in the initial state |0〉? We must find the amplitude 〈0|ψt〉 and square

1More accurately, Goldstone diagrams.
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it to get the answer. Doing so will lead to a deep connection between time-dependent
and time-independent perturbation theories. In fact, it will show that time-independent
perturbation theory is a special case of time-dependent perturbation theory - just as ‘dc’ is
a special case of ‘ac’ with frequency ω → 0.

Since 〈0|ψt〉 = e−iε0t/~〈0|ψ(t)〉, we can write the time-dependent Schrodinger equation
as

i~
∂

∂t
ln〈0|ψ(t)〉 = 〈0|V (t)|0〉+

′∑
n

〈0|V (t)|n〉 〈n|ψ(t)〉
〈0|ψ(t)〉 , (14.32)

where the prime over the sum indicates that |n〉 = |0〉 is excluded. Let the perturbation
be Vt = eηtV .

Now using the Dyson series to the 1st order in V , in the limit η → 0+, we get

i~
∂

∂t
ln〈0|ψ(t)〉 = 〈0|V |0〉+

′∑
n

|〈n|V |0〉|2
ε0 − εn + iη~

(14.33)

Notice that the terms on the right side look very similar to the Rayleigh-Schrodinger
perturbation in energy to first and second order in V .

Now by integration, the required probability amplitude is

〈0|ψt〉 ∼ e−i
E0
~ te−

Γ
2 t where E0 = ε0 + 〈0|V |0〉+ P

∑
n

|〈n|V |0〉|2
ε0 − εn

and

Γ =
∑
n

2π

~
|〈n|V |0〉|2δ(ε0 − εn)

(14.34)

Here P (...) is the principal part. We see that the time-independent perturbation
theory may be recovered as a special case of time-dependent perturbation theory. The
‘imaginary’ component of energy

∑
= iΓ/2 is called the self-energy of state |0〉. Note that

the probability is conserved at all times : i.e.,
∑ |〈n|ψt〉|2 = 1.
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15.1 Introduction

When a crystal is in equilibrium1, electrons in it are distributed in energy according to the
Fermi-Dirac function

f0(E) =
1

1 + e
E−EF
kT

, (15.1)

where E is the total energy of the electron, and EF represents the Fermi energy. The
temperature T is the same for the atomic lattice and the electrons, because they are in
equilibrium. The total energy, for example, for electrons in the conduction band of a
semiconductor is the sum of the band-edge potential energy Ec(r) and the kinetic energy
given by the conduction bandstructure Ec(k)

E = Ec(r) + Ec(k) = Ec(x) +
~2k2

2m?
c

=⇒ f0(x, k) =
1

1 + e
Ec(x)+Ec(k)−EF

kT

, (15.2)

where we consider a 1D case for the initial discussion (r = x, k = kx). As a result, the
equilibrium Fermi-Dirac occupation function depends on the real space and the k-space,
and may be formally written as f0(x, k). This equilibrium function does not depend on time.
The value of the function lies in 0 ≤ f0(x, k) ≤ 1, physically representing the occupation
probability of finding an electron in real space location x, and in the energy eigenstate
Ec(k). If the crystal was sitting at a higher or lower temperature, the T changes, but the
system is still in equilibrium: the occupation function of states continues to be f0(x, k).
What happens to the occupation function when the state of equilibrium is disturbed? That
is what the Boltzmann transport equation tells us.

15.2 The Boltzmann Transport Equation

Consider now the situation where a voltage has been applied across contacts made to
a semiconductor. The electrons respond to the electric field by changing their (x, k) co-
ordinates as indicated in the left of Figure 15.3. The (x, k) space is referred to as the
‘phase-space’, a term borrowed from classical mechanics. In classical mechanics, the motion,

1Equilibrium is not the same as steady state, as will be clarified.

147



148 CHAPTER 15. THE BOLTZMANN TRANSPORT EQUATION

or trajectory of a particle in the phase space is completely determined by Newton’s laws2.
But the fundamental axiom of quantum mechanics forbids the simultaneous determination
of (x, k) by the uncertainty relation ∆x ·∆k ∼ 1. The location of the ‘particle’ is thus
diffuse in the phase space, as indicated in Figure 15.3.

Fig. 15.2: Scattering term of Boltzmann transport equation depicting the inflow and outflow
of the distribution function.

But we have introduced the concept of a wavepacket for electrons precisely to deal with
this situation. If we agree to represent the electrons in the effective mass approximation
developed in Chapter 11, we can track the trajectory of the center of the wavepacket
representing the electron, as indicated in Figure 15.3. Instead of tracking the location of
the wavepacket, it will be more fruitful to track the occupation function of its center, which
we denote as f(x, k, t). This occupation function has the same physical meaning as the
Fermi-Dirac function, except it is also the probability of occupation under non-equilibrium
conditions. In other words, if we remove the perturbation (for example the external voltage),
and give the system enough time to relax, f(x, k, t)→f0(x, k) as t→∞.

From Figure 15.3, the occupation function at time t at (x, k) must be identical to
the value at t − dt centered at (x − vdt, k − F

~ dt), where v is the group velocity of the

wavepacket, and F = ~dkdt governs the translation of k due to force F . This statement is
true for ballistic motion, for which the wavepackets traverse well-defined trajectories. The
occupation probability flows with the wavepacket. The increase at a point in phase space
is at the expense of the decrease of another. This is another statement of the continuity
equation. Then, we can write f(x, k, t) = f(x− vdt, k − F

~ dt, t− dt). If there are random
scattering events however, we must also allow for f(x, k, t) to increase by scattering ‘in’
from nearby k′ points on other trajectories, and for it to decrease by scattering ‘out’. Then,
the continuity equation reads

f = f(x, k, t) = f(x− vdt, k − F

~
dt, t− dt) + (Sin − Sout)dt, (15.3)

where Sin and Sout are the in- and out-scattering rates, in units of 1/s. Taylor-expanding
the first term on the right and rearranging, we get the 1D Boltzmann transport equation

∂f

∂t
+ v

∂f

∂x
+
F

~
∂f

∂k
= Sin − Sout. (15.4)

Generalizing to higher dimensions, we write

2Newton’s laws give the least-action paths obtained by minimizing the action in Lagrangian/Hamiltonian
classical mechanics
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∂f

∂t
+ vk · ∇rf +

F

~
· ∇kf = Sin − Sout. (15.5)

Writing f(r, k, t) = fk, it is clear from Figure 15.3 that the net in- and out-scattering
rates depend on the occupation functions of the initial and final states. Let S(k → k′) be
the scattering rate from state |k〉 → |k′〉. Enforcing Pauli exclusion principle for electrons,
we must have

Sin = S(k′ → k)fk′(1− fk), (15.6)

Sout = S(k → k′)fk(1− fk′). (15.7)

Now to track the occupation function of state |k〉, we must allow for in- and out-
scattering to all other states |k′〉. Then, the complete Boltzmann transport equation
reads:

∂fk
∂t

+ vk · ∇rfk +
F

~
· ∇kfk =

∑
k′

[S(k′ → k)fk′(1− fk)− S(k → k′)fk(1− fk′)]︸ ︷︷ ︸
scattering term, Ĉfk

.

(15.8)
Each scattering event S(k → k′) = 2π

~ |Wk,k′ |2δ(Ek − Ek′ ± ~ω) is described by the
Fermi’s golden rule and used to explain the optical properties of semiconductors. Solving
the BTE in Equation 15.8 will yield f(r, k, t), from which the charge (or heat, spin,
...) transport properties of the electron distribution can be obtained. The formidable
appearance of the equation is because of its generality. Let’s break it into steps, by first
considering the so-called ‘collision integral’ Ĉfk, or the scattering term on the right.

15.3 Scattering in equilibrium

Do random scattering events occur when the system is unperturbed, i.e., in equilibrium?
You bet! Scattering is what enables the system to attain equilibrium in the first place.
When the electron system is in equilibrium with say the lattice at temperature T , the rate
of every scattering event is exaclty counterbalanced by the reverse process. This goes by the
fancy name of the ‘principle of detailed balance’, introduced by Boltzmann himself. This
requires the RHS of Equation 15.8 with fk → f0k = 1/(1 + e(Ek−EF )/kT ) at equilibrium to
follow not just Ĉfk = 0, but every term in the sum to be zero:

S(k′ → k)f0k′(1− f0k) = S(k → k′)f0k(1− f0k′), (15.9)

which requires

S(k′ → k)

S(k → k′)
=

1− f0k′

f0k′
· f0k

1− f0k
= e

E
k′−Ek
kT . (15.10)

Enforcing the principle of detailed balance is telling us that for electrons, the scattering
rate from state |k〉 → |k′〉 is not the same as for the reverse process, unless the energies of
the two states are the same. For elastic scattering events Ek = Ek′ for which the energy
of the electron is unchanged, the scattering rate S(k → k′) = S(k′ → k) is the same for
a process and its reverse. But for inelastic scattering events with Ek′ − Ek = ~ω, the
scattering rate going uphill in energy is slower: S(k → k′) = S(k′ → k)e−~ω/kT . The
scattering rates S(...) remain the same whether electrons are in equilibrium or not, the
occupation functions f are what change.
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Consider for example, the electron scattering rate due to either the absorption or
emission of phonons of energy ~ω. The rate of phonon absorption must be proportional to
the number of phonons already present, i.e, Sabs ∝ nph. The rate of phonon emission by an
electron requires it to go downhill in energy, thus Sem = Sabse

~ω/kT ∝ e~ω/kTnph. Since the
number of phonons in mode ω is given by the Bose-Einstein function nph = 1/(e~ω/kT − 1),
we note that e~ω/kTnph = 1 + nph. Thus, Sabs ∝ nph, but Sem ∝ (1 + nph). Electrons are
free to ‘emit’ phonons even when there are no phonons present - thus, the ‘1’ represents
spontaneous emission. But if there already are phonons present, the emission rate is
enhanced, or stimulated; this is the reason for the 1 + nph proportionality of the net
emission rate.

Note that nowhere have we explicitly needed that the quantum of energy ~ω be from
a phonon - it could be from a photon, or other bosonic quanta. In other words, the
concepts of absorption, spontaneous emission, and stimulated emission appear whenever
fermionic (e.g. electron) systems are let to interact with bosonic (e.g. photons, phonons)
systems. Such interactions play a critical role in electron transport in crystals as well as in
electron-photon or light-matter interactions.

Can there be Fermi level or temperature gradients in equilibrium? To answer this
question, we go back to the full BTE and noticing ∂f0

∂t = 0 at equilibrium, get

vk · ∇rf0 +
F

~
· ∇kf0 = 0. (15.11)

Because f0 = 1
1+eg where g(r, k, T ) = Ec(r)+Ec(k)−EF (r)

kT , we note that ∂f0

∂E = ∂g
∂E

∂f0

∂g =

− 1
kT

eg

(1+eg)2 =⇒ ∂f0

∂g = kT ∂f0

∂E , and use the identities ∇rf0 = kT ∂f0

∂E ∇rg and ∇kf0 =

kT ∂f0

∂E ∇kg with ∇kg = ∇kE
kT = ~vk

kT , to rewrite the BTE as

kT · ∂f0

∂E · vk · [
F

kT
+∇rg] = 0. (15.12)

We are writing TL(r) = T as a lattice temperature that potentially varies in space,
and electrons are in equilibrium with this lattice temperature. We have allowed for the
possibility for the Fermi level to vary with position. We will let the BTE tell us if these
quantities actually do vary in space. Equilibrium requires the absence of external electric
fields, but it does not rule out the presence of internal electric fields! Let F = F(r) be an
internal spatially varying field. From equation 15.12, F

kT +∇rg = 0 requires

1

kT

(
F +∇rEc(r)−∇rEF (r)

)
+ [Ec(r) + Ec(k)− EF (r)]∇r(

1

kT
) = 0. (15.13)

Now since F = −∇rEc(r), the first two terms in the large left bracket cancel and leave

−∇rEF (r) + [Ec(r) + Ec(k)− EF (r)]T∇r(
1

T
) = 0. (15.14)

15.4 Scattering in steady state

Steady state is different from equilibrium. Ĉf = 0 at equilbrium, but at steady state
Ĉf 6= 0, and is precisely the restoring term on the right that holds the distribution function
from drifting away from its equilibrium Fermi-Dirac value to infinity due to the driving
forces f0 → f . We will see shortly that for weak driving forces such as small fields, or weak
concentration or temperature gradients, the distribution function does not wander too far
from equilibrium. Under certain approximations, the deviation is only linear, meaning

Ĉf(k) ≈ −f(k)− f0(k)

τ(k)
, (15.15)
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where τ(k) is a characteristic scattering (or relaxation) time, giving this approximate
form of the collision integral the name ‘Relaxation Time Approximation’ or RTA.

Using Equation 15.10, the scattering term in the BTE of Equation 15.8 may be then
written as

Ĉfk =
∑
k′

S(k → k′)
(
e
E
k′−Ek
kT fk′(1− fk)− fk(1− fk′)

)
. (15.16)

We now consider two cases that will prove useful in understanding the electron transport
properties in semiconductors. The first is inelastic scattering by optical phonons whose
energy Ek′ −Ek = ~ω0 >> kT . For such scattering events, the scattering term simplifies
to

Ĉfk ≈ e
~ω0
kT

∑
k′

S(k → k′)fk′ , (15.17)

where we assume fkfk′ << fk′ . We will need this relation when we treat polar-optical
phonon scattering in wide-bandgap semiconductors for which ~ω0 >> kT holds.

The second situation is for elastic scattering, when Ek′ = Ek. For such processes, the
scattering term is exactly

Ĉfk =
∑
k′

S(k → k′)(fk′ − fk) =
∑
k′

S(k → k′)fk′ −
fk
τ(k)

. (15.18)

Note that the second term on the right is linear in the unknown fk for which we are
solving the BTE. It appears with a characteristic scattering rate 1

τ(k) =
∑
k′ S(k → k′),

which sums the scattering rate from |k〉 to all possible |k′〉.

15.5 Formal Boltzmann Transport theory

Much of the following summary is collected from textbooks and research articles. The
main references for this section are Seeger [2], Wolfe et. al. [3], and Davies [4]. No claim to
originality is made for much of the material. The subsection on generalization of mobility
expressions for arbitrary dimensions and arbitrary degeneracy is original, though much of
it is inspired from the references.

A distribution-function f(k, r, t) is the probability of occupation of an electron at time
t at r with wavevectors lying between k,k + dk. Under equilibrium (E = B = ∇rf =
∇T f = 0, i.e., no external electric (E) or magnetic (B) field and no spatial and thermal
gradients), the distribution function is found from quantum-statistical analysis to be given
by the Fermi-Dirac function for fermions -

f0(ε) =
1

1 + e
εk−µ
kBT

, (15.19)

where εk is the energy of the electron, µ is the Fermi energy, and kB is the Boltzmann
constant.

Any external perturbation drives the distribution function away from the equilibrium;
the Boltzmann-transport equation (BTE) governs the shift of the distribution function
from equilibrium. It may be written formally as [3]

df

dt
=

Ft

~
· ∇kf(k) + v · ∇rf (k) +

∂f

∂t
, (15.20)

where on the right hand side, the first term reflects the change in distribution function
due to the total field force Ft = E + v × B, the second term is the change due to
concentration gradients, and the last term is the local change in the distribution function.
Since the total number of carriers in the crystal is constant, the total rate of change of



152 CHAPTER 15. THE BOLTZMANN TRANSPORT EQUATION

Fig. 15.3: Scattering term of Boltzmann transport equation depicting the inflow and outflow
of the distribution function.

the distribution is identically zero by Liouville’s theorem. Hence the local change in the
distribution function is written as

∂f

∂t
=
∂f

∂t
|coll −

Ft

~
· ∇kf(k)− v · ∇rf(k) +

∂f

∂t
, (15.21)

where the first term has been split off from the field term since collision effects are not
easily described by fields. The second term is due to applied field only and the third is due
to concentration gradients.

Denoting the scattering rate from state k→ k′ as S(k,k′), the collision term is given
by

∂f(k)

∂t
|coll =

∑
k′

[S(k′,k)f(k′)[1− f(k)]− S(k,k′)f(k)[1− f(k′)]]. (15.22)

Figure 15.3 provides a visual representation of the scattering processes that form the
collision term. The increase of the distribution function in the small volume ∆k by particles
flowing in by the field term is balanced by the net flow out by the two collision terms.

At equilibrium (f = f0), the ‘principle of detailed balance’ enforces the condition

S(k′,k)f0(k′)[1− f0(k)] = S(k,k′)f0(k)[1− f0(k′)], (15.23)

which translates to

S(k′,k)e
εk
kBT = S(k,k′)e

ε
k′

kBT . (15.24)

In the special case of elastic scattering, εk = εk′ , and as a result, S(k′,k) = S(k,k′)
irrespective of the nature of the distribution function. Using this, one rewrites the collision
term as

∂f(k)

∂t
|coll =

∑
k′

S(k,k′)(f(k′)− f(k)). (15.25)

One can rewrite this collision equation as

df(k)

dt
+
f(k)

τq(k)
=
∑
k′

S(k,k′)f(k′), (15.26)
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where the quantum scattering time is defined as

1

τq(k)
=
∑
k′

S(k,k′). (15.27)

A particle prepared in state |k〉 at time t = 0 by an external perturbation will be
scattered into other states |k′〉 due to collisions, and the distribution function in that state
will approach the equilibrium distribution exponentially fast with the time constant τq(k)
upon the removal of the applied field. The quantum scattering time τq(k) may be viewed
as a ‘lifetime’ of the particle in the state |k〉.

Let us now assume that the external fields and gradients have been turned on for a long
time. They have driven the distribution function to a steady state value f from f0. The
perturbation is assumed to be small, i.e., distribution function is assumed not to deviate
far from its equilibrium value of f0. Under this condition, it is common practice to assume
that

∂f

∂t
=
∂f

∂t
|coll = −f − f0

τ
, (15.28)

where τ is a time scale characterizing the relaxation of the distribution. This is the
relaxation time approximation, which is crucial for getting a solution of the Boltzmann
transport equation.

When the distribution function reaches a steady state, the Boltzmann transport equation
may be written as

∂f

∂t
= −

(
f − f0

τ

)
− Ft

~
· ∇kf(k)− v · ∇rf(k) = 0, (15.29)

where the relaxation time approximation to the collision term has been used. In the
absence of any concentration gradients, the distribution function is given by

f(k) = f0(k)− τ Ft

~
· ∇kf. (15.30)

Using the definition of the velocity v = 1/~(∂εk/∂k), the distribution function becomes

f(k) = f0(k)− τFt · v
∂f(k)

∂ε
, (15.31)

and since the distribution function is assumed to be close to f0, we can make the
replacement f(k)→ f0(k), whence the distribution function

f(k) = f0(k)− τFt · v
∂f0(k)

∂ε
(15.32)

is the solution of BTE for a perturbing force Ft.
The external force Ft may be due to electric or magnetic fields. We first look for the

solution in the presence of only the electric field; thus, Ft = −eE.
Using Equation 15.32, for elastic scattering processes one immediately obtains

f(k′)− f(k) = eτ
∂f0

∂ε
E · v︸ ︷︷ ︸

f(k)−f0(k)

(1− E · v′
E · v ) (15.33)

for a parabolic bandstructure (v = ~k/m?). Using this relation, the collision term in
the form of the relaxation time approximation becomes

∂f(k)

∂t
=
∑
k′

S(k,k′)(f(k′)− f(k)) = − (f(k)− f0(k))

τm(k)
, (15.34)
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Fig. 15.4: Angular relations between the vectors in the Boltzmann transport equation.

where a new relaxation time is defined by

1

τm(k)
=
∑
k′

S(k,k′)(1− E · k′
E · k ). (15.35)

This is the momentum relaxation time.
Let the vectors k,k′,E be directed along random directions in the 3−dimensional

space. We fix the z−axis along k and the y−axis so that E lies in the y − z plane. From
Figure 15.4, we get the relation

k′ ·E
k ·E = cos θ + sin θ sin γ tanα, (15.36)

where the angles are shown in the figure.
When the sum over all k′ is performed for the collision term, the sin(γ) sums to zero

and the momentum relaxation time τm(k) becomes

1

τm(k)
=
∑
k′

S(k,k′)(1− cos θ). (15.37)

We note here that this relation can be generalized to an arbitrary number of dimensions,
the three-dimensional case was used as a tool. This is the general form for momentum
scattering time, which is used heavily in the text for finding scattering rates determining
mobility. It is related to mobility by the Drude relation µ = e〈τ(k)〉/m?, where the
momentum scattering time has been averaged over all energies of carriers.

The quantum scattering rate 1/τq(k) =
∑

k′ S(k,k′) and the momentum scattering
rate 1/τm(k) =

∑
k′ S(k,k′)(1− cos θ) are both experimentally accessible quantities, and

provide a valuable method to identify the nature of scattering mechanisms. The momentum
scattering time τm(k) measures the average time spent by the particle moving along the
external field. It differs from the quantum lifetime due to the cos θ term. The angle θ is
identified from Figure 15.4 as the angle between the initial and final wavevectors upon
a scattering event. Thus for scattering processes that are isotropic S(k,k′) has no angle
dependence, the cos θ term sums to zero, and τq = τm. However, for scattering processes
that favor small angle (θ → 0) scattering, it is easily seen that τm > τq.
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16.1 Introduction

Light has fascinated us for ages. And deservedly so. Everything we know about the earth
and the universe is because of light. Light from the sun sustains life on earth. Learning to
measure and understand the contents of light has enabled us to understand the origins of
the universe in the big bang, and talk about its future. And one cannot forget the sheer
visual pleasure of a beautiful sunset, a coral reef, or an iridescent flower in full blossom.
Indeed, the beauty of light and color is a rare thing that scientists and artists agree to
share and appreciate.

Our fascination with light has led to three of the greatest revolutions in 19th and
20th century physics. Sunlight used to be considered a ‘gift of the Gods’ and the purest
indivisible substance, till Newton observed that passing it through a prism split it into
multiple colors. Passing each of the colors through another prism could not split it further.
Newton surmised that light was composed of particles, but in the early 19th century, Young
proved that light was a wave because it exhibited interference and diffraction. Michael
Faraday had a strong hunch that light was composed of a mixture of electric and magnetic
fields, but could not back it up mathematically. The race for understanding the fabric of
light reached a milestone when Maxwell gave Faraday’s hunch a rigorous mathematical
grounding. Maxwell’s theory combined in one stroke electricity, magnetism, and light into
an eternal braid1. The Maxwell equations predict the existence of light as a propagating
electromagnetic wave. With Maxwell’s electromagnetic theory, the ‘cat’ was out of the
hat for light.

The second and third revolutions born out of light occurred in early 20th century in
parallel. Trying to understand blackbody radiation, photoelectric effect, and the spectral
lines of hydrogen atoms lead to the uncovering of quantum mechanics. And Einstein’s
fascination with the interplay of light and matter, of space and time led to the theory
of relativity. Much of modern physics rests on these three pillars of light: that of
electromagnetism, quantum mechanics, and relativity. It would be foolhardy to think that
we know all there is to know about light. It will continue to amaze us and help probe
deeper into the fabric of nature through similar revolutions in the future. In this chapter,
we discuss Maxwell’s theory of electromagnetism in preparation for the quantum picture,
which is covered in the next chapter.

1J. R. Pierce famously wrote “To anyone who is motivated by anything beyond the most narrowly
practical, it is worthwhile to understand Maxwell’s equations simply for the good of his soul.”
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16.2 Maxwell’s equations

Maxwell’s equations connect the electric field E and the magnetic field intensity H to
source charges ρ and currents J via the four relations

∇ ·D = ρ, Gauss’s law
∇ ·B = 0, Gauss’s law
∇×E = −∂B∂t , Faraday’s law
∇×H = J + ∂D

∂t , Ampere’s law.

(16.1)

Here the source term ρ has units of charge per unit volume (C/m3), and current source
term J is in current per unit area A/m2. H is related to the magnetic flux density B via
B = µ0H, and the displacement vector is related to the electric field via D = ε0E. The
constant ε0 is the permittivity of vacuum, and µ0 is the permeability of vacuum. They are
related by ε0µ0 = 1/c2, where c is the speed of light in vacuum.

+ -

Fig. 16.2: Electrostatic Fields.

Gauss’s law ∇ · E = ρ/ε0 says that electric field lines (vectors) due to static charges
originate at points in space where there are +ve charges, and terminate at negative charges,
as indicated in Figure 16.2. Vectors originating from a point in space have a positive
divergence. This relation is also called the Poisson equation in semiconductor device
physics, and if the charge is zero, it goes by the name of Laplace equation. Gauss’s law for
magnetic fields tells us that magnetic field lines B have no beginnings and no ends: unlike
static electric field lines, they close on themselves.

Note that for electrostatics and magnetostatics, we put ∂(...)/∂t → 0, to obtain the
static magnetic field relation ∇ ×H = J. The magnetic field lines curl around a wire
carrying a dc current, as shown in Figure 16.2. Electrostatic phenomena such as electric
fields in the presence of static charge such as p-n junctions, transistors, and optical devices
in equilibrium, and magnetostatic phenomena such as magnetic fields near wires carrying
dc currents are covered by the condition ∂(...)/∂t→ 0, and electric and magnetic fields are
decoupled. This means a static charge produces just electric fields and no magnetic fields.
A static current (composed of charges moving at a constant velocity) produces a magnetic
field, but no electric field.

Since in electrostatics, ∇×E = 0, the static electric field vector can be expressed as
the gradient of a scalar potential E = −∇Φ because ∇ × (∇Φ) = 0 is an identity. Φ is
then the scalar electric potential. However, the same cannot be done for the magnetic field
vector even in static conditions, because ∇×H = J 6= 0. However, the magnetic field can
be written as the curl of another vector field B = ∇×A, where A is called the magnetic
vector potential. Hence from the Maxwell equations, E = −dA/dt.

Faraday’s law says that a time-varying magnetic field creates an electric field. The
electric field lines thus produced ‘curl’ around the magnetic field lines. Ampere’s law says
that a magnetic field intensity H may be produced not just by a conductor carrying current



16.3. LIGHT EMERGES FROM MAXWELL’S EQUATIONS 157

J, but also by a time-varying electric field in the form of the displacement current ∂D/∂t.
The original Ampere’s law did not have the displacement current. Maxwell realized that
without it, the four constitutive equations would violate current continuity relations. To
illustrate, without the displacement current term, ∇×H = J, and taking the divergence
of both sides, we get ∇ · ∇ ×H = ∇ · J = 0 because the divergence of curl of any vector
field is zero. But the continuity equation requires

∇ · J = −∂ρ/∂t, Continuity Equation (16.2)

which is necessary for the conservation of charge. With the introduction of the displace-
ment current term, Maxwell resolved this conflict: ∇ · J = −∇ · ∂D∂t = − ∂

∂t (∇ ·D) = −∂ρ∂t ,
which connects to Gauss’s law.

16.3 Light emerges from Maxwell’s equations

++
+
+

-
-

+

---

Fig. 16.3: Antenna producing an electromagnetic wave.

The displacement current term is the crucial link between electricity and magnetism,
and leads to the existence of light as an electromagnetic wave. Let’s first look at this
feature qualitatively. Figure 16.3 shows a metal wire connected to an ac voltage source.
The battery sloshes electrons back and forth from the ground into the wire, causing a
charge-density wave as shown schematically. Note that the charge density in the wire is
changing continuously in time and space. The frequency is ω0. As a result of charge pileups,
electric field lines emerge from +ve charges and terminate on -ve charges. This electric
field is changing in space and time as well, leading to non-zero ∇× E and ∂E/∂t. The
time-varying electric field creates a time-varying magnetic field H because of displacement
current. The time-varying magnetic field creates a time-varying electric field by Faraday’s
law. Far from the antenna, the fields detach from the source antenna and become self-
sustaining: the time-varying E creates H, and vice versa. An electromagnetic wave is thus
born; the oscillations of electric and magnetic fields move at the speed of light c. For an
antenna radiating at a frequency ω0, the wavelength is λ = 2πc/ω0. That the wave is
self-sustaining is the most fascinating feature of light. If at some time the battery was
switched off, the far field wave continues to propagate - forever, unless it encounters charges
again. That of course is how light from the most distant galaxies and supernovae reach
our antennas and telescopes, propagating through ‘light years’ in the vacuum of space,
sustaining the oscillations2.

2Boltzmann wrote “... was it a God who wrote these lines ...” in connection to “Let there be light”.
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Now let’s make this observation mathematically rigorous. Consider a region in space
with no charges (∇ ·D = ρ = 0 = ∇ ·E) and no currents J = 0. Take the curl of Faraday’s

equation to obtain ∇ × ∇ × E = ∇(∇ · E) − ∇2E = − ∂
∂t (∇ × B) = − 1

c2
∂2

∂t2 E, where
we make use of Ampere’s law. Since in a source-free region ∇ · E = 0, we get the wave
equations

(∇2 − 1
c2

∂2

∂t2 )E = 0, Wave Equations

(∇2 − 1
c2

∂2

∂t2 )B = 0.
(16.3)

Note that the wave equation states that the electric field and magnetic field oscillate
both in space and time. The ratio of oscillations in space (captured by ∇2) and oscillations

in time (captured by ∂2

∂t2 ) is the speed at which the wave moves, and it is c = 1/
√
µ0ε0.

The number is exactly equal to the experimentally measured speed of light, which solidifies
the connection that light is an electromagnetic wave. We note that just like the solution
to Dirac’s equation in quantum mechanics is the electron, the solution of Maxwell’s wave
equation is light (or photons). Thus one can say that light has ‘emerged’ from the solution
of Maxwell equations.

However, we must be cautious in calling the wave equation above representing light

alone. Consider a generic wave equation (∇2 − 1
v2

∂2

∂t2 )f(r, t) = 0. This wave moves at a
speed v. We can create a sound wave, and a water wave that moves at the same speed v,
and f(r, t) will represent distinct physical phenomena. If a cheetah runs as fast as a car,
they are not the same object!

Consider a generic vector field of the type V(r, t) = V0e
i(k·r−ωt)η̂, where η̂ is the

direction of the vector. This field will satisfy the wave equations 16.3 if ω = c|k|, as
may be verified by substitution. This requirement is the first constraint on the nature
of electromagnetic waves. The second stringent constraint is that the field must satisfy
Gauss’s laws ∇ ·E = 0 and ∇ ·B = 0 for free space. In other words, electric and magnetic
vector fields are a special class of vector fields. Their special nature is elevated by the
physical observation that no other wave can move at the speed of light. Einstein’s theory of
relativity proves that the speed of light is absolute, and unique for electromagnetic waves:
every other kind of wave falls short of the speed of light. Thus, Maxwell’s wave equation
uniquely represents light, self-sustaining oscillating electric and magnetic fields.

16.4 Maxwell’s equations in (k, ω) space

Consider an electromagnetic wave of a fixed frequency ω. Since E,B ∝ ei(k·r−ωt), we make
two observations. Time derivatives of Faraday and Ampere’s laws give ∂

∂te
−iωt = −iωe−iωt,

which means we can replace ∂
∂t → −iω, ∂2

∂t2 → (−iω)2, and so on. Similarly, the vector
operators div and curl act on the eik·r part only, giving ∇ · (eik·rη̂) = ik · (eik·rη̂) and
∇×(eik·rη̂) = ik× (eik·rη̂). These relations may be verified by straightforward substitution.
Thus, we can replace ∇ → ik. With these observations, Maxwell equations in free-space
become

k ·E = 0,
k ·B = 0,
k×E = ωB,
k×B = − ω

c2 E.

(16.4)

Note that we have converted Maxwell’s equations in real space and time (r, t) to ‘Fourier’
space (k, ω) in this process. Just as in Fourier analysis where we decompose a function
into its spectral components, light of a particular k and corresponding frequency ω = c|k|
is spectrally pure, and forms the ‘sine’ and ‘cosine’ bases. Any mixture of light is a linear
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combination of these spectrally pure components: for example white light is composed
of multiple wavelengths. Since B = ∇ × A, we can write B = ik×A, and hence the
magnitudes are related by B2 = k2A2 = (ωc )2A2. The energy content in a region in space
of volume Ω that houses electric and magnetic fields of frequency ω is given by

Hem(ω) = Ω · [ 1
2
ε0E

2 +
1

2
µ0H

2] = Ω · [ 1
2
ε0E

2 +
1

2
ε0ω

2A2] . (16.5)

If you have noticed a remarkable similarity between the expression for energy of
an electromagnetic field with that of a harmonic oscillator (from Chapter ??) Hosc =
p̂2

2m + 1
2mω

2x2, you are in luck. In Chapter ??, this analogy will enable us to fully quantize
the electromagnetic field, resulting in a rich new insights.

Let us now investigate the properties of a spectrally pure, or ‘monochromatic’ component
of the electromagnetic wave. From equations 16.4, we note that k ⊥ E ⊥ B, and the
direction of k is along E×B. The simplest possibility is shown in Figure 16.4. If we align
the x−axis along the electric field vector and the y−axis along the magnetic field vector,
then the wave propagates along the +ve z−axis, i.e., k = kẑ. The electric field vectors
lie in the x − z plane, and may be written as E(r, t) = E0e

i(kz−ωt)x̂, which is a plane
wave. For a plane wave, nothing changes along the planes perpendicular to the direction of
propagation, so the E field is the same at all x− y planes: E(x, y, z) = E(0, 0, z).

Fig. 16.4: Electromagnetic wave.

From Faraday’s law, B = k×E/ω, and the magnetic field vectors B(r, t) = E0

c e
i(kz−ωt)ŷ

lie in the y − z plane. Note that here we use ω = ck and k = kz. The amplitudes of the
electric and magnetic fields are thus related by E0 = cB0, and the relation to magnetic

field intensity H = B/µ0 is E0 = cµ0H0 =
√

µ0

ε0
H0 = η0H0. Since E0 has units V/m and

H0 has units A/m, η has units of V/A or Ohms. η0 is called the impedance of free space;
it has a value η0 ≈ 377Ω.

The direction of propagation of this wave is always perpendicular to the electric and
magnetic field vectors and given by the right hand rule. Since the field vectors lie on
well-defined planes, this type of electromagnetic wave is called plane-polarized. In case there
was a phase difference between the electric and magnetic fields, the electric and magnetic
field vectors will rotate in the x− y planes as the wave propagates, and the wave would
then be called circularly or elliptically polarized, depending upon the phase difference.

For the monochromatic wave, Maxwell’s wave equation becomes (|k|2 − (ωc )2)E = 0.
For non-zero E, ω = c|k| = ck. The electromagnetic field carries energy in the +ve
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z−direction. The instantaneous power carried by the wave is given by the Poynting vector

S(r, t) = E×H =
E2

0

η0
ei(kz−ωt)ẑ. The units are in Watts/m2. Typically we are interested

in the time-averaged power density, which is given by

S = 〈S(r, t)〉 =
1

2
Re[E×H?] =

E2
0

2η
ẑ =

η

2
H2

0 ẑ, (16.6)

where ẑ is the direction of propagation of the wave. In later chapters, the energy
carried by a monochromatic wave will for the starting point to understand the interaction
of light with matter. In the next chapter, we will discuss how the energy carried by an
electromagnetic wave as described by Equation 16.6 actually appears not in continuous
quantities, but in quantum packets. Before we do that, we briefly discuss the classical
picture of light interacting with material media.

16.5 Maxwell’s equations in material media

How does light interact with a material medium? Running the video of the process of the
creation of light in Figure 16.3 backwards, we can say that when an electromagnetic wave
hits a metal wire, the electric field will slosh electrons in the wire back and forth generating
an ac current. That is the principle of operation of a receiving antenna. What happens
when the material does not have freely conducting electrons like a metal? For example, in
a dielectric some electrons are tightly bound to atomic nuclei (core electrons), and others
participate in forming chemical bonds with nearest neighbor atoms. The electric field of the
electromagnetic wave will deform the electron clouds that are most ‘flexible’ and ‘polarize’
them. Before the external field was applied, the centroid of the negative charge from the
electron clouds and the positive nuclei exactly coincided in space. When the electron cloud
is deformed, the centroids do not coincide any more, and a net dipole is formed, as shown
in Figure 16.5. The electric field of light primarily interacts with electrons that are most
loosely bound and deformable; protons in the nucleus are far heavier, and held strongly in
place in a solid medium. Let us give these qualitative observations a quantitative basis.

Fig. 16.5: Dielectric and Magnetic materials. Orientation of electric and magnetic dipoles
by external fields, leading to electric and magnetic susceptibilities.
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The displacement vector in free space is D = ε0E. In the presence of a dielectric, it
has an additional contribution D = ε0E + P, where P is the polarization of the dielectric.
The classical picture of polarization is an electric dipole pi = qdin̂ in every unit cell of the
solid. This dipole has zero magnitude in the absence of the external field3. The electric
field of light stretches the electron cloud along it, forming dipoles along itself. Thus, pi
points along E. The net polarization4 is the volume-averaged dipole density P = 1

V

∑
V pi.

Based on the material properties of the dielectric, we absorb all microscopic details into
one parameter by writing

P = ε0χeE, (16.7)

where the parameter χe is referred to as the electric susceptibility of the solid. With
this definition, the displacement vector becomes

D = ε0E + ε0χeE = ε0(1 + χe︸ ︷︷ ︸
εr

)E = εE, (16.8)

where the dielectric property of the material is captured by the modified dielectric
constant ε = ε0εr = ε0(1 + χe). The relative dielectric constant is 1 plus the electric
susceptibility of the material. Clearly the relative dielectric constant of vacuum is 1 since
there are no atoms to polarize and nothing is ‘susceptible’.

In exactly the same way, if the material is magnetically polarizable, then B = µ0(H+M),
where M is the magnetization vector. If there are tiny magnetic dipoles mi = IAn̂ formed
by circular loops carrying current I in area A in the material medium (see Figure 16.5), the
macroscopic magnetization is given by M = 1

V

∑
V mi = χmH, which leads to the relation

B = µ0(H + χmH) = µ0(1 + χm︸ ︷︷ ︸
µr

)H = µH, (16.9)

With these changes, the original Maxwell equations remain the same, but now D = εE
and B = µH, so we make the corresponding changes ε0 → ε = ε0εr and µ0 → µ = µ0µr
everywhere. For example, the speed of light in a material medium then becomes v = 1√

µε =
c√
εrµr

. If the material is non-magnetic, then µr = 1, and v = c√
εr

= c
n , where n =

√
εr is

called the refractive index of the material. Thus light travels slower in a material medium
than in free space. Similarly, the wave impedance becomes η0 → η =

√
µ
ε = η0

n where the
right equality holds for a non-magnetic medium.

If the material medium is conductive, or can absorb the light through electronic
transitions, then the phenomena of absorption and corresponding attenuation of the
light is captured by introducing an imaginary component to the dielectric constant, ε→
εR + iεI . This leads to an imaginary component of the propagation vector k, which leads
to attenuation. We will see in Chapters ?? and ?? how we can calculate the absorption
coefficients from quantum mechanics.

Electric and magnetic field lines may cross interfaces of different material media. Then,
the Maxwell equations provide rules for tracking the magnitudes of the tangential and
perpendicular components. These boundary conditions are given by

E1t −E2t = 0,
H1t −H2t = Js × n̂,
D1n −D2n = ρs,
B1n −B2n = 0.

(16.10)

3Except in materials that have spontaneous, piezoelectric, or ferroelectric polarization.
4This classical picture of polarization is not consistent with quantum mechanics. The quantum theory

of polarization requires the concept of Berry phases, which is the subject of Chapter ??.
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In words, the boundary condition relations say that the tangential component of the
electric field Et is always continuous across an interface, but the normal component is
discontinuous if there are charges at the interface. If there are no free charges at the
interface (ρs = 0), ε1E1n = ε2E2n, implying the normal component of the electric field
is larger in the material with a smaller dielectric constant. This feature is used in Si
MOSFETs, where much of the electric field drops across an oxide layer rather than in the
semiconductor which has a higher dielectric constant. Similarly, the normal component
of the magnetic field is always continuous across an interface, whereas the tangential
component can change if there is a surface current flowing at the interface of the two media.

The force in Newtons on a particle of charge q in the presence of an electric and magnetic
field is given by the Lorentz equation

F = q(E + v ×B). (16.11)

Since the energy of the charged particle changes as W =
∫

F · dr, the rate of change
of energy is F · v = qE · v, which is the power delivered to the charged particle by the
fields. Note that a static magnetic field cannot deliver power since v ×B · v = 0. Thus a
time-independent magnetic field cannot change the energy of a charged particle. But a
time-dependent magnetic field creates an electric field, which can.

When a point charge is accelerated with acceleration a, it radiates electromagnetic
waves. Radiation travels at the speed of light. So the electric and magnetic fields at a
point far from the charge are determined by a retarded response. Using retarded potentials,
or more intuitive approaches5, one obtains that the radiated electric field goes as

Er = (
qa

4πε0c2
)
sin θ

r
θ̂, (16.12)

expressed in spherical coordinates with the charge at the origin, and accelerating along
the x−axis. The radiated magnetic field Hr curls in the φ̂ direction and has a magnitude
|Er|/η0. The radiated power is obtained by the Poynting vector S = E×H as

S = (
µ0q

2a2

16π2c2
)(

sin θ

r
)2r̂, (16.13)

Note that unlike static charges or currents that fall as 1/r2 away from the source, the
radiated E and H fields fall as 1/r. If they didn’t, the net power radiated very far from
the source will go to zero since

∮
S·dA ∼ S(r)4πr2 → 0. Integrating the power over the

angular coordinates results in the famous Larmor Formula for the net electromagnetic
power in Watts radiated by an accelerating charge:

P =
µ0q

2a2

6πc
(16.14)

16.6 Need for a quantum theory of light

Classical electromagnetism contained in Maxwell’s equations can explain a remarkably
large number of experimentally observed phenomena, but not all. We discussed in the
beginning of this chapter that radiation of electromagnetic waves can be created in an
antenna, which in its most simple form is a conducting wire in which electrons are sloshed
back and forth. The collective acceleration, coupled with the Larmor formula can explain
radiation from a vast number of sources of electromagnetic radiation.

By the turn of the 20th century, improvements in spectroscopic equipment had helped
resolve what was originally thought as broadband (many frequencies ω) radiation into the

5An intuitive picture for radiation by an accelerating charge was first given by J. J. Thomson, the
discoverer of the electron.
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purest spectral components. It was observed that different gases had different spectral
signatures. The most famous among them were the spectral features of the hydrogen atom,
then known as the hydrogen gas. There is nothing collective about hydrogen gas, since it is
not a conductor and there are not much electrons to slosh around as a metal. The classical
theory for radiation proved difficult to apply to explain the spectral features. Classical
electromagnetism could not explain the photoelectric effect, and the spectrum of blackbody
radiation either. The search for an explanation led to the quantum theory of light, which
is the subject of the next chapter.
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17.1 Introduction

In this chapter, we explore fundamental optical transitions in bulk 3-dimensional semi-
conductors. We approach the topic by first investigating the optical absorption spectrum.
The spectrum will direct us to a rich range of electron state transitions affected by the
electron-photon interaction. Then, we explore the most important of these transitions:
interband (valence → conduction) transitions in more detail. We derive expressions for
the equilibrium interband absorption coefficient α0(~ω) for bulk semiconductors. With the
understanding of the physics of optical absorption, in the next chapter we extend the con-
cept to non-equilibrium situations to explain optical emission, optical gain, inversion, and
lasing conditions. The key to understanding these concepts is a clear quantum-mechanical
picture of optical transitions, and the role of non-equilibrium conditions. We begin with
the fundamental quantum-mechanical optical transitions by recalling the electron-photon
Hamiltonian.

17.2 Electron-photon matrix elements for semiconduc-
tors

The Hamiltonian with the magnetic vector potential A in the form

H =
1

2m0
(p̂ + eA)2 + V (r) (17.1)

captures the interaction of electrons with light. This form of the Hamiltonian explains
the interaction of light with atoms, and successfully explains the optical spectra of atoms.
The electron energy spectra of atoms are typically very sharp because of the discrete energy
eigenvalues of electrons. Here, we apply the same idea to bulk semiconductors, in which
the energy eigenvalues form bands separated by energy gaps.

We recall that the electromagnetic wave enters the Hamiltonian via the magnetic vector
potential A, which is related to the electric field via

∇×E(r, t) = − ∂

∂t
B(r, t) →︸︷︷︸

B(r,t)=∇×A(r,t)

E(r, t) = − ∂

∂t
A(r, t), (17.2)

and we work in the Coulomb gauge

∇ ·A = 0. (17.3)

165
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This enables the vector potential A to commute with the momentum operator p̂

[p̂,A] = 0→ p̂ ·A = A · p̂, (17.4)

which leads to the electron-photon Hamiltonian

H = [
p̂2

2m0
+ V (r)]︸ ︷︷ ︸
Ĥ0

+
e

m0
A · p̂︸ ︷︷ ︸
W

+
e2A2

2m0︸ ︷︷ ︸
neglect

. (17.5)

We have written out the Hamiltonian in terms of the electron Hamiltonian Ĥ0, and the
‘perturbation’ term seen by the electron due to the electromagnetic wave. For an electron
in a semiconductor crystal, the potential energy term in the unperturbed Hamiltonian is
the periodic crystal potential V (r + a0) = V (r), where a0 is a lattice constant. We neglect
the perturbation term that goes as the square of the magnetic vector potential for ‘weak’
intensities of light. This is justified when the condition |eA| << |p| ∼ ~π/a0 is met; in

other words, we neglect the term e2A2

2m0
w.r.t. p̂2

2m0
. The net Hamiltonian we retain then

has the electron experiencing a perturbation

Ŵ =
e

m0
A · p̂ (17.6)

due to its interaction with light. The magnetic vector potential for an EMag wave is of
the form1

A(r, t) = êA0 cos(kop · r− ωt) (17.7)

= ê
A0

2
e+ikop·re−iωt + ê

A0

2
e−ikop·re+iωt, (17.8)

where ω is the angular frequency of the EMag wave, ê is the unit vector along the
electric (and vector potential) field, and kop is the propagation wave vector of magnitude
2π/λ. The electron-photon interaction Hamiltonian is then given by

Ŵ (r, t) =
e

m0
A · p̂ (17.9)

= Ŵ (r)e−iωt + Ŵ+(r)e+iωt (17.10)

Ŵ (r) =
eA0e

ikop·r

2m0
ê · p̂ (17.11)

Ŵ+(r) =
eA0e

−ikop·r

2m0
ê · p̂ (17.12)

The electron-photon matrix elements for bulk semiconductors are thus of the form
〈kc|Ŵ |kv〉 and 〈kc|Ŵ+|kv〉, where the unperturbed electron states |kc〉 and |kv〉 are

solutions of the unperturbed Hamiltonian Ĥ0 = p̂2

2m0
+ V (r). But this is precisely what we

discussed in chapters ?? and ?? for semiconductors. The electron states in the valence and

conduction bands in the effective mass approximation are ψc(r) = 〈r|kc〉 = ( e
ikc·r√
V

)uc(r) for

bulk semiconductors. The term in the round bracket is a slowly varying envelope function,

1This approach of treating the electron-photon interaction is semi-classical, justified for classical
electromagnetic fields when the number of photons is much larger than unity. It is semi-classical because
electrons receive the full quantum treatment, but we neglect the quantization of the electromagnetic
field, treating it as a classical infinite source or sink of energy, albeit in quantum packets of ~ω. The
electromagnetic field will be quantized in Chapters ?? and beyond in this book.
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and uc(r) is the periodic part of the Bloch function. The effective mass approximation

transforms the unperturbed electronic Hamiltonian into the much simpler form p̂2

2m0
+

V (r) → p̂2

2m?c
, and the corresponding effective-mass Schrodinger equation is p̂2

2m?ψc(r) =

(E − Ec)ψc(r). We will work in this effective-mass theory. The advantage of working in
the effective-mass theory is that the light-matter interaction matrix elements for electrons
confined in low-dimensional structures such as quantum wells, wires, or dots follows in a
simple way from the bulk results. We will need the matrix elements shortly to explain the
absorption spectra of bulk semiconductors, which we discuss next.

17.3 The absorption spectrum of bulk semiconductors

We learn early of the Beer-Lambert ‘law’, which states that if light of intensity I0 is incident
on a material that absorbs, the intensity will decay inside the material as I(z) = I0e

−αz.
Here α is the absorption coefficient, in units of inverse length. Typically the unit used for
α is cm−1. Let us consider the following experiment: take a piece of bulk semiconductor,
say GaAs or GaN, and using a tunable light source, measure α as a function of the photon
energy ~ω. Then we obtain the absorption spectrum α(~ω). The absorption spectrum of
most semiconductors looks like what is shown in the schematic Figure 17.1.
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Fig. 17.1: Schematic absorption spectrum α(~ω) of bulk semiconductors. The insets depict
various state transitions upon absorption of photons.

The inset of Figure 17.1 indicates the electron bandstructure of the bulk semiconductor,
including states corresponding to donor and acceptor dopants. The transitions between
electron states caused by photon absorption are indicated. The floor of the absorption
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spectrum is due to intraband transitions caused by the absorption of low energy (∼ few
meV) photons by free carriers. Transitions between dopant and band states are shown, in
addition to the below-bandgap excitonic transition. Such optical measurements provide
a sensitive experimental determination of dopant and excitonic energies with respect to
the fundamental band edge energies. Photons can excite mechanical vibrations of the bulk
semiconductor crystal by creating optical phonons: the absorption peak for this process is
rather strong, and forms the basis or Raman spectroscopy. By far, the strongest absorption
occurs for interband transitions, which is the focus of this chapter.

The absorption spectrum is quantitatively defined as

α(~ω) =
Number of photons absorbed per unit volume per second

Number of photons incident per unit area per second
=

R(~ω)

Nph(~ω)
.

(17.13)
In the next section we derive an expression for the denominator Nph(~ω), and in the

following section we deal with the numerator R(~ω).

17.4 The number of photons in light

Consider a monochromatic EMag wave of frequency ω and corresponding wavevector
kop = 2π

λ n̂. For a plane wave, the magnetic vector potential is

A(r, t) = êA0 cos(kop · r− ωt), (17.14)

from where the electric field is obtained by using

E(r, t) = − ∂

∂t
A(r, t) (17.15)

= −êωA0 sin(kop · r− ωt), (17.16)

and the magnetic field intensity is

H(r, t) =
1

µ
∇×A(r, t) (17.17)

= − 1

µ
kop × êA0 sin(kop · r− ωt). (17.18)

Here we have used ∇× (...) ≡ −kop × (...) for plane waves, as described in Chapter ??.
Then, the energy carried by the plane wave per unit area per unit time is given by the
Poynting vector

S(r, t) = E(r, t)×H(r, t) (17.19)

= kop
ωA2

0

µ
sin2(kop · r− ωt) (17.20)

Where we use the identity ê×kop×ê = kop. Since the frequency of typical UV-visible-IR
light is very high, we time-average the Poynting vector over a period to obtain

〈S(r, t)〉 =
ωA2

0

2µ
kop, (17.21)

and its magnitude is
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S = |〈S(r, t)〉| = ωA2
0

2µ
kop =

nrcε0ω
2A2

0

2
=
E2

0

2η
(17.22)

where µ = µ0 and nr =
√
µrεr is the refractive index of the media, in which the speed

of light is c/nr. Also note that E0 = ωA0, and η =
√
µ/ε is the field impedance. This

relation gives us a way to find the magnitude of the vector potential A0 if we know the
power carried per unit area by the electromagnetic wave. Since energy in electromagnetic
waves is carried in quantum packets (photons) of individual energy ~ω, the number of
photons that cross unit area per unit time is then given by

Nph(~ω) =
S

~ω
=
nrcε0ω

2A2
0

2~ω
=

E2
0

2η~ω
. (17.23)

The intensity of light is proportional to the square of the electric (or magnetic) field
amplitude, and thus the number of photons is a measure of the intensity of radiation.
Equation 17.23 provides the denominator of the expression for absorption coefficient
Equation 17.13. The numerator term is discussed in the next section.

17.5 Photon absorption rate in bulk semiconductors

Fig. 17.2: The absorption process of a single photon by interband transition.

To find the rate of photon absorption in the bulk semiconductor, we apply Fermi’s
golden rule derived in Chapter 14. We first note that the numerator of Equation 17.13 has
units of number of photons absorbed per unit volume per second. Consider Figure 17.2.
An electron in the valence band state |a〉 absorbs a photon of energy ~ω and transitions
into state |a〉 in the conduction band. Each such transition results in the annihilation of a
photon from the EMag field. The rate at which this happens is given by Fermi’s golden
rule as
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1

τa→b
=

2π

~
|〈b|W (r)|a〉|2δ[Eb − (Ea + ~ω)], (17.24)

where 〈b|W (r)|a〉 is the perturbation matrix element, and the Dirac-delta function is a
statement of energy conservation in the process. The reverse process of photon emission is
also allowed, which results in the creation of a photon in the EMag field at the rate

1

τb→a
=

2π

~
|〈a|W (r)|b〉|2δ[Ea − (Eb − ~ω)], (17.25)

which must be subtracted because an emission process makes a negative contribution
to the number of photons absorbed. The above results are for the single states |a〉 and
|b〉. A semiconductor crystal has a large number of states in the respective bands, so let’s
sum the rates for all possible transitions, and divide it by the net volume V to obtain
the absorption rate per unit volume (in s−1·cm−3). Add in the electron spin degeneracy
gs = 2 for each k state2. For the absorption process to occur, the lower state |a〉 has
to be occupied (probability = fa) and the higher state |b〉 has to be empty (probability
= (1 − fb)), where f ’s are the occupation functions. The net absorption rate per unit
volume is then given by

Rabs =
2

V

∑
ka

∑
kb

2π

~
|Wba|2δ[Eb − (Ea + ~ω)]fa(1− fb), (17.26)

and the net emission rate per unit volume is

Rem =
2

V

∑
ka

∑
kb

2π

~
|Wab|2δ[Ea − (Eb − ~ω)]fb(1− fa). (17.27)

The summation runs over all valence band electron states ka and conduction band
electron states kb, including those that do not meet the criteria Eb−Ea = ~ω. The energy
conservation requirement is automatically taken care of by the Dirac-delta functions. We
note now that the Dirac-delta functions are the same for emission and absorption process
because δ[+x] = δ[+x], |Wab| = |Wba|, and fa(1− fb)− fb(1− fa) = fa − fb. Therefore,
the net photon absorption rate per unit volume is the difference

R(~ω) = Rabs −Rem =
2

V

∑
ka

∑
kb

2π

~
|Wab|2δ[Eb − (Ea + ~ω)]× (fa − fb) (17.28)

To evaluate the sum over states, we must first obtain an expression for the matrix
element, which is given by the electron-photon perturbation term

Wab = 〈b| e
m0

A · p̂|a〉. (17.29)

At this stage, we need to know the wavefunctions corresponding to the band states
|a〉 and b〉. In the effective mass approximation, the electron wavefunction = (envelope
function) × (Bloch function). The valence band state wavefunction is then

ψa(r) = C(r)uv(r) =
eikv·r
√
V︸ ︷︷ ︸

Envelope C(r)

uv(r)︸ ︷︷ ︸
Bloch

, (17.30)

2Photons carry an angular momentum of ±~ depending upon their polarization. Therefore, the
conservation of angular momentum couples specific spin states. Here we are considering light with photons
of mixed polarization. Anglular momentum conservation dictates which bands can be involved in the
absorption or emission process, thus providing a way to selectively excite say the light hole, heavy hole, or
split-off bands because they differ in their net angular momentum.
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and the conduction band state wavefunction is

ψb(r) = C ′(r)uc(r) =
eikc·r
√
V
uc(r). (17.31)

Since the spatial part of the vector potential for the EMag wave is A = êA0

2 e
ikop·r, we

obtain the matrix element Wab = 〈b| em0
A · p̂|a〉 to be

Wab =
eA0

2m0
ê · (
∫
ψ?b e

ikop·rp̂ψad
3r) (17.32)

=
eA0

2m0
ê ·
∫

[
eikc·r
√
V
uc(r)]? (eikop·rp̂)︸ ︷︷ ︸

operator

[
eikv·r
√
V
uv(r)]d3r (17.33)

=
eA0

2m0
ê ·
∫

[e−ikc·ru?c(r)] (eikop·rp)︸ ︷︷ ︸
operator

[e+ikv·ruv(r)]
d3r

V
(17.34)

=
eA0

2m0
ê ·
∫

[e−ikc·ru?c(r)](eikop·r)[e+ikv·r(~kvuv(r)− i~∇uv(r))]
d3r

V
(17.35)

=
eA0

2m0
ê ·
∫
ei(−kc+kop+kv)·r[u?c(r)uv(r)](~kv)

d3r

V︸ ︷︷ ︸
forbidden

+ (17.36)

eA0

2m0
ê ·
∫
ei(−kc+kop+kv)·r[u?c(r)p̂uv(r)]

d3r

V︸ ︷︷ ︸
allowed

(17.37)

The first term is labeled forbidden because the integral is ≈ ~kv〈kc|kv〉 = 0 if we
neglect the photon momentum. This is because the states belong to different bands, and
are orthogonal. The ‘allowed’ transition matrix element is:

Wab =
eA0

2m0
ê ·
∫
V

ei(−kc+kop+kv)·r[u?c(r)p̂uv(r)]
d3r

V
(17.38)

=
eA0

2m0
ê ·
∫
V

ei(−kc+kop+kv)·r︸ ︷︷ ︸
slow

[u?c(r)p̂uv(r)]︸ ︷︷ ︸
periodic

d3r

NΩ︸︷︷︸
V

(17.39)

=
eA0

2m0
ê ·
∫
V

ei(−kc+kop+kv)·r

N︸ ︷︷ ︸
slow

[u?c(r)p̂uv(r)]︸ ︷︷ ︸
periodic

d3r

Ω
(17.40)

To visualize the slow and periodic parts inside the integral, refer to Figure 17.3. The
periodic term functions uc(r)p̂uc(r) repeats in every unit cell in real space of volume Ω of
the crystal. But the slowly varying function of the form eik·r hardly changes inside a unit
cell, it changes appreciably only over many many cells. Then, we treat the slowly varying
function as constant inside a the unit cell located at Ri, but the value to change from cell
to cell. Then, the integral decomposes to

Wab =
eA0

2m0
ê · [

∑N
n=1 e

i(−kc+kop+kv)·Rn

N︸ ︷︷ ︸
δkc,kv+kop

]

∫
Ω

[u?c(r)p̂uv(r)]
d3r

Ω︸ ︷︷ ︸
pcv

. (17.41)

The sum runs over all unit cells in real space. Since
∑N
n=1 e

i(−kc+kop+kv)·Rn is the sum
of the complex exponential at every unit cell site Rn, and there are a lot of them, let us

visualize this sum. Refer to Figure 17.4 to see why the sum
∑N
n=1 e

i(−kc+kop+kv)·Rn

N is zero



172 CHAPTER 17. LIGHT-MATTER INTERACTION

origin

unit cells
in real space

vol:

Fig. 17.3: Explanation of the decomposition of the optical matrix element. Because the
matrix element consists of a product of a plane wave part that varies slowly over unit
cells, and a part that is periodic in unit cells, the product decomposes into a sum and a
cell-periodic integral.
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Fig. 17.4: The sum of complex exponentials of the form eiθn . If the sum is over a large
number of phases, the sum

∑
n e

iθn is zero, unless θn = 0, in which case
∑
n e

iθn = N .
This statement is captured in

∑
n e

iθn = Nδθn,0.

for all cases except when −kc + kv + kop = 0, in which case it is evidently unity. The
complex numbers eiθn are all on the unit circle on the complex plane, and if there are a
lot of them, they distribute uniformly around the origin. Thus, their sum tends to have
zero real and imaginary parts; further, they are divided by a large number N . But when
θn = 0, all the points fall at ei0 = 1 + 0i, and thus the sum is unity.

The optical matrix element is thus given by the very important result

Wab =
eA0

2m0
[δkc,kv+kop ](ê · pcv) (17.42)

Note that the Kronecker-delta function ensures momentum conservation because ~kv +
~kop = ~kc. With this form of the optical matrix element, the net absorption rate from
equation 17.28 becomes

R(~ω) = (
eA0

2m0
)2 2

V

∑
kc

∑
kv

2π

~
|ê·pcv|2δ2

kc,kv+kop
δ[Ec(kc)−(Ev(kv)+~ω)]×[fv(kv)−fc(kc)]

(17.43)

We note that the square of the Kronecker-delta function is the same as the Kronecker-
delta δ2

kc,kv+kop
= δkc,kv+kop . We also note at this point that |kc|, |kv| >> kop. This is

because the band-edge states occur around reciprocal lattice vectors 2π/a0, and the lattice
constants a0 << λ, the wavelength of light. This is the rationale behind the commonly
stated fact: direct optical transitions are vertical in E(k) diagrams. Using the Kronecker
delta function to reduce the summation over k states assuming kc = kv = k, and kop ≈ 0,
and taking the term ê · pcv out of the sum because it does not depend on k, we obtain
the net absorption rate per unit volume to be given by the following form, which actually
holds also for lower-dimensional structures such as quantum wells, wires, or dots:
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R(~ω) =
2π

~
(
eA0

2m0
)2|ê · pcv|2

2

V

∑
k

δ[Ec(k)− (Ev(k) + ~ω)]× [fv(k)− fc(k)] (17.44)

17.6 The Equilibrium Absorption Coefficient α0(~ω)

We are now ready to evaluate the absorption coefficient. Using the expression for R(~ω)
with the photon flux Nph(~ω) from Equation 17.23, the expression for the absorption
coefficient from Equation 17.13 becomes

α(~ω) = (
πe2

nrcε0m2
0ω︸ ︷︷ ︸

C0

)|ê · pcv|2
2

V

∑
k

δ[Ec(k)− (Ev(k) + ~ω)]× [fv(k)− fc(k)]. (17.45)

Notice that the absorption coefficient thus formulated becomes independent of the
intensity of the incident photon radiation I ∝ A2

0 because both Nph(~ω) ∝ A2
0 and

R(~ω) ∝ A2
0, and the A2

0 factor thus cancels in the ratio. This is a signature of a linear
process - i.e., the linear absorption coefficient of the semiconductor is a property of the
semiconductor alone, and does not dependent on the excitation intensity. With the

coefficient C0 = πe2

nrcε0m2
0ω

we re-write the absorption coefficient again as the following

compact expression which will be used also for lower-dimensional structures such as quantum
wells, wires, or dots in chapter 11:

α(~ω) = C0|ê · pcv|2
2

V

∑
k

δ[Ec(k)− (Ev(k) + ~ω)]× [fv(k)− fc(k)] (17.46)

To evaluate the k−sum, we need to identify the occupation functions fv(k) and fc(k).
If the semiconductor is in equilibrium, there is one Fermi level EF , and the occupation
is given by the Fermi-Dirac function f(E) = (1 + exp [(E − EF )/kBT ])−1 at temperature
T . When the semiconductor is pushed to non-equilibrium by either optical excitation or
electrical injection of excess carriers, the occupation functions are conveniently modeled by
retaining the Fermi-Dirac form. But the single Fermi-energy EF splits to two quasi-Fermi
levels: one for electrons in the conduction band Fc, and the other for electrons in the
valence band Fv. The occupation functions are then given by

fv(k) =
1

1 + exp (Ev(k)−Fv
kT )

(17.47)

fc(k) =
1

1 + exp (Ec(k)−Fc
kT )

(17.48)

We will consider non-equilibrium conditions in the next chapter. Under thermal equi-
librium, Fc = Fv = EF , and there is only one Fermi level3. For an undoped semiconductor,
EF locates close to the middle of the bandgap. Then, as T → 0 K, fv(k)→ 1 and fc(k)→ 0.
Actually, these conditions hold fine even at room temperature for wide-bandgap semicon-
ductors with little error. Converting the sum to an integral using the usual prescription,
we get the equilibrium absorption coefficient to be

3When photons are incident on the semiconductor, it is by definition not in equilibrium and Fc 6= Fv .
But we assume that the intensity of the EMag wave is low enough to ensure that Fc ≈ Fv ≈ EF .
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α0(~ω) = C0|ê · pcv|2
2

V
×
∫
k

d3k
(2π)3

V

δ[Ec(k)− (Ev(k) + ~ω)] (17.49)

Note that the volume term V cancels.

3D (bulk) semiconductor

Fig. 17.5: Definition of various energies, and the equilibrium absorption spectrum of bulk
(3D) semiconductors α0(~ω).

From Figure 17.5, the optical transition can occur only for k states that satisfy

Ec(k) = Eg +
~2k2

2m?
e

(17.50)

Ev(k) = −~2k2

2m?
h

(17.51)

Ec(k)− Ev(k) = Eg +
~2k2

2m?
r

(17.52)

1

m?
r

=
1

m?
e

+
1

m?
h

(17.53)

Using spherical coordinates in the 3D k−space, d3k = k2 sin θdkdθdφ, we convert the

variables from wavevector to energy. Assuming E = ~2k2

2m?r
, we break up k2 sin θdkdθdφ

into three parts: k2 · dk = (
2m?r
~2 )E · 1

2 (
2m?r
~2 )

1
2
dE√
E

= 1
2 (

2m?r
~2 )

3
2

√
EdE, the second part being

sin θdθ and the third part dφ. When we integrate over all k−space, the angular parts

evaluate to
∫ π

0
sin θdθ = 2 and

∫ 2π

0
dφ = 2π.

The absorption coefficient then becomes

α0(~ω) = C0|ê ·pcv|2
2

(2π)3
· (2π) · (2) · 1

2
(
2m?

r

~2
)

3
2

∫ ∞
0

dE
√
E × δ[E − (~ω − Eg)]︸ ︷︷ ︸√

~ω−Eg

(17.54)

which reduces to
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α0(~ω) = C0|ê · pcv|2
2

(2π)2
(
2m?

r

~2
)

3
2

√
~ω − Eg︸ ︷︷ ︸

ρr(~ω−Eg)

(17.55)

where we have defined the joint optical density of states function for bulk 3D semicon-
ductors as

ρr(u) =
gs

(2π)2
· (2m?

r

~2
)

3
2 · √u (17.56)

Figure 17.5 shows the equilibrium absorption spectrum α0(~ω) of a bulk 3D semicon-
ductor. Using typical values of effective masses and material constants, it may be verified
that the absorption coefficient for GaN for example are of the order of ∼ 105 cm−1, as
indicated in Fig 17.1 at the beginning of this chapter. The absorption coefficient is zero for
photon energies below the bandgap of the semiconductor, as is intuitively expected.

Instead of leaving the expression for the absorption coefficient in terms of the unphysical

parameter C0, we use the fundamental Rydberg energy R∞ = e2

4πε0(2aB) , the Bohr radius

aB = ~
m0cα

, and the fine structure constant α = e2

4πε0~c to write the absorption coefficient
as

α0(~ω) = (
4π2α

nr
) · (R∞a2

B) · (
2|ê·pcv|2
m0

~ω
) · ρr(~ω − Eg) (17.57)

where we have split off the dimensionless term 2|ê ·pcv|2/m0~ω. Note that as discussed
in chapter 9, the rough order of 2|ê · pcv|2/m0 ≈ 20 eV for most bulk semiconductors. The
coefficients decompose to reveal a proportionality to the fine-structure constant. The term
R∞a

2
B has units eV.cm2, and the reduced density of states is in 1/eV.cm3, which leads to

the net units cm−1. This general form of the equilibrium absorption coefficient holds even
for low-dimensional structures with the suitable DOS ρr(~ω − E

′

g), where E
′

g accounts for
ground state quantization shifts in the bandgap. Many interesting effects happen when the
semiconductor is pushed out of equilibrium: it is the subject of the next chapter.
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