
Chapter 4 

Ordering and Clustering 

In this chapter, we discuss the tendency of alloy phases, constrained to 
grow as epitaxial thin films, to order and cluster. We would like to know 
whether, during MBE of alloy phases, the individual components will tend 
on a microscopic scale to a t t ract or repel each other, so tha t there is short-
range order. We would also like to know whether the individual components 
will tend on a macroscopic scale to cluster into ordered or disordered phases 
of particular stoichiometries. 

For concreteness, our discussion will center on "pseudobinary" I I I /V 
alloys — alloys composed of binary mixtures of two distinct I I I /V com-
pounds. These alloys are exceedingly useful to device engineers because 
their lattice constants and electronic properties can be tuned continuously 
by adjusting the relative fractions of the two I I I /V compounds. These al-
loys are also characterized by positive enthalpies of mixing, and hence have 
a tendency to "unmix." l Those enthalpies of mixing originate mainly from 
microscopic strain caused by the different bond lengths of the two I I I /V 
compounds. Therefore, we begin the chapter by describing, in Section 4.1, 
how to estimate the strain in microscopic clusters using what are known 
as "valence force field" (VFF) models. If these microscopic clusters are 
embedded in an epitaxial thin film on a substrate with a different lattice 
constant, then they will also be "externally" strained. In Section 4.2, we 
discuss how to estimate tha t external strain. 

In Section 4.3, we introduce a powerful technique, the cluster variation 
method, for building a macroscopic description of alloy thermodynamics 
from statistical combinations of such microscopic clusters. In Section 4.4, 
we apply this method in an approximate way to I n i - ^ G a ^ A s , a pseudobi-

1E.K. Müller and J.L. Richards, "Miscibility of III-V semiconductors studied by flash 
evaporation," J. Appl. Phys. 35 , 1233 (1964). 
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94 Chapter 4. Ordering and Clustering 

nary alloy of current technological interest. We will find tha t the thermo-
dynamic properties of I n i _ x G a x A s depend greatly on whether the alloy is 
coherent or incoherent with the substrate, i.e., on whether the interface 
between the epitaxial film and the substrate is crystallographically perfect 
or not.2 If the alloy is incoherent with the substrate , then it is free to 
adopt the in-plane lattice constant tha t minimizes its free energy. If the 
alloy is coherent with the substrate, then it must adopt the in-plane lattice 
constant of the substrate; the resulting elastic strain energy can increase 
its overall free energy significantly. 

In fact, such coherency constraints greatly suppress the tendency for 
alloys to separate into their pure-component "endpoint" phases, and at the 
same time greatly enhance their tendency to form ordered compounds at 
certain stoichiometric compositions. These tendencies can be understood 
quantitatively from the full cluster variation method calculation, but they 
can also be understood semiquantitatively through simpler semi-empirical 
models. We end the chapter, therefore, with a simple analytical t reatment 
in Section 4.5 of coherency-constrained clustering and ordering. 

4.1 Microscopic Strain 
Let us s tar t , in this section, by discussing microscopic strain in pseudobi-
nary I I I /V alloys. We begin, in Subsection 4.1.1, by introducing a simple 
bond stretching and bond bending force field model for calculating the equi-
librium atomic positions of a small alloy cluster. Then, in Subsection 4.1.2, 
we use those atomic positions to estimate the strain energy, which is the 
dominant contribution to the enthalpy of mixing. 

4.1.1 Virtual Crystals and Covalent Radii 
Let us begin, in this subsection, by calculating the microscopic bond distor-
tions tha t occur when two I I I /V compounds are mixed. For concreteness, 
let us consider GaAs and InAs. Bulk alloys in this system are known to 
obey Vegard's law quite accurately: their overall lattice constants are the 
averages of the bulk GaAs and InAs lattice constants, weighted by mole 
fraction. If we imagine the alloy to be a "virtual crystal," in tha t each 
atom sits on geometrically perfect zincblende lattice sites,3 then its lattice 

2D.M. Wood and A. Zunger, "Epitaxial effects on coherent phase diagrams of alloys," 
Phys. Rev. B40 , 4062 (1989). 

3L. Nordheim, "Electron theory of metals," Ann. Phys. (Leipzig) 9, 607 and 641 
(1931). 
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constant can be expressed as 

«VC = (1 - ^)öGaAs,o + #ainAs,o, (4.1) 

where x is the InAs fraction in the alloy, and aQaAs,o and ainAs,o are the 
equilibrium lattice constants of (unstrained) bulk GaAs and InAs, respec-
tively. Indeed, measurements4 show tha t the second-nearest-neighbor dis-
tances between group III a toms (or between group V atoms) in the lattice 
are very nearly those — a v c / \ / 2 — expected for such virtual crystals. 

In contrast, however, first-nearest-neighbor distances between group III 
and group V atoms deviate significantly from those — v^3avc/4 — expected 
for such virtual crystals. Instead, Ga-As bonds are shorter, and In-As 
bonds are longer, than the virtual crystal bonds. Tha t this is so is not 
unexpected, since the Ga-As bond in bulk GaAs is shorter than the In-As 
bond in bulk InAs, so in some sense the As "prefers" to be nearer to Ga 
than to In atoms. Indeed, one might imagine tha t , instead of occupying 
virtual crystal lattice sites, the atoms would occupy sites such tha t the bulk 
Ga-As and In-As bond lengths, and the associated "covalent radii" of the 
Ga, As, and In atoms, were preserved.5 

To see which extreme of behavior is closer to the t ru th , consider the 
5-atom Ino.5Gao.5As tetrahedron at the right of Figure 4.1. This tetrahe-
dron is one of the five distinct t e t rahdra shown at the top of Figure 4.2 
from which, as discussed in Section 4.4, an I n i _ x G a x A s alloy of arbitrary 
composition may be constructed. On the one hand, if the central As a tom 
occupies the geometric center of the tetrahedron, then the tetrahedral bond 
angles associated with the sp3 hybridized bonds can be preserved, but at 
the expense of InAs bonds tha t are too short and GaAs bonds tha t are too 
long. On the other hand, if the central As a tom moves down slightly, then 
the InAs and GaAs bonds can approach their bulk equilibrium values, but 
at the expense of In -As- In bond angles tha t are too acute and G a - A s - G a 
bond angles tha t are too obtuse. 

The "elastic" energies associated with these kinds of distortions are often 
quantified using what are known as valence force field (VFF) models,6 in 
which the energies of individual bonds and bond angles are considered to be 
independent of each other. In the most popular representation for diamond-

4 J.C. Mikkelsen, Jr., and J.B. Boyce, "Extended x-ray-absorption fine-structure study 
of GalnAs random solid solutions," Phys. Rev. B28, 7130 (1983). 

5L. Pauling and M.L. Huggins, "Covalent radii of atoms and interatomic distances 
in crystals containing electron-pair bonds," Z. Kristallogr. Kristallgeom. Kristallphys. 
Kristallchem. 87, 205 (1934). 

6M.J .P. Musgrave and J.A. Pople, "A general valence force field for diamond," Proc. 
Roy. Soc. London A268, 474 (1962). 
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Figure 4.1: Valence force field potential energies versus As position within a 5-
atom Ino.5Gao.5As tetrahedron. Left and right panels show contributions due to 
bond bending and bond stretching forces; center panel shows the sum of the two 
contributions. The geometric center of the tetrahedron is at z = 0; the actual As 
position is shifted downward toward the Ga atoms. The predictions of the virtual 
crystal (VCA) and covalent radius (CRA) approximations discussed in the text 
are also shown. 

structure semiconductors, the "Keating potential ,"7 the stretching energy 
associated with bond i is proportional to the squared deviations of the 
squared actual bond length from the squared equilibrium length, 

w s t r , i — &i ,2 (4.2) 

and the bending energy associated with adjacent bonds i and j is pro-
portional to the squared deviations of the dot products of actual adjacent 
bonds from the dot products of the equilibrium bonds, 

^bnd,2?' — 0 

3 ßi + ßj (dj · dj - dio · dj>0) 
^i,o^*j,o 

(4.3) 

The two microscopic stretching and bending force constants, a and ß, are 
assumed sufficient to characterize completely the microscopic elastic behav-
ior of both the pure and mixed III-V compounds. Moreover, they can be 
used to predict various macroscopic elastic phenomena, and hence can be 
deduced from bulk elastic constants. The most commonly used values are 
listed in Table 4.1 for a number of diamond-structure materials. 

7P.N. Keating, "Effect of invariance requirements on the elastic strain energy of crys-
tals with application to the diamond structure," Phys. Rev. 145, 637 (1966). 

http://Ino.5Gao.5As
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Material 

C 
Si 
Ge 
AlSb 
GaP 
GaAs 
GaSb 
InP 
InAs 
InSb 
ZnS 
ZnSe 
ZnTe 
CdTe 
CuCl 

α β ß/a 

(N/m) (N/m) 
129.33 84.76 0.655 
48.50 13.81 0.285 
38.67 11.35 0.294 
35.35 6.77 0.192 
47.32 10.44 0.221 
41.19 8.95 0.217 
33.16 7.22 0.218 
43.04 6.24 0.145 
35.18 5.50 0.156 
29.61 4.77 0.161 
44.92 4.78 0.107 
35.24 4.23 0.120 
31.35 4.45 0.142 
29.02 2.43 0.084 
12.60 1.00 0.079 

C\\ C12 C44 
(1010 (1010 (1010 

N/m2) N/m2) N/m2) 
107.6 12.50 57.68 
16.57 6.39 7.96 
12.89 4.83 6.71 
8.94 4.43 4.16 

14.12 6.25 7.05 
11.81 5.32 5.92 
8.84 4.03 4.32 

10.22 5.76 4.60 
8.33 4.53 3.96 
6.67 3.65 3.02 

10.40 6.50 4.62 
8.10 4.88 4.41 
7.13 4.07 3.12 
5.35 3.68 1.99 
2.72 1.87 1.57 

Table 4.1: Microscopic bond stretching (a) and bond bending (β) force 
constants deduced from macroscopic elastic constants (Cn, C12, and C44) of 
various cubic semiconducting materials.0 

a R .M. Martin, "Elastic properties of ZnS structure semiconductors," Phys. Rev. B l , 
4005 (1970). 

To calculate the stretching energy of te t rahedra such as tha t shown at 
the right of Figure 4.1, we sum Equation 4.2 over the four bonds to the 
central As atom, divide by two because each bond is shared by two atoms, 
then multiply by two because there is a pair of atoms per tetrahedron: 

4 

^str = 5 ^ ^ s t r , i . (4.4) 
i=\ 

To calculate the bending energy of the tetrahedron, we sum Equation 4.3 
over each distinct pair of adjacent bonds, and multiply by two because we 
have only accounted for the bonds centered on the group V atoms, but not 
those centered on the group III atoms: 

4 

b̂nd = 222Δ2 Uhnd^J' (4*5) 
i=l j<i 
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For the particular te t rahedron shown at right in Figure 4.1, the total 
elastic energy, per atom-pair , is then 

U(A) = ^str + ^bnd 
2̂ 

(^GaAs ^GaAs,o) . (^InAs ^InAs,o) 
«GaAs 10 + aInAs 

+ 4 

, 2 - « i n A s , 2 
aGaAs,o aInAs,o 

Γ / ,n 
Ά (dGaAs C O s 2 ^GaAsGa ~ ^GaAs,o C O s 2 θτΫ 
PGaAs -J2 

"GaAs,o 

, o « A s C O s 2 ^InAsIn " d?„As,o C O s 2 θτ) ' Ί 
+ PlnAs -J2 

dInAs,o 
(4.6) 

In this equation, the actual and equilibrium GaAs and InAs bond lengths 
are denoted C/QaAs? ^GaAs,o5 ^inAs a n d c/inAs,o5 the actual Ga—As-Ga and 
In-As- In bond angles are denoted #GaAsGa a n d ^inAsini and the ideal te-
trahedral bond angle is ΘΎ = 2 t a n _ 1 ( l / \ / 2 ) « 109.47°. Note tha t we 
have used the symmetry of the tetrahedron to set #GaAsGa = #AsGaAs> 
#InAsIn = #AsInAs and #GaAsIn = #InAsGa ~ #T-

In terms of the vertical displacement, z, of the As atom from the geo-
metric center of the tetrahedron, the actual GaAs and InAs bond lengths 
can be writ ten as 

4.,, = (a)2+(T-r 

and the actual G a - A s - G a and In -As- In bond angles can be writ ten as 

( a v c / 4 ) + z 
COs(0GaAsGa/2) 

(x /3a V C /4 ) + z/Vz 

cos(0InAsIn/2) « (JaVC% Ζ,π (4.8) 
( V 3 a v c / 4 ) - z/y/3 

where a v c / 2 is the length of an edge of the cube circumscribing the tetra-
hedron. 

Then, substi tut ing back into Equat ion 4.6, we can calculate, as shown 
in the left three panels of Figure 4.1, the distortion energies as a function of 
z. The left and right panels show only the bending and stretching energies, 
respectively; the center panel shows their total . Those panels illustrate how 
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the actual position of the As atom at the center of the tetrahedron is deter-
mined by a competition between bending and stretching forces. Given only 
bending forces, the virtual crystal approximation (VCA) holds, and bond 
angles are nearly ideally tetrahedral.8 Given only stretching forces, the co-
valent radius approximation (CRA) holds, and bond lengths are undistorted 
from the bulk pure component compounds. Given both forces, neither holds 
exactly, but, as can be seen, the CRA is the better approximation. In this 
pseudobinary III/V system, bending forces are about 5 times weaker than 
stretching forces, and bond lengths are very nearly preserved upon mixing. 
They deviate slightly, however, due to the "steric" constraints provided by 
bending forces. 

To obtain an analytic form for the position of the As atom, we can 
expand Equations 4.6, 4.7, and 4.8 to second order in z, giving 

U{A) -CtGaAs —— a y e — «GaAs,o H 7= 
4 y/3 

3 
+ - a i n A s 

3 
+ "fcaAs 

3 
+ ~An As 

x/3 z 
-—aye - «InAs,o 7= 
4 V3 

- 2 (V3 . \ 2 
T | — a v C - < * G a A s , o l + ^ 

T 2 

- 2 / v/3 \ 2 
T l T a V C i „ A s , o l - ^ f 

Ί 2 

(4.9) 

Then, solving for du^/dz = 0, the equilibrium position can be deduced 
to be 

- V 3 \ «GaAs + ainAs ~ /^GaAs/3 + A n A s / 3 
^equ , R x a (^InAs,o ~ ^GaAs,o)· 

K
 Z J a GaAs + »InAs ~ PGaAs + PlnAs 

(4.10) 
In the limit ß —> 0, zequ —> — (y/3/2)(d\nAs,o — ^GaAs,o)7 and the VCA holds; 
in the limit a —► 0, zequ —> — (dinAs,o — ^GaAs,o)/(2\/3), and the CRA holds. 

To see how the bond lengths in these alloys depend on composition, 
similar calculations can be performed for 5-atom GaAs, Ino.25Gao.75As, 

8 The angles are not exactly tetrahedral because the Keating representation of the 
"valence forces" does not cleanly separate stretching from bending motions, since Equa-
tion 4.3 consists of deviations of dot products (rather than of angles) between adjacent 
bonds. Other representations do, but at the expense of not appearing to predict distor-
tion energies as accurately [W.A. Harrison, Electronic Structure and the Properties of 
Solids (W.U. Freeman, San Francisco, 1980), pp. 193-197]. 
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Figure 4.2: Measured and calculated Ga-As and In-As bond lengths in 
Ini_xGaa;As alloys. Experimental data are from (open circles) X-ray-absorption 
fine structure (EXAFS)a measurements; calculations are based on valence-force-
field potentials using either bond bending forces in the virtual crystal approxima-
tion (dashed line), bond stretching forces in the covalent radius approximation 
(dotted lines), or both (solid lines). 

α J.C. Mikkelsen, Jr., and J.B. Boyce, "Extended x-ray-absorption fine-structure study 
of Gain As random solid solutions," Phys. Rev. B28, 7130 (1983). 

T. Fukui, "Calculation of bond length in InGaAs ternary semiconductors," Jpn. J. 
Appi Phys. 23, L208 (1984). 

Ino.75Gao.25As and InAs te t rahedra, which are the most probable tetrahe-
dra in the corresponding GaAs, Ino.25Gao.75As, Ino.75Gao.25As and InAs 
alloys. The results are shown in Figure 4.2. The dot ted and dashed 
lines are the stretching-force-only (CRA) and bending-force-only (VCA) 
bond lengths; the solid lines are the stretching-force plus bending-force 
bond lengths. The predictions agree extremely well with the measurements 
shown as open circles. Tha t agreement indicates tha t , consistent with more 
complete calculations,9 elastic energies dominate chemical energies in this 
alloy system. Indeed, this dominance appears to hold for most isovalent, 
though not for heterovalent, mixtures of semiconductors.1 0 

9T. Ito, "A pseudopotential approach to mixing enthalpies of III-V ternary semicon-
ductor alloys," Jpn. J. Appl. Phys. 26, 256 (1987). 

10W.A. Harrison and E.A. Kraut, "Energies of substitution and solution in semicon-
ductors," Phys. Rev. B37, 8244 (1988). 
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4.1.2 Mixing Enthalpies 
In Subsection 4.1.1, we calculated the microscopic distortions tha t minimize 
the sum of the bond stretching and bond bending energies of an As-centered 
cluster containing both Ga and In. In this subsection, we make use of those 
distortions to calculate the strain energy associated with the cluster, and 
then to estimate the mixing enthalpy associated with the alloy as a whole. 

To obtain a simplified formula for the energy of the Ino.5Gao.5As tetra-
hedron, we insert the equilibrium position of the As atom given by Equa-
tion 4.10 into Equation 4.9. Then, approximating the individual bond 
stretching and bending force constants by their averages, a = («GaAs + 
c*inAs)/2 and ß = (/fcaAs + AnAs)/2, we obtain, after some algebra, 

■"> - AiA")2· <4ii) 

where 
4 

Δ α 0 = a i n A s , o - ÖGaAs,o = ~^=(^InAs,o ~ ^GaAs,o)· (4-12) 

The distortion energy of the tetrahedron calculated in this way is listed 
in Table 4.7 on page 132. The energy is proportional to the square of 
the difference, Δα 0 , between the lattice parameters of the component com-
pounds, precisely what one expects from a model based on linear elasticity. 
The effective spring constant, l / [ ( l / a ) + (1//?)], is the "parallel" sum of 
the individual stretching and bending force constants. Since, as mentioned 
above, β is approximately 5 times weaker than c*, the effective spring con-
stant is dominated by ß. In other words, as with all coupled spring systems, 
most of the energy is stored in the weaker and more deformed spring. 

If we now imagine building a lattice solely out of Ino.5Gao.5As tetrahe-
dra, then Equation 4.11 can also be used to estimate the enthalpy of mixing 
of the Ino.sGao.s As alloy. On the one hand, it will be an overestimate: our 
simple calculation did not account for relaxation of the corner group III 
atoms of the te trahedron away from their virtual crystal positions, which 
would decrease the tetrahedron energy. On the other hand, it will be an 
underestimate: as discussed later in Section 4.4, a real Ino.5Gao.5As alloy 
at finite temperature would also contain some fraction of more highly de-
formed te t rahedra of other compositions, which would increase the energy 
of the alloy as a whole. 

To see how well this estimate works, let us approximate the alloy as a 
strictly regular solution, and identify its interaction enthalpy at x = 1/2 
with the V F F elastic energy of the Ino.5Gao.5As tetrahedron: Ωγρρ ~ 
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Material 

C 
Si 
Ge 
a-Sn 
SiC 
BN 
BP 
AIP 
AlAs 
AlSb 
GaN 
GaP 
GaAs 
GaSb 
InP 
InAs 
InSb 
ZnO 
ZnS 
ZnS 
CdS 
CdS 
CdTe 
CdSe 
PbS (Galena) 
PbTe (Altaite) 

Crystal a0 or a/c 
Structure (Ä or Ä/Ä) 
Diamond 3.56683 
Diamond 5.43095 
Diamond 5.64613 
Diamond 6.48920 
Wurtzite 3.086/15.117 
Zincblende 3.6150 
Zincblende 4.5380 
Zincblende 5.4510 
Zincblende 5.6605 
Zincblende 6.1355 
Zincblende 3.189/5.185 
Zincblende 5.4512 
Zincblende 5.6533 
Zincblende 6.0959 
Zincblende 5.8686 
Zincblende 6.0584 
Zincblende 6.4794 
Rock Salt 4.580 
Zincblende 5.420 
Wurtzite 3.82/6.26 
Zincblende 5.8320 
Wurtzite 4.16/6.756 
Zincblende 6.482 
Zincblende 6.050 
Rock Salt 5.9362 
Rock Salt 6.4620 

aT = d In aQ/dT 
( lO^K" 1 ) 
0.87 + 0.0092(T - 273) 
3.08 + 0.0019(T - 273) 
6.05 + 0.0036(T - 273) 

3.40 + 0.0064(T - 273) 

5.81 
5.35 + 0.0080(T - 273) 
6.7 

4.33 + 0.0038(T - 273) 

6.70 + 0.0128(T - 313) 

18.81 + 0.0074(T - 273) 
19.80 

Table 4.2: Crystal structures, room-temperature lattice parameters and 
thermal expansion coefficients of various semiconductors.0 

"Adapted from S.M. Sze, Physics of Semiconductor Devices, 2nd Ed. (John Wiley 
L· Sons, New York, 1981), and R.S. Krishnan, R. Srinivasan and S. Devanarayanan, 
Thermal Expansion of Crystals (Pergamon Press, Oxford, 1979). 

4tx(A). Then 

nVFFn^S=(Aa0)2. (4.13) 
OL + ß 

This equation can be used to estimate the elastic part of the regular so-
lution interaction parameter for any pseudobinary mixture whose micro-
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scopic elastic constants and lattice parameters are known. Its predictions 
are shown in Figure 4.3 for a number of alloys, using the lattice parameters 
listed in Table 4.2 and the bond stretching and bending force constants 
listed in Table 4.1. Within the (fairly large) uncertainty in the values 
deduced from experimental measurements, the equation predicts the regu-
lar solution parameters surprisingly accurately. It represents the physical 
basis1 1 for what is known as the Delta-Latt ice-Parameter (DLP) model, 
originally based on the empirical observation tha t heats of mixing are ap-
proximately proportional to the squared mismatches between the lattice 
parameters of the constituent components.1 2 

4.2 Macroscopic Strain 
In Section 4.1, we noted tha t , from a microscopic point of view, pseudobi-
nary III-V alloys can be viewed as a collection of elementary te t rahedra such 
as those shown in Figure 4.2. Except for the pure-component te trahedra , 
none are perfectly tetrahedral: their bond lengths and angles deviate from 
the CRA lengths and VCA angles, respectively. These internal distortions 
give rise to the elastic strain energies listed in Table 4.7 on page 132 even 
in te t rahedra embedded in bulk alloys of the same overall composition as 
the te t rahedra themselves. 

Superimposed on these internal distortions, however, are distortions 
due to externally imposed constraints on the dimensions of the tetrahe-
dra. These constraints arise because the te trahedra, each with an "ideal" 
dimension or shape, are all embedded in a macroscopic lattice whose unit 
cells have their own (and possibly different) average dimension or shape. 
In this section, we discuss these externally imposed distortions. Concep-
tually, they can be decomposed into two components: one tha t is mainly 
volumetric and one tha t is mainly distortional. 

The volumetric component comes about either when alloys are grown 
in bulk form, or when epitaxial films are grown coherently on a lattice-
matched substrate. Consider such an alloy, whose overall composition is 
#epi = 0.5, and whose mean (or virtual crystal) lattice parameter is given, 
using Equation 4.1, by 

aepi,o = 0.5aGaAs,o + 0.5aInAs,o· (4-14) 
11 P.A. Fedders and M.W. Müller, "Mixing enthalpy and composition fluctuations in 

ternary III-V semiconductor alloys," J. Phys. Chem. Solids 45 , 685 (1984); J.L. Martins 
and A. Zunger, "Bond lengths around isovalent impurities and in semiconductor solid 
solutions," Phys. Rev. B30 , 6217 (1984) 

1 2G.B. Stringfellow, "Calculation of regular solution interaction parameters in semi-
conductor solid solutions," J. Phys. Chem. Solids 34, 1749 (1973). 
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Figure 4.3: Regular solution parameters for various pseudobinary alloys. 
Values plotted along the bottom axis were calculated using Equation 4.13; values 
plotted along the left axis are experimental measurements0; values plotted along 
the right axis are the critical temperatures, deduced from Equation 3.38, above 
which the constituent components are fully miscible. 

α Adapted from G.B. Stringfellow, "Calculation of ternary and quaternary III-V phase 
diagrams," J. Cryst. Growth 27, 21 (1974). 

The only te t rahedron whose "ideal" dimension is also given by Equation 4.14 
is the Ino.5Gao.5As tetrahedron, which will not be externally strained, and 
whose excess energy will be due solely to internal distortions. All other 
te t rahedra will have "ideal" dimensions different from tha t given by Equa-
tion 4.14. If embedded in the xepi = 0.5 alloy, they will be constrained 
to occupy volumes different from their ideal volume, and will have addi-
tional energies due to the externally imposed volumetric distortions. For 
example, an Ino.75Gao.25As tetrahedron has an ideal dimension (neglect-
ing relaxations of corner atoms) of 0.25aGaAs,o + 0.75ainAS,o, and must be 
compressed before it can fit into a Ino.5Gao.5As lattice. 

The distortional component comes about when epitaxial films are grown 
coherently on a lattice-mismatched substrate. Suppose, for example, tha t 
the substrate is a single (unstrained) crystal of bulk Ini_X s u bGaX s u b As itself, 
whose In composition is xs ub and whose mean (or virtual crystal) lattice 
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parameter is a weighted average of the two endpoint lattice parameters, 

« s u b = ( 1 — # s u b ) ö G a A s , o + # s u b a i n A s , o ( 4 · 1 5 ) 

As illustrated in the right half of Figure 4.4, if the epitaxial film is coherent 
with the substrate, then its lattice parameter parallel to the interface must 
be the same as that of the substrate, independent of the composition of the 
epitaxial film itself: 

^epi , | | — ^ s u b — v-L *^sub]^GaAs,o ~r ^ s u b ^ I n A s , o · 

In other words, there will be a parallel strain in the film of 

(4.16) 

c ep i , = 2-
xepi ,o 

^epi , | | · Öepi,o 

where 
&epi,o — \± ^ e p i J ^ G a A s , o ι ^ e p i ^ I n A s 

(4.17) 

(4.18) 

is the equilibrium (unstrained) lattice parameter of the epitaxial film. 
As illustrated in the left half of Figure 4.4, however, its lattice parameter 

in a direction perpendicular to the interface will not be the same as the 
equilibrium lattice parameters of either the substrate or the epitaxial film. 
If the film is locked to a substrate with a smaller lattice parameter, then 
the in-plane compressional "squeezing" will force its perpendicular lattice 
parameter to increase in order to preserve (approximately) its unit cell 
volume. If the film is locked to a substrate with a larger lattice parameter, 
then the in-plane tensile "stretching" will force its perpendicular lattice 
parameter to decrease, again in order to preserve (approximately) its unit 
cell volume. 

To understand both the volumetric and distortional components of the 
externally imposed strains quantitatively, we write what is known as the 
generalized Hooke's law for cubic crystals,13 
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(4.19) 

1 3 Se e , e.g., A . J . Durel l i , E .A . Ph i l l ips , a n d C.H. T s a o , Introduction to the Theoret-
ical and Experimental Analysis of Stress and Strain (McGraw-Hi l l , New York, 1958), 
C h a p . 4. 
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Figure 4.4: Perpendicular (left) and parallel (right) lattice parameters of 
Ini_xGaxAs at composition xepi grown coherently on substrates having the lattice 
parameters of bulk Ini_xGaxAs at composition xsub· The filled circles represent 
Ini_xGaxAs grown on substrates with compositions xsub = 0 ,1 /2 ,1 . The open 
circles represent Ini_xGaxAs grown on "lattice-matched" substrates with com-
positions xsub = xepi, or, alternatively, to incoherent growth. 

where the e^'s and a^s are the normal strains and stresses, respectively, and 
the 7ij 's and Tj/s are the shear strains and stresses, respectively. 

If the epitaxial film and its substrate are oriented along one of the (100) 
cubic symmetry directions, then this equation reduces to 

σβΡΐ,|| \ _ ( C11+C12 c12 \ ( €epi,|| \ (420) 

σβρί,χ ) " V 2C 1 2 C n ) \ 6e p i , ± ) ' ^ U j 

If, in addition, the epitaxial film has a free surface, such tha t perpendicular 
stresses vanish, then 

0"epi,_L = 2C1 2ee p i i | | + Cii€epi,_L = 0, (4-21) 

and the perpendicular strain and lattice parameter of the film are 

- 2 C 1 2 
^epi,_L 

^_L v*^epi 5 *^sub / 

C C ePM 

l + €, epi,_L /2 
xepi ,o l - € e p i , ± / 2 " 

(4.22) 

On average, then, the unit cell of the epitaxial film has parallel and per-
pendicular dimensions given by Equations 4.16 and 4.22, respectively. 
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Now consider the microscopic te t rahedra tha t are embedded within this 
epitaxial film. On average, they must be constrained to the same dimen-
sions as the unit cell.14 However, each individual te trahedron has its own 
"ideal" size, given approximately by Vegard's law: 

a i ? 0 = (1 - Xi)a G a As,o + ^ a i n A s , o , (4.23) 

where X{ is the composition of the i th elementary tetrahedron. If they are 
all constrained to the average dimension of the unit cell of the epitaxial 
film, then they will be strained, according to 

0
a e p i , | | ~~ ai,o 

6i,\\ = λ T 
^epi,|| i ^t,o 

eh± = 2 a e p i ' X ~ üi'°. (4.24) 
^epi,_L I &i,o 

The resulting strain energies of the various te t rahedra (per a tom pair) 
due to these external constraints can then be approximated, through use 
of Equation 4.20, by1 5 

1 r , 
Wi,ext = - L2<7^lle^ll + °"i,-L€i,-Lj 

= (Ci,ll + Ci,12)ci,|| + 2Ci5i2^,±^, | | + ο^«,11€ί,±» (4.25) 

where the elastic constants of the individual te t rahedra can be taken to be 
Vegard's law averages of the elastic constants of the pure component binary 
alloys: 

C i , l l — (1 — ^ i )^GaAs ,o , l l + ^ί^ΙηΑΒ ,ο ,ΙΙ 

Ci,12 = (1 - #i)CGaAs,o,12 + aJiCinAs,o,12 (4.26) 

4.3 The Cluster Variation Method 
In Sections 4.1 and 4.2, we explored the origin of elastic distortion ener-
gies in small microscopic te t rahedra such as those shown in Figure 4.2. In 

14 Note that the tetrahedra with more In atoms will be somewhat larger than the 
average, and those with fewer will be somewhat smaller. Nevertheless, we make the 
simplifying approximation, as we did in Section 4.1.1, that the virtual crystal approx-
imation holds for second-nearest-neighbor distances, and that all tetrahedra have the 
same dimensions. 

15We neglect, in this simple treatment, the strain-induced-splitting of the degeneracies 
of tetrahedra differing only by permutations of group III atoms, and treat all tetrahedra 
having the same number of In and Ga atoms to be the same. 
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this section, we ask: how can we use such microscopic information to de-
duce macroscopic quantities of interest, such as enthalpies and entropies of 
mixing, or tendencies toward short- and long-range ordering? 

One classic approach to this problem is the cluster variation method 
(CVM),1 6 in which solids are built by statistically combining a finite num-
ber of independent, elementary clusters. In principal, the method may be 
made arbitrarily accurate by choosing arbitrarily large clusters. In prac-
tice, actual implementations of the method represent trade-offs between 
accuracy and speed.1 7 The larger the clusters, the less important the in-
tercluster interaction energies are relative to intracluster energies, and the 
more accurate the assumption of cluster independence becomes. However, 
the larger the clusters, the more types of elementary clusters (of different 
composition) there will be, and the more time-consuming the combinatorics 
become. 

In this section, we give a brief introduction to the cluster variation 
method. The method can be viewed as an increasingly accurate sequence 
of approximations, and so it is convenient to illustrate it by applying it to 
successively more complex structures: first alloys on ID linear (in Sub-
section 4.3.1), then 2D triangular (in Subsection 4.3.2) and finally 3D 
zincblende (in Subsection 4.3.3) lattices. 

The introduction given in this section is somewhat lengthy, both be-
cause the cluster variation method gives insight into so many aspects of 
alloy thermodynamics and because a comparable introductory t reatment 
does not appear to exist elsewhere. However, it will not be necessary to 
understand the cluster variation method in detail in order to follow its appli-
cation in Sections 4.4 and 4.5 to I n i - ^ G a ^ A s , a prototypical pseudobinary 
I I I /V alloy. The casual reader is advised to begin with Section 4.5. 

4.3.1 ID Linear Lattice 
We start , in this subsection, by illustrating the cluster variation method 
using a simple one-dimensional linear lattice. We consider, in turn, two 
possible ways of constructing this lattice. In the first way, the lattice is 
constructed from uncorrelated "points" of atoms, as shown in Figure 4.5. 
In the second way, the lattice is constructed from correlated "pairs" of 
atoms, as shown in Figure 4.6. 

1 6R. Kikuchi, "A theory of cooperative phenomena," Phys. Rev. 8 1 , 988 (1951). 
1 7D.M. Burley, "Closed form approximations for lattice systems," in C. Domb and 

M.S. Green, Eds., Phase transitions and critical phenomena (Academic Press, London, 
1972), Vol. 2, Chap. 9. 
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x0n A's 
Xjn B's 

• • • • • • • • • • O 

Figure 4.5: Construction of a ID linear chain of points by the addition of a new 
node (open circle) to an existing lattice (filled circles). 

P o i n t s 

Consider first the lowest order "point" approximation, in which the largest 
clusters are the individual atoms themselves. We imagine building an en-
semble of n linear chains, each composed of nodes which are either type A 
or type B atoms. If the overall fractions of A and B atoms in the ensemble 
of chains are XQ and x\ = 1 — xo> then each node of the ensemble of chains 
will have x0n A atoms and X\n B atoms. 

Now suppose we wish to add another node to this ensemble of n chains. 
Since the nodes are all independent, we are free to add A atoms to x0n 
nodes of the ensemble in any order, and then to add B atoms to the rest 
of the X\n nodes of the ensemble, again in any order. The number of 
distinguishable ways the atoms may be added is W = n\/[(xon)\(xin)\]. If 
we introduce the CVM notation shown in Table 4.3, 

() = n! (4.27) 

(.) = Π(^)!> (4·28) 
then we have the compact expression 

W = ( ) / ( ·) . (4.29) 

The entropy per node and per chain in the ensemble can then be calcu-
lated, using Stirling's formula, to be 

s = -\nW = -kS^Xilnxi. (4.30) 
n ^—' 

As expected, this equation reproduces the entropy of a random mixture of 
noninteracting components. 

Since, by assumption, the nodes do not interact, the energy per node 
and per chain in the ensemble is just a weighted sum of the energies of the 
individual A and B atoms: 

u = 2^xiui- (4-31) 
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Largest Combinatorial Uncorrelated 
cluster Factor cluster Identity 
Space () = n\ — 
Point ( ·) = l\{xin)\ — 
Pair (-) = Ute")!* V) = (·)7() 
Triangle (Δ ) = Π ( * " ) ! 7 ΐ ( £ ) = ( · ) 7 ( ) 2 

Tetrahedron (A) = Π(™»")!* (ft) = ( ·) 4 / ( ) 3 

Table 4.3: Heirarchy of CVM approximations showing combinatorial factors and 
uncorrelated cluster identities. 

Note, though, tha t although we have assumed tha t the nodes do not in-
teract directly, we may still allow them to interact indirectly by allowing 
the energies Ui to depend on the mean composition. For example, if u0 

is proportional to the average concentration of B, uo = Ωχχ /2 , and u\ is 
proportional to the average concentration of A, u\ = Ωχ0/2, then the molar 
energy becomes 

u = Ωχο^ ι , (4.32) 

which reproduces the strictly regular solution model for alloys. 
Finally, the free energy of the system, / = u — Ts, can be seen to 

be a function of two parameters , XQ and x\. Only one can be chosen 
freely, however, since, as listed in Table 4.4, they must together obey the 
constitutive "space" relationship 

zo + a?i = l . (4.33) 

Therefore, given the overall composition, x = χχ, the free energy is given 
directly by Equations 4.30 and 4.31. 

Pairs 

Consider now the next CVM approximation, in which the largest clusters 
are pairs of atoms. Again imagine building an ensemble of n linear chains, 
whose nodes have x0n A atoms and x\n B atoms. This t ime, however, we 
include only those chains for which the overall fractions of A A, AB, BA, 
and BB atom pairs (or bonds) assume particular values, say, yo, t/i, 2/1, and 
2/2-

Note tha t we have assumed tha t yi is, by symmetry, the number of 
both the AB and the BA atom pairs. Then, as listed in Table 4.4, the 
degeneracies of the configurations are βχ = 2 and βο = βι — 1. Also note 
tha t the a tom pair fractions yi are not independent of the a tom fractions 
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Configuration 

0 
( ·)Λ 

( · )Β 
(-)Λ2 

(-)ΛΒ 
(~)Β2 

( Δ ) Λ , 

( Δ ) Λ 2 Β 

( Δ ) Λ Β 2 

( Δ ) Β , 

(Α )Λ 4 

( Α ) Λ 3 Β 

(&)ΑΒ3 

(Α ) 5 4 

Fraction Degeneracy 

1 — 
χο — 
Χχ — 

I/o βο = 1 
2/ι A = 2 
2/2 #2 = 1 
2ο 7ο = 1 
ζ\ 7ι = 3 
22 72 = 3 
23 73 = 1 
wo <$o = 1 
wi όι = 4 
W2 ^2 = 6 
W3 ^ 3 = 4 
W4 64 = 1 

Constitutive 
Relation 
1 = χ 0 + ^ ι 
^ο = 2/ο + 2/ι 
a?i = 2/ι + 2/2 
2/0 = Zo + 2ι 
2/ι = ζλ + ζ2 

2/2 = 22 + Ζ3 

20 = WO + wl 
Ζι =Wi+ W2 

ζ2 = w2-l· w3 

z3 = w3 + w4 

Table 4.4: Configurations, fractions, degeneracies and constitutive relations for 
empty, point, pair, triangular and tetrahedral clusters. 

Xi, but must obey the constitutive "point" relations 

xo = Vo + 2/1 
xi = 2/1+2/2· (4.34) 

These relations arise because all AA and AB pairs are associated on the 
left with an A atom, and all BA and BB pairs are associated on the left 
with a B atom. 

Now suppose we wish to add another node to this ensemble of n chains. 
In this case, the nodes are not independent, so we are not free to add A 
atoms to xon nodes of the ensemble in any order, nor to add B atoms to 
the rest of the x\n nodes of the ensemble in any order. Instead, we must 
add them in such a way tha t the fractions of new atom-pairs are also yo, 
2/1, 2/1, and y2. 

A convenient way of doing this is illustrated in Figure 4.6. To the 
xon chains in the ensemble having A atoms as their last node we add yon 
A atoms and y\n B atoms. The number of distinguishable ways these 
additions can be done is (^o^)V[(2/o^)K2/in)']· Then, to the remaining 
X\n chains in the ensemble having B atoms as their last node we add y\n 
A atoms and 2/2™ B atoms. The number of distinguishable ways these 
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y0n A's x0n A's^ ·7 0 
υ ^ y i n Bs 

_, .Yin A's x ^ Bsc^ _, 1 \ y 2 n B's x.^ 
Figure 4.6: Construction of a ID linear chain of pairs by the addition of a new 
node (open circle) to an existing lattice (filled circles). 

additions can be done is (xin)\/[(yin)\(y2n)\]. The total number of ways is 
the product , or W = [(x0n)\(xin)\]/[(yon)\(yin)\2(y2n)\]. 

If we introduce the CVM notation 

(-) = Πκ*η ) ! ΐΑ ' <4·35) 
then we can again write more compactly 

Equations 4.29 and 4.36 are now seen to take the same form, which by 
induction can be writ ten 

The part already filled 
The whole to be completed 

This rule generalizes and simplifies the calculation of combinatoric factors 
for even the most complicated lattice and cluster topologies. 

The entropy per node and per chain in the ensemble can now be deduced, 
again using Stirling's formula, to be 

s = - ]nW = k fexihixi - 5^ /? i2 / i lnyi) . (4.38) 

Note tha t if the a tom pairs were randomly distributed, then yo = XQ-, 
2/i = XQX\, and y2 = x\. Then, we would have ^ β ^ ΐ η ^ = 2 ^ # ; 1 η χ ; , 
and Equation 4.38 would reduce to Equat ion 4.30, the entropy of mixing 
in the point approximation. In a more compact notation, we can write 

V) = (·)2/0, (4-39) 
where (-/■) denotes a pair of "uncorrelated" points. Then, 

w = 0 O = _ H _ = _0_ ( 4 4 0 ) 
(■/) (·)70 (·)' [ ] 



4.3. The Cluster Variation Method 113 

which again is the point approximation result. 
Since, by assumption, individual atoms do interact in the pair approx-

imation, the energy per node and per chain in the ensemble is writ ten as 
a weighted sum of the energies of the various kinds of pairs of A and B 
atoms: 

u = Y^ßiyiUi. (4.41) 

The free energy of the system, / — u — T s , is then seen to be a function 
of five fractions, xo, # i , 2/o, 2/i, and 2/2· As before, of the two "point" 
fractions, at most one can be chosen freely, due to the constitutive "space" 
relationship of Equation 4.33. In addition, of the three "pair" fractions, only 
one as well can be chosen freely, due to the constitutive "point" relationships 
of Equation 4.34. 

Now, if the overall composition, x = x\, were free to vary, then the 
equilibrium value of the free energy would be determined by minimizing / 
with respect to both x and one of the pair probabilities, say, y\. This might 
be the case, e.g., if the lattice were composed not of atoms whose overall 
numbers we know, but of spins which are free to flip, as in an Ising model. 
Then, x would play the role of the overall magnetization. 

For problems in alloy thermodynamics, however, x = Xi is usually fixed, 
and is not free to vary. Then, the equilibrium value of the free energy is 
determined by minimizing / with respect to one of the pair probabilities, 
usually taken to be the unlike pair probability, 2/1. In other words, we wish 
to minimize 

/ = 2/0^0 + 22/1^1 + 2/2^2 

+ kT[y0\ny0 + 22/1 In 2/1 +2/2 In 2/2 - (1 - x ) l n ( l - x) - x l n ( x ) ] 
(4.42) 

with respect to 2/1, where 2/0 — 1 — x — V\ a n d 2/2 — χ ~ 2/ι· Taking the 
derivative and setting it equal to zero then gives 

-ϊ- = 2ui -u0-u2 + kT\n( - ^ - ) =0. (4.43) 
oyi \y0y2J 

This expression can be recast, again using the constitutive point rela-
tions of Equation 4.34, into the form 

^1 _ e -(2t i i -uo-t i 2) /*7\ (4.44) 
2/02/2 

If each atom pair is considered, in a loose sense, to be a molecule, then 
the equilibrium ratio between the number of AB or BA molecules and the 
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product of the numbers of AA and BB molecules is seen to be given by a 
Boltzmann factor. This is exactly the "mass-action" law expected for the 
chemical reaction 

AA + BB ^ 2AB, (4.45) 

which can be derived by equating a forward rate, proportional to the prod-
uct of the concentrations of the AA and BB species, to a backward rate, 
proportional to the concentration of the AB or BA species. In this way, 
the pair approximation is equivalent18 to what is known as the "quasi-
chemical" t rea tment 1 9 of alloy thermodynamics, for which Equation 4.44 is 
the central assumption. 

Equation 4.44 has two limiting behaviors. On the one hand, if 2u\ <C 
^o + ^2> then AB pairs are highly favored over AA and BB pairs, the A 
and B atoms tend to arrange themselves next to each other, and the pair 
probability y\ approaches (1/2) — y/(\/4) — x(l — x). On the other hand, 
if 2u\ ^> i/o + tX2» then A A and BB pairs are highly favored over AB pairs, 
the A and B atoms tend to segregate away from each other, and the pair 
probability y\ approaches 0. In between, if 2u\ — u0 + u2, then AB pairs 
are neither favored nor unfavored over AA and BB pairs, the A and B 
atoms tend to arrange themselves randomly, and the pair probability y\ 
approaches x(l — x). 

Often, it is useful to characterize these behaviors by a short-range "order 
parameter," 

TSRO = Vi ~ yTn
 = y i - x ( l - x ) 

yorä _ yran ( l / 2 ) _ ^ { l / 4 ) _ χ { ΐ _ χ ) _ χ { ΐ _ χ ) ' 
σ δ ΐ ι ο _ j n y_i = yi ^ +j_ ( 4 Λ 6 ) 

- . o r d . . r a n /-· / ^ \ / / - . / A \ 7Z \" /-. \ ' V / 

which is zero if the atoms are arranged randomly, one if the atoms are 
ordered, and minus one if the atoms are "anti-ordered." For the special 
case of x = 1/2, Equations 4.38 and 4.41 can be recast, after some algebra, 
into the forms 

= -k 
1 - 7 ? 

l n ( l^) + i±.ln(i±.) 
1 a S R O 

u = - (u0 + 2ui + u2) H — ( 2 u i - u0 - u2). (4.47) 

If the resulting free energy is minimized with respect to 77, then one finds 

σ 
SRO 

I _ e(2ui-u0-u2)/2kT 

I _|_ e(2ui—u0-u2)/2kT ' (4.48) 

18R. Kikuchi, "Theory of ternary III-V semiconductor phase diagrams," Physica 103B, 
41 (1981). 

19E.A. Guggenheim, "The statistical mechanics of regular solutions," Proc. Roy. Soc. 
(London) A148, 304 (1935). 
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For negative 2u\ — UQ — u<i, <jS R O > 0, and A and B atoms order on a 
microscopic scale; for positive 2u\ —u0 — U2, aSRO < 0, and A and B atoms 
anti-order on a microscopic scale. 

4.3.2 2D Triangular Lattice 
In Subsection 4.3.1, we illustrated the cluster variation method using a 
simple ID linear lattice. In this subsection, we illustrate the cluster vari-
ation method using the more complicated 2D triangular lattice shown in 
Figure 4.7. This lattice may be constructed either from points, pairs or 
triangles. 

In the lowest order point approximation, the entropies and energies are 
the same as those for the ID linear lattice, and Equations 4.30 and 4.31 for 
the entropies and energies can be carried over without modification. In the 
pair and triangle approximations, however, the topology of the lattice must 
be taken into account, because it imposes correlations between the various 
pairs and triangles of atoms. We consider, in turn , these two possible ways 
of constructing this lattice. 

Pairs 

Consider first the pair approximation. As before, we assume tha t individual 
atoms interact pairwise, so tha t the energy per node and per chain in the 
ensemble can, as in Equation 4.41, still be writ ten as a weighted sum of the 
energies of the various kinds of pairs of A and B atoms. Also, as before, 
we imagine building a large ensemble of n lattices, whose nodes have x0n 
A a toms and χχη Β a toms, and for which the overall fractions of A A, AB, 
BA, and BB atom pairs are τ/ο> 2/i? Vi·, a n d 2/2· 

Suppose we wish to add another node to this ensemble of lattices, in 
such a way tha t the node contains XQU A atoms and X\n B atoms, and 
each new ensemble of bonds, a-6, a-c and α-d, contains yo A A pairs, y\ 
AB pairs, y\ BA pairs, and y<i BB pairs. This we can do in three steps. 

First, add node a with respect to node b without regard to correlations 
with nodes c and d. The number of ways this can be done is the same as 
tha t for the ID linear lattice, namely, 

W' = ^ . (4.49) 

Second, correct (approximately) for the correlation between a and c by 
multiplying by the factor 

»"'»w· (450) 
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Figure 4.7: Construction of a 2D triangular lattice by the addition of a new node 
(open circle) to an existing lattice (filled circles). 

This factor is the ratio between the number of ways atoms should have been 
placed on node a with respect to node c, ( ·) / ( - ) , and the number of ways 
atoms actually were placed on node a with respect to node c, ( ) / (·) . Third, 
correct (approximately) for the correlation between a and d by multiplying 
by the same factor 

( ·) / ( - ) W" 
() /(·) 

(4.51) 

Another way to look at these two correction factors is to use Equa-
tion 4.39 to rewrite them as 

W" = W" (* ) / ( - ) 
() /(·) 

in 
( - ) ' 

(4.52) 

so that, in the spirit of Equation 4.37, they carry the physical meaning that 
correlated pairs are being built from uncorrelated pairs. Indeed, the first 
combinatorial factor can itself be rewritten as 

W 
( - ) 

"01 
.(•)J L(-). (4.53) 

which carries the physical meaning that an uncorrelated point is first added, 
and then a correlated pair is built from an uncorrelated pair. 

The overall number of ways of adding atoms to node a then becomes 

W = W'W'W'" = 0_ 
(·) ( - ) 

Ί 3 
(·)5 

(-)302 (4.54) 

In other words, again in the spirit of Equation 4.37, we first add an uncor-
related point, then correlate the resulting three uncorrelated pairs. 

The entropy per node and per chain in the ensemble can now be calcu-
lated, using Stirling's formula, to be 

s = -\nW = k (5^2xi\nxi - 3^ßi j j i InyA . (4.55) 
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Aside from the different numerical factors for the point and pair sums in 
Equations 4.38 and 4.55, all the arguments in Section 4.3.1 hold. 

Triangles 

Consider now the triangle approximation. In this case, we assume tha t 
the energies of atoms can be expressed as sums over triangular triplets of 
atoms, so tha t the energy per node and per chain in the ensemble can be 
writ ten as a weighted sum of the energies of the various kinds of triangles: 

-Σ JiZiUi, (4.56) 

Here, the overall fractions of A3, A<iB, AB2 and B3 triplets are 70^0, 7izi> 
7222 and 7323, with the degeneracies, 7;, listed in Table 4.4 on page 111. 

Now suppose we wish to add another node to this ensemble of n lattices, 
in such a way tha t (1) the node contains XQU A atoms and χχη Β atoms, 
(2) each new ensemble of pairs, a-6, α-c and α-ef, contains 2/0 AA pairs, 
2/1 AB pairs, 2/1 BA pairs and 2/2 BB pairs, and (3) each new ensemble of 
triangles, a-b-c and a-c-d, contains 70^0 As triangles, 712:1 Α2Β triangles, 
7222 AB2 triangles, and 73Z3 B3 triangles. Again, we proceed in steps. 

First, we add node a with respect to the pair b-c without regard to 
correlations with node d. In the spirit of Equation 4.37, the number of 
ways this can be done is 

where 
( Δ ) Ε Ε Π ( ( ^ ) ! Ρ . (4.58) 

Second, correct for the correlation within the triangle a-c-d by multi-
plying by the factor 

(-)/(A) 
(·)/(-) · { ' 

The numerator of this factor is the ratio between the number of ways atoms 
should have been placed on node a with respect to the pair c-d. The 
denominator is the number of ways atoms actually were placed on node a 
with respect to the pair c-d, namely, the number of ways the correlated 
pair a-c forming one side of the correlated triangle a-b-c could be formed 
from the point c. 

Again, it is useful to rewrite W and W" as 
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W" ( - ) / (Δ ) ( - ) 
Ί * Γ 

where 

(·)/(-) W)\ 

r·)3 

M 
L(A)J ' 

(4.60) 

(4.61) 

generalizes Equation 4.39 to uncorrelated triangles. 
The physical meaning of W can now be seen to be the addition of an 

uncorrelated point, the decorrelation of the previously correlated pair 6-c, 
and the correlation of the now uncorrelated triangle a-b-c. The physical 
meaning of W" is seen to be the decorrelation of the pairs a-c and c-d, 
which had been previously correlated, followed by the correlation of the 
now uncorrelated triangle a-c-d. 

Finally, then, the overall number of ways of adding atoms to node a 
becomes 

W = W'W" = _0_ 
(·) L 

"(-)(£)] 
.(TO(A)J 

Γ(-)2(ΔΤ 
ί(Λ2(Δ). 

R3 

(Δ)2(·)' 
(4.62) 

In other words, we first form an uncorrelated point, then for each of the two 
triangles tha t the point belongs to, we uncorrelate all previously correlated 
pairs in the triangles and then correlate the triangles. 

The entropy per node and per chain in the ensemble can now be calcu-
lated, using Stirling's formula, to be 

s = -\nW = k\3^2 ßiVi m Vi ~ 2 5Z ΊίΖϊ ln Zi ~ Σ Xi ln Xi) ' (4·63) 
The free energy of the system, / = u — T s , is a function of nine param-

eters, #0, # i , I/o, 2/i» 2/2, ^o, z\, Z2, and 23. As before, however, of the two 
point parameters , only one can be chosen freely, due to the constitutive 
space relationship. In addition, none of the three pair parameters can be 
chosen freely, because they must obey the constitutive pair relationships 

2/0 = zo + zx 

2/1 = 21 + Z2 

y2 = z2 + z3. (4.64) 

These equations express the fact tha t each A3 or A2B triangle is formed by 
coupling an a tom to an A2 pair, tha t each A2B or AB2 triangle is formed 
by coupling an a tom to an AB pair, and tha t each AB2 or B3 triangle is 
formed by coupling an a tom to a B2 pair. 

Finally, of the four triangle parameters, only two can be chosen freely, 
because of the constitutive point relations listed in Table 4.4 on page 111. 
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Therefore, for a fixed overall composition, x = xl 9 the equilibrium value 
of the free energy is determined by minimizing / with respect to two of 
the triangle probabilities, which can be taken to be the mixed triangle 
probabilities, z\ and Z2· 

4.3.3 3D Zincblende Lattice 
In Subsections 4.3.1 and 4.3.2, we illustrated the cluster variation method 
using first a ID linear lattice and then a 2D triangular lattice. In this 
subsection, we illustrate the cluster variation method using a 3D zincblende 
lattice, whose projection onto an (001) plane is shown in Figure 4.8. For 
a III-V semiconductor, such a lattice would be built from a superposition 
of two face-centered-cubic sublattices, one containing group III species and 
the other containing group V species. Since we are ultimately interested in 
treating pseudobinary III-III-V alloys, we are interested in the entropy of 
mixing of group III species on the group III sublattice. Note, though, that 
these group III species do not form nearest-neighbor bonds with each other; 
instead, they form next-nearest-neighbor bonds mediated by the group V 
atoms on the group V sublattice. Therefore, two, three, or four group III 
atoms can be considered to form a pair, triangle, or tetrahedron if and only 
if they are all bonded to the same group V atom. 

Triangles 

Consider first the triangle approximation, in which we assume that the 
energies of atoms can be expressed as sums over triangular triplets of atoms, 
as given by Equation 4.56. Suppose we wish to add another node to an 
ensemble of zincblende lattices, in such a way that all the point, pair and 
triangle probabilities are preserved. To do so, we use the following simplified 
rules,20 generalized from Section 4.3.2: 

1. Add an uncorrelated point via the combinatorial factor () / (·) . 

2. Enumerate all the largest clusters created by adding that point, re-
gardless of overlap. 

3. For each such cluster: (a) uncorrelate all (previously correlated) sub-
clusters via the combinatorial factors (Δ ) / ( ^ ) , ( — )/(■/)> e^c-> starting 
from large to small; and (b) correlate the cluster itself via the combi-
natorial factors (jk)/(A), ( £ ) / (Δ ) , (■/)/(-), e t c · 

2 0 The rules are not exact, but must be made recursive when clusters overlap in sub-
clusters larger than pairs. 



120 Chapter 4. Ordering and Clustering 

We start, then, by adding an uncorrelated point a, via the combinatorial 
factor 

W = ( ) / ( . ) . (4.65) 

Then, we note that by adding point a, we have formed three new trian-
gles, a-b-c, α-b-d, and a -e - / , and one new pair, a-g. We do not include 
the triangles a-d-g and a-f-g, because these clusters of group III atoms 
are not all bonded to a common group V atom. Within triangle a -e - / , 
we must uncorrelate the pair e-f and then correlate the triangle via the 
combinatorial factor 

W" = 
.(TOJ 

IW 
L(A). 

(4.66) 

Similarly, within triangle a-b-c, we must uncorrelate the pair b-c and then 
correlate the triangle via the combinatorial factor 

W" .Mi 
| W 
ί(Δ). 

(4.67) 

Within triangle a-b-d, we must now uncorrelate two pairs, a- b (which we 
just correlated in correlating the triangle a-b-c) and b-d, before correlating 
the triangle: 

W"" = 
(A)" 

(4.68) 

Finally, we must correlate the pair a-g via the combinatorial factor 

W'"" = ( T O / R - (4-69) 

Altogether, the number of ways of adding an atom at a is 

( - ) 3 ( ·) 2 

w = w'w"w'"w""w (Δ)3()2 

and the entropy is 

s = ̂  ( 3 Σ @iyi m yi + 2 Σ Xi m;c* ~ 3 Σ 7iZi m Zi) 

(4.70) 

(4.71) 

As before, the free energy of the system, / = u — Ts, is a function of 
nine parameters, x0, χχ, y0, 2/i, 2/2, ZQ, Z\, Z2 and Z3. However, for a fixed 
overall composition, x = χχ, the constitutive relations eliminate all but two. 
The equilibrium value of the free energy is then determined by minimizing 
/ with respect to two of the triangle probabilities, e.g., the mixed triangle 
probabilities z\ and 22· 
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f 
<-L· a Cy^ s^ 

t K^ / 
b yM^ 

f · 

Figure 4.8: Top view of the construction of a 3D zincblende lattice by the 
addition of a new node (open circle) to an existing lattice (filled circles). For a 
III-III-V alloy, the filled circles and squares would correspond to group III and 
group V atoms, respectively. The atoms in each (001) sheet are represented by 
symbols of the same size; the smaller the symbol the deeper the sheet. The solid 
lines represent next-nearest-neighbor bonds between group III atoms mediated 
by group V atoms. 

Tetrahedra 

In the tetrahedron approximation we assume tha t the energies of atoms can 
be expressed as sums over tetrahedral quadruplets of atoms, 

Σ* WiUi, (4.72) 

Here, the overall fractions of A4, A%B, A<iB2, A\B?>, and B4 quadruplets 
are <$ο^ο, # ι ^ ι , <$2̂ 2» ^3^3? a n d 64^4, respectively, with the degeneracies, 
<$i, listed in Table 4.4 on page 111. 

Suppose we wish to add another node to this ensemble of lattices, in 
such a way tha t all the point, pair, triangle, and te trahedron probabilities 
are preserved. To do so, we again use the rules outlined in Section 4.3.3. 

We start by adding an uncorrelated point a, via the combinatorial factor 

W = ()/(. (4.73) 

Then, we note tha t by adding point a, we have formed one new tetrahedron, 
a-b-c-d, one new triangle, a - e - / , and one new pair, a-g. Again, we include 
neither the tetrahedron a-d-g-f nor the triangles a-d-g and a-f-g, because 
these groups of atoms are not all bonded to a common group V atom. 

Within tetrahedron a-b-c-d, we must uncorrelate the triangle b-c-d and 
then correlate the tetrahedron via the combinatorial factor 

W" "(Δ)1 
1(A) (4.74) 
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where 

(A) ~ ( # ) 4 (4.75) 

generalizes Equation 4.39 to uncorrelated te t rahedra . Within triangle o-e-
/ , we must uncorrelate the pair e-f before correlating the triangle: 

W'" = 
( A ) J ' 

(4.76) 

Finally, we must correlate the pair α-g via the combinatorial factor 

W"" = ( T 0 / ( - ) . (4.77) 

Altogether, the number of ways of adding an a tom at a is 

( . ) 3 
W = W'W'W'W 

( A ) ( ) 2 ' 

and the entropy is 

= k ( 3 2^ xi m xi — / . Öiwi In i#i) . 

(4.78) 

(4.79) 

Note tha t , for the peculiar topology of the zincblende lattice, the free energy 
of the system, 

/ = ^^SiWiUi + kT (S^öiWilnWi - 3 ^ ^ 1 η χ Π , (4.80) 

contains no pair and triangle probabilities. If it had, though, they could 
have beeen eliminated either through the constitutive pair relations listed 
in Table 4.4 on page 111 or the constitutive "triangle" relations 

zo 
Z\ 

Z2 

Z3 

= 
= 
= 
= 

W0 + Wi 

Wi + W2 

w2 + w3 

w2 + w3. (4.81) 

The equilibrium value of the free energy is determined by minimizing 
/ with respect to the five te t rahedron probabilities Wi and the two point 
probabilities X{, subject to the three constraints embodied in the two con-
stitutive pair relations and the constitutive space relation. In general, this 
minimization can be performed through s tandard techniques based on La-
grange multipliers, one of which can be identified with the chemical po-
tential for species B. This leads to a set of seven nonlinear equations tha t 
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can be solved through a compact procedure called the "natural iteration 
method."21 In essence, that method begins by guessing values for the point 
probabilities, using those guesses to calculate the tetrahedron probabilities, 
from which the point probabilities can be recalculated, etc. 

For the zincblende lattice, however, it is simpler to eliminate directly 
two of the five tetrahedra probabilities using the constitutive pair and space 
relations. Taking these to be the "pure" cluster probabilities, we then have 

w0 = 1 — x - (3wi + 3w2 + w3) 
w4 = x- (w1 + 3w2 + 3w3) (4.82) 

Therefore, for a fixed overall composition, x = χχ, the equilibrium value of 
the free energy is determined by minimizing / with respect to the remaining 
three "mixed" tetrahedron probabilities w\, w2 and w3. 

Taking derivatives of Equation 4.80 with respect to wi, w2, and w3 
gives, after some algebra, 

w1 

WQW4 
4 

w2 

4 
^ 3 

WQW\ 

= 

= 

= 

— (4^1—3^0—^4)/^^ 

e-(4u2-2u0-2u4)/kT 

— (4u3—u0 — 3u4)/kT (4.83) 

Note that Equations 4.83 are in exactly the "mass-act ion" form expected 
for chemical reactions between "molecular" tetrahedra: 

\A3B ^ 3A4 + B4 

AA2B2 ^ 2 A4 + 2£4 

4AB3 ^ A4 + 3£ 4 , (4.84) 

and are therefore equivalent, as were Equations 4.44, to a "quasi-chemical" 
treatment, though of tetrahedra rather than of pairs. In general, chemical 
reactions between pairs, triplets, and quadruplets form the basis for what 
are known as the first, second and third quasi-chemical approximations.22 

The tetrahedron approximation of the CVM, applied to a zincblende lattice, 
is therefore equivalent to the third quasi-chemical approximation. It should 
be emphasized, though, that CVM calculations are not always equivalent to 

2 1R. Kikuchi, "Superposition approximation and natural iteration calculation in 
cluster-variation method," J. Chem. Phys. 60, 1071 (1974). 

2 2 E. A. Guggenheim, "Statistical mechanics of regular mixtures," Proc. Roy. Soc. (Lon-
don) A206 , 335 (1951). 
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quasi-chemical approximations; in this case the equivalence is a consequence 
of the peculiar topology of the zincblende lattice, whose combinatorial fac-
tor of Equation 4.78 contains no intermediate subclusters such as triangles 
or pairs. Otherwise, an equivalence can only be established by the addi-
tional assumption tha t those intermediate subclusters are uncorrelated. 

Equations 4.83, together with Equations 4.82, form a set of coupled 
nonlinear equations which can be solved for the te t rahedra probabilities, t ^ , 
in terms of the te t rahedra energies, U{. To do so, it is convenient to make use 
of their equivalence to a quasi-chemical t reatment by reformulating them 
as chemical rate equations tha t can be solved by numerical simulation. 

If we rewrite Equations 4.84 in terms of reactions between te t rahedra 
differing by only the exchange of one atom, then we have 

4A3B 

4A2B2 

4AB3 

k l 

k2 

k2 

k3 

k3 

2A4 + 2A2B2 

2A3B + 2AB3 

2A2B2 + 2B4. 

cward reaction rates can be con\ 

fc+ = 
k~ = 

k2 = 

k2 = 

k3 = 

k3 = 

w0w2e~ 
2 - ( 2 

W\W3e~ 

2 - ( 2 
w2e K 

w2w±e~ 
2 - ( 2 

-{2u\ —uo—U2,)/kT 

u\-2u1)/kT 

-(2^2— u\ —U3)/kT 

Uj —2u-2)/kT 

-(2ti3 —U2—u^)/kT 

ul~2u3)/kT 
1 

(4.85) 

(4.86) 

where u\, u2, and ^3 are activation energies tha t can be chosen to match 
the time-step of the numerical simulation. In practice, the choices 

u\ = max{(w0 + u2)/2,iii} 
u2 = max{(ui+u3)/2,u2} 
u3 = max{(w2 4- η4)/2,ζι3} (4.87) 

give convergence to steady-state in a reasonable number of time-steps. Note 
also tha t these choices of rate constants guarantee tha t in the steady-state, 
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defined by setting k^ = k^, k£ — k2 and k£ — k% , Equations 4.83 will be 
satisfied. 

In terms of these rates, the time evolution of the te t rahedra probabilities 
can be writ ten as 

7o^o = ~{kf-ki) 
7iii)i = 2(fĉ ~ — k^) — (k2 — k2) 
l2w2 = _(fc+_fc-) + 2(k+-k-) - (k+-k~) (4.88) 

73^3 = (k2 ~ k2~) + 2(fe3~ - ks) 
74ii}4 = - ( * 3 * - * 3 ~ ) 

Note tha t these rate equations are conservative, so tha t an initial prob-
ability distribution will remain correctly normalized, and an initial overall 
composition, x = w\ + 3u>2 + 3u;3 + 1^4, will remain constant. In practice, 
two convenient initial probability distributions are the completely random 
Bernoullian distribution, 

«i1üi,ran = ( 4 Λ Χ 1 ( 1 - Xf~\ (4.89) 

and the completely nonrandom linear distribution, 

£tWt,ord = max{0,1 - 4 \x - Xi\}, (4.90) 

where X{ is the composition of the zth cluster. 

4.4 A Pseudobinary III-V Alloy: "InGaAs" 

In Section 4.3, we described how, given the energies of various elementary 
tetrahedra, their occupation statistics could be calculated using the cluster 
variation method, and the free energy of an alloy as a whole could be de-
termined. In this section, we apply this procedure in an approximate way 
to the pseudobinary alloy In i - ^GaxAs . The t reatment is only semiquanti-
tative, but will include all the most interesting and important features tha t 
have been observed in alloys of this type, such as short- and long-range 
ordering.2 3 Tables 4.5 and 4.6, e.g., list the ordered alloys tha t have been 
observed thus far in I I I /V compound semiconductors. 

2 3 H. Nakayama and H. Fujita, "Direct observation of an ordered phase in a disordered 
I n i _ x G a x A s alloy," Inst. Phys. Conf. Ser. 79, 289 (1985); H.R. Jen, M.J. Cherng and 
G.B. Stringfellow, "Ordered structures in GaAsSb alloys grown by organometallic vapor 
phase epitaxy," AppL Phys. Lett. 48, 1603 (1986); T.S. Kuan, W.I. Wang and E.L. 
Wilkie, "Long-range order in In i -^Ga^As," Appl. Phys. Lett. 5 1 , 51 (1987); and M.A. 
Shahid and S. Mahajan, "Long-range atomic order in G a x I n i _ x A s y P i _ y epitaxial layers 
[(x,y) = (0.47,1), (0.37,0.82), (0.34,0.71) and (0.27,0.64)]," Phys. Rev. B38 , 1344 (1988). 



126 Chapter 4. Ordering and Clustering 

Alloy 
GaPAs 

InPAs 

GaPSb 

Growth 
Tech-
nique 
MOVPE 

MOVPE 

MOVPE 

Sub-
strate 
(001) 

(001) 

(001) 

Struc-
ture 
Lli 

Lli 

Ll i 
(weak) 

Reference 
H.R. Jen, D.S. Cao and G.B. 
Stringfellow, Appl. Phys. Lett. 54, 
1890 (1989). 

D.H. Jaw, G.S. Chen and G.B. 
Stringfellow, Appl. Phys. Lett. 59, 
114 (1991). 

J.R. Pessetto and G.B. Stringfel-
low, J. Cry st. Growth 62, 1 
(1983). 

G a A s S b M O V P E (001) L l 0 

(110) E l i 
(221) 
(311) 

H.R. Jen, M.J. Cherng and G.B. 
Stringfellow, J. Cryst. Growth 48 , 
1603 (1986). 

G a A s S b M B E (001) L l i I.J. Murgatroyd, A.G. Norman 
and G.R. Booker, J. Appl. Phys. 
67, 2310 (1990); and Y.E. Ihm, N. 
Otsuka, J.F. Klem and H. Morkog, 
Appl. Phys. Lett. 5 1 , 2013 (1987). 

InPSb 

InAsSb 

MOVPE (001) 

MOVPE (001) 

Lli 

Lh 

J.R. Pessetto and G.B. Stringfel-
low, J. Cryst. Growth 62, 1 
(1983). 

H.R. Jen, K.Y. Ma and G.B. 
Stringfellow, Appl. Phys. Lett. 54, 
1154 (1989). 

T a b l e 4 .5 : Ordered I I I / V - V alloys observed to da te in layers formed by 
any epitaxial growth technique. 0 T h e growth techniques referred to are molecular 
beam epi taxy (MBE) , metal-organic vapor phase epi taxy ( M O V P E ) , l iquid-phase 
epi taxy ( L P E ) , and vapor-levitat ion epi taxy (VLE) . T h e s t ruc tures referred to 
are i l lustrated in Figures 4.9 and 4.10. 

aAdapted from G.B. Stringfellow and G.S. Chen, "Atomic ordering in III /V semicon-
ductor alloys," J. Vac. Sei. Technol. B9 , 2182 (1991). 
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Alloy 

Growth 
Tech-
nique 

Sub-
strate 

Struc-
ture Reference 

G a l n P M O V P E (001) L l i J.P. Goral, M.M. Al-Jassim, J.M. 
Olsen and A. Kibbler, Mat. Res. 
Soc. Symp. Proc. 102, 583 (1988); 
T. Suzuki, A. Gomyo, and S. 
Iijima, J. Cryst. Growth 93 , 
396 (1988); and O. Ueda, M. 
Takikawa, J. Komeno, and I. 
Umebu, Jpn. J. Appl. Phys. 26, 
L1824 (1987). 

AlGalnP 

AlGaAs 

MOVPE 

MOVPE 

(001) 

(001) 
(110) 

Ll i 

Llo 

G.S. Chen, T.Y. Wang, and G.B. 
Stringfellow Appl. Phys. Lett. 56, 
1463 (1990). 

T.S. Kuan, T.F. Kuech, W.I. 
Wang, and E.L. Wilkie, Phys. 
Phys. Lett. 54, 201 (1985). 

A l I n A s M O V P E (001) L l 0 A.G. Norman, R.E. Mallard, I.J. 
Murgatroyd, G.R. Booker, A.H. 
Moore, and M.D. Scott, Inst. 
Phys. Conf. Ser. 87, 77 (1987). 

InGaAs 

InGaAs 

InGaAs(P) 

InGaAs(Sb) 

LPE 

MBE 

VLE 

MOVPE 

(001) 

(110) 

(001) 

(001) 

Llo 
E l i 
D02 2? 
Llo 

Ll i 

Llo 
Eh 

H. Nakayama and H. Fujita, Inst. 
Phys. Conf. Ser. 79, 289 (1985). 

T.S. Kuan, W.I. Wang, and E.L. 
Wilkie, Appl. Phys. Lett. 5 1 , 51 
(1987). 

M.A. Shahid and S. Mahajan, 
Phys. Rev. Lett. B38, 1344 (1988). 

H.R. Jen, M.J. Cherng, and G.B. 
Stringfellow, Inst. Phys. Conf. 
Ser. 83, 159 (1987). 

T a b l e 4 .6 : Ordered I I I - I I I /V alloys observed to da t e in layers formed by 
any epitaxial growth technique. 0 T h e growth techniques referred to are molecular 
beam epi taxy (MBE) , metal-organic vapor phase epi taxy ( M O V P E ) , l iquid-phase 
epi taxy (LPE) and vapor-levi tat ion epi taxy (VLE) . T h e s t ruc tures referred to are 
i l lustrated in Figures 4.9 and 4.10. 

"Adapted from G.B. Stringfellow and G.S. Chen, "Atomic ordering in III /V semicon-
ductor alloys," J. Vac. Sei. Technol. B9 , 2182 (1991). 
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We begin, in Subsection 4.4.1, by estimating the composition-dependent 
energies of the various elementary te t rahedra. Then, in Subsection 4.4.2, 
we apply the cluster variation method to est imate the composition and 
temperature dependent probabilities of the various elementary tetrahedra. 
Then, in Subsection 4.4.3, we estimate from these te t rahedra energies and 
probabilities the composition and temperature dependent molar Gibbs free 
energy of the alloy as a whole. Finally, in Subsection 4.4.4, we discuss the 
tendency of these alloys to order, i.e., for the te t rahedra probabilities to be 
peaked at film compositions tha t match those of the te t rahedra themselves. 

4.4.1 Tetrahedra Energies 
Let us start , in this subsection, by describing the energetics of the ele-
mentary te t rahedra of which such an alloy is composed. Those energies 
can be thought of as arising from the two kinds of distortions discussed in 
Sections 4.1 and 4.2. The first kinds are distortions internal to the tetrahe-
dra due to the different equilibrium Ga-As and In-As bond lengths. The 
second kinds are distortions of the te t rahedra as a whole due to external 
constraints imposed by coherency of the epitaxial film with a substrate. 
Strictly speaking, these two kinds of distortions are not independent, be-
cause various externally imposed distortions may be more or less compatible 
with particular internal distortions.2 4 In this simplified t reatment , however, 
we neglect interactions between the two. 

C o h e r e n c y a n d E x t e r n a l D i s t o r t i o n s 

First, consider the energies of te t rahedra due to external distortions. These 
distortions arise, as discussed in Section 4.2, because of macroscopic strains 
imposed by coherency with a substrate . The additional energy due to these 
distortions is given by Equation 4.25. 

Order ing and Internal D i s t o r t i o n s 

Second, consider the energies of te t rahedra due to internal distortions. 
Those energies were estimated in Section 4.1, in a calculation which as-
sumed tha t the corner group III atoms were pinned at their virtual crystal 
positions. In fact, those corner group III a toms will have a tendency to re-
lax away from their virtual crystal positions, thereby decreasing the cluster 
energy. 

2 4A.A. Mbaye, D.M. Wood and A. Zunger, "Stability of bulk and pseudomorphic 
epitaxial semiconductors and their alloys," Phys. Rev. B37 , 3008 (1988). 
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Two extremes of behavior can be imagined. On the one hand, if the 
various tetrahedra were distributed randomly, as in a disordered alloy, then 
the relaxations of the various corner group III atoms will themselves tend 
to be random. Then, since each group III atom belongs to four tetrahedra, 
relaxations that decrease the energy of one tetrahedron will just as likely as 
not increase the energy of the other three. For this reason, the incoherent 
superposition of relaxations of group III atoms characteristic of a disordered 
alloy is not expected to greatly reduce the internal distortional energy from 
those estimated in Section 4.1 and listed in the first row of Table 4.7. 

On the other hand, if the various tetrahedra were distributed in an or-
dered arrangement, then the relaxations of the various corner group III 
atoms will themselves tend to be ordered. Relaxations that decrease the 
energy of one tetrahedron may be exactly the relaxations required to re-
duce the internal distortion of the adjacent tetrahedra, and so on. For 
this reason, the coherent superposition of relaxations of group III atoms 
characteristic of an ordered alloy is expected to reduce the internal distor-
tional energy from those estimated in Section 4.1. For example, for the 
GaAsSb alloy, calculations indicate that the chalcopyrite and famatinite 
structures illustrated in Figure 4.10 may be the least distorted,25 although 
the layered tetragonal and layered trigonal ordered compounds are experi-
mentally more commonly observed (see Tables 4.5 and 4.6). Note also that 
surface thermodynamics and kinetics effects not taken into account here 
may influence which of the ordered structure actually appears.26 

For the disordered alloy, then, we would like to use the cluster energies 
calculated in Section 4.1 and listed in the first row of Table 4.7; for the 
ordered alloys, we would like to use the reduced values listed in the second 
row of Table 4.7; and for partially ordered alloys, we would like to use values 
somewhere in between. To incorporate these ideas in a semiquantitative 
way, we assume that the energies of the various tetrahedra depend on the 
occupation probability of the tetrahedra themselves: 

^i,int — ̂ i,int,dis "I" (^i,int,ord — ^i,int,dis)(o^i) . (4-91) 

In other words, as the probability of particular clusters increases, their 
tendency to interact coherently and lower their energy also increases. At low 
enough temperatures, this kind of cooperative interaction ultimately leads 
to long-range ordering into stoichiometric structures. Note, though, that 
only a few of the "wrong" kind of tetrahedra might be expected to destroy 

2 5A.A. Mbaye, D.M. Wood and A. Zunger^ "Stability of bulk and pseudomorphic 
epitaxial semiconductors and their alloys," Phys. Rev. B37 , 3008 (1988). 

26See, e.g., S. Froyen, and A. Zunger, "Surface-induced ordering in GalnP," Phys. Rev. 
Lett. 66, 2132 (1991). 
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Figure 4.9: Examples of ordered fee (or pseudobinary zincblende) structures 
and their space groups.0 

"Reprinted from L.G. Ferreira, S-H Wei and A. Zunger, "First-principles calculation 
of alloy phase diagrams: the renormalized-interaction approach," Phys. Rev. B40 , 3197 
(1989). 
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Figure 4.10: Examples of ordered fee (or pseudobinary zincblende) structures 
and their space groups.0 

aReprinted from L.G. Ferreira, S-H Wei, and A. Zunger, "First-principles calculation 
of alloy phase diagrams: the renormalized-interaction approach," Phys. Rev. B40, 3197 
(1989). 
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^0,int ^l , int ^2,int ^3,int ^4,int 
Disordered 0 0.023 0.031 0.023 0 

Ordered 0 0.017 0.016 0.017 0 

Table 4.7: Estimated internal distortion energies (in eV per atom pair) 
of the elementary InGaAs tetrahedra shown in Figure 4.2. The energies listed 
in the first row were estimated for a disordered arrangment of tetrahedra, whose 
corner atoms, on average, are bound to virtual crystal sites.0 The energies listed 
in the second row are those (very roughly) estimated for an ordered arrangement 
of tetrahedra, whose corner atoms can relax "in-phase" with the corner atoms of 
adjacent tetrahedra. 

a M . Ichimura and A. Sasaki, "Short-range order in III-V ternary alloy semiconduc-
tors," J. Appl. Phys. 60, 3850 (1986); A. Sher, M. van Schilfgaarde, A.-B. Chen and W. 
Chen, "Quasi-chemical approximation in binary alloys," Phys. Rev. B36, 4279 (1987). 

°Estimated very roughly by scaling the results of calculations in the GaAsSb system 
by L.G. Ferreira, S-H Wei, and A. Zunger, "First-principles calculation of alloy phase 
diagrams: the renormalized-interaction approach," Phys. Rev. B40, 3197 (1989). 

the coherency of the tetrahedron relaxations. Therefore, we expect the 
ordering energy to be a highly nonlinear function of the cluster probability 
itself. In this t reatment , we take λ, the nonlinearity parameter , to be eight. 

In a sense, we have augmented the te t rahedron approximation of the 
CVM, which allows different te t rahedra to have different energies, with a 
point, or mean-field approximation of the CVM to allow each tetrahedron's 
energy to depend also on the average te t rahedra populations. We must em-
phasize, though, tha t this simple, mean-field t reatment of long-range order 
is only a semiquantitative one. To treat long-range order quantitatively 
within the CVM, it is necessary to distinguish between the (up to) four 
group III sublattices in the ordered structures, and to account explicitly 
for the occupation statistics on each sublattice of the (up to) 16 kinds of 
te t rahedra . 2 7 

Total Energ ie s 

The internal and external strain energies can now be summed to give 

u% = UiMt + Ui,ext. (4 .92) 

2 7W.L. Bragg and E.J. Williams, "The effect of thermal agitation on atomic arrange-
ment in alloys" Proc. Roy. Soc. (London) A145, 699 (1934); H.A. Bethe, "Statistical 
theory of superlattices," Proc. Roy. Soc. (London) A150, 552 (1935); C M . van Baal, 
"Order-disorder transformations in a generalized Ising alloy," Physica 64, 571 (1973); 
and D. de Fontaine, "Configurational thermodynamics of solid solutions," Solid State 
Physics 34, 73 (1979). 
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These energies cannot be evaluated directly, since, through Equation 4.91, 
they depend on the te trahedron probabilities, which in turn depend (self-
consistently) on the energies themselves. However, we can get an approxi-
mate idea of how the te t rahedra energies depend on the compositions, xepi 

and xSub, of the epitaxial film and the substrate by calculating the energies 
of a completely disordered alloy, so tha t the te t rahedra probabilities con-
tr ibute negligibly to Equation 4.91, and Ui^nt —+ ?/i,int,dis· Those energies 
are plotted in the right column of Figure 4.11 as functions of xepi and xs ub· 

Consider first the type 0 tetrahedron at the bo t tom of tha t column. All 
of its group III atoms are Ga, and so its externally imposed strain energy 
is zero when it is embedded in a film of pure GaAs grown undistorted and 
lattice-matched to a substrate of pure GaAs. Moreover, its internal distor-
tional strain energy is also zero, since the central As a tom is symmetrically 
situated within a te trahedron of equivalent Ga atoms. Therefore, its total 
strain energy is zero at xepi = xs ub = 0. 

If now we increase xepn then the average lattice parameter of the epi-
taxial film increases, and the unit cell of the epitaxial film grows. At the 
same time, the size of the te t rahedra embedded in the film are tied to those 
of the unit cell. Therefore, the type 0 te t rahedra themselves must grow, 
even if they would "prefer" not to, and their strain energies must increase. 

Note tha t even as xepi increases, we can choose either to increase the 
substrate lattice parameter at the same rate (xsub — #epi) or to keep it fixed 
(^sub = 0)· If w e increase it at the same rate (open circles in Figure 4.11), 
then the unit cell of the epitaxial film remains an undistorted, albeit larger, 
cube. The energy of the type 0 te t rahedra increases due to tha t volume 
mismatch. If, however, we keep it fixed (filled near circles in Figure 4.11), 
then the unit cell of the epitaxial film is not only larger, but distorted as 
well. The energy of the type 0 te t rahedra is therefore also quite high when 
xepi = 1 and xs ub = 0. 

Suppose, now, tha t we fix xepi at zero, but increase xsub- Then, the 
unit cell of the epitaxial film remains approximately the same size, but it 
distorts, as its parallel lattice parameter increases and its perpendicular 
lattice parameter decreases. Therefore, its energy increases, reaching a 
maximum at xsuh = 1. If xep\ is now increased, then the volume of the unit 
cell increases, but the distortion in the unit cell decreases. Initially, the 
strain energy in the type 0 te t rahedra decreases as the unit cell distortion 
decreases, but eventually it increases as the volume mismatch between the 
type 0 te t rahedra and the film unit cell increases. 

Similar arguments can be used to understand the dependences of the 
energies of the other types of te t rahedra on xepi and xsub- In general, the 
energy minima for the various te t rahedra occur when both xepi and xsub 
are equal to the composition of the cluster itself. The reasons are tha t when 
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Type 4 

Type 3 

Type 2 

Type 1 

Type 0 

Figure 4.11: Energies of various tetrahedra embedded in disordered Ini_xGaxAs 
of composition xepi grown coherently on substrates having the lattice parameters 
of bulk Ini_xGaxAs at composition xsub· 
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Xi = #epi > the volume of cluster i is best matched to the volume of the unit 
cell of the epitaxial film, and when xepi = xsu\> the unit cell of the film 
is least distorted. Deviations from xepi = xsu\> = X{ along the xepi = xsu^ 
diagonal lead to volume mismatches and relatively large increases in energy. 
Deviations from xepi = xsuh = x\ through changes in xsu\y lead to distortions 
and somewhat smaller increases in energy. Deviations from 

*Eepi — *£sub — %i 
through changes in xepi lead to some of both, and intermediate increases in 
energy. 

Note tha t Equation 4.92 includes only the elastic potential energy con-
tribution to the energies of each cluster. In principle, the temperature 
dependences of the molar energies and entropies could also be determined 
by heat capacity functions for each cluster, via Equations 2.9 and 2.8. How-
ever, in this simple t reatment , we make the approximation tha t the various 
te t rahedra all have the same heat capacities. Then, the temperature de-
pendences to their molar energies and entropies are all the same. Since 
te t rahedra probabilities depend only on the relative energies, we can ne-
glect those temperature dependences. 

4.4.2 Tetrahedra Probabilities 
In Subsection 4.4.1, we estimated the energetics of the various elemen-
tary te t rahedra from which the InGaAs alloy may be constructed. In this 
subsection, we use these elementary te t rahedra energetics to calculate the 
te t rahedra probabilities using the rate equation method outlined in Sec-
tion 4.3.3. These are shown in Figure 4.12 as functions of xepi and xsu\> 
at fixed temperatures of 100, 600, and 1100 K. Two opposing tendencies 
determine the probability distributions. 

The first tendency is energy minimization. For a given composition 
of the epitaxial film, the two te t rahedra whose compositions just straddle 
Xepi will be the least volume mismatched, and will usually have the lowest 
energies. The film energy will then be minimized if it is composed of a 
weighted combination of only those two tetrahedra . For example, if xepi — 
3/8, then the type 1 (x\ — 1/4) and type 2 (x2 = 1/2) te t rahedra will have 
the lowest energies, and the lowest energy film will be tha t composed of 
half type 1 and half type 2 te trahedra. Therefore, at 100 K (left column 
of Figure 4.12), where energy minimization is most important , only two 
kinds of te t rahedra are ever significantly populated, and the probability 
distribution approaches the linear ramp given by Equation 4.90. 

The second, opposing, tendency is entropy maximization. As can be 
seen in Figure 4.12, as temperature increases and entropy becomes an in-
creasingly important component of the molar Gibbs free energy, the prob-
abilities "diffuse" away from the te t rahedra whose compositions straddle 
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tha t of the epitaxial film. The probabilities cannot diffuse too far away, 
however, since the overall composition of the film is still constrained to 
be Y^PiXi = xep[. Ultimately, at 1100 K, the probability distribution ap-
proaches the Bernoullian distribution given by Equation 4.89. 

4.4.3 Free Energies 
In Subsections 4.4.1 and 4.4.2, we estimated the energetics and probabilities 
of the various elementary te t rahedra from which the InGaAs alloy may be 
constructed. In this subsection, we use these energetics and probabilities 
to calculate the molar Gibbs free energy of the film as a whole using Equa-
tion 4.80. These free energies are shown in Figure 4.13 as functions of xepi 

and xs ub , again for three fixed temperatures: 100, 600, and 1100 K. These 
temperatures are representative of three distinct regimes of behavior. 

At the highest temperature , 1100 K, the molar Gibbs free energy is 
everywhere and in every direction concave up. Therefore, films cannot 
lower their molar Gibbs free energies by decomposing spatially into local 
regions, some having higher xep\ and others having lower xep\. Epitaxial 
films at this tempera ture are stable against such macroscopic compositional 
clustering. 

At the intermediate temperature, 600 K, the molar Gibbs free energy 
is concave up with respect to horizontal fluctuations in xepi (at fixed xSub), 
but concave down with respect to diagonal fluctuations in xepi (mimicked 
by identical flucations in xs ub)· Therefore, films cannot lower their molar 
Gibbs free energies by composition fluctuations tha t preserve xsub, but can 
by fluctuations tha t do not preserve xs ub· In other words, fluctuations in 
which the local regions remain coherent with the substrate are suppressed, 
while fluctuations in which the local regions are incoherent (and hence free 
to adopt their equilibrium lattice parameter) are not. Epitaxial films at this 
temperature are stable against coherent macrosopic clustering, but unstable 
against incoherent macrosopic clustering. 

At the lowest temperature , 100 K, the molar Gibbs free energy is, for 
some combinations of xepi and xSub, concave down with respect to both 
horizontal and diagonal fluctuations in xepi- Therefore, these films can 
lower their molar Gibbs free energies both by composition fluctuations tha t 
preserve xsub, as well as by fluctuations tha t do not preserve xSub- These 
films at this temperature are not stable against either coherent or incoherent 
macroscopic compositional clustering. 

Note tha t the downward concavity of the molar Gibbs free energy at 
100 K is most exaggerated at those special compositions (1/4, 1/2, 3/4) for 
which we have assumed ordering may take place. The sharpness of those 
cusps is a consequence of the cooperative nature of the ordering process. 
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100 K 600 K 1100 K 

Figure 4.12: 100, 600, or 1100 K probabilities of various tetrahedra embedded 
in Ini_a;GaxAs of composition xepi grown coherently on substrates having the 
lattice parameters of bulk Ini_xGaxAs at composition xsub· 



138 Chapter 4. Ordering and Clustering 

In the Ino.25Gao.75As alloy, for example, the more Ino.25Gao.75As tetrahe-
dra there are, the closer W\ approaches unity, the lower the energy ^i,int 
becomes, and the more favored the Ino.25Gao.75As tetrahedra become. At 
higher temperatures or at compositions slightly offIno.25Gao.75As, there are 
never enough I1io.25Gao.75As to "get the process going," and the tetrahedra 
energies are dominated by their disordered values. 

Also note that with respect to horizontal fluctuations, the resulting 
cusps are even, for intermediate substrate compositions, global minima in 
the molar Gibbs free energies. Therefore, films that are constrained to be 
coherent with a substrate are unstable against clustering into ordered alloys. 
With respect to diagonal fluctuations, however, the cusps are only local 
minima. Therefore, films not constrained to be coherent with a substrate 
are unstable against clustering into ordered compounds, but those ordered 
compounds are themselves unstable against further clustering into (nearly) 
pure GaAs and (nearly) pure InAs. 

To understand these three temperature regimes more concretely, con-
sider an epitaxial film at xep\ = 0.6 grown on a substrate also at xsub = 0.6. 
Because the film is lattice-matched to the substrate, it is free from macro-
scopic elastic strain. It is, however, also composed preferentially of type 
2 and type 3 tetrahedra. Those tetrahedra are internally distorted, and 
hence, on a microscopic scale, contain a significant amount of internal dis-
tortional elastic energy. 

Suppose we force the film to decompose into macroscopic clusters, of 
which in some xepi = 0 and in others xepi = 1. These clusters are composed 
preferentially of type 0 and type 4 tetrahedra, respectively. Neither type 
of tetrahedron is internally distorted, and hence both are free of internal 
distortional elastic energy. However, they may or may not be externally 
distorted, and hence may or may not be free of external distortional elastic 
energy. 

On the one hand, if the xepi = 0 and xepi = 1 clusters were each free 
to change their average lattice parameters (i.e., free to change xSub), then 
the type 0 and type 4 tetrahedra would be free from external distortional 
elastic energy. Hence, the decomposition of regions having mainly type 2 
and 3 tetrahedra into macroscopic clusters having mainly type 0 and type 
4 tetrahedra decreases the overall strain energy and will tend to occur. 

Note, though, that the number of ways different tetrahedra can be com-
bined to form a macroscopically uniform alloy at xep[ = 0.6 is larger than 
the number of ways they can be combined to form alloys at xepi = 0 and 
xepi = 1. Since at high enough temperatures, entropic contributions to the 
molar Gibbs free energies ultimately dominate, there will then be a critical 
temperature above which mixing will be favored over decomposition. 

On the other hand, if the xepi = 0 and xepi = 1 clusters were not free to 



4.4. A Pseudobinary III-V Alloy: "InGaAs" 

100 K 6 0 0 K 

139 

1100 K 

0.15 

I 

>0.05 

" \ x « i b = 

l \ 

- 1 / 2 / ^ 

^ x e p i 

1 1 
0.0 0Λ 0.4 

I 

I 
0.« 

1 

I 
0.8 

A 

1 
A 

1.0 

Figure 4.13: 100, 600, or 1100 K molar Gibbs free energies of Ini_xGaxAs at 
composition xepi grown coherently on substrates having the lattice parameters of 
bulk Ini_xGaxAs at composition xsub- The filled circles represent Ini_xGaxAs 
grown on substrates with compositions xsub — 0 ,1 /2 ,1 . The open circles rep-
resent Ini_xGaxAs grown on "lattice-matched" substrates with compositions 
xs u b = xepi , or, alternatively, to incoherent growth. 

change their average lattice parameters (i.e., not free to change xSub)7 then 
the type 0 and type 4 te t rahedra would not be free from external distortional 
elastic energy. If tha t energy is higher than the internal distortional elastic 
energy of the original type 2 and 3 te trahedra, then the decomposition 
is suppressed. Instead, the film will decompose into macroscopic ordered 
clusters, in some of which x e p i 0.5 and in others xepi — 

0.75. 
These 

clusters are composed preferentially of type 2 and 3 tetrahedra, respectively, 
which fit together in such a way as to minimize their internal distortional 
elastic energy. 

Note, though, tha t just as before, the number of ways different tetrahe-
dra can be combined to form a macroscopically uniform alloy at xepi =0.6 
is larger than the number of ways they can be combined to form ordered 
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alloys at xepi = 0 . 5 and xepi = 0.75. Since at high enough temperatures , 
entropic contributions to the molar Gibbs free energies ultimately domi-
nate, there will then be a critical tempera ture above which mixing will be 
favored over ordering. 

4.4.4 Short-Range Ordering 
In Subsection 4.4.2, we estimated the probabilities of the various elemen-
tary te t rahedra from which an InGaAs alloy may be constructed. From 
Figure 4.12, it can be seen tha t as the tempera ture is lowered, the tetrahe-
dra probabilities become less random and more peaked at the film composi-
tions that match those of the te t rahedra themselves. This is a consequence 
of the fact tha t the te t rahedra energies are not the same, but are minimum 
for film compositions tha t match those of the te t rahedra themselves. 

In this subsection, we discuss in more detail this deviation from ran-
domness. Now, first suppose the te t rahedra were distr ibuted randomly, 
according to Equation 4.89. Then, from the constitutive pair and triangle 
relations listed in Table 4.4 on page 111, the "unlike" pair probability would 
be 

V\ = wi + 2w2 + w3 

= x(l - xf + 2x 2 ( l - x)2 + x3(l - x) 

= x ( l - x ) , (4.93) 

as expected. Since the clusters are not distributed randomly, we expect 
deviations from this purely random mixed pair probability.28 

To quantify these deviations from randomness, we define a short-range 
order parameter associated with pairs of unlike (next-nearest-neighbor) 
group III atoms, analogous to tha t of Equat ion 4.46, 

a SRO Ξ W1+2w2+W3-x(l-x) 

νοψά + 2wgrd + w%Td -x(l-x)' l ' ; 

where the w°rd are the completely ordered cluster probabilities given by 
Equation 4.90. crSRO is unity if every In a tom is surrounded by as many 
Ga atoms as possible, zero if every In a tom is surrounded by a random 
number of Ga atoms, and negative if every In a tom is surrounded by as 
many In atoms as possible. 

2 8 M.T. Czyzyk, M. Podgorny, A. Balzarotti, P. Letardi, N. Motta, A. Kisiel and M. 
Kimnal-Starnawska, "Thermodynamic properties of ternary semiconducting alloys," Z. 
Phys. B62 , 153 (1986). 
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100 K 6 0 0 K 1100 K 

Figure 4.14: 100, 600, or 1100 K short-range order parameters in Ini_xGaxAs 
at composition xepi grown coherently on substrates having the lattice parameters 
of bulk Ini_xGaxAs at composition xsub. The filled circles represent Ini_xGaxAs 
grown on substrates with compositions xsub = 0 ,1 /2 ,1 . The open circles rep-
resent Ini_xGaxAs grown on "lattice-matched" substrates with compositions 
xs u b = xepi, or, alternatively, to incoherent growth. 

This short-range order parameter is plotted in Figure 4.14 for the three 
temperatures 100, 600, and 1100 K. Note tha t even at the highest tempera-
ture, there is a preference toward bonding between unlike group III atoms, 
although the preference becomes more pronounced at the lower tempera-
tures. Note also tha t the short-range ordering becomes somewhat less pro-
nounced (cusped downward) at compositions corresponding to the various 
elementary tetrahedra. This is so even though the unlike pair probability 
itself decreases smoothly on both sides of xepi = 1/2. 

The reason is tha t exactly at those stoichiometric compositions, it is 
more difficult to suppress the occupation of composition-straddling tetra-
hedra. For example, at xepi = 1/2, the film will be dominated by type 2 
tetrahedra, but some type 1 and 3 te trahedra, differing in composition from 
xepi by only 1/4, will also be present. At xepi = 5 /8, the film will be dom-
inated by a mix of type 2 and 3 tetrahedra. The type 1 and 4 tetrahedra, 
however, differ in composition from xep\ by 3 /8 . Since the elastic distortion 
energies of the te t rahedra vary with the square of the composition mis-
match, the type 1 and 4 te t rahedra will be suppressed more effectively for 
#epi = 5/8 than the type 1 and 3 te t rahedra were for xepi = 1/2. 

Finally, we are in a position to understand the microscopic origins of 
clustering and ordering. In epitaxial films at all temperatures , different 
te t rahedra have different energies. Usually, te t rahedra tha t are most nearly 
volume-matched to the average unit cell volume have the lowest energies, 
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and hence are most favored. Therefore, films of intermediate composition 
will be preferentially composed of te t rahedra of intermediate composition, 
and will be short-range ordered in the sense of having an excess of pairs 
between unlike next-nearest neighbors. 

At high temperatures , a homogeneous film of intermediate composition 
will always be favored over macroscopic clusters at endpoint compositions, 
because of the increased entropy associated with an increased number of 
ways of combining te t rahedra of different compositions. Moreover, because 
of the relatively wide distribution of te t rahedra of different compositions, 
the te t rahedra will tend to be arranged randomly with respect to one an-
other. 

At low temperatures , homogeneous films are no longer favored. As 
the occupation probabilities become more and more concentrated among 
those te t rahedra whose compositions straddle the composition of the film, 
it becomes possible for the te t rahedra to order in such a way tha t their 
internal distortions are minimized. Then, films will have a tendency to form 
macroscopic, ordered clusters composed nearly exclusively of te t rahedra of 
a certain kind, arranged in a certain way. In coherent films, these ordered 
clusters are the stable state of the system, because te t rahedra in disordered 
clusters at intermediate compositions have too much internal distortional 
energy, and te t rahedra in clusters at endpoint compositions have too much 
external distortional energy. In incoherent films, however, the te t rahedra in 
clusters at the endpoint compositions have no external distortional energy, 
and hence will ultimately form at the expense of bo th a homogeneous film 
or a film composed of ordered clusters. 

4.5 Semi-empirical Models 
In Sections 4.1-4.4, we have been concerned with developing a microscopic 
description of the thermodyamics of coherent and incoherent pseudobinary 
III-V alloys. There is of course no subst i tute for the physical insight tha t 
such a microscopic description gives. However, many of the overall results of 
such a description, such as the molar Gibbs free energy, can be understood 
using simpler, macroscopic, semi-empirical models. Such models have the 
advantage, as discussed in Chapter 3, of being described by analytic equa-
tions tha t can be more easily used to calculate phase diagrams and other 
thermodynamic quantities of interest. In this section, we develop such a 
semi-empirical model. 

We will begin, in Subsection 4.5.1, by describing semi-empirical, physi-
cally motivated expressions for the molar Gibbs free energies of disordered 
and ordered pseudobinary alloys. Then, in Subsection 4.5.2, we use these 
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molar Gibbs free energies to calculate equilibrium alloy phase diagrams. 

4.5.1 Free Energies 
Let us start, in this subsection, by describing and justifying a semi-empirical 
expression for the molar Gibbs free energy of an epitaxial pseudobinary alloy 
grown coherently on a thick substrate. The three main components of the 
molar Gibbs free energy that we need to account for are (1) the enthalpy of 
mixing, due to the internal distortional energies of the various tetrahedra, 
(2) the entropy of mixing, and (3) the coherency energy, due to the external 
distortional energies of the various tetrahedra. 

We describe the internal distortions, as discussed in Section 4.1, by an 
enthalpy of mixing of the regular solution form 

hint = Ωχβρΐ(ΐ _ Xepi), (4.95) 
where the interaction parameter, Ω, is identified with that calculated in 
Equation 4.13. The description could easily be improved further through 
the use of a sub-regular solution form, in order to account for composition-
dependent elastic constants. The description could also easily be improved 
by allowing the mixing enthalpy to depend on temperature through a 
composition- and temperature-dependent heat capacity. 

We describe the entropy of mixing by the ideal solution form: 

s = -k [xepi ln(xepi) + (1 - ^epi) ln(l - xepi)]. (4.96) 

Finally, we describe the external distortions, following the treatment of 
Section 4.2, with a coherency energy of the form29 

^ext = Ce^2(xepi - Xsub)2al /4, (4.97) 

where 

Ceff = (1 — Xe pi) I CGaAs,ll + CQaAs,12 ^ 2— 
GaAs,ll / 

+ #epi ClnAs,l l + ClnAs,12 ~ — (4.98) 
V ^InAs , l l / 

is an effective elastic coefficient that varies linearly between that of GaAs 
and that of InAs30 and 

η = 2 Q l n A s ' °~ Q G a A s ' ° (4.99) 
^InAs,o i ÖGaAs,o 

2 9 J .W. Cahn, "On spinodal decomposition," Ada Metall 9, 795 (1961). 
3 0 F .C. Lärche, W.C. Johnson, C.S. Chiang, and G. Martin, "Influence of substrate-

induced misfit stresses on the miscibility gap in epitaxial layers: application to III-V 
alloys," J. Appl. Phys. 64, 5251 (1988). 
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is the coefficient of linear expansion per unit composition change. 
We note in passing tha t this elastic energy term, present only for coher-

ent epitaxy, can be an important determinant of the overall driving force 
for epitaxy. Coherent alloys whose lattice parameters differ from tha t of 
the substrate will have higher molar Gibbs free energies than those tha t 
are lattice matched. Condensation of lattice-matched alloys will therefore 
be favored over condensation of lattice-mismatched alloys, as has been ob-
served for both liquid phase epitaxy3 1 as well as MBE. 3 2 

We emphasize here tha t Equation 4.97 only applies under special cir-
cumstances. In particular, it only applies to the geometry we are consid-
ering — namely, a thin epitaxial film whose parallel lattice parameter is 
constrained to be tha t of its infinitely thick substrate but whose perpendic-
ular lattice parameter is free to adjust — if all phases present have some 
physical dimension tha t is large compared to the film thickness. More gen-
eral t reatments of coherent phase equilibria are complicated immensely by 
the possibility tha t the elastic coherency energies depend on the details of 
the phase morphology, which in tu rn depend on the relative amounts of the 
different phases present.3 3 

Finally, the total molar Gibbs free energy of the disordered alloy is 

9 l^epi? -^subj ~ 'Mntl^epij -*■ ^v^epij ~r "-extV^epn *^subJ? ^4.1UUJ 

and depends on the compositions of both the epitaxial film and the sub-
strate. As can be seen from the top panels of Figure 4.15, the semi-empirical 
expression of Equation 4.100 reproduces surprisingly well the molar Gibbs 
free energies deduced from the CVM calculation shown in Figure 4.13. 

Now, as discussed in Section 4.4, ordered and disordered phases should 
really be treated on a single footing. Doing so requires, however, a mi-
croscopic t reatment tha t is difficult to incorporate into a semi-empirical 
model. Instead, we treat ordered alloys as if they were distinct "compound" 
phases which exist only within a narrow range of special compositions, as 
illustrated in the bo t tom panels of Figure 4.15. In other words, we write 

3 1 G.B. Stringfellow, "The importance of lattice mismatch in the growth of GalnP 
epitaxial crystals," J. Appl. Phys. 43 , 3455 (1972); and R.E. Nahory, M.A. Pollack, 
E.D. Beebe, J.C. DeWinter, and M. Ilegems, "The liquid phase epitaxy of AlGaAsSb 
and the importance of strain effects near the miscibility gap," J. Electrochem. Soc. 125, 
1053 (1978). 

3 2 M. Allovon, J. Primot, Y. Gao, and M. Quillec, "Auto lattice matching effect for 
AlInAs grown by MBE at high substrate temperature," J. Electron. Mater. 18, 505 
(1989). 

3 3 J.W. Cahn and F.C. Lärche, "A simple model for coherent equilibrium," Ada Metall. 
11, 1915 (1984); W.C. Johnson and C.S. Chiang, "Phase equilibrium and stability of 
elastically stressed heteroepitaxial thin films," J. Appl. Phys. 64, 1155 (1988). 
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100 K 600 K 1100 K 

Figure 4.15: Semi-empirical molar Gibbs free energies of disordered (top) and 
ordered (bottom) Ini_xGaxAs at composition xepi grown coherently on substrates 
having the lattice parameters of bulk Ini_xGaxAs at composition xsub· 

their free energies as 

ha + A(xep[ - 1/4)2 + hext(xepi,Xauh) 

a + ^H^epi — 1 / ^ / "I" ^ext l^eph #sub) 

). (4.101) 

The first terms in these equations are the enthalpies of the ordered com-
pounds, which for InGaAs we identify with those listed in Table 4.7. The 
second terms are phenomenological terms reflecting expected sharp depen-
dences of the ordering enthalpies on composition near the special composi-
tions, with A a large constant. The third terms are the energies given by 
Equation 4.97. 

4.5.2 Phase Diagrams 
In Subsection 4.5.1, we described a semi-empirical expression for the molar 
Gibbs free energy of a pseudobinary alloy. In this subsection, we use these 
free energies and the common tangent prescription described in Chapter 3 
to calculate two-dimensional xepi-T cuts through the full three-dimensional 

9 V^epn ? ^ s u b / 

9 V^epn *^subj 

9 V*^epn «^subj 
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Figure 4.16: xev\-T phase diagrams for Ini_xGaxAs during (right) coherent 
epitaxy on a substrate of composition xsub and during (left) incoherent epitaxy. 
Above and below each phase diagram are also shown the molar Gibbs free energies 
of the various phases at 600 K and 100 K, their common tangents, and the critical 
compositions (open circles) determined by those common tangents. 

^epi-^sub-^ phase diagram, as illustrated in Figure 4.16, or calculate the 
full Xepi-#sub-^ phase diagram itself, as illustrated in Figure 4.17. 

In both cases the common tangents may be drawn in two ways. On the 
one hand, if we constrain the epitaxial film to be coherent, them xsuh must 
be preserved, and so, as illustrated in the right halves of Figures 4.16 and 
4.17, we must take horizontal tangents at constant #Sub· On the other hand, 
if we do not constrain the epitaxial film to be coherent, then xs ub is free 
to accommodate xe ph a n d so, as illustrated in the left half of Figures 4.16 
and 4.17, we must take diagonal tangents for which xs ub = xepi-
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Incoherent P h a s e Equi l ibr ia 

Consider first the incoherent case for which xs ub = #epi- Then, Equa-
tion 4.100 reduces to 

<7diS'inC(*epi) = fcint(Sepi) " T s ( x e p i ) , (4 .102) 

since hext vanishes for xepi = xSub-
At high temperatures , the mixing entropy term in Equation 4.102 causes 

the molar Gibbs free energy of the disordered phase to be concave up, and 
to lie below the molar Gibbs free energies of all of the ordered phases. A 
disordered InGaAs alloy cannot, for any composition, lower its molar Gibbs 
free energy either by phase-separating into disordered InAs and GaAs rich 
clusters or into ordered stoichiometric phases. 

At low temperatures , the mixing entropy term becomes small, and is 
no longer sufficient to bring the molar Gibbs free energy of the disordered 
phase below those of the ordered phases. Therefore, a uniform disordered 
alloy can decrease its molar Gibbs free energy by phase-separating into 
either a combination of two ordered phases or a combination of an ordered 
phase and an InAs or GaAs rich disordered phase. 

In addition, however, the (positive) mixing enthalpy term in Equa-
tion 4.102 causes the molar Gibbs free energy of the disordered phase to now 
be concave enough down tha t it becomes, near its endpoint compositions, 
lower than those of all of the ordered phases. Therefore, the ordered phases 
are themselves unstable with respect to phase separation into pure InAs 
and GaAs disordered phases. A miscibility gap opens up tha t destabilizes 
the ordering. 

Coherent P h a s e Equi l ibria 

Consider now the coherent case for which xs ub = constant. Then, the 
molar Gibbs free energy does not simplify to Equation 4.102, and the full 
Equation 4.100 must be used. 

In this case, at high temperatures , both the mixing entropy term and 
the elastic energy term cause the molar Gibbs free energy of the disordered 
phase to be concave up. Because of the contribution from both terms, the 
molar Gibbs free energy remains concave up to lower temperatures , and of 
course the miscibility gap shifts to lower temperatures . 

At low temperatures , the mixing entropy term becomes small, and again 
is no longer sufficient to bring the molar Gibbs free energy of the disordered 
phase below those of the ordered phases. Therefore, a uniform disordered 
alloy can again decrease its molar Gibbs free energy by phase-separating 
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Figure 4.17: Pseudobinary xepi-xSub-T phase diagrams of Ini_a;GaxAs. In the 
usual, "incoherent" diagram on the left, variations in xepi are accompanied by 
identical variations in the effective composition of the substrate, xsub- In the 
"coherent" diagram on the right, variations in xepi occur at constant a?sub· 

into either a combination of two ordered phases or a combination of an 
ordered phase and an In As or GaAs rich disordered phase. 

In this case, however, the (positive) mixing enthalpy term is countered 
by the elastic energy term, and the molar Gibbs free energy of the disordered 
phase remains concave up. Therefore, the ordered phases remain lower in 
energy than the disordered phase, even near its endpoint compositions. The 
ordered phases are therefore stable with respect to phase separation into 
(nearly) pure In As and (nearly) pure GaAs disordered phases. Coherency 
suppresses the miscibility gap. Then, if ordered phases are present, as in this 
example, coherency stabilizes them.3 4 If, however, ordered phases are not 
present, then a uniform disordered alloy will persist to lower temperatures 
(perhaps even to 0 K) than in the incoherent case.3 5 

Suggested Reading 
1. W.A. Harrison, Electronic Structure and the Properties of Solids (W.H. 

Freeman, San Francisco, 1980). 

2. E. A. Guggenheim, Thermodynamics (North-Holland, Amsterdam, 1959) 
3 4C.P. Flynn, "Strain-assisted epitaxial growth of new ordered compounds," Phys. 

Rev. Lett. 57, 599 (1986). 
3 5 G.B. Stringfellow, "Spinodal decomposition and clustering in III /V alloys," J. Elec-

tron. Mater. 11 , 903 (1982); and M. Quillec, C. Daguet, J.L. Benchimol, and H. Launois, 
"InGaAsP alloy stabilization by the InP substrate inside an unstable region in liquid 
phase epitaxy," Appl. Phys. Lett. 40, 325 (1982). 
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Figure 4.18: Intermediate stage of building of a 2D lattice of face-centered tri-
angles. 

3. T. Hill, Introduction to Statistical Thermodynamics (Addison Wesley, 
Reading, MA, 1960). 

4. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and 
Practice (Academic Press, Boston, 1989). 

5. A. Zunger and D.M. Wood, "Structural phenomena in coherent epi-
taxial solids," J. Cryst Growth 98 , 1 (1989). 

Exercises 
1. Calculate the distortion energies of the cluster shown in Figure 4.1 

for (a) As atoms forced onto VCA and CRA positions and (b) for an 
As atom at its actual equilibrium position. 

2. From Figure 4.13, it can be seen tha t there is a greater tendency 
toward phase decomposition for strained but coherent epitaxy of In-
GaAs on a GaAs substrate than on an InAs substrate. Why? 

3. W h a t is the limiting value of the order parameter in the pair approx-
imation of the CVM [Equation 4.46] when 2ui ^> u0 + u2, i.e., when 
AA and BB pairs are greatly preferred over AB pairs? 

4. Derive Equation 4.48 for the temperature dependence of the order 
parameter in the pair approximation of the CVM. 

5. Calculate the entropy of the two-dimensional face-centered triangular 
lattice shown in Figure 4.18 in the point, pair, and triangle CVM 
approximations. 

6. Construct a ball-and-stick 3D zincblende lattice and identify the te-
trahedra, triangles, and pairs associated with adding point a in Fig-
ure 4.8. 
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7. Derive Equation 4.83. 

8. Draw envelopes of minimum molar Gibbs free energies for the various 
2D cuts shown at the bottom of Figure 4.13, and identify the com-
position ranges within which various phases or phase mixtures are 
stable. 

9. Construct phase decomposition scenarios for which coherency energies 
either depend on, or are independent of, the amounts of the different 
phases present. 

10. Starting from Equation 4.100, derive expressions for the chemical po-
tentials of InAs and GaAs in coherent and incoherent epitaxial In-
GaAs. 

11. Using Equations 3.59 and 4.100, derive an expression for how much 
the vapor pressure of Ga over coherent Ini-^Ga^As lattice-matched 
to InP differs from that over incoherent Ini_xGaxAs. 



Chapter 5 

Coherency and 
Semi-coherency 

In Chapter 4, we described how the thermodynamics of epitaxial alloy films 
depend on whether those films are coherent or not with their underlying 
substrate. Films that are coherent often tend to form ordered compounds 
at certain stoichiometric compositions, while films that are not often tend 
to separate into their pure-component "endpoint" phases. Coherency with 
an underlying substrate is thus a crucial determinant of the compositional 
integrity of alloy films. 

Coherency is also a crucial determinant of other properties of alloy films. 
Consider, e.g., an epitaxial layer whose bulk lattice parameter differs from 
that of its substrate. On the one hand, if the layer is coherent with its 
substrate, it will be mechanically strained, and its electronic and opto-
electronic properties will be modified through strain-induced changes in 
electronic band structure.1 On the other hand, if the layer is not coherent 
with its substrate, then structural defects must be present, some of which 
degrade significantly the performance of semiconductor devices. 

In this chapter, we discuss the conditions under which coherency be-
tween film and substrate can be maintained. In particular, we will focus 
on the transition from coherency to "semi-coherency." A coherent interface 
is one that is crystallographically perfect, and that separates epitaxial and 
substrate atoms in perfect "registry" with each other. If the bulk lattice 
parameters of the epitaxial layer and the substrate differ, then the epi-
taxial layer accommodates by developing in-plane strain. A semi-coherent 

1G.C. Osbourn, "Strained-layer superlattices from lattice mismatched materials," J. 
Appl. Phys. 53 , 1586 (1982). 
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interface, in contrast, is one for which the registry between epitaxial and 
substrate atoms is punctuated by occasional localized regions of disregistry, 
i.e., by dislocations. These localized regions of disregistry compensate for 
lattice parameter misfit between the epitaxial layer and the substrate, al-
lowing the in-plane strain of the epitaxial layer to relax. 

We begin, in Section 5.1, by discussing the energies associated with 
those two kinds of interfaces. The energy associated with a coherent inter-
face is due solely to "coherency strain" in the epitaxial film, and increases 
linearly with film thickness. The energy associated with a semi-coherent in-
terface is due part ly to coherency strain and part ly to "misfit" dislocations 
at the interface. Much of the energy of the misfit dislocations is due to 
the disregistered atoms at the dislocation core, and is independent of film 
thickness. Therefore, thin coherent films will tend to have lower energies 
than thin semi-coherent films, but thick coherent films will tend to have 
higher energies than thick semi-coherent films.2 

As a consequence, in the early stages of film growth, an epitaxial film will 
usually be coherent with its substrate . Only when the film becomes thick 
enough will it tend to become semi-coherent with the substrate, and even 
then, it may not actually become semi-coherent. To become semi-coherent, 
misfit dislocations must be created at the film/substrate interface, but tha t 
creation may be impeded by kinetic barriers. Therefore, in Section 5.2 we 
discuss the forces, or "excess stresses," acting to create misfit dislocations, 
and in Section 5.3 we describe how an understanding of those forces can 
be used to develop semi-empirical macroscopic descriptions of the overall 
kinetics of strain relaxation. 

Note tha t this chapter deals only with the most common form of het-
eroepitaxy, in which the film has the same crystal s tructure as the substrate . 
Then, provided the lattice parameters of the film and substrate are not too 
mismatched, epitaxy will occur, and the orientation of the film will mimic 
tha t of the substrate . From a practical point of view, we need only be con-
cerned with predicting the conditions under which the film will be coherent 
or semi-coherent. This chapter also deals only with the simplest form of 
heteroepitaxy, in which the film grows as layers, rather than as islands (see, 
e.g., Exercise 2 and Chapter 6). 

We emphasize, though, tha t a deposited film need not have the same 
crystal s tructure as the substrate . 3 In such cases, it is not always easy to 
predict (1) whether epitaxy will even occur at all and (2) even if it does, 
what the orientation relationship will be between the film and the substrate . 

2 F .C. Frank and J.H. van der Merwe, "One-dimensional dislocations. II. Misfitting 
monolayers and oriented overgrowth," Proc. R. Soc. London A198 , 216 (1949). 

3 E . Grünbaum, "List of epitaxial systems," in Epitaxial Growth, J.W. Matthews, Ed. 
(Academic Press, New York, 1975), pp. 611-673. 
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These two questions are among the most basic in the science of epitaxy, and 
have been studied for nearly a century, beginning with the work of Barker4 

and Royer.5 However, they are also exceedingly difficult questions tha t are 
far from being fully answered. 

From a purely crystallographic point of view, one anticipates tha t those 
orientation relationships will be favored for which the three dimensional 
film and substrate lattices coincide most closely at the two-dimensional 
interface.6 For example, such purely crystallographic considerations are 
evidently responsible7 for what are known as the Nishiyama-Wasser man 8 

and Kurdjumov-Sachs9 orientation relationships between fee and bec crys-
tals found both in solid-phase precipitation reactions1 0 as well as in vapor-
phase epitaxy.11 

However, it will not always be sufficient to consider the crystallography 
of the known equilibrium bulk phases. Occasionally, it will be possible to 
epitaxially stabilize crystal phases which are not normally stable in bulk 
form.12 Elemental tin, e.g., adopts a metastable diamond structure when 
deposited epitaxially on the (001) surfaces of InSb and CdTe.1 3 

Moreover, the epitaxial film may also be chemically different from the 
substrate, and so the orientation relationship will depend not just on crys-
tallography, but on bond chemistry as well. For these reasons, an under-

4T.V. Barker, "Contributions of the theory of isomorphism based on experiments on 
the regular growths of crystals of one substance on those of another," J. Chem. Soc. 
Trans. 89, 1120 (1906). 

5 L . Royer, "Recherches experimentales sur l'epitaxie ou orientation mutuelle de 
cristaux d'especes differentes," Bull. Soc. Franc. Mineral 5 1 , 7 (1928). 

6 R.W. Ballufn, A. Brokman, and A.H. King, "CSL/DSC lattice model for general 
crystal-crystal boundaries and their line defects," Ada. metall. 30, 1453 (1982); and A. 
Zur and T.C. McGill, "Lattice match: an application to heteroepitaxy," J. Appl. Phys. 
55, 378 (1984). 

7R. Ramirez, A. Rahman, and I.K. Schuller, "Epitaxy and superlattice growth," Phys. 
Rev. B30, 6208 (1984). 

8 Z . Nishiyama, "X-ray investigation of the mechanism of the transformation from 
face-centred cubic lattice to body-centred cubic," Sei. Rep. Tohoku Univ. 23, 638 (1934); 
and G. Wasserman, Arch. Eisenhuettenwes. 126, 647 (1933). 

9 G . Kurdjumov and G. Sachs, "Über den Mechanismus der Stahlhärtung," Z. Phys. 
64, 325 (1930). 

1 0U. Dahmen, "Orientation relationships in precipitation systems," Ada Metall. 30, 
63 (1982). 

11L.A. Bruce and H. Jaeger, "Geometric factors in f.c.c. and b.c.c. metal-on-metal 
epitaxy III. The alignments of (111) f.c.c.-(HO) b.c.c. epitaxed metal pairs," Phil. Mag. 
A38, 223 (1978). 

1 2R. Bruinsma and A. Zangwill, "Structural transitions in epitaxial overlayers," J. 
Physique 47, 2055 (1986). 

1 3R.F.C. Farrow, D.S. Robertson, G.M. Williams, A.G. Cullis, G.R. Jones, I.M. Young, 
and P.N.J. Dennis, "The growth of metastable, heteroepitaxial films of α-Sn by metal 
beam epitaxy," J. Cryst. Growth 54, 507 (1981). 
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standing of orientation relationships in epitaxy is an enormously compli-
cated ongoing area of research tha t will not be treated here. 

5.1 Energetics of Misfit Accommodation 
Let us begin, in this section, by discussing the energetics of epitaxial films 
attached through coherent or semi-coherent interfaces to substrates with 
different lattice parameters . We discuss first, in Subsection 5.1.1, the co-
herency strains and energies associated with the epitaxial films. Then, we 
discuss, in Subsection 5.1.2, the strain fields and energies associated with 
misfit dislocations at the interfaces between the epitaxial films and their 
substrates, with particular emphasis on face-centered cubic (fee) and dia-
mond lattices. Finally, we discuss, in Subsection 5.1.3, the dependence of 
both kinds of energies on misfit dislocation density. Minimizing the sum of 
the two energies with respect to misfit dislocation density determines how 
the overall misfit is parti t ioned, in equilibrium, between coherency strain 
and misfit dislocation density. We will find tha t for thin, low misfit films, 
energy is minimized when the misfit dislocation density is zero. For thick, 
high misfit films, however, energy is minimized when the misfit dislocation 
density is nonzero.1 4 

5.1.1 Coherency Strain 
Let us start , in this subsection, by discussing the strain energy associated 
with epitaxial films tha t are coherent with their substrates. In particular, 
consider the simplest strained heterostructure: a single, thin, planar layer 
of one material and a thick substrate of a different material. As illustrated 
in Figure 5.1, in the absence of a connection between the two materials, 
each is unstrained and will adopt its own bulk lattice parameter — either 
öepi,o or flsub- Note tha t we neglect changes in the lattice parameter of a 
free-standing film due to surface stresses, changes tha t may be important 
for very thin films.15 

Suppose we exert a compressive in-plane force on the epitaxial layer 
and an equal but opposing tensile in-plane force on the substrate. Then, 
the in-plane lattice parameter of the epitaxial film will shrink and tha t of 
the substrate will grow. If the bulk lattice parameter of the epitaxial layer 
were larger than tha t of the substrate, as is the case in Figure 5.1, then the 

14 J.H. van der Merwe, "Crystal interfaces. Part II. Finite overgrowths," ./. Appl. Phys. 
34, 123 (1963). 

1 5R.C. Cammarata and K. Sieradzki, "Surface stress effects on the critical film thick-
ness for epitaxy," Appl. Phys. Lett. 55, 1197 (1989). 
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Figure 5.1: Hypothetical simple cubic epitaxial layer and substrate with bulk 
lattice parameters 5.0 and 5.5 Ä, respectively. The epitaxial layer is imagined 
to be disconnected from the substrate, and so is free to adopt its bulk lattice 
parameter. As a consequence, it is both unstrained and unstressed. 

two in-plane lattice parameters can eventually be made to match, and the 
epitaxial layer can be joined coherently to the substrate . 

Note tha t if the substrate is much thicker than the epitaxial layer, then 
it will experience a much lower average in-plane stress than will the epi-
taxial layer, and its lattice parameter will change much less. Therefore, 
we make the usual approximation tha t all of the lattice parameter misfit 
is accommodated by strain in the epitaxial layer, rather than in the sub-
strate. In the general case, though, parti t ioning of lattice parameter misfits 
between film and substrate, and even between layers within a multilayered 
film, must be taken into account.1 6 

Note also tha t the Hooke's law energies associated with straining the 
epitaxial layer and substrate are each proportional to thickness and to the 
square of the change in lattice parameter . Since the changes in lattice 
parameter are proportional to applied stress, which is inversely proportional 
to thickness, the Hooke's law energies are themselves inversely proportional 
to thickness. Therefore, we can also make the approximation tha t all of the 
strain energy associated with coherently joining the epitaxial layer to the 
substrate is in the epitaxial layer, rather than in the substrate. In other 
words, just as we saw in Section 4.1.2, most of the energy associated with 

1 6Z.C. Feng and H.D. Liu, "Generalized formula for curvature radius and layer stresses 
caused by thermal strain in semiconductor multilayer structures," J. AppL Phys. 54, 83 
(1983). 



156 Chapter 5. Coherency and Semi-coherency 

coupled spring systems is stored in the weaker and more deformed spring. 
To calculate the actual strain energy in a fully coherent epitaxial layer, 

we follow the discussion in Section 4.2, in which a generalized Hooke's law 
was written in terms of the elastic coefficients C^. That law is also com-
monly written, for cubic materials, in terms of Poisson's ratio, v (defined 
as the negative of the ratio between lateral and longitudinal strains under 
uniaxial longitudinal stress), and the shear modulus, µ (defined as the ratio 
between applied shear stress and shear strain under pure shear): 

(z)=M^(z~izMz)- (51) 
The relationships between the Cij, v, and µ are 

Cl1 = 2"(r^) 
C12 = 2 µ ( ϊ - ί ^ ) . (5.2) 

The shear modulus itself is related to the modulus of elasticity, E, by 
2µ = Ε/(1 + ν). 

For concreteness, let us assume, as is common, that the epitaxial film 
and its substrate are not only cubic, but are oriented along one of the (100) 
cubic symmetry directions.17 Then, the in-plane strains are symmetric and 
can be taken to be along the x and y axes. If we denote in-plane quantities 
as "parallel," and out-of-plane quantities as "perpendicular," then we can 
write 

( Z ) = 2µ(1 + ι/) ( -2u 1 ) ( σ[ ) ' ( 5 · 3 ) 

which is just the inverse of Equation 4.20. 
Equation 5.3 contains two known and two unknown quantities. The 

first known quantity is the parallel strain, ey, which is determined by the 
lattice mismatch. The second known quantity is the perpendicular stress, 
σ±, which, since the epitaxial layer is free to expand vertically, vanishes. 
Therefore, Equation 5.3 determines the two unknown quantities — the 
parallel stress, ay, and perpendicular strain, ej_ — in terms of ey only: 

σιι = 2 ^ ( i ^ ) e n (5·4) 
17Otherwise, more general expressions are required. See, e.g., J.P. Hirth, "On dislo-

cation injection into coherently strained multilayer structures," S. Afr. J. Phys. 9, 72 
(1986). 
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Figure 5.2: Hypothetical simple cubic epitaxial layer and substrate with bulk 
lattice parameters 5.5 and 5.0 Ä, respectively. The epitaxial layer is still imagined 
disconnected from the substrate, but has been strained in a direction parallel to 
the interface so that its parallel lattice parameter matches that of the substrate. 
As a consequence, it develops both a parallel (in-plane) stress and a perpendicular 
(out-of-plane) strain. 

e_L = 
-2v 

l - i / 
(5.5) 

As illustrated in Figure 5.2, if the epitaxial layer is strained in a direction 
parallel to the interface so tha t its parallel lattice parameter matches tha t 
of the substrate, then it must develop a parallel stress. It also develops a 
perpendicular strain, in the same direction as tha t which would preserve 
unit-cell volume. In fact, if ej_ were exactly — 2e||, or if 2z//(l — v) were 
exactly 2, then unit-cell volume would be exactly preserved. Poisson's ratio, 
however, lies in the range 0.25-0.35 for most materials, so tha t 2 i / / ( l - v) 
is actually approximately 1, and unit-cell volume is only approximately 
conserved. 

The "coherency" energy associated with strain in the epitaxial layer can 
now be calculated, per unit area, to be 

Ucoh = -h (2(7||€|| + σ Χ 6 ι ) = 2µ ί —— j ftejj, (5.6) 

where h is the thickness of the film. 
In an epitaxial film composed of multilayers each with a different lattice 

parameter, the multilayer coherency energy will just be a sum of (or integral 
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Figure 5.3: Pure edge (left) and pure screw (right) dislocations lying in an 
interface separating an epitaxial film from its substrate. 

over) expressions such as Equation 5.6 for each layer: 

Ucoh = 2µ l γ— j Σ hiel\\ > (5·7) 

where hi and e^y are the thicknesses and parallel strains of the zth layer. 

5.1.2 Misfit Dislocations 
In Subsection 5.1.1, we discussed the strain energy associated with epitaxial 
films tha t are coherent with their substrates. In this subsection, we discuss 
the energy associated with epitaxial films tha t are semi-coherent with their 
substrates. In particular, consider a single-layer heterostructure in which 
the perfect coherent registry between the epitaxial film and substrate is 
broken by a localized region of "disregistry." In the simplest case, as il-
lustrated in the left half of Figure 5.3, the disregistry might consist of a 
half plane missing from the epitaxial film. Physically, we might imagine 
tha t the half plane had been "squeezed" upward out of the epitaxial film 
by a compressive coherency stress, thereby relieving some (or all) of tha t 
coherency stress. 

Geometrically, the disregistry can be thought of as formed by making 
what is known as a "Volterra" cut in the epitaxial film perpendicular to 
the interface, removing a plane of atoms, and then rejoining the remaining 
crystal by inwardly collapsing atoms in the adjacent planes. The disregistry 
can then be seen to be equivalent to a negative edge dislocation along the 
line labeled Tin the left half of Figure 5.3, with Burgers vector along the line 
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labeled b. In a sense, such interface dislocations act to relieve the coherency 
strain in the epitaxial layer by concentrating the lattice misfit into localized 
regions of disregistry confined mainly to the interface. 

Note that pure edge dislocations such as this, whose Burgers vectors 
are both perpendicular to the dislocation line and in the plane of the in-
terface, are the most efficient means for relieving coherency strain. Screw 
dislocations such as that illustrated in the right half of Figure 5.3, whose 
Burgers vectors are parallel to the dislocation line, do not relieve coherency 
strain. Likewise, edge dislocations whose Burgers vectors are perpendicular 
both to the dislocation line and to the plane of the interface, do not relieve 
coherency strain. Therefore, in the general case of "mixed" dislocations, 
having both edge and screw character, only that component of the Burg-
ers vector that is both "edgelike" and in the plane of the interface acts 
to relieve coherency strain. In particular, if, as illustrated in Figure 5.23 
on page 195, λ is the angle between (a) the Burgers vector and (b) the 
direction that is both normal to the dislocation line and that lies within 
the plane of the interface, then only the component, 

6edg?|| ΞΞ 6cosA, (5.8) 

acts to relieve lattice misfit. 
Also note that dislocations with partial or full edge character move 

most easily by gliding within the plane containing both the dislocation line 
and its Burgers vector. The pure edge dislocation illustrated in Figure 5.3, 
e.g., will move most easily within the interface between the epilayer and the 
substrate. Therefore, such a dislocation, if created at the free surface, would 
be unable to glide to the interface between the epilayer and the substrate. 
Instead, it would be constrained to glide parallel to that interface. 

To be practically effective at relieving misfit strain, then, dislocations 
must usually have some component of their Burgers vector out of the inter-
face. Otherwise, they must move by "climbing" out of the plane containing 
both the dislocation line and its Burgers vector. Such motion requires the 
creation or annihilation of vacancies at the dislocation core, and hence a 
diffusive flux of vacancies either away from or toward the dislocation core. 
For example, to move the edge dislocation illustrated in the left half of Fig-
ure 5.3 down from the interface by one lattice spacing, a row of vacancies 
must be removed from the dislocation core. Such vacancy removal ulti-
mately requires diffusion away from the core, which usually only becomes 
significant at fairly high temperatures.18 

1 8E.A. Fitzgerald, P.D. Kirchner, R.E. Proano, G.D. Pettit , J.M. Woodall and D.G. 
Ast, "Totally relaxed Ge x S i i_ x layers with low threading dislocation densities grown on 
Si substrates," Appl. Phys. Lett. 59, 811 (1991). 
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While acting to relieve misfit strain, interface dislocations also cost en-
ergy, due to the disruption in bonding associated with the disregistered 
atoms at their core and to the long-range elastic stress and strain fields 
away from their core. For pure edge and screw dislocations, the energies 
per unit length associated with the elastic stresses and strains in a cylin-
drical ring surrounding a long straight dislocation core can be shown, in a 
continuum model, to be approximately 

üb2 

u* = i^(Ä)ln(ß/ro) 

User = ^HR/ro), (5.9) 

where r0 and R are the inner and outer radii of the cylinder. The ener-
gies associated with the disregistered core atoms, however, are difficult to 
determine. Instead, it is common to adjust the inner "cutoff" radius r0 so 
tha t the core energies are included in Equations 5.9. In practice, a value of 
r0 = 6/4 for covalent semiconductors is often used. 

For dislocations having mixed character, the energy is the sum of Equa-
tions 5.9, with the edge and screw components of the Burgers vectors used 
accordingly. If, as illustrated in Figure 5.23 on page 195, β is the angle be-
tween the Burgers vector and the dislocation line, then the edge component 
is bsinß and the screw component is bcosß. Therefore, 

Udis = ^ ( f ^ W / ? ) l n ( 4 ß / 6 ) 

ub2 [l - vcos2 β\ Λ , „.,, 
= 17 ( i - y JhW*)· (5·10) 

Note tha t , because of the long-range nature of the elastic stresses and 
strains, the dislocation energy diverges logarithmically with the radius of 
the outer radius of the cylinder. Therefore, a dislocation embedded in an 
infinite crystal has infinite energy. In fact, the long-range elastic stresses 
and strains are always disrupted (and bounded) either by free surfaces or 
by the stress and strain fields of neighboring dislocations. 

For example, if a free surface at z = 0 is placed a distance h away 
from a dislocation at z = h, the normal and shear stress components acting 
on the surface must vanish, because the surface is free to expand outward 
or contract inward. The effect of the surface can be accounted for ap-
proximately by placing an "imaginary" dislocation of the opposite sign at 
z = — /i, thereby largely cancelling the long-range stress field at distances 
much greater than h from the dislocation core. The energy associated with 
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Figure 5.4: Dislocation lines lying along [110] (left) and [110] (right) directions. 
The edges of the tetrahedra inscribed within each unit cube represent the possible 
directions of the Burgers vectors for each of those dislocations. 

a dislocation a distance h from a free surface is therefore approximately 

'l-£\ \n(4h/b). (5.11) 

Note tha t the energy is proportional to 62, because the strains around 
the dislocations are proportional to 6, and the energy is proportional to 
the square of the strains. Therefore, dislocations with shorter Burgers 
vectors will be more common than those with longer Burgers vectors. For 
this reason, the most common Burgers vectors in fcc-based diamond and 
zincblende lattices are of the | (110) type, since these are the shortest lattice 
vectors in these crystals.1 9 Since there are six possible (110) directions, 
there are six possible directions for the Burgers vectors. These six directions 
are the edges of the te t rahedra shown in Figure 5.4.20 

Consider, for example, misfit dislocations lying along either [110] or [110] 
directions, as shown in the left and right halves, respectively, of Figure 5.4. 
For (001) oriented fcc-lattice-based epitaxial films, these two dislocation 
line directions are the most common, as they lie both in the (001) interface 
plane as well as in one of the close-packed { i l l } slip planes within which 
dislocations move most readily. Dislocations having these line directions 

19 Dissociation into "partial dislocations" having shorter Burgers vectors separated by 
stacking faults is also possible. 

2 0 N. Thompson, "Dislocation nodes in face-centred cubic lattices," Proc. Phys. Soc. 
B66, 481 (1955). 

«-£ 
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Figure 5.5: Left: [Ϊ01] threading screw dislocation segments and [110] 60° misfit 
dislocation segment with Burgers vector along [Ϊ01] direction. Right: crossed 
grid of two arrays of misfit dislocations along the [Ϊ10] and [110] directions. 

can be one of three types, depending on the directions of their Burgers 
vectors. If the Burgers vector of the ΐ = [110] dislocation illustrated in the 
left half of Figure 5.4 lies along the line A-B, parallel to ί, then it is screw 
in character. If its Burgers vector lies along the line C-D, perpendicular 
to /, then it is edge in character. If its Burgers vector lies along any of the 
four other lines, Ä - C , A-D, B-C or B-D, at 60° to Γ, then it is a "mixed" 
60° dislocation. Likewise, the / = [110] dislocation illustrated in the right 
half of Figure 5.4 will either be screw, edge, or 60° mixed, depending on 
the direction of its Burgers vector. 

An example of a commonly observed dislocation configuration is illus-
t ra ted in the left half of Figure 5.5. An ϊ = [Ϊ01] screw dislocation with 
b = [ Ϊ0 ΐ ] /2 is shown threading up diagonally from the substrate into the epi-
layer. Just at the epilayer/substrate interface, the dislocation has bent over 
to form a misfit dislocation segment with Ϊ = [110]. Since Burgers vectors 
must be preserved along the length of any particular dislocation, the misfit 
dislocation segment is a 60° dislocation with cos/3 = l-b = cos60° = 1/2. A 
plan-view transmission electron micrograph of a crossed grid of such misfit 
dislocations is shown in Figure 5.6. 
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Figure 5.6: Bright-field plan-view transmission electron micrograph of the 
interface between a 200-nm Sio.gGeo.i layer grown on a Si (001) substrate.0 The 
misfit dislocations are arranged in a crossed grid running along the (110) direc-
tions within the (001) interface. 

aY. Fukuda, Y. Kohama, M. Seki, and Y. Ohmachi, "Misfit dislocation structures at 
MBE-grown Sii_xGex/Si interfaces, Jpn. J. Appl. Phys. 27, 1593 (1988). 

5.1.3 Equilibrium Strains and Dislocation Densities 
In Subsection 5.1.1 we discussed the strain energy cost associated with 
a perfectly coherent interface, and in Subsection 5.1.2 we discussed the 
dislocation energy cost associated with a semi-coherent interface. In this 
subsection, we ask which of the two interfaces costs the least energy, and 
hence will be thermodynamically preferred. To answer this question, let 
us calculate how the two kinds of energies depend on misfit dislocation 
density. For concreteness, we assume tha t the semi-coherent interface is 
composed, as illustrated in the right half of Figure 5.5, of a crossed-grid of 
two identical arrays of dislocations, each having a linear density of pmd· 

For a fully coherent interface, for which pmd = 0, there is only the 
coherency strain energy, which we have already calculated to be 2µ[(1 + 
v)/(\ — v)\hf2, where / is the lattice parameter misfit between the epitaxial 
layer and the substrate. For a semi-coherent interface, for which pmd > 0, 
the misfit will be partially taken up by localized regions of disregistry, 
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thereby decreasing the coherency strain energy, but increasing the misfit 
dislocation energy. 

To see how the coherency strain energy will decrease with misfit dis-
location density, we note tha t in one dimension, the misfit taken up by 
dislocations, /dis , is the lattice displacement parallel to the interface per 
dislocation, 6edg,||> divided by the spacing between dislocations, l / p m d · In 
other words, 

/dis = Pmd&edg,||· (5.12) 

Therefore, the dislocation density tha t would relieve all the misfit in one di-
mension would be pmd = //6edg,| |· K? o n average, the strain in the epitaxial 
film decreases linearly with the dislocation density, then 

e|| ~ / — /dis = / — Pmd&edg,||· (5.13) 

The dependence of the coherency strain energy on misfit dislocation density 
can then be writ ten as 

ucoh = 2µ ( — — j ft(/-pmd&edg,||) · ( 5 ·1 4 ) 

As indicated by the dashed lines in the left and right halves of Figure 5.7, 
the coherency strain energy depends parabolically on dislocation density, 
and vanishes when pmd = //6edg,| |-

At the same time, the energy associated with the dislocations them-
selves will increase as the misfit dislocation density increases. For most 
applications, it is sufficient to approximate the energy associated with each 
of the two dislocation arrays to be the dislocation density times the energy 
of an isolated dislocation, or 

p62 / l - i / c o s 2 / ? \ , / 4 /Λ 
-dis « P m d — (̂  χ _ ν ) In ^ T j . (5.15) 

This linear dependence of the dislocation array energy on dislocation den-
sity is shown as the dotted lines in the left and right halves of Figure 5.7. 

For more precise calculations, however, we note tha t interactions be-
tween dislocation should be taken into account. The reason is tha t when 
the dislocation spacing is less than the film thickness, the stress fields of 
individual dislocations are not fully screened from each other by the free 
surface, and mediate an "interaction" between them. 2 1 

2 1 See, e.g., J.P. Hirth and X. Feng, "Critical layer thickness for misfit dislocation 
stability in multilayer structures," J. Appl Phys. 67, 3343 (1990); and J.R. Willis, S.C. 
Jain, and R. Bullough, "The energy of an array of dislocations: implications for strain 
relaxation in semiconductor heterostructures," Philos. Mag. A62 , 115 (1990). 
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Figure 5.7: Areal energy densities, normalized by the product of the shear mod-
ulus and the Burgers vector, as a function of the misfit taken up by dislocations, 
Pmd&edg,||· The dotted lines represent the energies of two dislocation arrays; the 
dashed lines represent the coherency strain energies; the full lines represent the 
sum. The film on the left is thin enough that it is stable when it is coherent with 
the substrate; the film on the right is thicker and is stable when it is semi-coherent 
with the substrate. 

The total areal energy density is the sum of the areal energy densities 
associated with the coherency strain and both of the dislocation arrays, or 

^tot = ^coh + 2?/dis 

ßb2 

+ Pmd 2π 
i / c o s 2 / A (Ah 
r^r- ln T (5.16) 

This dependence of utot on pmd displays two distinct kinds of behavior, 
as illustrated in Figure 5.7. For thin, low-misfit films, the total energy is 
minimum at pmd = 0. Misfit dislocations cost more energy than is regained 
by release of coherency strain. For thick, high-misfit films, however, the 
total energy is minimum at pmd > 0. The introduction of some misfit 
dislocations costs less energy than is regained by release of coherency strain. 

Mathematically, these two kinds of behaviors arise according to whether 
the energy associated with either of the dislocation arrays, utot/2, increases 
or decreases for an incremental increase in pmd from pmd = 0. In other 
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words, according to whether 

dutot] ί1 + Λ uu , , /i&2 fl-vcos2ß\ 
— = -2µ - ^edg,||/ + — : ln(4ft/6) 

(5.17) 
is greater than or less than zero. On the one hand, if it is greater than zero, 
then the change in energy upon introducing the first few misfit dislocations 
is positive. Misfit dislocations will not tend to form, and the fully strained, 
coherent epilayer will be thermodynamically stable. On the other hand, if 
it is less than zero, then the change in energy upon introducing the first 
few misfit dislocations is negative. Misfit dislocations will tend to form, 
and the strain in the epilayer will tend to "relax." 

The critical misfit for a given thickness and the critical thickness for a 
given misfit, beyond which misfit dislocations will tend to form, are deter-
mined by the condition (l/2)[dutot/dpmd]Pmd=o = 0, or 

b /1-i/cos2 β\ , , , /fX 
/c = — ; r In (4h/b) 
J 8TT/ICOSA V 1 + ^ / 

6 (\ — i/cos2 3\ , , , , , , 
*° = ^f^x{-^T^£)ln{4hJb) ( 5 · 1 8 ) 

where we have used Equation 5.8, 6edg,|| = ^cosA. These expressions repro-
duce exactly those derived originally by Matthews and Blakeslee22 and more 
recently by Ball and van der Merwe.23 They are illustrated in Figure 5.8 
for λ = β = 60°, which is often the case for fcc-lattice-based diamond 
and zincblende crystals. Films having thickness/misfit combinations below 
the curves are stable against the introduction of misfit dislocations; films 
having thickness/misfit combinations above the curves are not. 

Also shown in Figure 5.8 are experimental data points corresponding 
to Ini-xGa^As films grown on GaAs substrates and Sii-^Ge^ films grown 
on Si substrates. As can be seen, the boundary separating the coherent 
from the semi-coherent films is given very closely by Equation 5.18. That 
equation is also believed to describe the thermodynamic boundary dividing 
coherent from semi-coherent epitaxy of metal films.24 

Above the critical layer thickness, the energy decreases at first upon the 
introduction of the first few misfit dislocations, but eventually increases 

2 2 J .W. Matthews and A.E. Blakeslee, "Defects in epitaxial multilayers I. Misfit dislo-
cations," J. Cryst. Growth 27, 118 (1974). 

2 3C.A.B. Ball and J.H. van der Merwe, "The growth of dislocation-free layers," in 
Dislocations in Solids, F.R.N. Nabarro, Ed. (North-Holland, Amsterdam, 1983), Chap. 
27. 

2 4 Y. Kuk, L.C. Feldman, and P.J. Silvermann, "Transition from the pseudomorphic 
state to the nonregistered state in epitaxial growth of Au on Pd (111)," Phys. Rev. Lett. 
50, 511 (1983). 
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F i g u r e 5.8: Logari thmic (left) and linear (right) plots of critical layer 
thicknesses for a given misfit (or, alternatively, critical layer misfits for a given 
thickness), as deduced from Equa t ion 5.18. T h e tr iangles represent exper iments 
in which I n i _ x G a x A s layers were grown on GaAs subs t ra tes and then annealed.0 

T h e circles represent exper iments in which S i i _ x G e x layers were grown on Si 
subs t ra tes and then annealed. T h e filled d a t a points correspond to s t ruc tures 
t h a t mainta ined coherency; the open d a t a points correspond to s t ruc tures t h a t 
became semi-coherent. 

a P .S . Peercy, B.W. Dodson, J.Y. Tsao, E.D. Jones, D.R. Myers, T.E. Zipperian, L.R. 
Dawson, R.M. Biefeld, J.F. Klem and C.R. Hills, "Stability of strained quantum-well 
field effect transistors," IEEE Electron Dev. Lett 9, 621 (1988). 

6D.C. Houghton, C.J. Gibbings, C G . Tuppen, M.H. Lyons, and M.A.G. Halliwell, 
"Equilibrium critical thickness for S i i _ x G e x strained layers on (100) Si," Appl. Phys. 
Lett. 56, 460 (1990). 

again. The dislocation density that minimizes utot can be found by solving 
for that /omd for which the derivative 

dut 

2<9pmd 
= ~2µ \T~i/) ^edg'" ^ ~ Pmd6edS'll) 

ßb2 fl — ucos2ß\ / 4 / ι Ν 

4 π \ - v 
In 

(5.19) 

vanishes. In other words, the equilibrium dislocation density is given by 

/ 
Pmd,e bcosX 
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Figure 5.9: Equilibrium misfit strain (/dis) taken up by dislocations as a function 
of thickness at constant misfit (left) or as a function of misfit at constant thickness 
(right). Below either the critical thickness (hc) or critical misfit (/c) the strain 
taken up by dislocations is zero; above the critical thickness or critical misfit it 
becomes an increasingly large fraction of the total misfit ( / ) . 

/ 
b cos λ 

hc (5.20) 

This equation determines pmcj self-consistently in terms of pmd itself, and 
can be solved iteratively; a reasonable initial guess is pmd = / / ( 2 6 c o s A ) . 
Once determined, the equilibrium pmd then determines tha t portion of the 
total misfit, /dis , tha t is taken up by dislocations through Equation 5.12. 

For a given misfit, /dis is zero for thicknesses less than the critical layer 
thickness, but increases sharply for thicknesses greater than the critical 
layer thickness. This dependence is shown in the left half of Figure 5.9. 
Note tha t even for h > hc, the equilibrium dislocation density is less than 
tha t which would eliminate all coherency strain. In other words, even 
above the critical layer thickness the coherency strain in the epilayer is 
only partially, and not fully, relaxed. 

Likewise, for a given thickness, pmd is zero for misfits less than the 
critical layer misfit, but increases logarithmically for misfits greater than 
the critical layer misfit. This dependence is shown in the right half of 
Figure 5.9. Again, even for / > / c , the equilibrium dislocation density is 
always less than tha t which would eliminate all coherency strain. 
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5.2 Forces on Dislocations 
In Section 5.1, we found that the transition between coherency and semi-
coherency corresponded to the thicknesses and misfits at which introduction 
of the first few misfit dislocations became energetically favorable. Ulti-
mately, though, the transition between coherency and semi-coherency also 
requires the motion of dislocations to (or near to) the epilayer/substrate 
interface. There must then be forces acting on the dislocations to cause 
them to move. In this section, we describe the forces acting on dislocations 
in strained heterostructures. We will find that the thermodynamic transi-
tion between coherency and semi-coherency also corresponds exactly to the 
thicknesses and misfits at which the forces acting to elongate existing mis-
fit dislocations are positive or negative. We will also find that the average 
force acting to elongate existing misfit dislocations, the "excess stress" of 
the structure, is a natural measure of the driving force for strain relaxation 
by misfit dislocation creation. 

We will begin, in Subsection 5.2.1, by describing excess stress in a simple 
structure: a single strained surface layer grown on a very thick substrate. 
Then, in Subsection 5.2.2, we describe excess stress in a more complicated 
structure: a single strained layer buried within a very thick substrate. Fi-
nally, in Subsection 5.2.3, we generalize the concept of excess stress to even 
very complicated heterostructures, for which the excess stress depends on 
depth within the structure. 

5.2.1 Strained Surface Layers 
We start, in this subsection, by describing excess stress in a simple struc-
ture: a single strained surface layer grown on a very thick substrate. Con-
sider a dislocation "threading" upward through the epilayer/substrate inter-
face and into the epilayer itself, as illustrated in the left half of Figure 5.10. 
If the dislocation bends over, then new length of misfit dislocation will be 
created at the epilayer/substrate interface. If, in steady state, the shape 
of the threading segment as it moves from A-C to B-D does not change, 
then the net change in energy is due solely to the new misfit segment C-D, 
which we may imagine has moved downward from AB. 

The energy gained by moving unit length of that segment a distance 
h downward (or, equivalently, by bending the threading dislocation unit 
length to the right) is hz dotted into what is known as the Peach-Koehler 
force, dF = (b · ö) x /, which describes the force acting on unit length of 
dislocation in an external stress field. In particular, the bending force due 
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Figure 5.10: Strain relaxation by single (left) and double (right) kinking of a 
threading dislocation to form misfit dislocations. 

to the coherency stress in the film is 

Fcoh = hz-{(b-&) x / } , 

where 

( ac o h 0 0 

0 acoh 0 
0 0 0 

is the stress tensor in the epilayer film, and, using Equation 5.4, 
0"coh = σ\\ = Ζµ I — — | en 

(5.21) 

(5.22) 

(5.23) 

is the in-plane stress acting in the epilayer. 
For the 60° misfit dislocation segment illustrated in Figure 5.5, whose 

Burgers vector is b = [Ϊ01]6/\/2 and whose line direction within the inter-
face is / = [110]/\/2, the force is 

I ° 
F c o h = [ 0 0 h } . I 0 

\ - ^ C o h / 2 

with a magnitude of 
Fcoh = bacohh/2. 

Since for this geometry 

fredg,|| = ^cosA = b cos 60° = 6/2, 

the coherency force can also be writ ten as 

coh — °edg, | | 0 " C o h ^ , 

(5.24) 

(5.25) 

(5.26) 

(5.27) 
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which can be shown to be generally true for arbitrary geometries (see Ex-
ercise 4 at the end of this chapter) . 

Opposing this force is a line tension associated with the energy required 
to create the new misfit dislocation segment C-D. From Equation 5.11, this 
force, or the energy per unit length, is 

π ub2 /l-i/cos2/?\ , , /1X , 
d i s = 4 7 ( l - i / ) l n ( 4 f t / f c ) ' ^ 5 ·2 8 ) 

where we have assumed noninteracting dislocations. If we recast this equa-
tion into the form Fdis = &edg,locus'1» then we can write 

uh (\ — z/cos2 3\ , , , /1X 
^dis = — ^ r In (4hb. 5.29 

4π/ι cos λ \ 1 - v ) 
which is an effective stress, σ<ϋδ, associated with the dislocation line tension 
tha t opposes the coherency stress, acoh-

The net, or "excess" stress driving the bending of threading dislocations 
to form single-kink misfit segments is therefore 

c v 
aexc — acoh — 0"dis 

2µ(--^) ( / -pmd6edg, | | ) 

ub (\ — i/cos2 / ? \ , , , /1X 
^ ' M * ln(4/i/6). (5.30) 4π/ι cos λ 

When σ | ^ > 0, threading dislocations will tend to bend over to form strain-
relaxing misfit segments. When σ | ^ < 0, threading dislocations tha t have 
bent over to form strain-relaxing misfit segments will tend to straighten. 
When σ | ^ = 0, threading dislocations will have neither tendency.2 5 

Note tha t this excess stress reproduces exactly the variation of energy 
with dislocation density found in Equation 5.19, assuming noninteracting 
dislocations. Therefore, the condition [o'^]Pmd=o = 0 is equivalent to the 
condition {l/2)[dutot/dpm<i]pmd=o = 0 for the thickness/misfit boundary 
between coherent and semi-coherent films, and the condition σ ^ = 0 is 
equivalent to the condition (l/2)dutot/dpm^ = 0 for the equilibrium mis-
fit dislocation density beyond the critical layer thickness. Physically, the 
force required to form new misfit dislocations by bending of existing thread-
ing dislocations is equivalent to tha t required to increase the density of a 
dislocation array by "squeezing" laterally on the dislocation array. 

2 5L.B. Freund, "The driving force for glide of a threading dislocation in a strained 
epitaxial layer on a substrate," J. Mech. Phys. Solids 38, 657 (1990). 
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Figure 5.11: Contours of constant single-kink (left) and double-kink (right) ex-
cess stresses on a thickness/equivalent-strain diagram. 

As we will discuss later, it is often possible, for kinetic reasons, to grow 
coherent epilayers to thicknesses well beyond those for which they should 
become semi-coherent. In these cases, the excess stress evaluated at pm(\ = 0 
is a useful measure for the degree of metastabili ty of the structure. The 
critical thickness/misfit relationship for a given degree of metastability, or 
a given value of σ | ^ , is then found, from Equation 5.30, to be 

. . / S K i x 1ί1~Λσβχο b / l - * / c o s 2 / A , _ / 1 Λ 
/ c fa f i : , h) = -[ - ^ + — ; r In Uh b). 
JcK e x c ' ; 2 \ l + vJ µ 87r/icosA V 1 + ^ J 

(5.31) 
These metastable critical thicknesses and misfits are illustrated in the 

left half of Figure 5.11 for various values of crf^/µ. For thin ( « 150 Ä) 
"quanturn-well" type structures, which are capped immediately by un-
strained material, it is often possible to grow coherent metastable struc-
tures up to values of c^/µ = 0.04. For thicker structures, the maximum 
σ^/µ values decrease considerably. In the limit of very thick structures, 
grown for very long times, the maximum ο~^/µ values are zero, and the 
equilibrium critical layer thickness boundary holds. 

5.2.2 Strained Buried Layers 
In Subsection 5.2.1, we described excess stress in a simple structure con-
sisting of a strained surface layer. In this subsection, we describe excess 
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stress in a more complicated structure consisting of a strained buried layer. 
Consider a dislocation threading upward through this buried strained layer, 
as illustrated in the right half of Figure 5.10. The buried strained layer has 
thickness /istr? a n d is capped by an unstrained layer of thickness hcap. For 
this structure, it is possible for the dislocation to bend twice, thereby reliev-
ing strain only within the buried layer.26 We can apply all the arguments of 
the previous subsection to calculate the net bending force, except tha t the 
line tension force must now be taken twice. The excess stress driving misfit 
dislocation formation by this macroscopic "double-kinking" of a threading 
dislocation is therefore 

~ D K _ 
aexc — σοο1ι — 0 d i s , l — Odis,2 

= 2µ ( T 3 W ^ " pmd6edS'll) 

4 7 ^ cos λ V I - « / / 

µΒ ^ - ^ ° δ 2 ^ 1 η ( 4 β 2 / 6 ) , (5.32) 
4π^2 cos λ 

/ l - * / c o s 2 / A 

where pmd is now the density of dislocations at each interface surrounding 
the buried strained layer. 

Note tha t the stresses associated with the dislocation line tensions are 
different for the two dislocations, because they may have different cutoff 
"screening" distances for their elastic energies. The cutoff distance for the 
dislocation farthest from the free surface will be approximately the distance 
to the dislocation closest to the free surface, or h. However, the cutoff 
distance for the dislocation closest to the free surface will be the smaller 
of the distances to the free surface, hcap, or to the adjacent dislocation, or 
approximately hefF = hstrhcap/(hstr + hcap). Therefore, 

T D K 

σβχο 2µ\^—^ ( / - P m A d g , | | ) 

ßb / l — vcos2ß\. / 4 / i s t r 
In 47r/istr cos λ \ l — i/ / \ b 

( ^ > ( ^ ) <5·33» 47T/ieff COS λ 

In the limit hcap —► 0 (or, to avoid singularities, hcap —+ 6/4), the 

2 6 W.D. Nix, D.B. Noble, and J.F. Turlo, "Mechanisms and kinetics of misfit dislocation 
formation in heteroepitaxial thin films," Mat. Res. Soc. Symp. Proc. 188, 315 (1990). 
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double-kink excess stress becomes 

<£c = 2µ0^)(/-ρ ,ηΑ^,ιι) 
µ6 ^ Ι - , ^ / 4 ^ ( 5 3 4 ) 

4nhstT cos λ \ l — i/ 

and is equivalent to the single-kink excess stress. Effectively, there is no 
cap, and the energy of the dislocation elongating along the surface is zero. 

In the opposite limit / i c a p —> oo, the double-kink excess stress becomes 

T D K 

aexc 
= 2 ^ \ J ~ ) ( / - P m d & e d g , | | ) 

µΒ fl-vcoB*ß\lRf4hn 

27r/lstr COS λ 

In this limit, the critical thickness/misfit relationship for a given degree of 
metastability, or a given value of σ ^ , can be calculated to be 

u<U) = Uizl)^+ ±__i^s^A ΗΨ)-2 \ \ + v) µ 47r/icosA \ 1 + v 
(5.36) 

These metastable critical layer thicknesses are illustrated in the right 
half of Figure 5.11. The equilibrium critical layer thickness boundary is 
determined by σ ^ = 0, and is seen to be shifted to the right from the 
single-kink curves. Because the line tension enters in twice, for strained 
layers having the same thickness and misfit, this double-kink mechanism 
for strain relaxation is usually less likely than the single-kink mechanism 
discussed earlier. 

5.2.3 Generalized Excess Stress 
In Subsections 5.2.1 and 5.2.2, we described the excess stresses associated 
with two strained layer structures, one in which the layer is at the surface, 
another in which the layer is buried. In this subsection, we describe excess 
stress in general structures composed of multilayers of different misfits and 
thicknesses. Such structures are susceptible to either single-kink or double-
kink relaxation at different depths within the structure. In other words, 
dislocations may bend anywhere within a given structure. Then, it is useful 
to generalize the driving force for tha t bending to include a dependence on 
depth. 2 7 

2 7J .Y. Tsao and B.W. Dodson, "Excess stress and the stability of strained heterostruc-
tures," Appl. Phys. Lett. 53, 848 (1988). 
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In doing so, we note tha t for many applications it is only necessary to 
calculate the excess stress in unrelaxed, fully coherent structures. There-
fore, we restrict ourselves to the simplest case of unrelaxed (pmd = 0) 
structures. Structures tha t are partially relaxed (pmd φ 0) are consider-
ably more difficult to t reat . 

If we make the approximation tha t the elastic moduli of the different 
layers are equal, then for single-kink relaxation, the depth-dependent excess 
stress can be writ ten as 

SK/ x o ί λ ± Λ SK/ x /i6 {ΐ-1/0Ο82β\Λ (Az\ 

where z is the depth from the free surface, and 

i z A·?1 

4«(z) = / Φ') V ' <5·38) 
Jo z 

the equivalent strain, is the average parallel strain associated with the struc-
ture from the surface to tha t depth. 

Physically, the coherency stress acting to bend a dislocation at a depth 
z is an integral of the strains over the length of the dislocation above tha t 
depth. The dislocation line tension stress acting to straighten a dislocation 
at a depth z is the energy associated with creating a dislocation at tha t 
depth. If (7^(z) < 0 at a particular depth z, misfit dislocation formation 
at tha t depth leads to an increase in energy. If σ ^ ( ζ ) > 0 at a particular 
depth z, misfit dislocation formation at tha t depth leads to a decrease in 
energy. 

Note tha t even if crf.£(z) > 0 at a particular depth, a threading dis-
location will not necessarily bend there. Kinetic limitations may prevent 
such bending, and there may be other depths in the structure at which the 
excess stress is even higher, and which will be even more favored for misfit 
dislocation creation. 

To illustrate this concept of a depth-dependent excess stress, in Fig-
ures 5.12 and 5.13 we show σ | ^ ( ζ ) for two double quantum-well heterostruc-
tures. In the unstrained caps, crf^(z) increases gradually from the surface, 
as the line tension stress associated with misfit dislocation creation de-
creases. In the strained layers themselves, crf^(z) increases more quickly, 
as the coherency stresses increase. In the unstrained buffers beneath the 
strained layers crf^(z) decreases, as the coherency stress associated with 
the strained layer is "diluted," so tha t the average coherency stress above 
a depth z decreases. 

In these examples, the single-kink excess stress is maximum at the rear 
of the deepest buried strained layers. The rear of tha t strained layer is 
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Figure 5.12: Strains, equivalent strains, and excess stresses in a double buried 
quantum-well heterostructure. Both the single- and double-kink excess stresses 
maximize at a depth of 800 Ä, but only the single-kink excess stress exceeds 
zero, and even then just barely. Therefore, this structure is stable with respect 
to double-kink strain relaxation, but slightly unstable with respect to single-kink 
strain relaxation. 

therefore the weakest point in the structure, where misfit dislocations are 
most likely to form. It is important to emphasize, though, tha t the rear of 
the shallowest buried strained layer is also a weak point, at which misfit 
dislocations may form. 

The double-kink excess stress can be generalized in a similar way: 

« S M = 2e £;)«'>- µ& l - i / cos2 β 
In 

4/Λ 
2ΈΗ COS λ V \ — v 

(5.39) 
where z is the depth of the lower kink from the free surface, h is the thickness 
of material between the kinks, and 

/

z + h if 
(5.40) 

is the equivalent strain associated with the material between the kinks. 
Note tha t the double-kink excess stress depends not just on depth, but 

on the thickness of material between the kinks. It will be maximum when 
it is matched to the thicknesses of the buried strained layers. For example, 
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Figure 5.13: Strains, equivalent strains, and excess stresses in a double buried 
quantum well heterostructure. Both the single- and double-kink excess stresses 
maximize at a depth of 800 Ä, but only the single-kink excess stress exceeds zero. 
Therefore, this structure is stable with respect to double-kink strain relaxation, 
but unstable with respect to single-kink strain relaxation. 

Figures 5.12 and 5.13 show the depth-dependent double-kink excess stress 
for the double buried quantum-well heterostructures evaluated at h equal 
to the actual thicknesses, / i s t r , of the buried quantum wells. The excess 
stresses can be seen to be small everywhere except in the quantum wells 
themselves. 

Also note tha t even at their maxima, at the rear of the buried strained 
layers, the double-kink excess stresses are less than the single-kink excess 
stresses. These particular buried structures will therefore be more likely to 
relax by generation of single-kink rather than double-kink misfit disloca-
tions. 

If we require a structure to be absolutely stable, both with respect to 
single-kink and double-kink relaxation, then we require σ^(ζ) < 0 and 
σβχ?( ζ ) < 0 f ° r a n l z- For the single buried strained layer structure shown 
in Figure 5.14, whose weakest point is at a depth z = / i c a p + hstT, where 
/ i c a p is the thickness of the unstrained capping layer, we must then satisfy 
both 

rSK 
J equ < 87T/lSK COS A 

1 - v cos2 β 
In {¥) (5.41) 
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Figure 5.14: Stability curves for structure consisting of a strained layer of thick-
ness hstr and misfit / s t r , buried underneath a capping layer of thickness hcap and 
misfit /cap. 

f D K < / e q u " 4nh%*cosX 
( i ^ W i S ) . «,42) 
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= 
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/ s t r 

™str 

(5.43) 

(5.44) 

are the single- and double-kink equivalent strains and thicknesses. Note 
tha t we have made the approximation h^ = /istr^cap/(^str + ^caP) = ^str 
for the double-kink equivalent thicknesses. 

Substi tuting Equations 5.43 into Equation 5.41, we find tha t for a given 
thickness cap, hcap, and a given thickness buried strained layer, / i s t r , the 
critical strained layer misfit below which the structure will be stable with 
respect to single-kink relaxation is 

/s t r — ^cap + ™str 1 — v cos2 ß 
In str 

hstT Sn(hcap + hBtr) cos λ V 1 + v 
(5.45) 

The resulting critical layer misfits for a given thickness (or, equivalently, 
the critical layer thicknesses for a given misfit) are shown as the dashed 
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curves in Figure 5.14 for various capping layer thicknesses. Buried strained 
layer thickness and misfit combinations tha t lie to the left of the curves are 
stable with respect to single-kink relaxation. 

If the cap thickness is zero, then the critical thickness curve (leftmost 
solid curve) for simple surface strained layers is obtained. As the cap be-
comes thicker, the critical thickness curves shift to the right, as the un-
strained cap "dilutes" the strain of the buried layer and stabilizes it. Ulti-
mately, for infinitely thick caps, the structure becomes more unstable with 
respect to double-kink relaxation than to single-kink relaxation. In this 
limit, the critical strained layer misfit below which the structure will be 
stable is found by substi tuting Equations 5.44 into Equation 5.42, or 

u-t—iL^L)^«*). (5.46) 
47r/istr cos A \ l + v ) \ b ) 

The resulting critical layer misfit for a given thickness (or, equivalently, 
the critical layer thickness for a given misfit) is shown as the rightmost 
solid curve in Figure 5.14. Buried strained layer thickness and misfit com-
binations tha t lie to the right of the curve are not stable with respect to 
double-kink relaxation. 

To the left of the leftmost solid curve, then, structures are absolutely 
stable with respect to both single- and double-kink relaxation, regardless 
of cap thickness. Within the window between the solid curves, structures 
are absolutely stable with respect to double-kink relaxation, but require 
stabilization with respect to single-kink relaxation by a finite-thickness cap 
layer. To the right of the rightmost solid curve, structures are not stable 
with respect to double-kink relaxation, even if they have been stabilized 
against single-kink relaxation by an infinitely thick cap layer. 

5.3 Relaxation of Strain 
In Sections 5.1 and 5.2, we described the thermodynamics of the creation of 
misfit dislocations. In particular, we described the driving force, or "excess 
stress," acting to bend vertical dislocation segments into misfit dislocations 
lying in the interface between the strained layer and the substrate . Ba-
sically, the sign of ae x c determines whether or not misfit dislocations will 
have a tendency to form, while the magnitude of ae x c determines the driv-
ing force for them to form. Even if ae x c > 0, however, misfit dislocations 
will not form instantly during growth.2 8 Instead, they will form at a finite 

2 8 A.T. Fiory, J.C. Bean, R. Hull, and S. Nakahara, "Thermal relaxation of metastable 
strained-layer Ge x S i i_ x /S i epitaxy," Phys. Rev. B31 , 4063 (1984); and E. Kasper, 
"Growth and properties of Si/SiGe superlattices," Surface Sei. 174, 630 (1986). 
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rate determined, to first order, by the magnitude of aexc. 
In this section, we discuss the kinetics of the creation of misfit disloca-

tions. We begin, in Subsection 5.3.1, with a brief introduction to the dy-
namics of dislocations in bulk materials, as summarized in what are known 
as deformation-mechanism maps. Then, in Subsection 5.3.2, we describe 
a simple qualitative model for the dynamics of dislocations in epitaxial 
thin films, and use it to simulate, in an approximate way, the evolution of 
strain and misfit dislocation density during actual growth and processing 
of strained heterostructures. Finally, in Subsection 5.3.3, we discuss the 
construction of stability diagrams, which describe the stress-temperature-
time regimes within which strained heterostructures will be metastable to 
various amounts of relaxation. 

5.3.1 Deformation Mechanism Maps 
Let us begin, in this subsection, with a brief introduction to the dynamics of 
dislocations in bulk materials. At the outset, we note that the mechanisms 
underlying the introduction, motion, and multiplication of dislocations in 
bulk materials are exceedingly complex. The mechanisms are many, and 
each may be important only under certain conditions. To illustrate this, 
let us first consider some of the ways in which bulk materials deform plasti-
cally under the application of externally imposed stresses. The classic way 
of representing the plastic deformation of bulk materials is through the use 
of deformation-mechanism maps.29 These maps are stress-temperature di-
agrams on which are indicated regimes within which various mechanisms 
for plastic deformation are dominant. 

Consider, for example, the deformation-mechanism maps illustrated in 
Figures 5.15 and 5.16 for Si and Ge, respectively. At relatively low tem-
peratures and high stresses, deformation is dominated by "low-temperature 
plasticity,1' in which dislocations move mainly by conservative motion, or 
glide, within the plane containing both the dislocation line and its Burgers 
vector. At relatively high temperatures and moderate stresses, deformation 
is dominated by "power-law creep," in which dislocations are increasingly 
able to move by the nonconservative motion, or climb, of dislocations out 
of the plane containing both the dislocation line and its Burgers vector. 
At the lowest stresses, deformation of polycrystalline materials is domi-
nated by "diffusional flow," in which, even in the absence of dislocations, 
grain boundaries move and change shape via diffusion of matter through 
the grains or along the grain boundaries themselves. 

2 9H.J . Frost and M.F. Ashby, Deformation-Mechanism Maps (Pergamon, Oxford, 
1982). 
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Figure 5.15: Stress-temperature deformation mechanism map for silicon of 
grain size 100 µπι.α Iso-strain rate contours are drawn from 1/s to 10 _ 1 0 /s . 

aReprinted from H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps (Perga-
mon, Oxford, 1982), p. 71. 
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Figure 5.16: Stress-temperature deformation mechanism map for germanium of 
grain size 100 µτη.α Iso-strain rate contours are drawn from 1/s to 10 _ 1 0 / s . 

"Reprinted from H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps (Perga-
mon, Oxford, 1982), p. 73. 
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Superimposed on these diagrams are iso-strain rate contours, which in-
dicate the temperature-dependent stresses required to cause a given strain 
rate. Generally, lower stresses are required to cause a given strain rate at 
higher temperatures , due to increased dislocation mobilities. This increased 
dislocation mobility may occur for a number of reasons. For example, the 
nucleation rate of microscopic double kinks, by which dislocations glide 
laterally on an atomic scale, may increase. The rate at which dislocations 
pass through obstacles may increase. The rate at which vacancies diffuse 
to and from dislocations may also increase, thereby increasing the rate at 
which dislocations climb. 

We emphasize tha t deformation-mechanism maps represent an enor-
mous simplification of a number of complex mechanisms, and can only be 
a rough guide to deformation behavior. In particular, their construction 
requires the assumption of a particular microstructure, e.g., dislocation 
density and, in polycrystalline materials, grain size. As materials deform, 
however, their microstructure will change; if the change is severe, the cor-
responding change in the deformation-mechanism map may also be quite 
severe. In other words, a complete picture of plastic deformation must 
include the t ime evolution of dislocation densities and other aspects of mi-
crostructure, and how tha t evolving microstructure in turn influences the 
further evolution of dislocation densities. 

5.3.2 A Simple Phenomenological Model 
In Subsection 5.3.1, we discussed briefly plastic deformation in bulk ma-
terials. The geometry of thin film single-crystal heterostructures is much 
simpler than tha t of a bulk polycrystalline material, and so in principle 
should be correspondingly easier to t reat . However, this has not yet proven 
so. A general t reatment of the plastic deformation of thin film strained het-
erostructures must itself include a number of complex microscopic mecha-
nisms. In this subsection, we briefly discuss these microscopic mechanisms, 
and then discuss a simple phenomenological model based on these mecha-
nisms. 

Consider the microscopic mechanisms illustrated in Figure 5.17. First, 
because the initial threading dislocation densities in electronic-grade semi-
conductor substrates are exceedingly low and cannot by themselves account 
for the amounts of strain relaxation commonly observed, nucleation of new 
dislocation loops must be included.30 These loops are most likely "half-

3 0P.M.J. Maree, J.C. Barbour, J .F. van der Veen, K.L. Kavanagh, C.W.T. Bulle-
Lieuwma, and M.P.A. Viegers, "Generation of misfit dislocations in semiconductors," 
J. Appl. Phys. 62, 4413 (1987); and R. People and J.C. Bean, "Calculation of critical 
layer thickness versus lattice mismatch for Ge x S i i_ x /S i strained-layer heterostructures," 
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Figure 5.17: Schematic illustrations of possible microscopic deformation mecha-
nisms operative during strain relaxation. 

loops" nucleated at the free surface, perhaps catalyzed by defects or other 
stress concentrators.3 1 In compound semiconductors, the situation is even 
more complicated, due to possible dependences of the nucleation rate on 
surface conditions and chemistry. 

Second, the outward "bowing" motion of these dislocation half-loops to 
form misfit dislocation segments at the epilayer/substrate interface must be 
included.32 This motion will be dominated by glide at low temperatures, 
but will increasingly have a climb component at higher temperatures . It 
may also be mediated by nucleation of microscopic single kinks at the free 
surface in very thin films, or by nucleation of microscopic double kinks in 
thicker films.33 

Third, the slowing and occasional pinning of these dislocation half-
loops as they move and encounter other dislocation segments must be 
included.34 Such pinning has been observed during in situ transmission 

Appl. Phys. Lett. 47, 322 (1985) and 49, 229 (1986). 
3 1 B.W. Dodson, "Nature of misfit dislocation sources in strained-layer semiconduc-

tor structures," Appl. Phys. Lett. 53, 394 (1988); C.J. Gibbings, C.G. Tuppen, and 
M. Hockly, "Dislocation nucleation and propagation in Sio.95Geo.05 layers on silicon," 
Appl. Phys. Lett. 54, 148 (1989); and D.J. Eaglesham, E.P. Kvam, D.M. Mäher, C.J. 
Humphreys, and J.C. Bean, "Dislocation nucleation near the critical thickness in GeSi/Si 
strained layers" Phil. Mag. A59, 1059 (1989). 

3 2 J .W. Matthews, S. Mader, and T.B. Light, "Accommodation of misfit across the 
interface between crystals of semiconducting elements or compounds," J. Appl. Phys. 
4 1 , 3800 (1970). 

3 3R. Hull, J.C. Bean, D. Bahnck, L.J. Peticolas, Jr., K.T. Short, and F.C. Unter-
wald, "Interpretation of dislocation propagation velocities in strained GexSii_x/Si(100) 
heterostructures by the diffusive kink pair model," J. Appl. Phys, to be published. 

3 4 L.B. Freund, "A criterion for arrest of a threading dislocation in a strained epitaxial 
layer due to an interface misfit dislocation in its path" J. Appl. Phys. 68, 2073 (1990). 
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electron microscopy,35 and is likely to be extremely important in the later 
stages of strain relaxation,3 6 when both crossed grids of dislocations have 
become quite dense. 

Fourth, the unpinning and possible multiplication3 7 of dislocation half-
loops as they "bow through" obstacles such as other dislocations must be 
included. These processes have not been directly observed, but may be 
important in the later stages of strain relaxation. 

Finally, the way in which all of these microscopic processes depend on 
depth within the structure must be included. Treating depth-dependent 
strain relaxation would represent a nontrivial extension of existing theories, 
but would be particularly important for compositional graded strained het-
erostructures, or for strained heterostructures composed of multiple layers, 
each having its own misfit. 

As a consequence, all current models t reat only some of these processes, 
and even then only in simplified ways. For concreteness, let us consider 
here one model,3 8 based on the phenomenology of deformation in bulk 
diamond-structure materials.3 9 The model is not the most complete,4 0 but 
is simple and predicts at least qualitatively much of what is known about 
strain relaxation. 

The model assumes tha t dislocations multiply at a rate proportional to 
(a) the velocity at which they move, (b) the number of dislocations present, 
and (c) the excess stress. If the number of dislocations is itself proportional 
to the amount of strain relaxation, 7, and if the dislocation glide and climb 
velocities are bo th thermally activated and proportional to the excess stress, 
then we can write 

g = ^φ) (rge-Q«/*r + Tce-^kT) (7 + 7o), (5.47) 
3 5 R. Hull and J.C. Bean, "Variation in misfit dislocation behavior as a function of 

strain in the GeSi/Si system" Appl. Phys. Lett. 54, 925 (1989). 
3 6B.W. Dodson, "Work hardening and strain relaxation in strained-layer buffers," 

Appl. Phys. Let. 53 , 37 (1988). 
3 7 W. Hagen and H. Strunk, "A new type of source generating misfit dislocations," 

Appl. Phys. 17, 85 (1978). 
3 8B.W. Dodson and J.Y. Tsao, "Relaxation of strained-layer semiconductor structures 

via plastic flow," Appl. Phys. Lett. 51 , 1325-1327 (1987); B.W. Dodson and J.Y. Tsao, 
"Erratum: Relaxation of strained-layer semiconductor structures via plastic flow," Appl. 
Phys. Lett. 52, 852 (1988); and R. People, "Comment on 'Relaxation of strained-layer 
semiconductor structures via plastic flow'," Appl. Phys. Lett. 53 , 1127 (1988). 

3 9 H. Alexander and P. Haasen, "Dislocations and plastic flow in the diamond struc-
ture," in Solid State Physics Vol. 22, F. Seitz and D. Turnbull, Eds. (Academic Press, 
New York, 1968), pp. 27-158. 

40See, e.g., D.C. Houghton, "Strain relaxation kinetics in S i i _ x Ge x /S i heterostruc-
tures," J. Appl. Phys. 70, 2136 (1991), and Exercise 6 at the end of this chapter. 
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οΠη(7 + 7ο) σ ^ ( 7 ) ( r g e - ^ / f c T + r c e " ^ / f c T ) . (5.48) 
dt µ2 

In these equations, Tg and Tc are glide and climb rate prefactors, Qg and 
Qc are glide and climb activation energies, and η0 represents a constant 
"source" term. 

Note that the form of Equation 5.48 is general, but the actual values of 
the kinetic parameters depend on the orientation of the slip planes with re-
spect to the epilayer/substrate interface, and on the direction of slip within 
those planes. More general treatments can be formulated by replacing the 
excess in-plane stress with the excess stress resolved on the slip plane and 
acting in the direction of slip within that plane.41 For (001) oriented films 
in the Sii-^Ge^ system, approximate fits to relaxation data give42 rate pref-
actors of Tg = 2 x 1010 s _ 1 and r c = 3 x 1021 s_ 1 , a stress-dependent glide 
activation energy of Qg = Qg)0[l — &exc(l)/°O], where Qz,0 = 16kTm and 
σ0 « Ο.ΐµ, a stress-independent climb activation energy of Qc = 30kTm, 
and a "source" term of magnitude 7 o « 10 - 4 . Here, Tm is the melting 
temperature of the Sii_xGex alloy. 

Note that the excess stress in Equation 5.48 depends nonlinearly on 
the actual equivalent strain, eequ which in turn depends on the degree of 
relaxation, 7 : 

e e qu = / e q u ~ 7 · ( 5 . 4 9 ) 

Therefore, Equation 5.48 is a highly nonlinear differential equation whose 
full solution requires numerical techniques. However, for practical de-
vice heterostructures which are adversely affected by dislocations, small 
amounts of relaxation (7 < 10- 3) are often of greatest interest. Since these 
relaxations are less than the unrelaxed equivalent strains in typical struc-
tures, the excess stresss may be considered independent of the amount of re-
laxation. Then, it is straightforward to integrate Equation 5.48 numerically 
to deduce the time-dependent strain relaxation, 7, and by differentiation 
to deduce the time-dependent strain relaxation rate, 7. 

5.3.3 Time, Temperature and Excess Stress 
In Subsection 5.3.2, we described a simple phenomenological model for the 
relaxation of excess stress and strain. In this subsection, we illustrate the 

4 1 L.B. Freund, "The driving force for glide of a threading dislocation in a strained 
epitaxial layer on a substrate," J. Mech. Phys. Solids 38, 657 (1990). 

4 2R. Hull, J.C. Bean, D.J. Werder, and R.E. Leibenguth, "In situ observations of 
misfit dislocation propagation in GexSii_x /Si(100) heterostructures," Appl. Phys. Lett. 
52, 1605 (1988); and B.W. Dodson and J.Y. Tsao, "Non-Newtonian strain relaxation in 
highly strained SiGe heterostructures," Appl. Phys. Lett. 53, 2498 (1988). 
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time evolution of excess stress and s t rain4 3 in the two simple structures 
shown in Figures 5.12 and 5.13. We imagine tha t , as the two structures are 
grown, they are subjected to the hypothetical (but realistic) temperature 
cycles shown in Figures 5.18 and 5.19. In each case, growth of a 600-Ä Si 
buffer layer at 750°C commences at t = 0. Toward the end of growth of 
this buffer, the temperature is ramped down to 550°C for growth of the two 
100-Ä-thick buried S i i -^Ge^ strained layers. During growth of the strained 
layers, the single-kink excess stresses (evaluated at the rear of the deepest 
strained layer) increase, but during growth of the unstrained spacer and 
capping layers they decrease. At the end of growth, the temperature is 
ramped down to room temperature (25°C). Finally, we have included the 
possibility of a 45-s, 900°C post-growth rapid thermal anneal for dopant 
activation or oxide growth. 

For the weakly strained structure in Figure 5.18, the final s tructure has 
a single-kink excess stress tha t is barely positive, and so is fairly resistant 
to strain relief by plastic flow. Even the 45-s rapid thermal anneal at 900° C 
causes a strain relaxation less than 10 _ T . Note tha t this amount of relax-
ation may be considered nearly unobservable, even by dislocation counting, 
since it corresponds to on the order of one dislocation per centimeter. Note 
also tha t just after growth of the final strained layer the structure passes 
through an intermediate structure for which the single-kink excess stress is 
greatest. However, because the growth temperature is low, negligible strain 
relaxation occurs. 

For the moderately strained structure shown in Figure 5.19, the final 
structure has a single-kink excess stress tha t is larger, and hence is less re-
sistant to strain relief by plastic flow. Indeed, during the 45-s rapid thermal 
anneal at 900°C, strain relaxation is significant. Again, note tha t just after 
growth of the final strained layer the structure passes through an interme-
diate structure for which the single-kink excess stress is greatest. However, 
because the growth temperature is low, negligible strain relaxation occurs. 

5.3.4 Stability Diagrams 
From the discussions in Subsections 5.3.1-5.3.3, it is clear tha t the major 
determinant of the stability of coherent strained heterostructures is its ex-
cess stress, convolved with the t ime-temperature cycle tha t it experiences 
during growth and processing. If the excess stress everywhere in the struc-
ture is at all times less than zero, then the coherent s tructure is absolutely 
stable. If, during some time interval, the excess stress anywhere in the 

4 3J .Y. Tsao and B.W. Dodson, "Time, temperature and excess stress: relaxation in 
strained heterostructures," Surf. Sei. 228, 260 (1990). 
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Figure 5.18: Thickness, excess stress (evaluated at the rear of the deepest 
strained layer), temperature, strain rate, and strain relaxation in a slightly 
metastable double buried quantum-well heterostructure. 

s tructure rises above zero, then some strain relaxation will occur. However, 
the amount of strain relaxation may be small if the tempera ture during 
tha t t ime interval is low, or if the durat ion of the t ime interval is short. In 
other words, it is the time at temperature while the excess stress is highest 
tha t determines whether significant strain relaxation will occur. 

For a given time duration, then, the two parameters tha t most directly 
determine the amount of strain relaxation tha t will occur are the excess 
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Figure 5.19: Thickness, excess stress (evaluated at the rear of the deep-
est strained layer), temperature, strain rate, and strain relaxation in a highly 
metastable double buried quantum-well heterostructure. 

stress and temperature . 4 4 In this subsection, we describe the use of excess 
stress versus temperature stability diagrams for depicting various regimes 
of strain relaxation. To illustrate, we show, in Figure 5.20, contours of 
constant strain relaxation plotted on a s t ress- temperature diagram. The 
contours were calculated according to the simple phenomenological model 
described earlier by Equation 5.48, and so should only be taken as qual-

4 4J .Y. Tsao, B.W. Dodson, S.T. Picraux, and D.M. Cornelison, "Critical stresses for 
S i i_ x Ge x strained-layer plasticity," Phys. Rev. Lett. 59, 2455 (1987). 



190 Chapter 5. Coherency and Semi-coherency 

10 s t i m e - a t - s t r e s s 10 min t i m e - a t - s t r e s s 

10° 

b io" 
+ 
=1 

10" 

10" 

1 1 

Partially 

- = ^ - > 

Unrelaxed 
metastable 

or 

- Z 

but 

1 1 

fully relaxed _ 

^\ N 

\ \ 
7 = ^10"7 10"3 

\ \~ \ N 
\ \ 

\ 
Stable 

1 1 1 1 

T 

Partially or fully relaxed 

\ \ 
Unrelaxed but N \ 
metastable ^ \ 

7 = \ o - 7 MO"' 
\ \ 

\ 
Stable 

I 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
T/T m T /T m 

Figure 5.20: Stress-temperature stability diagrams for strained Sii_xGex het-
erostructures, assuming times-at-stress of 10 s (left) and 10 min (right). Struc-
tures lying below the solid lines are absolutely stable. Structures lying below the 
dashed lines will have relaxed by less than « 10 - 7 . Structures lying below the 
dot-dashed lines will have relaxed by less than « 10 - 3 . 

itative guides. Nevertheless, they illustrate how such kinetic models can 
be used to construct these "stability" diagrams. Such diagrams are prac-
tical guides to the degree of relaxation tha t can be expected for a given 
structure. 

The diagram on the left in Figure 5.20 was calculated assuming a "time-
at-stress" of 10 s. Such a diagram would be appropriate for the growth of 
a buried strained quantum well, in which the excess stress of the structure 
reaches its maximum just after the buried strained layer has been grown, 
but diminishes quickly thereafter upon initiation of growth of the unstrained 
capping layer. 

The diagram on the right in Figure 5.20 was calculated assuming a time-
at-stress of 10 min. Such a diagram would be appropriate for the growth 
of a thick surface strained layer, in which the excess stress of the structure 
reaches its maximum gradually during growth, and persists during the cool-
down after growth has terminated. 

In both diagrams, structures lying below the solid lines, whose excess 
stresses are less than zero, are absolutely stable. Structures lying below 
the dashed lines will have relaxed by less than « 1 0 - 7 . This amount of 
strain relaxation is essentially negligible, because it corresponds to on the 
order of one misfit dislocation per centimeter. Structures lying below the 
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dot-dashed lines will have relaxed by less than « 10~3. This amount of 
strain relaxation is not negligible, because it corresponds to on the order of 
one misfit dislocation per micrometer. 

Note that the definition of the stress-temperature boundary at which 
strain relaxation just becomes observable depends on the sensitivity of the 
technique used to measure the relaxation.45 On the one hand, if the mea-
surement technique is sensitive to isolated dislocations in a large field of 
view, as x-ray topography or etch-pit delineation might be, then at high 
temperatures the critical stresses approach zero. On the other hand, if the 
measurement technique is less sensitive (e.g., x-ray diffraction or ion-beam 
channeling), then the critical stresses may differ significantly from zero, and 
various degrees of metastability will be observed. 
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Exercises 
1. An alternative route to misfit accommodation involves tilting of the 

epitaxial layer with respect to the substrate.46 The interface con-
4 5 LJ . Fritz, "Role of experimental resolution in measurements of critical layer thickness 

for strained-layer epitaxy," Appl. Phys. Lett. 5 1 , 1080 (1987). 
46See, e.g., H. Brooks, "Theory of internal boundaries," in Metal Interfaces (American 

Society of Metals, 1952), pp. 20-64; W.A. Jesser, "On the extension of Frank's formula to 
crystals with different lattice parameters," Phys. Stat. Sol. A20 , 63 (1973); G.H. Olsen 
and R.T. Smith, "Misorientation and tetragonal distortion in heteroepitaxial vapor-
grown III-V structures," Phys. Stat. Sol. A31 , 739 (1975); R. Du and C.P. Flynn, 
"Asymmetric coherent tilt boundaries formed by molecular beam epitaxy," J. Phys. 
C2, 1335 (1990); and J.E. Ayers, S.K. Ghandhi, and L.J. Schowalter, "Crystallographic 
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Figure 5.21: Untilted (left) and tilted (right) epitaxy. 

tains, instead of "misfit" dislocations with Burgers vectors parallel to 
the interface, "tilting" dislocations with Burgers vectors perpendicu-
lar to the interface, and forms what is known as an asymmetric tilt 
boundary.4 7 Consider the one-dimensional boundary shown in Fig-
ure 5.21, containing a linear array of such tilting dislocations. Show 
tha t the parallel strain in the epitaxial layer decreases with tilt angle, 
Θ, according to 

1 - / / 
6 = 1 L 5.50 

COS0 
where / is the misfit between the epitaxial layer and the substrate. 
Then show tha t the dislocation density increases with tilt angle ac-
cording to 

P«0/*>edg,-L> (5.51) 
where 6edg,j_ is the magnitude of the edge component of the Burgers 
vector perpendicular to the interface. 

Finally, calculate and compare the dislocation density dependence of 
the coherency strain and dislocation array energies, and deduce the 
"critical layer thickness" associated with strain relaxation by tilting 
dislocations. Is the critical layer thickness greater than or less than 
tha t associated with strain relaxation by misfit dislocations? Does 
the total energy increase or decrease at first for small tilts? All other 
things equal, which is more likely — strain relaxation by tilting or 
misfit dislocations? 

2. A second alternative route to misfit accommodation is through the 
introduction of islanding or surface roughness.4 8 Consider the two 

tilting of heteroepitaxial layers," submitted to J. Cryst. Growth. 
4 7 S . Amelinckx and W. Dekeyser, "The structure and properties of grain boundaries," 

in Solid State Physics, Vol. 8, F. Seitz and D. Turnbull, Eds. (Academic Press, New 
York, 1959), pp. 325-499. 

4 8D.J . Eaglesham and M. Cerullo, "Dislocation-free Stranski-Krastanow growth of Ge 
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Figure 5.22: Uncorrugated (left) and corrugated (right) epitaxial strained layers. 

structures in Figure 5.22, the left composed of a planar strained layer 
of thickness h, the right composed of a strained layer which has de-
veloped a one-dimensional sinusoidal corrugation ^4sin(27nr/A). 

Suppose, due to lateral relaxation, tha t the strain in the corrugated 
(dotted) part of the strained layer is reduced to zero.49 Wha t is the 
total coherency energy, uc oh, associated with the entire strained layer? 
Suppose tha t the surface energy per unit area of the strained layer is 7. 
Wha t is the surface energy, usurf, due to the corrugation? How does 
the total energy, ^Coh+^surf ? depend on A and λ? For what values of λ 
does it decrease with increasing A, and hence for what wavelengths is 
the surface unstable to roughening.5 0 Are corrugations more or less 
likely in high or low surface energy systems? How might a surface 
tha t lowers the surface energy make corrugations less likely?51 

3. Even in relaxed films there may be a thermodynamic driving force for 
surface roughening. Qualitatively, how does the equilibrium energy 

on Si (100)," Phys. Rev. Lett. 64, 1943 (1990); S. Guha, A. Madhukar, and K.C. Ra-
jkumar, "Onset of incoherency and defect introduction in the initial stages of molecular 
beam epitaxical growth of highly strained I n i _ x G a x A s on GaAs (100)," Appl. Phys. 
Lett. 57, 2110 (1990); and K. Sakamoto, T. Sakamoto, S. Nagao, G. Hashiguchi, K. 
Kuniyoshi, and Y. Bando, "Reflection high-energy electron diffraction intensity oscilla-
tions during Ge x S i i_ x MBE growth on Si (001) substrates," Jpn. J. Appl. Phys. 26, 
666 (1987). 

4 9This is a very crude assumption; for better assumptions see, e.g., S. Luryi and 
E. Suhir, "New approach to the high quality epitaxial growth of lattice-mismatched 
materials," Appl. Phys. Lett. 49, 140 (1986). 

5 0D.J . Srolovitz, "On the stability of surfaces of stressed solids," Ada Metall. 37, 621 
(1989); and C.W. Snyder, B.G. Orr, D. Kessler, and L.M. Sander, "Effect of strain on 
surface morphology in highly strained InGaAs films," Phys. Rev. Lett. 66, 3032 (1991). 

5 1 M. Coppel, M.C. Reuter, E. Kaxiras, and R.M. Tromp, "Surfactants in epitaxial 
growth," Phys. Rev. Lett. 63 , 632 (1989). 
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per unit volume, utot/h, of a misfitting layer depend on the height 
of the film, both below and above the critical layer thickness? Just 
at the critical layer thickness, can the film reduce its energy by de-
composing into some regions infinitesimally thicker, and other regions 
infinitesimally thinner? 

4. Consider a misfit dislocation lying along the y-axis, as illustrated in 
Figure 5.23. Its Burgers vector 6 can be defined either by the pair 
of angles λ and 6, or by the pair of angles a and β. Show tha t the 
Burgers vector of the dislocation is 

cos A \ / sin a sin β 
6 = 6 | s inAcoso ] = & ( cos/3 | , (5.52) 

sin A sin δ ) \ cos a sin β 

and tha t the Peach-Koehler coherency force acting to create unit 
length of the dislocation is 

^coh = hz · (6 · B) x / 

— fo'coh h cos A = 6<rcoh h sin a sin β 

= &βαε,||σ<:οΐΑ (5.53) 

For a β = 60° dislocation with, as illustrated in Figures 5.4 and 5.5, 
ΐ = [110] and 6 = [Ϊ0Ϊ] /2, what are the angles a , A, 7, and 6Ί 

Consider the double quantum well s tructure shown in Figures 5.24, 
in which two strained quantum wells of thicknesses hstr and strains 
/ s t r are spaced apart by an unstrained layer of thickness /ispa? a n d 
capped by an unstrained layer of thickness /icap- Given hstr and / s t r , 
what must / i c a p be in order for the structure to be stable with re-
spect to misfit dislocation formation at a depth z = z\l Wha t must 
^spa be in order for the structure to be stable with respect to misfit 
dislocation formation at a depth z = 22? Derive expressions for the 
time-evolution of the single-kink excess stresses at Z\ and Z2 during 
growth of the structure. 
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6. Suppose one considers two types of dislocations, misfit dislocations ly-
ing in the epilayer/substrate interface, with density pmd, and disloca-
tion segments threading upward to the epilayer surface, with density 
ntd- The units of pmd and ntd are c m - 1 and c m - 2 , respectively. Sup-
pose tha t misfit dislocations are created exclusively by lateral bending 
of threading segments at velocity v; tha t threading segments are cre-
ated exclusively by half-loop nucleation at the free surface at a rate 

Figure 5.23: Angles commonly used to define misfit dislocations and their Burg-
ers vectors. For convenience, the dislocation line, /, is taken to be oriented along 
the y-axis. Left: λ is the angle between (a) the Burgers vector and (b) the di-
rection that is both normal to the dislocation line and within the plane of the 
interface; 6 is the angle between (a) the dislocation line and (b) the projection of 
the Burgers vector onto the plane containing the dislocation that is perpendicular 
to the plane of the interface. Right: β is the angle between (a) the Burgers vector 
and (b) the dislocation line; a is the angle between (a) the slip plane containing 
both b and / and (b) the perpendicular to the plane of the interface; and 7 is the 
angle between (a) the slip plane containing both b and / and (b) the plane of the 
interface. 
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F igure 5.24: A generic s t ra ined double quant um-well heterostructure. 

j ; t ha t threading segments are pinned with probability η by inter-
actions with misfit dislocations; and tha t multiplication of threading 
segments by interactions with misfit dislocations is negligible. Show 
tha t 

Pmd = 

ntd = 
vntd 

j - vvntdpmd (5.54) 

are a set of coupled first-order differential equations for the t ime evo-
lution of the two kinds of dislocation densities.52 

7. Suppose again tha t the nucleation rate of dislocation half-loops is j 
52R. Hull, J.C. Bean, and C. Buescher, "A phenomenological description of strain 

relaxation in GexSii_x /Si(100) heterostructures," J. Appl. Phys. 66, 5837 (1989). 
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and that the velocity at which they propagate to form misfit disloca-
tions is v. Suppose the maximum dislocation propagation length is 
/, due to pinning by lithographically fabricated boundaries.53 Show 
that the misfit dislocation creation rate in the low velocity limit is 
p ^ d = vjt. What is the misfit dislocation creation rate in the high 
velocity limit? Does this rate increase or decrease with a decrease in 
the spatial scale of the lithographic patterning? 

5 3E.A. Fitzgerald, G.P. Watson, R.E. Proano, D.G. Ast, P.D. Kirchner, G.D. Pettit , 
and J.M. Woodall, "Nucleation mechanisms and the elimination of misfit dislocations at 
mismatched interfaces by reduction in growth area," J. Appl. Phys. 65 , 2220 (1989). 


