
Chapter 6 

Surface Morphology 

We start , in this chapter, by treat ing surface morphology. At the outset, 
it is important to distinguish between two aspects of surface morphology: 
structure, the crystallography of defect-free surfaces, and micro structure, 
the distribution of point and line defects tha t interrupt tha t perfect crystal-
lography. In this chapter we will be mainly concerned with microstructure 
and, to a much lesser extent, s tructure. 

It is also important to distinguish between two kinds of surfaces: high-
symmetry singular surfaces, at whose orientations surface free energies are 
cusped and have discontinuous first derivatives; and vicinal surfaces miscut 
slightly from singular orientations, composed of singular terraces separated 
by steps. In this chapter we will be concerned with both of these kinds of 
surfaces. 

We first ask, in Section 6.1: what are the statistics of defects on singular 
and vicinal surfaces in equilibrium with their vapor, i.e., in the absence of 
net growth? We will find, not surprisingly, tha t those statistics depend both 
on temperature as well as on the average orientation of the surface. More-
over, those statistics are themselves a major determinant of the orientation 
dependences of surface free energies. 

We then ask, in Section 6.2: given full knowledge of surface free energies, 
what is the equilibrium morphology of crystals, surfaces, and thin films? On 
the one hand, in one-material systems, e.g., "homoepitaxial" films of one 
material on substrates of the same material, morphology is determined by 
the orientation dependence of the surface free energy. On the other hand, 
in two-material systems, e.g., for "heteroepitaxial" films of one material 
on substrates of a different material, morphology is also determined by 
interface and volume free energies. 

We finally ask, in Section 6.3: what is the defect microstructure of 
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Figure 6.1: Terraces, ledges, kinks, adatoms, adatom clusters, advacancies, and 
advacancy clusters on a Kossel crystal. 

surfaces not in equilibrium with their vapor, i.e., in the presence of net 
growth? We will find tha t growth is essentially a competition between 
surface defects of various kinds for adatoms arriving from the vapor. This 
competition results in a rich and often oscillatory t ime evolution to the 
overall microstructure of the surface. 

6.1 Statistics of Adatoms, Kinks, and Steps 

Let us start , in this section, by discussing defects on surfaces. Consider 
the idealized (001) surface of a cubic elemental crystal. For simplicity, 
we suppose it to be "unreconstructed," in tha t bonds dangling into free 
space do not rehybridize into pairs or higher order a tom arrangements. 
The important microstructural features of the idealized surface of such a 
"Kossel" crystal1 are illustrated in Figure 6.1. 

At low to medium temperatures , the dominant microstructural features 
are terraces, steps and kinks. The terraces can be considered planar defects 
in a bulk three-dimensional crystal. Separating terraces of different heights 
are ledges, or steps, which are line defects on a two-dimensional surface. 
Finally, along these steps there may also be kinks, which are point defects 
on one-dimensional steps. 

XW. Kossel, Nachr. Ges. Wiss. Gottingen, p. 135 (1927); I.N. Stranski, Z. Phys. 
Chem. 136, 259 (1928). 
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At higher temperatures , or away from equilibrium, microstructural fea-
tures such as adatoms and ad vacancies, either isolated or clustered into two-
dimensional islands, become important . We will begin, in Subsection 6.1.1, 
by treating adatoms on singular surfaces. Then, in Subsection 6.1.2, we 
treat kinks in isolated steps. Finally, in Subsection 6.1.3, we treat interact-
ing steps on vicinal surfaces. 

6.1.1 Adatoms on Singular Surfaces 
Let us start , in this subsection, by considering adatoms, which we imagine 
adding one by one to a flat, singular surface. There are two extreme ways 
in which the adatoms can be distributed on this surface. First , they can 
cluster together predominantly into a half sheet, as illustrated at the bot tom 
of Figure 6.2, so as to maximize the number of lateral in-plane bonds and 
hence minimize energy. Second, they can distribute randomly, as illustrated 
at the top of Figure 6.2, so as to maximize configurational entropy. 

To describe qualitatively the competition between these two kinds of 
distributions,2 consider the number of bonds formed as a new adatom ar-
rives on the surface. The new adatom has four dangling lateral bonds and 
one dangling vertical bond, but has also "annihilated" the dangling vertical 
bond of the a tom underneath it. Therefore, the adatom has associated with 
it four "missing" bonds. If each bond has an energy w, then the adatom 
has associated with it an energy 4w. 

Note, though, tha t as the adatom coverage, Θ, on the surface builds 
up, adatoms will occasionally find themselves next to other adatoms. If 
the adatoms are distributed randomly, then the sites adjacent to a given 
adatom have a probability Θ of being occupied. Since there are four such 
sites, the energy associated with tha t adatom decreases by 4w6. The energy 
per adatom is therefore Aw — Ανοθ, or Aw{\ — Θ). Altogether, the energy per 
surface site is the adatom coverage times the energy per adatom, or 

U a d a t = 4 t i ; 0 ( l - 0 ) . (6.1) 

This energy is exactly tha t (see Table 3.1 on page 50) associated with a 
two-component strictly regular solution in which the two components are 
considered to be adatoms and "missing" adatoms. Viewed in this way, the 

2See, e.g., K.A. Jackson, "Theory of crystal growth," in Treatise on Solid State Chem-
istry, Vol. 5, N.B. Hannay, Ed. (Plenum Press, New York, 1975), pp. 233-282; and 
D.E. Temkin, "O molekulyarnoi sherokhovatosti granitsy kristall-rasplav (On molecular 
roughness of the crystal-melt interface)," in Mekhanizm i kinetika kristallizatsii (Mech-
anism and Kinetics of Crystallization), N.N. Sirota, Ed. (Nauka i Tekhnika, Minsk, 
1964), p. 86. 
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Figure 6.2: x-T phase diagrams for surface roughening. Above and below each 
phase diagram are also shown the normalized molar free energies of the adlayer 
phases at kT/w — 2.5 and kT/w = 1.5, their common tangents, and the critical 
compositions (open circles) determined by those common tangents. 

ideal configurational entropy of mixing per surface site is, by analogy to 
Equation 3.24, 

^adat 
k = 01n0 + ( l - 6 > ) l n ( l - 6 > ) . (6.2) 

The free energy per surface site, normalized to the bond strength, is then 

/adat ^adat — -* s adat 
W 

kT 
4(9(1 - Θ) + — [Θ In Θ + (1 - θ) 1η(1 - Θ)]. (6.3) 

This normalized free energy is shown in Figure 6.2 for two different nor-
malized temperatures. 
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At low temperatures , the bond energy contribution dominates, and the 
free energy curve is basically concave down. Hence, an adlayer having an 
average coverage of 1/2 can minimize its free energy by "phase-separating" 
into regions having near-zero coverage and other regions having near-unity 
coverage. Note tha t , just as in the discussion of Section 3.1, the Θ = 0 and 
Θ = 1 intercepts of the tangents to the free energy curve are the chemical 
potentials of the missing adatoms and adatoms, respectively. Therefore, 
the two phases can only be in equilibrium on the surface if the chemical 
potentials of their two components are equal. In other words, again follow-
ing the discussion of Section 3.1, the "compositions" of the two phases are 
determined by the familiar common tangent construction. Physically, the 
adlayer minimizes its free energy if most of the adatoms condense into a 
smooth sheet having a large number of lateral in-plane bonds, with a few 
stray adatoms to increase configurational entropy. 

At high temperatures , the entropy contribution dominates, and the free 
energy is everywhere concave up. Then, adlayers of any composition are 
stable against phase separation into clusters of adatoms and clusters of 
missing adatoms. The adatoms are distributed randomly and the surface 
appears microscopically "rough." 

The critical temperature separating smooth, phase-separated adlayers 
from microscopically rough adlayers is the so-called roughening tempera-
ture. It is essentially the critical temperature above which the miscibility 
gap in this two-component solution vanishes. Since the miscibility gap van-
ishes when the free energy curve at Θ = 0.5 just becomes concave up, the 
critical temperature is tha t temperature at which [d2f/d62]0=0.5 = 0, or 
2T,adat = 2w/k. Note tha t the enthalpy of sublimation for this Kossel crys-
tal is the bond energy (w) times the number of bonds per a tom (6), divided 
by the number of atoms per bond (2). Therefore, A/isub = 3w, and we have 

2 
^r,adat ~ - A / l s u b . (6.4) 

We emphasize tha t this equation can only give a crude indication of 
the actual roughening temperature of real crystal surfaces. Its derivation 
neglected, among other things, multilayer roughness, next-nearest-neighbor 
and longer-range adatom-adatom interactions, and possible dependences 
of adatom energies on cluster sizes due to surface reconstruction effects, 
all of which will tend to decrease Tr^at. Nevertheless, the main idea is 
tha t a critical temperature exists above which the equilibrium surface is 
rough. In some cases, though, this temperature may be above the melting 
temperature of the crystal, and hence will be unobservable. 
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Figure 6.3: A step wandering on the surface of a Kossel crystal due to randomly 
distributed kinks. 

6.1.2 Kinks in Isolated Steps 
In Subsection 6.1.1, we considered adatom "excitations" on a singular sur-
face. In practice, real surfaces nearly always contain steps. If the steps are 
far enough apar t not to interact, then their energetics are determined by 
kink "excitations" along their length. In this subsection, we consider such 
kink excitations in isolated steps. 

Consider the isolated step shown in Figure 6.3. Along this step there 
may be positive or negative kinks tha t cause the step to wander randomly.3 

On the one hand, this kink-induced step wandering is favorable, in tha t it 
increases the entropy of the step. On the other hand, the kinks themselves 
are unfavorable, because they cost energy. Indeed, for a simple Kossel crys-
tal, the energy of a single-kink can be calculated, as shown in Fig. 6.4, 
to be €kink — w / 2 , where w is the bond strength. For real crystals, how-
ever, the energy of a single kink may be considerably different, due to the 
reconstructed bonds on the surface. 

To quantify the statistics of kinks in steps, let us suppose, for simplicity, 
tha t kinks tha t move steps laterally one lattice unit are much more numer-
ous than those which move steps laterally more than one lattice unit . Note, 
though, tha t this approximation breaks down when kink energies are low 
relative to kT (see e.g., Figure 6.5). 

If we nevertheless make this approximation, then we are interested in 
the probabilities, p+, p _ and p 0 , tha t an arbitrarily chosen position along 
a step contains either plus or minus single kinks, or no kink, respectively.4 

Since we have excluded all other possibilities, these must sum to unity: 

p + + p _ + P o = 0. (6.5) 

3 J . Frenkel, "On the surface motion of particles in crystals and the natural roughness 
of crystalline faces," J. Phys. U.S.S.R. 9, 392 (1945). 

4W.K. Burton, N. Cabrera, and F.C. Frank, "The growth of crystals and the equi-
librium structure of their surfaces," Philos. Trans. R. Soc. London Ser. A 243, 299 
(1951). 
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a 

Figure 6.4: In moving an atom from position a to position b, two net bonds are 
broken, but four kinks are formed. If the bond energy is w, then the energy per 
kink is €kink = 2w/4 = w/2. 

If we also allow for the step to make a nonzero average angle, φ, with 
the underlying lattice, then the difference between the plus and minus kink 
probabilities is determined by 

P+ -P- = t an φ = ρ ^ . (6.6) 

In a sense, pext defines an "extrinsic" kink probability imposed by the mis-
cut of the step. Then, pmt = 2p_ may be thought of as an "intrinsic" kink 
probability. Their sum, p i n t -f Pext = P+ + P - , is the total kink probability. 
If we also assume tha t the kinks do not interact with each other, then the 
additional energy of the step due to kinks, per lattice unit along the step, 
is the total kink probability, times the kink energy, ekink· Hence, the total 
energy of the step is 

^step = ^kink (P+ +P-) + e s t e p , (6.7) 

where estep is the energy per lattice unit of a straight step without kinks. 
Since we have assumed the kinks to be independent of each other, the 

configurational entropy associated with the kinks is determined by the num-
ber of ways they may be distinguishably distributed along the length of the 
step. Following a simple extension of Equation 3.24 to a three-component 
alloy, the ideal entropy of mixing is 

^step = p+ lnp+ + p _ l n p _ + p0 \np0 (6.8) 

Altogether, the step free energy is / s t e p = ustep — Tsstep, which we can 
rewrite in terms of the extrinsic and intrinsic kink probabilities as 

/step = ^step + ekink (P+ + P- ) 

+ kT[{pext + p i n t / 2 ) ln(pext + Pint/2) + (Pint/2) ln(p i n t /2 ) 

+ (1 - Pext - Pint) l n ( l - Pext ~ Pint)]· (6.9) 
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Figure 6.5: Scanning tunneling micrograph of a Si surface misoriented 
0.5° from (001) toward [110]. The surface height decreases from upper left to 
lower right.0 On this surface, alternate single-height steps are referred to as 
type SA and SB, and are smooth and rough, respectively, reflecting the relative 
energies of kink formation. 

aB.S. Swartzentruber, Steps on Si(001): Energetics and Statistical Mechanics (Ph.D 
Thesis, U. Wisconsin-Madison, 1992). 

For a given extrinsic kink probability, the equilibrium intrinsic kink prob-
ability is tha t which minimizes /step>, or 

^ £ = e k i n k + *T[ ( l /2 ) ln(pe x t + ρ·ιη1/2) + (1/2) ln(p i n t /2 ) 

- ( l / 2 ) l n ( l - p e x t - P i n t ) ] 
= 0. (6.10) 
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Rewriting this in terms of the positive, negative, and missing kink proba-
bilities then gives 

p + p _ = p2
0e-2ekink/kT. (6.11) 

Note tha t this equation reproduces exactly the "quasi-chemical" expression 
of Equation 4.44. The reason is tha t equilibrium between kinks on a step 
can be thought of as a balance between forward and backward chemical 
reactions, with positive and negative kinks annihilating to form missing 
kinks, and missing kinks thermally unbinding to form positive and negative 
kinks. 

Equations 6.5, 6.6, and 6.11 are sufficient to determine the three equi-
librium kink probabilities, and give, after some algebra, 

Po 
1 - y / l - (1 - 4e~2^ink/fcT)(1 _ t a n 2 φ} 

I _ 4e-ek i nk/fcT 

^eqU = taD> + / 2 e _ 2 e k i n k / f c T + 1 t a n2 φ 

u _ _tan0 / /fcT 1 2 pequ = Z + ^ p 2 e - 2 e k i n k / f c T + _ t a n 2 ^ (g J 2 ) 

For the special case of perfectly cut step for which t an φ = 0, the energy, 
entropy, and free energy of an isolated step simplify to 

^step == ^step T" ^kinkP— 

_fstep = 2p_lnp_ + (l-2p_)ln(l-2p_) 
k 

/step — ^step — J- 5s tep· (O.loJ 

These energies, entropies, and free energies, normalized to the energy of 
a straight step, are plotted in Figure 6.6 as a function of p- = p+. For 
concreteness, we have assumed tha t kinks add an additional energy equal 
to the energy of the step itself, e^ink — ^step = w/s, a s they would in 
a Kossel crystal. At all nonzero temperatures , the free energy initially 
decreases with increasing p _ , due to entropy, and then increases, due to 
energy. The kink probabilities at which the free energies minimize are 
given by Equations 6.12, which, in the limit tan</> = 0, simplify to 

^equ 
Po = 1 + 2e~ekink/fcT 

e q u = equ = _ ; ^ ^ 
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Figure 6.6: Dependences of the energy, entropy, and free energy of a step on 
the probability of intrinsic kinks. The step is assumed to have no extrinsic kinks, 
and a kink is assumed to add an additional energy equal to half the energy of a 
straight step. The energies and free energies are normalized to the energy of a 
straight step. As the temperature increases, the intrinsic kink probability that 
minimizes the free energy of the step increases, and the minimum free energy 
decreases. 

At a critical temperature , Tr?step, the step free energy vanishes at its 
minimum. Above this temperature , steps will form spontaneously on the 
surface, and the surface is said to be above its roughening temperature . 5 

For a Kossel crystal, this critical temperature is Tr?step 
Note tha t this temperature is considerably below tha t given in the pre-

vious subsection by Equation 6.4. Physically, the reason is tha t , per lattice 
5 An alternative way of calculating the roughening temperature is to calculate the 

temperature at which the free energies of closed step loops vanishes; see, e.g., A. Zangwill, 
Physics at Surfaces (Cambridge University Press, Cambridge, 1988), pp. 16-17. 
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site, step excitations on terraces are energetically less costly than adatom 
and missing adatom excitations. Note also tha t even this temperature is 
only a crude indication of the actual roughening temperature of real crys-
tal surfaces. Its derivation neglected, among other things, the possibility 
tha t kinks may move steps laterally more than one lattice unit , and the 
solid-on-solid constraint tha t prevents steps from crossing each other. 

More advanced t reatments take both of these effects into account, and 
are based on an analogy between noncrossing wandering steps on a surface 
and ID spinless fermion gases,6 where the Pauli principle automatically 
prohibits crossing.7 These t reatments also borrow heavily from studies 
of domain walls in 2D commensurate adsorbate phases,8 which are also 
analogous to ID spinless fermion gases.9 The result is tha t step free energies 
approach zero at Tr?step according to 1 0 

/ s t e p - e - M ^ , (6.15) 

and represent a second-order phase transition from smooth to rough. 

6.1.3 Steps on Vicinal Surfaces 
In Subsection 6.1.2, we calculated the free energy of an isolated step wan-
dering on a surface. The free energy was decreased below tha t of a perfectly 
straight step due to the configurational entropy associated with the mixing 
of positive, negative, and missing kinks. In the absence of step-step inter-
actions, the free energy of a surface depends only on the free energy of the 
terraces plus those of the steps. For a surface miscut by an angle Θ away 
from the orientation of a singular surface, and hence having a step density 
per lattice site of s = t an Θ, the free energy, per lattice site, would then be 

/surf = / terr + /step t a n 0 , (6 .16) 

where / t e r r is the free energy of the singular, unstepped surface, and /step 
is given by Equation 6.13. 

In this subsection, we consider the possibility tha t the steps interact, 
and tha t those interactions give rise to nonlinear dependences of the surface 

6 C . Jayaprakash, C. Rottman and W.F. Saam, "Simple model for crystal shapes: 
step-step interactions and facet edges," Phys. Rev. B30 , 6549 (1984). 

7P.G. de Gennes, "Soluble model for fibrous structures with steric constraints," J. 
Chem. Phys. 48, 2257 (1968). 

8 J .M. Kosterlitz and D.J. Thouless, "Ordering, metastability and phase transitions 
in two-dimensional systems," J. Phys. C6 , 1181 (1973). 

9H.J . Schulz, B.I. Halperin, and C.L. Henley, "Dislocation interaction in an adsorbate 
solid near the commensurate-incommensurate transition," Phys. Rev. B26, 3797 (1982). 

1 0H.J. Schulz, "Equilibrium shape of crystals," J. Physique 46, 257 (1985). 
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Figure 6.7: Five wandering steps of average spacing /. Two of the steps intersect, 
by chance, three times. 

free energy on t a n # . Consider the array of steps illustrated in Figure 6.7. 
On average, they are parallel to each other, but as they wander they oc-
cassionally touch. If we do not allow "overhangs" on the surface, then, 
as mentioned above, the steps are not free to cross each other. Each step 
is confined by the random wanderings of its immediate neighbors, and its 
entropy is reduced.1 1 

To quantify this entropy reduction, consider again the step intersections 
shown in Figure 6.7. On the one hand, if the steps were truly independent, 
then each step intersection point would have two equally likely interpreta-
tions: either the steps actually cross, or they bounce back from each other. 
On the other hand, if the steps cannot cross, then each step intersection 
can have only the second interpretation. Each step intersection, therefore, 
has associated with it an entropy decrease of A: In 2. 

How often, on average, do the steps intersect? Let b2 = p + a 2 + p _ a 2 

be the mean square lateral displacement of the step per lattice unit. Then, 
after n lattice units, the step will have wandered laterally on the average 
y/nb lattice units. Therefore, we expect a collision whenever y/nb exceeds 
the mean spacing between steps, /, or every n = Ϊ2 jb2 lattice units . 1 2 

Altogether, the entropy decrease, per lattice unit, is roughly (1 /n) In 2 = 
(62 / / 2 ) In 2. More precise calculations, taking into account the simultaneous 

1 1E.E. Gruber and W.W. Mullins, "On the theory of anisotropy of crystal surface 
tension," J. Phys. Chem. Solids 28, 875 (1967); and G.H. Gilmer and J.D. Weeks, 
"Statistical properties of steps on crystal surfaces," J. Chem. Phys. 68, 950 (1978). 

1 2M.E. Fisher and D.S. Fisher, "Wall wandering and the dimensionality dependence 
of the commensurate-incommensurate transition," Phys. Rev. B25 , 3192 (1982). 
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wandering of all the steps, give an entropy decrease of 

Z^tep _ ±b*j2_ _ T?_\?_ 2 

13 

* "6 P -η^Άΐίφ- ( 6 ·1 ? ) 

The surface free energy is therefore 

7Γ2 b2 

/surf = /terr + /step tan φ + kT— — tan3 φ, (6.18) 

and contains a cubic dependence on step density. 
Suppose, now, that in addition to a short-range repulsion preventing 

step-step crossings, there is also longer range repulsion.14 Such a repulsion 
might be generated, e.g., by strain fields in the substrate surrounding each 
step.15 For simplicity, suppose the repulsion takes the quadratic form 

A^step = A + ■ (l + x)2 (l-x) 
f(l + x2/l2), (6.19) 

where x = ±Z are, as illustrated in Figure 6.8, the positions of rigid steps 
surrounding (and confining) a center, wandering step. 

In the presence of this repulsion, the potential energy of the step de-
creases the less it wanders away from x = 0. However, the entropy of the 
step also decreases, by Ass t e p ~ (π2/12)(62/χ2). The actual wandering will 
be determined by a balance between the two, or 

d(Austep - TAsg tep ) _ d 
dx dx 

2A ( x2\ lrT1*2b2 

= 0. (6.20) 

Solving Equation 6.20 then gives the equilibrium alley width within which 
the step will wander: 

J f7T2kTb2Y/4, . N 
d=(ü—) <· (6-21) 

1 3 C . Jayaprakash, C. Rottman, and W.F. Saam, "Simple model for crystal shapes: 
step-step interactions and facet edges," Phys. Rev. B30 , 6549 (1984); and V.V. 
Voronkov, "Free energy of a stepped surface," in Growth of Crystals, Vol. 15, E.I. Gi-
vargizov and S.A. Grinberg, Eds. (Consultants Bureau, New York, 1988). 

1 4Our treatment follows closely that of N.C. Bartelt, T.L. Einstein, and E.D. Williams, 
"The influence of step-step interactions on step wandering," Surf. Sei. Lett. 240, L591 
(1990). 

1 5J .M. Blakely and R.L. Schwoebel, "Capillarity and step interactions on solid sur-
faces," Surf. Sei. 26, 321 (1971); V.l. Marchenko and A. Ya. Parshin, "Elastic properties 
of crystal surfaces," Sov. Phys. JETP 52, 129 (1980); F.K. Men, W.E. Packard, and M.B. 
Webb, "Si (100) surface under an externally applied stress," Phys. Rev. Lett. 6 1 , 2469 
(1988); and O.L. Alerhand, A.N. Berker, J.D. Joannopoulos, D. Vanderbilt, R.J. Hamers, 
and J.E. Demuth, "Finite-temperature phase diagram of vicinal Si(100) surfaces," Phys. 
Rev. Lett. 64, 2406 (1990). 
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-l/a -d/a 

Figure 6.8: Changes in energy, entropy, and free energy as the width of the 
alley (x/a, in units of lattice constants) within which a step is allowed to wander 
increases. Both the energy and entropy increase as the width of the alley increases 
and approaches the mean step spacing (l/a, in units of lattice constants). The 
equilibrium alley width (d/a, in units of lattice constants) is that which minimizes 
the free energy. As the ratio between the temperature and the strength of the 
interaction between steps (kT/A) increases, both the equilibrium alley width and 
the free energy at that equilibrium alley width increase. 
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As illustrated in Figure 6.8, this balance will depend on temperature, 
though only weakly, because of the 1/4 power. 

Altogether, the change in free energy, per step, due to step-step inter-
actions, is 

A^=P"(1 + V-e3-J- (6·22) 

As expected, the free energy change increases with the step-step interaction 
strength, A. It also increases with the root-mean-square kink amplitude, 6, 
since the larger 6 is, the more "difficult" it is to confine the step. 

Finally, we can write the surface free energy, per lattice site, as 

/surf = / terr + (/step + A / s t e p ) t a n 0 

2A I n2kTb2 \ 
= /terr + /step tan Θ + — I 1 + γ ^ 1 tan3 Θ. (6.23) 

Note that the first nonlinear term is cubic, rather than quadratic, in step 
density. This has consequences, as will be seen in the next section, on the 
shape of the equilibrium crystal near the tan 0 = 0 orientation. 

6.2 Equilibrium Morphology 
In Section 6.1, we discussed the statistics of adatoms, kinks, and steps. 
These statistics are the primary determinants of the orientation depen-
dence of the free energies of vicinal surfaces. In this section, we suppose 
that we have been given complete knowledge of surface free energies, and 
ask: how do those free energies determine equilibrium morphologies? For 
macroscopic crystals of constant volume, we will find, in Subsection 6.2.1, 
that the equilibrium shape is determined by the orientation dependence of 
the surface free energy through what is known as the Wulff construction. 
For "planar" surfaces of constant average orientation, we will find, in Sub-
section 6.2.2, that the equilibrium morphology can be deduced from the 
orientation dependence of the surface free energy using a common tangent 
construction. Some average orientations will be stable, while others will 
tend to break up into combinations of other orientations. Finally, for thin 
heteroepitaxial films of one material on substrates of another material, we 
will find, in Subsection 6.2.3, that equilibrium morphologies are determined 
not only by surface free energies, but by interface and volume free energies 
as well. 
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6.2.1 Shapes of Crystals: Wulff's Theorem 
We start, in this subsection, by considering a macroscopic crystal of a sin-
gle material whose overall volume is specified. What shape will this crystal 
have in equilibrium? We discuss, in turn, three related constructions for 
equilibrium crystal shapes. The most basic is known as Wulffs construc-
tion; from Wulffs construction may be derived what is known as Herring's 
construction; and from Herring's construction in turn may be derived what 
is known as Andreev's construction. 

Wulffs Construction 

Intuitively, we expect the equilibrium shape of a crystal of constant volume 
to be such that those surfaces whose orientations have less energy will have 
greater area, while those whose orientations have greater energy will have 
lesser area. 

For example, consider the rectangular prism illustrated in Figure 6.9, 
bounded by rectangular faces of specific surface free energies *yx, *yy, and 
yz. If the distances of each face from the crystal center are hx, hy, and 
/i2, then the face areas are hyhz, hxhz, and hxht, and the total surface free 
energy is 

E = 2-yxhyhz + 2-yyhxhz + 2jzhxhy. (6.24) 
If we require the volume, V = 8hxhyhz, to be constant, then we can write 

E = l r + l ; + 2 W v (6·25) 

To find the distances hx and hy that minimize the energy, we set dE/dhx = 
dE/dhy = 0, giving 

lxhyhz = jyhxhz = yzhxhy = (ΐχΊνΊζ)1/3ν2/3 = constant. (6.26) 

In other words, the free energies of all the faces of the equilibrium crystal 
are equal. 

Note also that the areas of the faces are inversely proportional to their 
distances from the center of the crystal [e.g., hxhy = V/(8hz)]. Therefore, 
those distances are in turn proportional to the specific surface free energies: 

— = — = — = (ΊχΊυΊζ\ ' /g 2j\ 
hx hy hz \ V ) 

In other words, faces of high specific surface free energy lie farther from 
the center of the crystal than those of low specific surface free energy, and 
therefore have lower relative surface areas.16 

1 6 P . Curie, "Sur la formation des cristaux et sur les constantes capillaires de leurs 
differentes faces," Bull. Soc. Min. de France 8, 145 (1885). 
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Figure 6.9: Curie's construction for a rectangular prism of fixed volume but 
minimum surface energy. 

The generalization of this argument to all convex bodies is known as the 
Wulff construction1 7: the crystal shape tha t minimizes total surface free 
energy at constant volume is given by the inner envelope of "Wulff" planes 
perpendicular to and passing through the radius vectors of the orientation-
dependent molar surface free energy η(θ, φ). This construction is illustrated 
in two dimensions in Figure 6.10, for a hypothetical 7(0). As can be seen, 
this construction places low molar surface free energy orientations nearer to 
the center of the crystal, thereby increasing their relative surface areas, and 
places higher molar surface free energy orientations farther from the center 
of the crystal, thereby decreasing their relative surface areas. Indeed, as 
we shall see, orientations with very high molar surface free energies may 
by this construction be placed so far from the center of the crystal tha t 
their surface areas vanish entirely, and are no longer represented on the 
equilibrium crystal shape. 

Herring's C o n s t r u c t i o n 

An equivalent construction, which may be called Herring's construction,1 8 

is illustrated in Figure 6.11. One draws spheres passing through the origin 
and tangent to the 7(0, φ) plot. The interior envelope of the points on the 
spheres diametral to the origin is the equilibrium crystal shape. 

To see why, consider the three points labeled O, P , and A on the cir-
cumference of the two-dimensional projection of one such sphere. Point O 

1 7G. Wulff, Z. Kristallogr. Mineral. 34, 449 (1901); H. Hilton, Mathematical Crystal-
lography (Oxford University Press, 1903). 

1 8 C . Herring, "Some theorems on the free energies of crystal surfaces," Phys. Rev. 82, 
87 (1951). 
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Figure 6.10: Wulffs construction for a two-dimensional crystal of fixed volume 
but minimum surface energy. 

is the origin both of the 7(0, φ) plot as well as of the equilibrium crystal. 
Point A is the point on the 7(0, φ) plot tha t the sphere passes tangentially 
through. Point P is the point on the sphere diametral to the origin. 

Because OP is a diameter of the sphere, it follows from elementary 
geometry tha t the angle LOAP is a right angle, and tha t A P is a Wulff 
"plane" perpendicular to the 7(0, φ) plot at A. Consequently, P is a possible 
point bounding the equilibrium crystal. To see whether it is an actual such 
point, we consider two possibilities. 

On the one hand, suppose, as illustrated in the left panel of Figure 6.11, 
tha t the η(θ,φ) plot passes within the tangent sphere at some other point 
B lying between the origin and another point C on the tangent sphere. 
Since, again from elementary geometry, LOCP must be a right angle, the 
plane through C at right angles to OC must pass through P. Hence, the 
plane through B at a right angle to OB must intersect the line segment OP 
"interior" to the point P , precluding point P from bounding the equilibrium 
crystal. 

On the other hand, suppose, as illustrated in the right panel of Fig-
ure 6.11, tha t the 7(0, φ) plot nowhere passes within the tangent sphere. 
Then, for every point E on the 7(0, φ) plot, there must exist some point 
D on the tangent sphere lying between E and the origin. Since, again, 
LODP must be a right angle, the plane through D at right angles to OD 
must pass through P. Hence, the plane through E at a right angle to OE 
must intersect the line through OP "exterior" to the point P , and cannot 
preclude point P from bounding the equilibrium crystal. 
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7(tf) 

E A 

Figure 6.11: Herring's construction for deducing whether orientation A is repre-
sented on the equilibrium crystal shape at P. For the 7(0) plot shown on the left, 
orientation A is not represented, because the 7(0) plot at another orientation B 
lies within the tangent circle. For the 7(0) plot shown on the right, orientation 
A is represented, because at every other orientation (e.g., E) the 7(0) plot lies 
outside the tangent circle. 

Altogether, the equilibrium crystal shape is the locus of diametral points 
P on all tangent spheres not intersected by other portions of the 7(0, φ) 
plot. Alternatively, one may find first the locus of diametral points P on all 
tangent spheres without regard to intersections with the 7(0, φ) plot, and 
then take the interior envelope of those points. 

A n d r e e v ' s C o n s t r u c t i o n 

In a sense, Herring's construction maps points like A in energy-orientation 
(0, 0 ,7 ) space onto points like P in real (#, 2/, z) space. In other words, it 
tells us where in real space a surface of a particular orientation will appear. 
To quantify this mapping, consider the circle shown in Figure 6.12 tangent 
to and passing through the 7(0) plot at point A. We would like to deduce 
the (x, z) coordinates of the point P diametral to point O in terms of 7(0) 
and Ύ'(Θ) at point A. 

First, let us deduce the x coordinates of point P. Denote the lengths 
of the line segments AJ and AP by Ζχ and /2, respectively. Then, the 
x-coordinate of the point P is 

x = (/x -f Z2)cos0. (6.28) 
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Figure 6.12: Andreev's construction for deducing the mapping between point A 
in energy-orientation space onto point P on the equilibrium crystal in real space. 

Now we note tha t l\ is 7 t a n 0 , and if we let ß be the angle ΔΑΚΟ, where 
the line through AK is tangent to 7(0) at A, then I2 is 7 tan( /3 + 0) = 
7(tan/3 + t a n 0 ) / ( l — t a n ß t a n 0 ) . Hence, 

x = 7 cos 0 ( t an 0 + 
tan β + t an 0 

1 — tan ß t an 0 

Finally, since tan/3 is the slope of the 7(0) plot, we can rewrite it as 

0 (7 cos 0) <9(7cos0)/<90 — 7 sin 0 + 7 ' cos Θ 
tan/3 = 

«9(7 sin 0) $ (7 sin θ) /8Θ 7 cos 0 + 7 ' sin 0 

(6.29) 

(6.30) 

Inserting this expression for tan/3 into Equation 6.29 then gives, after some 
algebra, 

/ Λ d ( 7 / c o s # ) 
x = 7 / c o s 0 + 7 t a n 0 c o s 0 = - ^ τ ^ . (6.31) 

a ( t a n 0 ) 
Second, let us deduce the z-coordinate of point P. By inspection of 

Figure 6.12, the ^-coordinate is the difference between the lengths of the 
line segments OJ and LJ. Since OJ is 7 / c o s 0 and LJ is x t a n 0 , we then 
have 

7 x t an 0 7 — t a n 0 
0 ( 7 / cos 0) 

(6.32) 
cos 0 ~ cos 0 " # ( t an 0) 

Equations 6.31 and 6.32 are explicit algebraic expressions for the Herring 
construction. Note tha t bo th are expressed in terms of / = 7 / c o s 0 and 
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s = tan Θ. The first is the surface free energy per unit area projected onto 
a reference surface of orientation 9 = 0 and the second is the slope of the 
misorientation from Θ = 0. In terms of / and s, Equations 6.31 and 6.32 
can then be rewritten more conveniently as 

df 
X = Ts 

z = / - β | £ · (6-33) 

As illustrated in Figures 6.13 and 6.14, the x-coordinate of the surface of 
the equilibrium crystal having orientation Θ = t a n - 1 s is the slope df/ds, 
and the z-coordinate is the intercept of the tangent to f(s) with the s = 0 
axis. This simple and elegant mapping, originally derived by Andreev,1 9 

may be called Andreev's construction. 
Note tha t this mapping of f(s) onto z(x) is essentially a Legendre trans-

formation analogous to those tha t map energies onto free energies.20 For 
example, recall from Chapter 1 tha t temperature-dependent Helmholtz free 
energies can be writ ten as F(T) = U — S(dU/dS), where T = dU/dS. 
Hence, the equilibrium crystal shape may be regarded as a kind of free en-
ergy in which the "extensive" quantity, s, has been replaced by a conjugate 
"intensive" quantity, df/ds. 

Note also tha t for vicinal surfaces characterized by a terrace and step 
structure, s can be regarded as a step density, and df/ds can be regarded 
as a kind of chemical potential for steps. Viewed in this way, crystals evolve 
toward their equilibrium shape because their surfaces represent "open" sys-
tems with respect to interchange of "steps." 

To illustrate the use of this powerful and convenient mapping, consider 
the f(s) and corresponding z(x) plots shown in Figures 6.13 and 6.14. In 
Figure 6.13, f(s) near 5 = 0 has been assumed to take the cubic form 
derived in Section 6.1.3, 

f(s) = a + bs + ds3. (6.34) 

Then, the shape of the equilibrium crystal is given by 

ßf _ „ o , „ 3 _ „ njiX~b 
3/2 

z(x) = f - s^f =a- 2ds6 =a-2d[ ^—^ ) , (6.35) 
ds \ 3d ) 

where we have used the mapping x = df/ds = b + 3ds2. Hence, the 
rounded region of the equilibrium crystal joins the 5 = 0 facet at x = 

19 A.F. Andreev, "Faceting phase transitions of crystals," Sov. Phys. JETP 53, 1063 
(1982). 

2 0 C . Rottman and M. Wortis, "Statistical mechanics of equilibrium crystal shapes: 
interfacial phase diagrams and phase transitions," Phys. Rep. 103, 59 (1984). 
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0.10 

0.05 

0.00 

Figure 6.13: Andreev's construction near an orientation around which the pro-
jected surface free energy per unit area (left) is concave up in tan0, and for 
which the tan Θ = 0 facet joins the rest of the crystal (right) with a continuous 
first derivative. 

b with a "critical exponent" of 3/2. Because the misorientation of the 
rounded region goes to zero continuously as the facet is approached [zf(x) 
is continuous but z"(x) is not], the junction can be thought of as a second-
order phase transit ion.2 1 

In Figure 6.14, f(s) has been assumed to be concave down except for 
cusps at s = 0 and s = ± 1 . Then, the z(x) mapping becomes "reentrant," 
and the 5 = 0 and 5 = 1 facets join directly. Because the orientation of the 
crystal changes discontinuously \z'(x) is discontinuous], the junction can be 
thought of as a first-order phase transition. 

6.2.2 Shapes of Surfaces: Facetting 
In Subsection 6.2.1, we discussed various constructions and mappings for 
deducing the equilibrium shapes of crystals subject to the constraint of 
constant volume. Often, however, a different constraint is imposed, tha t of 
constant average surface orientation. In this subsection, we ask: under what 
conditions will such a surface be stable, and under what other conditions 
will it tend to "facet" into combinations of other orientations? An example 
of such facetting is shown in Figure 6.15. 

To answer this question it will be convenient to use the quantities in-
troduced in Subsection 6.2.1. These are the surface free energies per unit 

2 1 V.L. Pokrovsky and A.L. Talapov, "Ground state, spectrum, and phase diagram of 
two-dimensional incommensurate crystals," Phys. Rev. Lett. 42, 65 (1979). 
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Figure 6.14: Andreev's construction for a crystal with tan0 = 0 and tan0 = ± 1 
facets, and between which the projected surface free energy per unit area (left) 
is concave down in tan0. Then, the tan0 = 0 and tan0 == ±1 facets join (right) 
with discontinuous first derivatives. 

area projected onto a reference surface of orientation 0 = 0, / = 7 / cos 0; 
and the slope of the misorientation from 0 = 0 , 5 = tan 0. In terms of these 
quantities, we will discuss, in turn , the following questions. First, under 
what conditions will a surface be stable against facetting? Second, if a sur-
face is unstable against facetting, what will the misorientations of the new 
facetted surfaces be? Third, what is the analogous stability criterion in the 
more conventional 7(0) representation? Fourth and finally, how can these 
ideas be used to generate phase diagrams on which coexistence of surfaces 
of differing orientations may be represented? 

A Stabi l i ty Cr i ter ion 

Let us begin by deriving a criterion for the stability of a surface against 
facetting. Consider the surface depicted by the dot ted lines in Figure 6.16, 
oriented at some angle 0 with respect to the reference surface depicted 
by the dashed lines. Suppose tha t surface breaks up into the hill and 
valley structure depicted by the solid lines. If the two new orientations 
make angles θχ and 02 with respect to the reference surface, and have areas 
projected onto the reference surface of x\ and x2, then their projected 
vertical heights are hi = xx t a n 0 i and h2 = x2 t a n 0 2 , respectively. 

Under what conditions will the original surface be stable against for-
mation of this hill and valley structure? Since the projected free energy of 
the original surface is f(ß){x\ + ι 2 ) , and tha t of the two new surfaces is 
f(9i)xi + f(92)x2, the criterion is tha t there not exist straddling orienta-
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Figure 6.15: Scanning tunneling micrograph of a Si surface cut 6° from 
(111) along an azimuth rotated about 10° away from the high symmetry [112] 
direction. The scan area is approximately 200 x 300 A. The surface has phase 
separated into two facets of different orientations, one containing 7 x 7 recon-
structed terraces separted by straight [112] steps and one rotated azimuthally by 
approximately 40° from the [112] direction.0 

a J . Wei, X-S Wang, N.C. Bartelt, E.D. Williams, and R.T. Tung, "The precipitation 
of kinks on stepped S i ( l l l ) surfaces," J. Chem. Phys. 94, 8384 (1991). 

tions θχ and θ2 such tha t 

/(*) > /(öi)—5—+/(02)—5—. (6·36) 
Xl + X2 Xl + X2 

Note tha t from the relations x\ = / i i / t a n # i , x2 = h2/ta,n62, and 
X\-\- x2 — (h\ + h2)/ ί&ηθ, the fractions of the reference surface tha t have 
the two orientations can be deduced, after some algebra, to be 

x2 tan Θ — t an θ\ 
X\ H- x2 t an θ2 — t an θχ 
χι t an Θ — t an θι , Λ„. 

= 1 - 1 — 5 ΠΓ7Γ· ( 6 ·3 7 ) Χι + x2 t an θ2 — t an θι 

These equations are equivalent to a lever rule tha t determines, given an 
average orientation 0, the amounts of two other orientations required for a 
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^ ι 

Figure 6.16: Geometry of a surface of average orientation Θ that has facetted 
into two surfaces of orientations θ\ and Θ2 relative to a reference surface. The 
projected horizontal widths and vertical heights of the two surfaces are 2xi, 2^2, 
2h\, and 2/i2, respectively. 

continuous joining of surfaces. Altogether, the stability criterion is then 

/ ( t an (0 ) < 

Λ v / t a n ö — tan 0i \ „, Λ x / t a n # — tan# i \ 
/ ( t a n Ö l ) i 1 - tonft-tonoj + / ( ^ 2 ) ( t o n f t - t o n g j ' 

(6.38) 

where we consider / to be a function of tan Θ ra ther than Θ. In other words, 
a surface of orientation Θ is stable if on an / vs. t a n # plot, / ( t a n # ) is less 
than all lever-rule-weighted sums of / ( t a n # i ) and / ( t a n ^ ) · 

T h e C o m m o n Tangent Cr i ter ion 

Now tha t we have derived a criterion for stability of a surface against 
facetting, let us ask the opposite question. Suppose tha t the original sur-
face is unstable with respect to breakup? Wha t will be the two straddling 
orientations, which can be considered two "phases," tha t will coexist sta-
bly in its stead? To answer this question, we imagine making two distinct 
concerted variations in the geometries of the two surfaces, and require the 
total free energy change to vanish. 

First, we imagine varying the projected vertical height of surface 1 by 
dhi, while at the same time varying the projected vertical height of surface 2 
by ά\ι<ι — —dhi, so tha t the two surfaces continue to join perfectly. If each 
surface is thought of loosely as made up of steps and "missing steps," then 
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this variation can be thought of as moving steps from surface 2 to surface 1, 
and at the same time moving missing steps from surface 1 to surface 2. 

Since x\ and x2 are unchanged during this variation, the free energy 
changes associated with surfaces 1 and 2 are 

d(fixi) a / i ö/i 
oh\ a (x i t an^ i ) a t an# i 

and 
_ d{f2X2) = χ^ df2 = df2 

dh2 ö(x2tan^2) 9 tan #2' 
where f\ and f2 are the surface free energies per unit area projected onto 
the reference surface. If the sum of these changes is to vanish, then we must 
have 

d h = d h . (6.41) 
0 tan 0i <9tan02 

In other words, the slopes of the / ( tan0) plot at the two orientations θχ 
and θ2 must be equal. 

Second, we imagine varying the projected area of surface 1 by dx\, while 
at the same time varying the projected area of surface 2 by dx2 = —dx\, 
again so that the two surfaces continue to join perfectly. If each surface 
is thought of loosely as composed of steps and "missing steps," then this 
variation can be thought of as moving missing steps from surface 1 to 
surface 2. 

Since h\ and h2 are unchanged during this variation, the free energy 
changes associated with surfaces 1 and 2 are 

ö( / i* i ) , ^ ( hx \ dfi 
— h + dx\ \tan9\ ) d(h\/tan6i) 

= fx - t an f l i 1 d^1 ) J1 1\dtane1J 
d(f2x2) = _h _ (_h_\ dh 

dx2 \ tan 02/ 9(/i2/tan02) 

If the sum of these changes is to vanish, then we must have 

Λ -tanÖ1 (sSbr) =h ~tan*2 {ä£k) ■ ( 6 ·4 3 ) 

In other words, the tan# = 0 intercepts of the tangents to the / ( tan#) plot 
at the two orientations Q\ and θ2 must be equal. 
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Altogether, Equations 6.41 and 6.43 combined tell us tha t both the 
slopes and intercepts of the two tangents must be equal, and so the tan-
gents themselves must coincide. Therefore, the condition for coexistence 
of two surfaces of different orientation is tha t their / ( t a n 0 ) plots share a 
common tangent.22 Another way of viewing the origin of this construction 
is to think of the steps as particles. Then, equilibrium between surfaces 
of different orientation is analogous to equilibrium with respect to inter-
change of particles, hence equality of chemical potentials.2 3 In a sense, 
s = t a n 0 is an extensive, rather than an intensive, variable, and can vary 
inhomogeneously within an equilibrium system.2 4 

Herring's Cr i ter ion 

The common tangent criterion for orient at ional stability just derived is 
a powerful and useful one. It implies tha t conditions for stability and 
coexistence of surface orientations are formally equivalent to the conditions 
for stability and coexistence of binary alloy phases. Hence, the arguments 
and insights derived from Chapter 3 apply directly. 

For example, if the / ( t a n 0 ) plot is concave up as in the top of Fig-
ure 6.17, then all orientations are stable. If it is concave down, as in the 
bot tom of Figure 6.17, then only the t a n 0 = 0 and t a n 0 = ± 1 facets 
are stable; all other orientations decompose into a phase mixture of those 
facets, in proportions given by the lever rule. 

This common tangent criterion in the / ( t a n 0 ) representation can also 
be understood using the more conventional 7(0) representation. To see 
how, note tha t the critical shape for the / ( t a n 0 ) plot dividing these two 
extremes of behavior is a straight line: 

/ ( t a n 0) = A + B t an 0. (6.44) 

Note tha t on a 7(0) plot, such straight lines become circles passing through 
the origin, 

7(0) = (cos 0 ) / ( t a n 0) = A cos 0 + B sin 0, (6.45) 

with origin at (A/2,B/2) and radius {A/2)2 + (B/2)2. Hence, / ( t a n 0 ) 
plots tha t are concave up correspond to 7(0) plots tha t "bulge" out between 
facets less than would a sphere passing through the origin, as in the top 
of Figure 6.17, and / ( t a n 0 ) plots tha t are concave down correspond to 

22 A.A. Chernov, "The spiral growth of crystals," Sov. Phys.-Usp. 4, 116 (1961); and 
N. Cabrera, "The equilibrium of crystal surfaces," Surf. Sei. 2, 320 (1964). 

2 3 P . Nozieres, "Surface melting and crystal shape," J. Phys. 50, 2541 (1989). 
2 4N.C. Bartelt, T.L. Einstein, and C. Rottman, "First-order transitions between sur-

face phases with different step structures," Phys. Rev. Lett. 66, 961 (1991). 
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Figure 6.17: Common tangent criteria for orientational stability. The / ( t an0) = 
7 / cos Θ plot at top is concave up between tan Θ = 0 and tan Θ = ± 1 , hence surfaces 
whose orientations lie between those angles are stable against facetting into an 
inhomogeneous mix of Θ = 0 and θ = ±π/4 surfaces. The / ( t an Θ) — 7 / cos Θ plot 
at bottom is concave down between tan# = 0 and tan# = ± 1 , hence surfaces 
whose orientations lie between those angles are unstable against facetting into an 
inhomogeneous mix of Θ = 0 and θ = ±π / 4 surfaces. The / ( t an Θ) = 7 / cos Θ plot 
in the middle are straight lines between tan# = 0 and tanö = ± 1 , hence surfaces 
whose orientations lie between those angles are critically stable against facetting 
into an inhomogeneous mix of Θ = 0 and θ = ±π / 4 surfaces. 
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7(0) plots tha t bulge out between facets more than would a sphere passing 
through the origin, as in the bo t tom of Figure 6.17.25 

Now, tangent spheres at orientations tha t bulge less than spherically 
must lie inside the η(θ) plot, and hence lie on the equilibrium crystal shape, 
while tangent spheres at orientations tha t bulge more than spherically must 
lie outside the 7(0) plot, and hence be absent from the equilibrium crystal 
shape. As a consequence, we also have Herring's criterion, originally proved 
in a different maner: those orientations are stable tha t are represented on 
the equilibrium crystal shape, and those orientations are unstable tha t are 
not represented on the equilibrium crystal shape. 

T e m p e r a t u r e - D e p e n d e n t P h a s e Equi l ibr ia 

Let us now illustrate the stability criterion and common tangent construc-
tions just derived with a concrete example. Consider the cubic 2D crystal 
shown in Figure 6.18, whose lowest free energy surfaces are (11) and (01) 
facets. At low temperatures , we expect the 7(0) plot to be deeply cusped 
at those orientations, leading to an equilibrium crystal bounded solely by 
these facets. As temperature increases, the η(θ) plot becomes less and less 
cusped. In this case, the (01) facets are shown to roughen first, leading to 
an equilibrium crystal bounded by continuously curved surfaces joined to 
(11) facets. Then, the (11) facets roughen, leading to an equilibrium crystal 
bounded everywhere by continuously curved surfaces. 

Another way of looking at the temperature evolution of this system is 
to plot, as illustrated in Figure 6.19, / vs t a n 0 and z = f — s(df/ds) 
vs x = df/ds diagrams. At low temperatures, the / ( t a n # ) plot is deeply 
cusped at t a n # = 0 and t a n # = ± 1 . Application of the common tangent 
construction then leads to the orientational gap shown in the bot tom left of 
Figure 6.19, and to the first-order facet-facet joining shown in the bo t tom 
right of Figure 6.19. At higher temperatures , the η(θ) plot becomes less 
and less cusped. As this happens, the orientational gap vanishes, and all 
orientations become stable. At the same time, the first-order facet-facet 
joining evolves to a second-order joining, and ultimately disappears entirely. 

Finally, it is often convenient to plot these orientational gaps (in tan Θ) 
and facet-facet phase transition positions (in x = df/ds) as temperature-
dependent phase diagrams. The resulting T ( t an Θ) phase diagram is shown 

2 57(0) plots composed of exactly spherical bulges between facets, as in the middle 
of Figure 6.17, are also known as "raspberry" figures; see F.C. Frank, "The geometri-
cal thermodynamics of surfaces," in W.D. Robertson and N.A. Gjostein, Eds., Metal 
Surfaces: Structure, Energetics and Kinetics, Proceedings of a joint seminar of the 
American Society for Metals and the Metallurgical Society of AIME, October 27-28, 
1962 (American Society for Metals, Metals Park, Ohio, 1963), Chap. 1. 
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Figure 6.18: Equilibrium shapes for a hypothetical 2D crystal with both (11) 
and (01) facets. As temperature increases (counterclockwise from lower left), the 
7(0) plot becomes less and less cusped, and the equilibrium shape becomes less 
and less faceted. 

in the middle left of Figure 6.19. It maps out the critical values of t a n # 
for which surfaces of a specified average orientation will decompose into 
mixtures of orientations. At temperatures below 380 K, only (11) and (01) 
facets are stable; all other orientations decompose into lever-rule mixtures 
of those orientations. At temperatures above 380 K, orientations near (01) 
become stable; all other orientations now decompose into lever-rule mix-
tures of (11) facets and nonsingular orientations near (01). Wi th increasing 
temperature above 380 K, orientations farther and farther from (01) become 
stable, until at 900 K, even orientations near (11) are stable. Above 900 K, 
surfaces of any average orientation will be stable against decomposition into 
inhomogeneous mixtures of surfaces of differing orientations. 
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Figure 6.19: Orientational phase diagrams for the hypothetical 2D crystal illus-
trated in Figure 6.18. The left middle diagram shows the mixtures of orientations 
that a surface of a specifice average orientation will decompose into. The right 
middle diagram shows the horizontal positions at which different facets join on 
the equilibrium crystal; solid and dotted lines indicate first- and second-order 
phase transitions, respectively. Above and below the diagrams are examples of 
the 7 / cos Θ vs tan<9 and z = / - s(df/ds) vs x = df/ds plots from which these 
diagrams were derived. 
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The corresponding T(x) phase diagram is shown in the middle right of 
Figure 6.19. It maps out the critical horizontal positions at which different 
facets join on the equilibrium crystal. At temperatures below 380 K, (11) 
facets join (01) facets in first-order phase transitions. At temperatures 
above 380 K, orientations near (01) begin to appear. As a consequence, 
(11) facets join continuously curved orientations near (01) in first-order 
phase transitions, while the continuously curved orientations near (01) join 
(01) facets in second-order phase transitions. Wi th increasing temperature 
above 380 K, these alternative orientations near (01) become increasingly 
stable, until at 500 K the (01) facets "roughen" and disappear entirely. 

Above 500 K, (01) facets are absent from the equilibrium crystal, but 
(11) facets are present, and continue to join continuously curved orienta-
tions near (01) in first-order phase transitions. Wi th increasing temperature 
above 500 K, though, these continuously curved orientations approach more 
and more closely (11) orientations, until at 900 K the (11) facets begin to 
join these continuously curved orientations in second-order phase transi-
tions. Finally, at 1000 K, the (11) facet itself "roughens" and disappears 
entirely. 

6.2.3 Shapes of Thin Films: Growth Modes 
Thus far, in Subsections 6.2.1 and 6.2.2, we have been concerned with 
single-material systems, e.g., homoepitaxial films of one material on sub-
strates of the same material . Then, the surface free energy and, in par-
ticular, its orientation dependence, plays the most important role in de-
termining the equilibrium morphology. However, for two-material systems, 
e.g., heteroepitaxial films of one material on substrates of another material, 
interface and volume free energies also play important roles.26 

In this subsection, we discuss how these energies determine the equi-
librium morphology, or "growth mode," of the film. We discuss two ap-
proaches in turn . The first approach considers the shape of the thickness-
dependent total free energy. The second approach considers the contact 
angles tha t the film islands make with the substrate, as determined by the 
surface and interface energies. 

Free Energ ie s 

Consider the thickness-dependent total free energy curves shown in Fig-
ure 6.20. Note tha t these are the total free energies of the system relative 

2 6E.G. Bauer, "Phänomenologische theorie der kristallabscheidung an Oberflächen. I 
& II," Z. Kristallogr. 110, 372, 395 (1958), NASA Technical Translations T T F - l l , 
888 and 889 (NASA, Washington, D.C., August, 1968). 
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Figure 6.20: Thickness dependences of total free energies for the three classical 
heteroepitaxial growth modes. 

to tha t of the bare substrate, and include both volume and surface con-
tributions. We assume tha t there is a nonzero driving force for epitaxy, 
and so in each panel the overall t rend is for the free energy to decrease 
with increasing thickness of the heteroepitaxial layer. We also assume tha t 
fully completed layers, with fully laterally coordinated atoms, have slightly 
lower energies than partially completed layers, and so in each panel the free 
energies are shown corrugated slightly with a monolayer periodicity. 

There are three cases of interest.2 7 In the top panel of Figure 6.20, the 
sum of the free energies associated with the free surface of the epitaxial 
film, 7e/v> a n d with the interface between the substrate and the epitaxial 
film, 7 s / e , is less than or equal to tha t associated with the original substrate 
surface, 7S/V: 

7 e / v + 7 s / e < 7 s / v (6 .46) 

Then, the overall free energy decreases faster over the first layer (or two), 
before settling down to a steady state slope for thicker films. The overall 
shape of the thickness-dependent free energy is then concave up. Therefore, 

2 7M.H. Grabow and G.H. Gilmer, "Thin film growth modes, wetting and cluster nu-
cleation," Surf. Sei. 194, 333 (1988). 
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for every integral-monolayer thickness, the system is thermodynamically 
stable against breakup into inhomogeneous regions, some thicker and some 
thinner. This leads to what is known as the ideal Frank-van-der-Mer we 
layer-by-layer growth mode.28 

In the bottom panel, the sum of 7e/v and 7s/e is greater than 7S/V-

7e/v + 7 s / e > 7s /v · (6-47) 

Then, the overall free energy increases at first as the first layer (or two) 
is deposited, before turning around and decreasing for thicker films. The 
overall shape of the thickness-dependent free energy is then concave down. 
Systems of uniform thickness are therefore thermodynamically unstable 
against breakup into inhomogeneous regions, some very thick and some 
completely uncovered. This leads to what is known as the Volmer-Weber 
island growth mode.29 It is often observed in "dirty" systems in which im-
purities lower the free energy of the starting surface, but are buried shortly 
after heteroepitaxy begins.30 

In the middle panel, the sum of 7e/v and 7s/e is, just as in the top panel, 
less than 7S/V: 

7 e / v + 7 s / e > 7 s / v (6.48) 

Therefore, the surface free energy decreases faster as the first layer (or two) 
is deposited. However, because of some constraint that the substrate im-
poses on the epilayer, the energy decreases less steeply as subsequent layers 
are deposited. Only for very thick films, when the epilayer decouples from 
the substrate, does the energy decrease as steeply as expected for a given 
driving force for homoepitaxy. The overall shape of the thickness-dependent 
free energy is therefore initially concave up, but then subsequently concave 
down. Films thicker than a few layers are therefore unstable to breakup 
into inhomogeneous regions, some very thick and some having only one (or 
two) layers. This leads to what is known as the Stranski-Krastanov layer 
plus island growth mode.31 

2 8 F .C. Frank and J.H. van der Merwe, "One-dimensional dislocations. I. Static the-
ory," Proc. R. Soc. London A198, 205 (1949); F.C. Frank and J.H. van der Merwe, "One-
dimensional dislocations. II. Misfitting monolayers and oriented overgrowth," Proc. R. 
Soc. London A198, 216 (1949); F.C. Frank and J.H. van der Merwe, "One-dimensional 
dislocations. III. Influence of the second harmonic term in the potential representation, 
on the properties of the model," Proc. R. Soc. London A200, 125 (1950); and F.C. 
Frank and J.H. van der Merwe, "One-dimensional dislocations. IV. Dynamics," Proc. 
R. Soc. London A201 , 261 (1950). 

2 9 M. Volmer and A. Weber, "Keimbildung in übersättigten gebilden," Z. Phys. Chem. 
119, 277 (1926). 

3 0B.A. Joyce, "The growth and structure of semiconducting thin films," Rep. Prog. 
Phys. 37, 363 (1974). 

311.N. Stranski and L. Krastanow, "Zur theorie der orientierten ausscheidung von 
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Figure 6.21: Surface tension forces acting on a heteroepitaxial nucleus on a 
substrate. 

In practice, the growth mode tha t often applies to strained-layer het-
eroepit axy is the Stranski-Krastanov growth mode. Films thinner than the 
critical thickness for strain relaxation are strained, and their free energies 
do not decrease with increasing thickness as steeply as the free energies of 
unstrained films. Films above the critical layer thickness, however, relax, 
and their free energies decrease at a rate approaching tha t for unstrained 
homoepitaxy. 

C o n t a c t A n g l e s 

Another way of looking at these three classic growth modes is to consider 
the contact angle of a spherical heteroepitaxial cap on the surface.32 If, as 
shown in Figure 6.21, the free energies of each interface are considered vec-
tor forces lying within their respective interfaces, then lateral force balance 
requires tha t 

7 s / v = 7 s / e + 7 e / v COS ß. ( 6 . 4 9 ) 

The contact angle will therefore be given by 

Ω 7 s / v ~~ 7 s / e (a c r A 

cosp = —- —. (6.50) 
7e/v 

If (7s/v — 7s/e)/7e/v > 1> then there is no contact angle satisfying 
Equation 6.50, the cap is unstable, the heteroepitaxial layer wets the sub-
strate, and Frank-van-der-Merwe layer-by-layer growth occurs. If (7S/V ~~ 
7s/e)/7e/v < 1 then there is a finite contact angle satisfying Equation 6.50, 
caps having tha t contact angle are stable, the heteroepitaxial layer does 
not wet the substrate, and Volmer-Weber island growth occurs. 

ionenkristallen aufeinander," Ber. Akademie der Wissenschaften und der Literatur, 
Mainz. Mathematisch-Naturwissenschaftliche Klasse, 146, 797 (1939). 

3 2R. Kern, G. Le Lay and J.J. Metois, "Basic mechanisms in the early stages of 
epitaxy," in Current Topics in Materials Science, Vol. 3, E. Kaldis, Ed. (North-Holland, 
Amsterdam, 1979). 
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If (7s/v — 7s/e)/7e/v depends on thickness, then it is possible for the first 
few layers to wet the substrate, for subsequent layers to island, and for the 
growth mode to be Stanski-Krastanov layer-plus-island. For example, for 
an island on a bare substrate, (7S/V

 — 7s/e)/7e/v m aY D e greater than unity, 
so that a wetting epilayer forms. Then, for an island on a wetting epilayer, 
\7w/v 7w/e )/7e/v, where 7 w / v is the surface free energy of the wetting 
layer and 7w/e is the interface free energy between the wetting layer and 
the epilayer, may be less than unity, so that islands form on the wetting 
epilayer. 

This can come about in strained heteroepitaxy if the strain and dislo-
cation energies of the epitaxial film are thought of as an effective interface 
free energy that is included as part of 7w/e- Then, for very thin (mono-
layer) films, 7S/v may be so large that (7S/V — 7s/e)/7e/v ls greater than 
unity and the first epilayer wets the substrate. For very thick, unstrained 
films, the free energy of the interface between the first wetting epilayer 
and subsequent epilayers (7w/e) would normally vanish, and the surface 
free energies of the wetting epilayer (7W/V) and subsequent epilayers (7e/v) 
would be equal. Hence (7w/v — 7w/e)/7e/v -* 1> a n d islands would be unsta-
ble. For intermediate thickness strained films, however, with a finite 7w/e, 
(7w/v — 7w/e)/7e/v < 1> a n d islands will be stable. 

6.3 Nonequilibrium Morphology 
In Section 6.2, we discussed equilibrium shapes of crystals and crystal sur-
faces in the absence of growth. In this section, we discuss nonequilibrium 
shapes in the presence of growth. We restrict our attention to homoepitaxy 
on simple starting surfaces at or near singular orientations, and composed of 
noninteracting arrays of steps. We do not treat the interesting but exceed-
ingly complex cases of epitaxy on starting surfaces well away from singular 
orientations or of growth on inhomogeneous, "patterned" starting surfaces 
composed of multiple orientations.33 We also do not treat the important 
but complex case of heteroepitaxy, in which surface morphology is often 
tightly coupled to the transition between coherency and semicoherency (see, 
e.g., Exercise 2 in Chapter 5), and in which Stranski-Krastonov layer-plus-
island and Volmer-Weber island growth modes are often observed. Finally, 
we also neglect effects due to surface reconstructions in covalently bonded 

3 3 W.W. Mullins, "Flattening of a nearly plane solid surface due to capillarity," J. 
Appl. Phys. 30, 77 (1959); W.T. Tsang and A.Y. Cho, "Growth of GaAs-Gai_ x Al x As 
over preferentially etched channels by molecular beam epitaxy: a technique for two-
dimensional thin-film definition," Appl. Phys. Lett. 30, 293 (1977); and E. Kapon, M.C. 
Tamargo, and D.M. Hwang, "Molecular beam epitaxy of GaAs/AlGaAs superlattice 
heterostructures on nonplanar substrates," Appl. Phys. Lett. 50, 347 (1987). 
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semiconductors,3 4 or due to the interplay between morphology and compo-
sition tha t can occur on the surfaces of binary alloys.35 

In modeling nonequilibrium surface morphology, it is useful to distin-
guish between two approaches. In the first approach, surface morphology 
is modeled directly. At one extreme, molecular dynamics simulations track 
the exact positions {r"i,r"2,...} of all a toms as they move in response to 
forces between them.3 6 At the other extreme, continuum models track the 
height h of a coarse-grained surface position (x,y). The time evolution of 
/i(x, y) is determined by various driving (e.g., growth with stochastic noise) 
and relaxation (e.g., diffusional) terms.3 7 In between these two extremes, 
Monte Carlo simulations track the column heights n of discrete surface 
lattice sites (i, j). The time evolution of the n(i,j) is determined by the 
probabilities of surmounting assumed energy barriers separating various 
configurations.38 

In the second approach, surface morphology is not modeled directly. 
Instead, the surface is decomposed into defects of various kinds, such as 
steps, 2D islands, and adatoms. The t ime evolution of surface morphology 
is then determined by the dynamics of the motion and interactions of these 
defects. 

In this section, we will take the second approach. Its disadvantage is 

34See, e.g., S.A. Barnett and A. Rockett, "Monte Carlo simulations of Si(OOl) growth 
and reconstruction during molecular beam epitaxy," Surf. Sei. 198, 133 (1988); and H.-
J. Gossman and L.C. Feldman, "Initial stages of silicon molecular-beam epitaxy: effects 
of surface reconstruction," Phys. Rev. B32 , 6 (1985). 

3 5A. Madhukar and S.V. Ghaisas, "The nature of molecular beam epitaxial growth 
examined via computer simulations," CRC Critical Reviews in Solid State and Materials 
Sciences 14, 1 (1988). 

3 6 M. Schneider, A. Rahman, and I.K. Schuller, "Role of relaxation in epitaxial growth: 
a molecular-dynamics study," Phys. Rev. Lett. 55, 604 (1985); E.T. Gawlinski and J.D. 
Gunton, "Molecular-dynamics simulation of molecular-beam epitaxial growth of the sil-
icon (100) surface," Phys. Rev. B36, 4774 (1987); S. Das Sarma, S.M. Paik, K.E. Khor, 
and A. Kobayashi, "Atomistic numerical simulation of epitaxial crystal growth," J. Vac. 
Sei. Technol. B 5 , 1179 (1987); and D. Srivastava and B.J. Garrison, "Growth mech-
anisms of Si and Ge epitaxial films on the dimer reconstructed Si (100) surface via 
molecular dynamics," J. Vac. Sei. Technol. A 8 , 3506 (1990). 

3 7 M. Kardar, G. Parisi, and Y-C Zhang, "Dynamic scaling of growing interfaces," 
Phys. Rev. Lett. 56, 889 (1986); D.E. Wolf, "Kinetic roughening of vicinal surfaces," 
Phys. Rev. Lett. 67, 1783 (1991); Z.-W. Lai and S. Das Sarma, "Kinetic growth with sur-
face relaxation: continuum versus atomistic models," Phys. Rev. Lett. 66, 2348 (1991). 

3 8 F .F . Abraham and G.H. White, "Computer simulation of vapor deposition on two-
dimensional lattices," J. Appl. Phys. 4 1 , 1841 (1970); G.H. Gilmer and P. Bennema, 
"Simulation of crystal growth with surface diffusion," J. Appl. Phys. 43 , 1347 (1972); S. 
Clarke and D.D. Vvedensky, "Origin of reflection high-energy electron-diffraction inten-
sity oscillations during molecular-beam epitaxy: a computational modeling approach," 
Phys. Rev. Lett. 58, 2235 (1987); and P.A. Maksym, "Fast Monte Carlo simulation of 
MBE growth," Semicond. Sei. Technol. 3, 594 (1988). 
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that it requires a priori knowledge of the important defect types and the 
ways in which they interact, knowledge that is currently far from com-
plete. Its advantage, though, is that it simplifies and brings deeper phys-
ical understanding to a rich statistical behavior. The evolution of surface 
morphology is complex and highly nonlinear, often even oscillatory upon 
initiation of growth. Indeed, such oscillations, illustrated in Figure 3.14 
have been observed by reflection high-energy electron diffraction (RHEED) 
and other in situ measurements in a variety of materials, including III-V,39 

IV-IV,40 II-VI41 and I-VII42 compounds, as well as metals43 and high-
Tc superconductors.44 Similar oscillations have also been observed during 

3 9 J . J . Harris, B.A. Joyce, and P.J. Dobson, "Oscillations in the surface structure of 
Sn-doped GaAs during growth by MBE," Surf. Sei. 103, L90 (1981); C.E.C. Wood, 
"RED intensity oscillations during MBE of GaAs," Surf. Sei. 108, L441 (1981); J.N. 
Eckstein, C. Webb, S.-L. Weng, and K.A. Bertness, "Photoemission oscillations during 
epitaxial growth," Appl. Phys. Lett. 51, 1833 (1987); L.P. Erickson, M.D. Longerbone, 
R.C. Youngman, and B.E. Dies, "The observation of oscillations in secondary electron 
emission during the growth of GaAs by MBE," J. Crystal Growth 81, 55 (1987); J.P. 
Harbison, D.E. Aspnes, A.A. Studna, L.T. Florez, and M.K. Kelly, "Oscillations in the 
optical response of (001) GaAs and AlGaAs surfaces during crystal growth by molecular 
beam epitaxy," Appl. Phys. Lett. 52, 2046 (1988); and J.Y. Tsao, T.M. Brennan, and 
B.E. Hammons, "Oscillatory AS4 surface reaction rates during molecular beam epitaxy 
of AlAs, GaAs and InAs," J. Crystal Growth 111, 125 (1991). 

4 0 T . Sakamoto, N.J. Kawai, T. Nakagawa, K. Ohta, and T. Kojima, "Intensity oscilla-
tions of reflection high-energy electron diffraction during silicon molecular beam epitaxial 
growth," Appl. Phys. Lett. 47, 617 (1985). 

4 1 L . A. Kolodziejski, R.L. Gunshor, N. Otsuka, B.P. Gu, Y. Hefetz, and A.V. Nurmikko, 
"Use of RHEED oscillations for the growth of 2D magnetic semiconductor superlattices 
(MnSe/ZnSe)," J. Cryst. Growth 81, 491 (1987). 

4 2 H. Dabringhaus and H.J. Meyer, "Untersuchung der kondensation und Verdampfung 
von alkalihalogenid-kristallen mit molekularst rahlmethoden. II. Relaxationseffekte auf 
der (lOO)-oberfläche von KC1," J. Cryst. Growth 16, 31 (1972); and H.J. Meyer and H. 
Dabringhaus, "Molecular processes of condensation and evaporation of alkali halides," in 
Current Topics in Materials Science Vol. 1, E. Kaldis, Ed. (North-Holland, Amsterdam, 
1978), Chap. 2. 

4 3 Y. Namba, R.W. Vook, and S.S. Chao, "Thickness periodicity in the Auger line 
shape from epitaxial (111) Cu films," Surf. Sei. 109, 320 (1981); T. Kaneko, M. Imafuku, 
C. Kokubu, R. Yamamoto, and M. Doyama, "The first observation of RHEED intensity 
oscillation during the growth of Cu/Mo multi-layered films," J. Phys. Soc. Jpn. 55, 2903 
(1986); S.T. Purcell, B. Heinrich, and A.S. Arrott, "Intensity oscillations for electron 
beams reflected during epitaxial growth of metals," Phys. Rev. B35 , 6458 (1987); C. 
Koziol, G. Lilienkamp, and E. Bauer, "Intensity oscillations in reflection high-energy 
electron diffraction during molecular beam epitaxy of Ni on W (110)," Appl. Phys. Lett. 
51, 901 (1987); and D.A. Steigerwald and W.F. Egelhoff, Jr., "Observation of intensity 
oscillations in RHEED during the epitaxial growth of Cu and fee Fe on Cu (100)," Surf. 
Sei. 192, L887 (1987). 

4 4 T . Terashima, Y. Bando, K. Iijima, K. Yamamoto, K. Hirata, K. Hayashi, K. Kami-
gaki, and H. Terauchi, "Reflection high-energy electron diffraction oscillations during 
epitaxial growth of high-temperature superconducting oxides," Phys. Rev. Lett. 65 , 2684 
(1990). 
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Peclet number 
L2j/D < 1 
L2j/D » 1 
L2j/D > 1 
L2j/D » 1 

Growth Regime 
"Diffusional" Step Flow 
"Convective" Step Flow 
2D Nucleation and Growth 
Statistical Growth 

Table 6.1: Magnitudes of Peclet numbers and the corresponding type of growth. 

other kinds of crystal growth, such as electrocrystallization45 and gas source 
or chemical beam epitaxy.4 6 

To organize our t reatment , we consider in the following Subsections the 
four regimes of behavior on vicinal (stepped) surfaces indicated in Table 6.1. 
These regimes are distinguished by the ratio between the velocity at which 
the steps move as they consume adatoms and the velocity at which adatoms 
diffuse to the steps. If j is the deposition rate in monolayers per second, 
and if L is the average spacing between the steps, then the velocity at 
which the steps move is roughly fstep = jL. If D is the adatom diffusivity, 
then the velocity of adatom diffusion to the steps is roughly t> adat ~ D/L. 
The ratio between the velocities is therefore L2j/D. This ratio is a kind of 
Peclet number, in tha t it is a dimensionless measure of the relative impor-
tance of convective over diffusional mass flow. Low Peclet numbers imply 
high temperatures and a dominance of diffusional mass flow; high Peclet 
numbers imply low temperatures and a dominance of convective mass flow. 
Another way of understanding the Peclet number is to note tha t it is also 
the ratio between the diffusion t ime across the terraces, L2/D, and the 
adatom arrival time, TML = 1/j· Low ratios imply either low growth rates 
or high adatom diffusivities; high ratios imply either high growth rates or 
low adatom diffusivities. 

6.3.1 Fast Adatoms and "Diffusive" Step Flow 
In this subsection, we discuss how surface morphology evolves if Peclet 
numbers are much less than unity, so tha t adatom diffusion to nearby steps 
is fast relative both to step flow and to the rate at which adatoms arrive 
from the vapor. Then, ada tom coverages will be low, adatom-adatom inter-
actions can be neglected, and growth will proceed exclusively by the flow 

4 5 V. Bostanov, R. Roussinova, and E. Budevski, "Multinuclear growth of dislocation-
free planes in electrocrystallization," J. Electrochem. Soc. 119, 1346 (1972). 

4 6 W.T . Tsang, T.H. Chiu, J.E. Cunningham, and A. Robertson, "Observations on 
intensity oscillations in reflection high-energy electron diffraction during chemical beam 
epitaxy," Appl. Phys. Lett. 50, 1376 (1987). 
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Figure 6.22: An array of steps at horizontal positions {xn} separated by terraces 
of widths {Ln}. 

of steps across the surface. In other words, adatoms are fast, and it is their 
diffusion tha t mediates step flow. 

To understand how the morphology of a surface evolves in this step 
flow regime, consider the array of steps illustrated in Figure 6.22. Suppose 
adatoms on terrace n have probability p + of at taching at the "up" step n 
on the left, and probability p~ — 1 — p+ of at taching at the "down" step 
n + l o n the right. If Ln is the width of terrace n in monolayers, then jLn 

adatoms land on tha t terrace each second, of which p + a t tach at step n 
and p~ a t tach at step n + 1. Terrace n makes an "up" contribution to the 
velocity of step n of jLnp+ and a "down" contribution to the velocity of 
step n + 1 of jLnp~. Alternatively, the velocity of step n can be viewed as 
containing an "up" contribution from terrace n of j L n p + , and a "down" 
contribution from step n — 1 of jLn-\p~. In other words, 

Xn — Vn \p++p ) \P++P ) 
Since the width of the n t h terrace is Ln = xn+χ — x n , we can also write 

Xn = jfan+l ~ Xn) ( ^ T ~ Γ ) + J(Xn ~ # n - l ) ( ~ j — ~ ) > ( 6 ·5 2 ) 

which is a set of difference equations for the t ime evolution of the positions 
of the steps in the array. 

If the incorporation probabilities are rewritten as 

+ ( P + + P " ) , ( p + -p~) 
p = h 2 2 

( p + + p ~ ) (p+-p~) (6.53) 
2 2 

then Equation 6.52 can be recast, after some algebra, into the form 

./ΐη+1-Χη_Λ . /p+ ~P~\ (Xn+l - Xn Xn-Xn-l\ 
X n = J { 2 )+Λ^Τ^){—2 2— )■ 

(6.54) 
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The first term on the right-hand side of Equation 6.54 is a simple differ-
ence between step positions, while the second term is a difference between 
differences. Hence, the continuum equivalent of Equation 6.54 is 

UX I Ό — Ό \ d X 
iM=jaa+j{^TF)^ ( 6 · 5 5 ) 

which is a single differential equation for the evolution of the step positions. 
An identical equation may be derived for the evolution of the terrace widths 
by inserting Equation 6.51 into Ln = xn+i — xn: 

*-«>-J£ ♦>(££)£. <"·> 
The first derivative terms in both of these equations give rise to wave 

behavior such that, for a fixed horizontal coordinate x, the step index n 
decreases as time increases. In particular, as steps move to the right during 
growth, the indices of the steps seen by a stationary observer decrease as 
dn/dt = —j. 

The second derivative terms in both of these equations are dispersion 
terms that tend to either damp or amplify fluctuations. Suppose, e.g., a 
surface at time t = 0 is composed of terraces having average widths of 
Lavg, but with an additional small sinusoidal variation of amplitude AL 
over step index changes of n\, i.e., L(n) = Lavg + ALs'm(n/n\). Then, its 
time evolution can be shown (see Exercise 8) to be given by 

L{n,t) = Lavg + ΔΖ,δίη2π ( VL±J1 ) e~t/TD, (6.57) 

where the rate at which the sinusoidal variation decays is47 

— =j(—) ( P + - P " ) · (6·58) 
TD \nxj v J 

The decay rate depends inversely on the square of the wavelength of the 
perturbation. As a consequence, growth will tend to smoothen short-
wavelength perturbations sooner than long-wavelength ones, and very long-
wavelength perturbations will tend to smoothen exceedingly slowly.48 

4 7R.L. Schwoebel, "Step motion on crystal surfaces. II," J. Appl. Phys. 40, 614 
(1969); and T. Fukui, H. Saito, and Y. Tokura, "Superlattice structure observation 
for (AlAs)1/2(GaAs)1/2 grown on (001) vicinal GaAs substrates," Japan. J. Appl. Phys. 
27, L1320 (1988). 

4 8H.-J. Gossman, F.W. Sinden, and L.C. Feldman, "Evolution of terrace size distribu-
tions during thin-film growth by step-mediated epitaxy," J. Appl. Phys. 67, 745 (1990). 
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Note tha t it is the anisotropy between the up and down step incorpo-
ration probabilities tha t determines whether the per turbat ion will grow or 
shrink. If p + > p~, then the per turbat ion decays; if p+ < p~, then the 
perturbat ion grows. This can be understood by inspection of Figure 6.22. 
If Ln is at some instant wider than its neighbors, then if adatoms on tha t 
terrace preferentially at tach at the "up" step, Ln will decrease and the per-
turbat ion will decay, while if they preferentially a t tach at the "down" step, 
Ln will increase and the per turbat ion will grow. 

Note tha t although Equation 6.56 describes a wave moving backward in 
step index with increasing time, the horizontal position x « Layg(n + jt) of 
a given step index itself moves forward with t ime as steps flow to the right. 
Hence, Equation 6.57 can be rewritten approximately as 

L(x, t) = L a v g + AL sin 2π f ——— ] e~t,TD. (6.59) 
\Lavgn\J 

In real space, terrace width perturbat ions propagate nearly vertically, even 
though the steps themselves propagate horizontally to the right. This be-
havior is illustrated in Figure 6.23, which shows the evolution of an array 
of steps having an initial Gaussian per turbat ion centered at xn = 80. 

Finally, we note tha t , in deriving Equat ion 6.56, adatoms were assumed 
to at tach only at adjacent steps. If, instead, adatoms cross adjacent steps 
and ultimately a t tach at more distant steps, then higher order derivatives 
appear in Equations 6.55 and 6.56 tha t can cause perturbat ions to propa-
gate to the right.4 9 

6.3.2 Slow Adatoms and "Convective" Step Flow 
In Subsection 6.3.1, we discussed how surface morphology evolves if Peclet 
numbers are much less than unity, so tha t adatom diffusion to nearby steps 
is fast. In this subsection, we discuss how surface morphology evolves if 
Peclet numbers are on the order of unity, so tha t ada tom diffusion to nearby 
steps is comparable to the step flow velocity. Then, as we shall see, adatom 
annihilation occurs not only by adatom diffusion to steps, but by step flow 
over adatoms. As a consequence, there can arise an oscillatory interplay be-
tween accumulation of adatoms between the steps, and sweeping of adatoms 
by step flow. 

To quantify this, consider the equi-spaced array of steps illustrated in 
Figure 6.24, with a space and time-dependent adatom coverage 6(x,t). On 
the terrace bounded by steps at XL a n d XR, the coverage increases with time 

49S.A. Chalmers, J.Y. Tsao, and A.C. Gossard, "Lateral motion of terrace width 
distributions during step-flow growth," Appl. Phys. Lett. 6 1 , 645 (1992). 
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Figure 6.23: Snapshots in time of the terrace widths, Ln(t), heights, hn(t) and 
lateral positions, xn( t ) , of an array of steps after successive monolayers have been 
deposited. The terraces are on average five lattice parameters wide, but with an 
initial Gaussian bunching centered at xn « 80. Bottom: The heights hn of the 
steps are constant, but their lateral positions xn increase with time as the steps 
flow to the right. Top: Even though the steps flow to the right, the perturbation 
in the terrace widths propagates vertically up. For clarity, the terrace widths Ln 

are shown offset by successive monolayers t/rMh-

due to deposition at a rate j , and the spatial distribution of the coverage 
broadens in t ime due to diffusion at a ra te Dd26/dx2. If evaporation back 
into the vapor is negligible, then the coverage evolves according to 5 0 

0{x,t)=j + D 
82θ 
Ar5" (6.60) 

At the left step edge, the rate at which adatoms at tach will be pro-
portional to the adatom coverage, k^t6{x^,t)^ where k£tt is a kinetic rate 
constant for successful adatom at tachment at. an up step. If adatoms can 
also detach from steps, then there will be a competing rate, fc~Jet, w n e r e 

^det ls a kinetic rate constant for successful adatom detachment from an 
up step. 

The difference between these two rates must be exactly balanced by the 
diffusive flow of adatoms into the step, D[d6/dx]XL. Hence, we have at the 
left step 

Γ ββ" 

kttte(xL,t)-k+it=Di 
dx 

(6.61) 

5 0W.K. Burton, N. Cabrera, and F.C. Frank, "The growth of crystals and the equilib-
rium structure of their surfaces," Philos. Trans. R. Soc. London Ser. A243 , 299 (1951). 
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Figure 6.24: Steady-state adatom coverages on an equi-spaced array of "fast" 
steps. 

Using similar reasoning, we also have at the right step 

'θθ] 
^tAxR,t)-k-et = -D 

dx 
(6.62) 

where k~tt and k^et are kinetic rate constants for successful ada tom attach-
ment and detachment from the down step. These two boundary conditions 
determine, along with Equation 6.60, the t ime evolution of the adatom 
coverage.51 

Note, however, tha t these boundary conditions are complicated by the 
fact tha t , as adatoms at tach at the steps, the steps themselves move, so tha t 
the positions in space at which the boundary conditions must be applied 
also move. Since the velocities at which the steps move is determined by 
the sum of the a t tachment rates of adatoms coming from the left and the 
right of each step, we have 

«(*) = [*£t*(*L, t) - k+j + [k:ite(xR, t) - fcd-j 

= D 
\3θλ 
dx 

XL· 
- D 

ΪΘΘ1 
dx 

(6.63) 

To remove this complication, it is convenient to transform into a coor-
dinate system, x' = x + J vdt, tha t itself moves with the steps. Then, the 
boundary conditions given by Equations 6.61 and 6.62 may be applied at 
fixed xf

L and x'R, but the differential Equation 6.60 becomes 

(6.64) 

The equation now contains both a "diffusive" term, Dd26/dx'2, as well as 
a "convective" term, υθθ/θχ', due to the motion of the s tep.5 2 

5 1R. Ghez and S.S. Iyer, "The kinetics of fast steps on crystal surfaces and its appli-
cation to the molecular beam epitaxy of silicon," IBM J. Res. Develop. 32, 804 (1988). 

5 2 K. Voigtlander, H. Risken, and E. Kasper, "Modified growth theory for high su-
persaturation," Appl. Phys. A39 , 31 (1986); and V. Fuenzalida and I. Eisele, "High 
supersaturation layer-by-layer growth: application to Si MBE," J. Crystal Growth 74, 
597 (1986). 
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For simplicity, let us now assume tha t adatom detachment from steps 
is negligible, so tha t fc~j~t = k^et = 0. Let us also assume tha t the local 
at tachment rates are extremely fast, so tha t k^tt —> oo and k~tt —► oo. 
Then, the boundary conditions given by Equations 6.61 and 6.62 simplify 
to 

e(x'L) = θ{χ'κ) = 0, (6.65) 

and the step velocity becomes 

<*) = AlZi\ ~D\^\ ■ (6·66) 
'θθ' 
βχ' 

-D 'θθ' 
βχ' 

Equations 6.64, 6.65 and 6.66 together form a simplified set of equations 
for the t ime evolution of the adatom coverage in a reference frame moving 
at velocity v(t). 

The behavior of this set of equations is illustrated in Figure 6.25, which 
shows numerical simulations of the adatom coverage and step velocity at 
various times after the onset of growth. It can be seen tha t the step velocity 
oscillates in time during growth. The reason is tha t the adatom coverage 
initially builds up preferentially in the middle of the terrace, so the step 
moves slowly. As the step approaches the high-coverage region of the ter-
race, it accelerates and consumes the adatoms. Then, after most of the 
adatoms have been consumed, the step slows and the cycle continues.5 3 

Also shown in Figure 6.25 is the t ime evolution of a simple measure of the 
smoothness of the terrace, / = (1 — 20 a v g ) 2 , where 0a v g = f*,K θ(χ'', t)dx'/L. 
This quanti ty is tha t which would be measured in a kinematic surface 
diffraction experiment under conditions for which diffraction from the un-
covered terrace (1 — 0avg) is out of phase with tha t from the adatoms (#a v g ) : 

/ = [ ( ! - 0avg) - (0avg)]2 = (1 - 20 a v g ) 2 . (6.67) 

The terrace smoothness also oscillates in t ime during growth, as the steps 
alternately accelerate and decelerate through high and low adatom coverage 
regions. 

Ultimately, the oscillations damp out, and the adatom coverage ap-
proaches a steady-state distribution given by 

1 — e~x' LJ/D χι 
0(x',t - oo) = l_e_L,j,D - j . (6.68) 

This distribution is illustrated in the left half of Figure 6.26 for various 
values of the Peclet number, L2j/D. 

5 3G.S. Petrich, P.R. Pukite, A.M. Wowchak, G.J. Whaley, P.I. Cohen, and A.S. Arrott, 
"On the origin of RHEED intensity oscillations," J. Cryst. Growth 95, 23 (1989). 
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Figure 6.25: Non-steady-state adatom coverage (left), step velocity (middle), 
and terrace smoothness (right) during oscillatory flow of an equi-spaced array 
of "fast" steps. The adatom coverages are shown as snapshots taken every 0.25 
monolayer. 

For Peclet numbers less than unity, the step velocity is low relative 
to the adatom diffusive velocity. The adatom distribution becomes nearly 
symmetric, and approaches 

0 ( z ' , f - * oo) = 1 -
(2x' - L) 
ΊΧ 

2 1 

SD' 
(6.69) 

However, as the Peclet number increases beyond unity, the step velocity 
increases relative to the adatom diffusive velocity. The adatom distribution 
becomes more and more skewed, due to "pile-up" in front of the moving 
step. 

The steady-state average adatom coverage on each terrace is 

"avg(^ CO) 
J x' 

θ(χ') 
άχ' 

l+(e-L2^D-l)D/(L29) x 

1 _ e-L2)lD 2 
1 \ 1 + e-L^'D D 
2) i-e-L^j/D jL2- (6.70) 
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Figure 6.26: Left: Steady-state adatom coverages on an array of "fast" steps for 
various values of L 2 j / D , the Peclet number. Right: Dependence of steady-state 
average terrace smoothness on the Peclet number. 

The steady-state kinematic surface diffraction intensity corresponding to 
this average coverage is shown in the right half of Figure 6.26 as a function of 
the Peclet number. As can be seen, it decreases quickly as the step velocity 
increases relative to the adatom diffusivity, and hence as the average adatom 
coverage builds up on each terrace.5 4 

6.3.3 2D Cluster Nucleation, Growth and Coalescence 

In Subsection 6.3.2, we discussed how surface morphology evolves if Peclet 
numbers are on the order of unity, so tha t adatom diffusion to nearby steps 
is comparable to the step flow velocity. In this subsection, we discuss how 
surface morphology evolves if Peclet numbers are greater than unity, so 
tha t adatom diffusion to nearby steps is slow relative both to step flow 
and to the rate at which adatoms arrive from the vapor. Then, adatoms 
accumulate and interact on the terraces between the steps, and ultimately 
form 2D clusters. 

If the clusters are transient, in tha t they break apart faster than they 
grow, then their main consequence will be to impede adatom diffusion. 
Adatoms diffusing toward steps will occasionally meet and merge with a 

5 4 J .H. Neave, P.J. Dobson, B.A. Joyce, and J. Zhang, "Reflection high-energy electron 
diffraction oscillations from vicinal surface - a new approach to surface diffusion measure-
ments," Appl. Phys. Lett. 47, 100 (1985); and T. Nishinaga and K-I Cho, "Theoretical 
study of mode transition between 2d-nucleation and step flow in MBE growth of GaAs," 
Japan. J. Appl. Phys. 27, L12 (1988). 
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cluster or another adatom. Assuming the cluster itself is relatively im-
mobile, the adatom will be unable to continue its journey until it breaks 
free from the cluster. Then, the effective adatom diffusivity decreases with 
increasing adatom coverage,55 so tha t step flow becomes less and less "dif-
fusive" and more and more "convective." 

If the clusters are permanent , in tha t they form stable growing nuclei, 
then the kinetics of growth are altered drastically. In a sense, the clusters 
take on a life of their own. Their boundaries represent "extrinsic" steps tha t 
compete for adatoms with the intrinsic steps always present on a vicinal 
surface. As a consequence, the clusters grow and ultimately coalesce, often 
in a complex, oscillatory way. 

To understand why, consider epitaxy on a singular surface, or on a 
vicinal surface whose terraces are very wide compared to the spacing of 
the clusters. Enumerate the layers by n = 0 , 1 , 2 , . . . , where n = 0 is the 
initially completely occupied substrate surface layer, n = 1 is the first, 
initially completely unoccupied epilayer, and so on. Associate with each 
of these layers three coverages: a n , the total coverage of mobile adatoms 
created by impingement from the vapor; ηη, the total coverage of nuclei 
centers created by interaction between mobile adatoms; and θη, the total 
coverage of immobile atoms permanently incorporated into clusters. These 
coverages are represented in Figure 6.27 by the open circles, filled squares, 
and open squares, respectively. 

M o b i l e A d a t o m s 

For simplicity, assume tha t mobile adatoms are created exclusively by im-
pingement from the vapor (rather than by detachment from clusters). Then, 
the rate at which the mobile adatom coverage in layer n increases is equal 
to the flux times the exposed coverage of layer n — 1, or (0 n _ i — 0n) / rML · 

Once mobile adatoms in layer n are created, they may diffuse to and 
at tach at the edges of both layer n — 1 and layer n clusters. The rates at 
which they do so will be proportional to the product of the mobile adatom 
coverage (α η ) , the coverage of layer n — 1 and layer n nuclei centers (ηη-ι 
and 77n), and the capture numbers, or efficiencies, associated with those 
nuclei. These capture numbers are essentially the geometric cross sections 
tha t the clusters present to diffusing adatoms, and have been the subject of 
considerable study.5 6 Here, we take them to be constant. The rate at which 

5 5A.K. Myers-Beaghton and D.D. Vvedensky, "Nonlinear equation for diffusion and 
adatom interactions during epitaxial growth on vicinal surfaces," Phys. Rev. B42 , 5544 
(1990). 

5 6 G. Zinsmeister, "Theory of thin film condensation. Part D: Influence of a variable 
collision factor," Thin Solid Films 7, 51 (1971); J.A. Venables, "Rate equation ap-
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Figure 6.27: Adatom arrival, diffusion and attachment at step edges, accom-
panied by cluster nucleation, growth, and coalescence. The open circles on the 
surface represent mobile adatoms; the filled squares represent nuclei centers; and 
the open squares represent immobile atoms permanently incorporated into clus-
ters. 

adatoms in level n are captured by clusters in level n — 1 is then fc~ttanr/n_i, 
where k~tt is the kinetic rate constant for a t tachment at "down" steps; and 
the rate at which they are captured by clusters in level n is 1ϊ£ηαηηη, where 
k£tt is the kinetic rate constant for a t tachment at "up" steps. 

At the same time, mobile adatoms in layer n may also hop over steps 
into layers n — 1 and n + 1, while mobile adatoms in layers n — 1 and 
n + 1 may hop over steps into layer n. Here, we assume these adatom 
exchange rates to be proportional to the mobile adatom coverage in the 
layer the adatoms are jumping from and the exposed coverage of the layer 
the adatoms are jumping to. Hence, the exchange rate out of layer n is 
ktxchan(Qn ~ 0 n + i ) + k~xchan(6n-2 - 0 n _ i ) , and the exchange rate into 
layer n is / c^ c h a n _ i ( (9 n _ i - 0n) + A:^x c han + i (0n_i - 0 n ) , where k+xch and 
k~xch are the rates of hopping over "up" and "down" steps, respectively. 

Altogether, the coverage of mobile adatoms evolves in t ime approxi-
mately as 

"n — l ~ "n (i — i i + \ 
<*n = OLn (fcattT7n-i + ^Jtt^nj 

TML 
~ * W h a n ( 0 n - 0 n + i ) - k~xchan(0n-2 ~ # n - i ) 
+ ktxchan-l{en-\ ~ 0n) + /Q c h O! n +i (0 n _ i - 0 n ) . (6.71) 

It increases due to deposition and to exchange from adjacent layers, but 
decreases due to incorporation into growing clusters and to exchange into 
adjacent layers. 

proaches to thin film nucleation kinetics," Phil. Mag. 27, 697 (1973); B. Lewis and G.J. 
Rees, "Adatom migration, capture and decay among competing nuclei on a substrate," 
Phil. Mag. 29, 1253 (1974); and R. Kariotis and M.G. Lagally, "Rate equation modeling 
of epitaxial growth," Surf. Sei. 216, 557 (1989). 
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I m m o b i l e A d a t o m s 

As mobile adatoms at tach at steps, the coverage of immobile atoms per-
manently incorporated into clusters must increase correspondingly. Since, 
as illustrated in Figure 6.27, the coverage of immobile atoms in layer n 
depends on the a t tachment of mobile adatoms in layers n and n + 1, we 
can write 

On = ktttanln + ^ « η + Ι ^ η · (6.72) 

As in Equation 6.71, k*tt and k~tt are kinetic ra te constants for at tachment 
of mobile adatoms at up and down steps, respectively. 

Note tha t in this simple t reatment we neglected possible anisotropies 
in the shapes of the clusters. Such anisotropies can arise from anisotropic 
at tachment or diffusion rates, and have been observed during growth of 
semiconductors having strong and anisotropic surface reconstructions.5 7 

N u c l e i C e n t e r s 

Finally, the coverage of nuclei centers itself increases, as mobile adatoms 
collide to form 2D clusters, and then decreases as the clusters grow, impinge 
on each other, and ultimately coalesce. In general, nucleation is a complex 
process by which a distribution of clusters of various sizes evolves in t ime in 
response to kinetic adatom at tachment and detachment rates and to highly 
nonlinear size and shape dependencies to cluster energetics.58 Nucleation 
may also be "heterogeneous," in the sense of being catalyzed by defects on 
the surface.59 In this simple t reatment , we assume tha t two adatoms are 
sufficient to form a stable cluster, and tha t the nucleation rate is propor-
tional to the collision rate between adatoms, fcnuc<*n· 

Coalescence of clusters is also a complex process tha t depends on the 
distribution of clusters in both size and space. At one extreme, if the nuclei 
centers are distributed randomly in space, then their initial coalescence rate 
can be shown to be proportional to both the coverage of cluster centers 

5 7 R.J . Hamers, "Nucleation and growth of epitaxial layers on Si(001) and S i ( l l l ) sur-
faces by scanning tunneling microscopy," Ultramicroscopy 3 1 , 10 (1989); J.Y. Tsao, E. 
Chason, U. Koehler, and R. Harness, "Dimer strings, anistropic growth, and persistent 
layer-by-layer epitaxy," Phys. Rev. B40 , 11951 (1989); and Y.-W. Mo, B.S. Swartzen-
truber, R. Kariotis, M.B. Webb, and M.G. Lagally, "Growth and equilibrium structures 
in the epitaxy of Si on Si (001)," Phys. Rev. Lett. 63 , 2393 (1989). 

58See, e.g., D. Walton, "Nucleation of vapor deposits," J. Chem. Phys. 37, 2182 (1962); 
K.F. Kelton, A.L. Greer, and C.V. Thompson, "Transient nucleation in condensed sys-
tems," J. Chem. Phys. 79, 6261 (1983). 

5 9 Anti-phase boundaries between equivalent reconstruction domains on the surface 
are an example. See, e.g., R.J. Hamers, "Nucleation and growth of epitaxial silicon on 
Si(001) and S i ( l l l ) surfaces studied by scanning tunneling microscopy," Ultramicroscopy 
3 1 , 10 (1989). 
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and the rate of change of the coverage of immobile adatoms incorporated 
into the clusters, or 2ηηθη.60 At the other extreme, if their centers are 
distributed equally in space, then the initial coalescence rate will be zero, 
increasing sharply when the clusters just begin to impinge on each other.6 1 

Here, we assume a coalescence rate between these two extremes: τ)ηθη/{1 — 
θη). This form of the coalescence rate guarantees tha t the coverage of nuclei 
centers decreases smoothly to zero as the coverage of immobile adatoms 
incorporated into the clusters approaches unity, or tha t ηη —> 0 as θη —> 1. 

Altogether, the coverage of nuclei centers evolves in time approximately 
as 

Vn = Lc«n ~ ( 1 \ J On- (6.73) 

Note tha t in deriving Equation 6.73, we have neglected, for simplicity, 
elimination of nuclei centers in the absence of growth. More comprehensive 
t reatments must allow for such effects, which are due to surface tension. 
Small clusters, because of their large perimeter length to cluster area ratio, 
are thermodynamically less stable than, and will ultimately "ripen" into, 
increasingly larger clusters.62 

N u m e r i c a l So lu t ions 

Equations 6.71, 6.72 and 6.73 form a set of coupled rate equations, three 
for each layer, describing the evolution of the coverages of mobile adatoms, 
immobile adatoms, and nuclei centers. They may be solved analytically 
in some simple limiting cases,63 but in general require numerical integra-

6 0 R. Vincent, "A theoretical analysis and computer simulation of the growth of epi-
taxial films," Proc. Roy. Soc. Lond. A321 , 53 (1971); and M.J. Stowell, "Thin film 
nucleation kinetics," Phil Mag. 26, 361 (1972). 

6 1 J.A. Venables, "Rate equation approaches to thin film nucleation kinetics," Phil. 
Mag. 27, 697 (1973). 

62See, e.g., I.M. Lifschitz and V.V. Slyozov, "The kinetics of precipitation from super-
saturated solid solutions," J. Phys. Chem. Solids 19, 35 (1961); C. Wagner, "Theorie 
der alterung von niederschlagen durch umlösen," Z. Electrochem. 65, 581 (1961); P.W. 
Voorhees and M.E. Glicksman, "Solution to the multi-particle diffusion problem with 
applications to Ostwald ripening - I. Theory," Ada Met. 32, 2001 (1984); C.V. Thomp-
son, "Coarsening of particles on a planar substrate: interface energy anisotropy and 
application to grain growth in thin films," Acta Met. 36, 2929 (1988); and H.A. At-
water and C M . Yang, "Island growth and coarsening in thin films - conservative and 
nonconservative systems," J. Appl. Phys. 67, 6202 (1990). 

63See, e.g., A.N. Kolmogoroff, Bull. Acad. Sei. URSS (Cl. Sei. Math. Nat.) 3, 355 
(1937); M. Avrami, "Kinetics of phase change I. General theory," J. Chem. Phys. 7, 
1103 (1939); M. Avrami, "Kinetics of phase change II. Transformation-time relations for 
random distribution of nuclei," J. Chem. Phys. 8, 212 (1940); M. Avrami, "Kinetics of 
phase change III. Granulation, phase change and microstructure," J. Chem. Phys. 9, 
177 (1941); W.B. Hillig, "A derivation of classical two-dimensional nucleation kinetics 
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Figure 6.28: Time evolution, from top to bottom, of mobile adatom coverages 
(a n ) , nuclei center coverages (r/n), immobile adatom coverages coverages (0n), 
and overall surface smoothness. The kinetic parameters were all taken to be 
20/TML except /c~tt, which was slightly higher (30 /TML) in the left panels, and 
slightly lower (15 /TML) in the right panels. 

tion. Two examples of t ime evolutions deduced by numerical integration 
are shown in Figure 6.28. 

As growth commences, at £/TML — 0? the mobile adatom coverage in 
layer 1 increases from zero at a rate 1 /TML · At a critical coverage, clusters 
in layer 1 begin to nucleate and grow, and as they do so, the mobile adatom 
coverage in layer 1 begins to decrease while the immobile a tom coverage 
in layer 1 begins to increase. Finally, the clusters begin to coalesce, the 

and the associated crystal growth laws," Acta Met. 14, 1868 (1966); and D. Kaschiev, 
"Growth kinetics of dislocation-free interfaces and growth mode of thin films," J. Crystal 
Growth 40, 29 (1977). 
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nuclei center coverage decreases, and the rate at which mobile adatoms 
incorporate into permanent clusters also decreases. 

In the meantime, as clusters in layer 1 form, mobile adatoms begin to 
be created in layer 2. In this way, successive layers are born by a burst of 
nucleation and growth of clusters, only to die by being covered by a burst 
of nucleation and growth of higher level clusters.64 If these bursts are well 
separated in time, then growth is smooth, and successive layers are born 
only after previous layers have died. If the bursts overlap in time, then 
growth is rough, and successive layers are born even before previous layers 
have died. 

Also shown is the time evolution of a generalization of Equation 6.67 
for the smoothness of the surface, 

/= |£ ( -1 )" + 1 [K+Ö„) -K + 1 +Ö„ + 1 ) ]1 . (6.74) 

Just as tha t defined by Equation 6.67, this quanti ty is tha t which would 
be measured in a kinematic surface diffraction experiment under conditions 
for which diffraction from adjacent exposed surface layers is out of phase. 

In both cases shown in Figure 6.28, the smoothness of the surface oscil-
lates in time with a monolayer periodicity. The strength of the oscillations 
is, however, very sensitive to the values of the kinetic parameters . For ex-
ample, they are stronger when adatom at tachment is faster at down steps 
than at up steps (left side of Figure 6.28), rather than vice-versa (right side 
of Figure 6.28). The reason is tha t if adatoms preferentially at tach at down 
steps, then the mobile adatom coverage in higher layers will be lower, and 
cluster nucleation in these higher layers will tend to be suppressed until the 
lower layers are fully complete. 

Note tha t the oscillations predicted by Equations 6.71, 6.72 and 6.73, 
even when weak, are relatively persistent. In practice, faster decays are 
nearly always observed, and are thought to be due to effects such as a 
small amount of step flow (see Figure 6.25) or slight nonuniformities in 
growth fluxes arriving at the surface (see Exercise 10). 

As a final comment, note tha t this t reatment neglected evaporation 
of mobile adatoms back into the vapor. At the low to medium tempera-
tures typical of most MBE growth, this assumption is reasonable. At high 
temperatures, however, evaporation can become significant. Then, the os-

6 4 S . Stoyanov, "Layer growth of epitaxial films and superlattices," Surf. Sei. 199, 
226 (1988); and P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, and A.S. Arrott, 
"Birth-death models of epitaxy I. Diffraction oscillations from low index surfaces," Surf. 
Sei. 216, 222 (1989). 
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dilations in surface smoothness and in mobile adatom coverages can also 
manifest themselves as oscillations in the growth rate itself.65 

6.3.4 Statistical Roughening 
In Subsection 6.3.3, we discussed how surface morphology evolves if Peclet 
numbers are greater than unity, so that adatom diffusion to nearby steps 
is slow relative to the step flow velocity. In this subsection, we discuss 
how surface morphology evolves if Peclet numbers are much greater than 
unity, so that the rate at which adatoms diffuse, even to adjacent lattice 
sites, becomes slower than the rate at which they arrive from the vapor. 
In other words, suppose adatoms "stick" wherever they happen to land. 
If they arrive randomly, then they will be uncorrelated in space, and it 
is sufficient to know the probability p that any particular column on the 
surface will have a height n. If they arrive randomly in time according to 
Poisson statistics, then this probability will be 

n! 
In this equation, 6tot is the total coverage of deposited atoms, so that 
X ^ 0 P ( n ) = * anc^ Σ^=οηΡ ( η ) = ^tot· As illustrated in the left half of 
Figure 6.29, the column height probabilities are roughly centered at n = 
6tot, but become more and more dispersed as 0tot increases. Ultimately, for 
large #tot, the asymmetric Poissonian distribution approaches a symmetric 
Gaussian distribution.66 

If we again generalize Equation 6.67 to calculate the smoothness of the 
surface, then we can write 

1 = X>i)>(n) 
-l 2 ^ 

Σ (~fltot)* -40to (6.76) 

As illustrated in the right half of Figure 6.29, the surface smoothness de-
creases exponentially with increasing total coverage, at a rate four times 
faster than the simple deposition rate. 

Suggested Reading 
1. A.A. Chernov, Modern Crystallography III. Crystal Growth (Springer-

Verlag, Berlin, 1984). 
6 5G.H. Gilmer, "Transients in the rate of crystal growth," J. Cryst. Growth 49, 465 

(1980). 
6 6 E . Chason and J.Y. Tsao, "Adatoms, strings and epitaxy on singular surfaces," Surf. 

Sei. 234, 361 (1990). 
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Exercises 
1. Derive Equation 6.12, the equilibrium probabilities of plus, minus and 

missing kinks. 

2. Show that angles such as LOAP in Figure 6.11, with origin on the 
circumference of a circle and with legs passing through the ends of a 
diameter of the circle, are right angles. 

3. Consider the facetted 2D crystal illustrated in Figure 6.30 bounded 
by four faces of surface energy η0 oriented perpendicular to rays along 
Θ = 0, π/2,7Γ, 3π/2, and four faces of surface energy 71, oriented per-
pendicular to rays along θ = π /4 ,3π /4 , 5π/4, 7π/4. Show that the 
pyramids that make up this polyhedra obey the "common vertex" 
relations 

K = b0l2 + bxl\/2 
hx = b0/V2-rb1/2. (6.77) 

Using these relations, show that the pyramidal heights of the polyhe-
dron with minimum surface energy, E = 4(7060 + 7161), at constant 
area, A = 4(/i060/2-h/ii&i/2), are proportional to the surface energies 
of the bases, j0/h0 = 7 i / ^ i , in agreement with the Wulff construc-
tion. 

4. Derive Equations 6.31 for the relationship between the fractional sur-
face areas, x\/{x\ + X2) and #2/(^1 + #2), ano^ ^n e tangents of the 
orientation angles of those surfaces, tan#i and tariff. 

5. Suppose f(s) in Equation 6.34 were quadratic rather than cubic. 
What would be the shape of the equilibrium crystal near the s = 0 
facet? 

6. What is the functional form of / ( s ) , where / = 7/cosö and s = 
tan Θ, for an orientation-independent molar surface free energy 7(0) = 
constant? Is it concave up or down? 

7. Is there an equilbrium island size for Volmer-Weber island growth, or 
will larger islands continuously grow in time at the expense of smaller 
islands? 
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Figure 6.30: Decomposition of a facetted 2D crystal into pyramids. 

8. Show tha t l/το in Equation 6.57 is given by Equation 6.58. 

9. Consider a surface whose layer coverages obey a power law, θη = 
[#tot/(l + #tot)]n· Show tha t the total coverage of deposited atoms is 
0tot = Σ ^ ι 0η· Justify the equation 

l 2 

1 = Σ(-Ι)η(θη-1-Θη) 
.71 = 0 

(6.78) 

for the kinematic surface diffraction intensity in an out-of-phase con-
dition, and use it to calculate the smoothness of this surface. Does it 
decrease more or less quickly with 6tot than if the layer distribution 
were distributed according to Poissonian statistics? Wha t if the layer 
coverages were distributed according to Gaussian statistics? 

10. Suppose adatoms arrive at a surface with a nonuniformity of 10%. 
How might this cause an "artificial" decay in the amplitude of ob-
served growth oscillations and what would be the decay rate? 



Chapter 7 

Surface Composit ion 

In Chapter 6, we discussed the equilibrium and nonequilibrium morphology 
of a surface assuming tha t the composition of the surface was unimportant . 
In this chapter, we discuss the equilibrium and nonequilibrium composition 
of a surface assuming tha t the morphology of the surface is unimportant . 
In both of these chapters, therefore, we neglect possible interdependencies 
between morphology and composition, interdependencies tha t are clearly 
present but thus far poorly understood. For example, we do not discuss, 
except casually, the various reconstructions of the surfaces of I I I /V semi-
conductors, and how they might depend on the ratio between the column 
III and column V atom coverages on the surface.1 Instead, we discuss those 
interesting and important aspects of surface composition tha t are to first 
order independent of surface morphology. 

We begin, in Section 7.1, by describing a thermodynamic framework 
1A.Y. Cho, "GaAs epitaxy by a molecular beam method: observations of surface 

structure on the (001) face," J. Appl. Phys. 42, 2074 (1971); J.R. Arthur, "Surface 
stoichiometry and structure of GaAs," Surf. Sei. 43 , 449 (1974); M.D. Pashley, K.W. 
Haberern, W. Friday, J.M. Woodall, and P.D. Kirchner, "Structure of GaAs (001) (2x4)-
c(2x8) determined by scanning tunneling microscopy," Phys. Rev. Lett. 60, 2176, (1988); 
D.K. Biegelsen, R.D. Bringans, J.E. Northrup, and L.-E. Swartz, "Surface reconstruc-
tions of GaAs (100) observed by scanning tunneling microscopy," Phys. Rev. B41 , 5701 
(1990); C. Deparis and J. Massies, "Surface stoichiometry variation associated with 
GaAs (001) reconstruction transitions," J. Cryst. Growth 108, 157 (1991); R. Ludeke, 
R.M. King, and E.H.C. Parker, "MBE surface and interface studies," in E.H.C. Parker, 
ed., The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 
1985), pp. 555-628; H.H. Farrell and C.J. Palmstr0m, "Reflection high energy electron 
diffraction characteristic absences in GaAs (100) (2x4)-As: a tool for determining sur-
face stoichiometry," J. Vac. Sei. Technol. B8, 903 (1990); and J.Y. Tsao, T.M. Brennan, 
J.F. Klem, and B.E. Hammons, "Surface-stoichiometry dependence of As2 desorption 
and As4 'reflection' from GaAs (001)," J. Vac. Sei. Techn. A7 , 2138 (1989). 
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for understanding surface alloys. For simplicity, we develop the framework 
within the approximation tha t the surface is exactly one monolayer thick. 
As a consequence, the framework, like those of other monolayer models, 
cannot be used to understand phenomena tha t depend on surface effects 
greater than one monolayer deep.2 Nevertheless, the framework is intuitive, 
leads to a deep physical understanding of the relationship between bulk and 
surface alloy phases, and can be easily used in semi-empirical modeling. 

Then, in Section 7.2, we apply the framework to equilibria and nonequi-
hbria between vapor and monolayer adsorbate phases, t reat ing the adsor-
bate phase as a surface alloy of adsorbates and "missing" adsorbates. In 
doing so, we will derive familiar equilibrium constructs, such as adsorption 
isotherms and adsorption isobars, as well as discuss less familiar nonequi-
librium phenomena, such as transient and coverage-dependent adsorption 
and desorption. 

Finally, in Section 7.3, we will apply the framework to the technologi-
cally important phenomena of segregation and t rapping of dopants or other 
impurities at surfaces during MBE. This phenomenon is especially complex, 
in tha t it involves equilibria and nonequilibria between vapor, surface, and 
bulk crystalline phases. 

7.1 Monolayer Thermodynamics 
In this section, we discuss the equilibrium thermodynamics of the surface of 
a bulk alloy. We begin, in Subsection 7.1.1, by establishing a nomenclature 
consistent with tha t introduced in Chapter 3. We then ask, in the first 
half of Subsection 7.1.2: given a composition of the bulk alloy, what is 
the composition of the surface alloy tha t is in equilibrium with tha t bulk 
alloy? In general, the surface and bulk compositions will not be the same in 
equilibrium, in tha t one component of the alloy will tend to segregate to the 
surface, displacing the other component back into the bulk. We finally ask, 
in the second half of Subsection 7.1.2: given the compositions of the surface 
and bulk alloys, what is the free energy required to create new surface at 
tha t composition? This free energy is the surface work (also often called 
the surface tension), and is minimum if the surface composition is such tha t 
the surface alloy phase is in equilibrium with the bulk alloy phase. 

2See, e.g., J.K. Strohl and T.S. King, "A multicomponent, multilayer model of surface 
segregation in alloy catalysts," J. Catal. 118, 53 (1989). 
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7.1.1 Surface Free Energies and Chemical Potentials 
Let us begin, in this subsection, by establishing our nomenclature. Con-
sider a binary crystalline alloy phase, /?, containing Na moles (or atoms) of 
component a and N\y moles (or atoms) of component b. As in Chapter 3, 
we write the molar Gibbs free energy of this bulk phase as 

* s KTK· (7'1) 

where G$ is the total Gibbs free energy. Again, as in Chapter 3, the 
chemical potentials of the two components a and b in β are the intercepts 
with the x = 0 and x = 1 axes of the tangents to g@: 

ß ß ßd9ß 

where x@ = N^/(Na + Νγ,) is the composition of ß. 
Consider second a surface of the bulk crystal, σ, characterized by N° 

exposed atoms of component a and Νζ exposed atoms of component b. 
Associate with the exposed atoms on this surface a Gibbs free energy equal 
to the difference between the total Gibbs free energy and the Gibbs free 
energy of the nonsurface atoms still in the bulk crystal: 

G"{N:, Νζ) = Gtot(NZ, Νζ, Ng, Νξ) - Gß(N^, Νξ). (7.3) 

In general, Ωσ depends not only on Νζ and iV£, but on N& and Νζ as 
well. Here, we neglect this dependence, and note that such a dependence is 
nontrivial to include in a way that self-consistently treats bonding within 
the surface layer and bonding between the surface layer and the bulk layers 
below.3 

Let us therefore consider this surface to be a 2D monolayer phase having 
its own thermodynamic properties apart from those of the bulk. In this 
way, we can adopt the nomenclature and definitions developed originally 
for bulk phases. For example, by analogy to Equation 7.1, the molar Gibbs 
free energy of the exposed surface atoms can be defined as 

9 = N? + Nr' ( Λ> 
3 J .W. Belton and M.G. Evans, "Studies in the molecular forces involved in surface 

formation. II. The surface free energies of simple liquid mixtures," Trans. Faraday Soc. 
4 1 , 1 (1945); A. Schuchowitzky, Ada Physicochim. URSS 19 (2-3), 176 (1944); R. 
Defay and I. Prigogine, "Surface tension of regular solutions," Trans. Faraday Soc. 46, 
199 (1950); and S. Ono and S. Kondo, Handb. Physik 10, 134 (1960). 
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and, by analogy to Equations 7.2, the chemical potentials of a and b in σ 
are the intercepts with the x = 0 and x = 1 axes of the tangents to ga\ 

µΐ = g° + (l-x°)^. (7.5) 

where χσ = Νζ/(Ν° + Νζ) is the composition of σ. 
Furthermore, the composition dependence of the molar Gibbs free en-

ergy of surface phases may be semi-empirically modeled in the same way 
that the molar Gibbs free energy of bulk phases is often modeled, as ideal 
solutions, or as one of a heirarchy of regular solutions (see Table 3.1). Ex-
amples of such composition-dependent surface and bulk molar Gibbs free 
energies for the Ag-Au system are shown in Figure 7.1. In this system, the 
molar Gibbs free energies are thought to be characterized by the sub-regular 
forms 

fl<Ag1_,/,Aux/s> = ( 1 _ xß)g(AS) + xßg(Ku) _ S m . x . d e a l T + Ω 0 ( 1 _ χβ)χβ 

fl>A*i — A u " < = (1 - Χσ ) ί7 >Α 8 ( + * V A U ( - Smix,idea.T + Ω σ ( 1 - x")x°, 

(7.6) 

and are linear interpolations between the molar Gibbs free energies of the 
pure-component phases, plus entropic and enthalpic "mixing" terms. 

Note that in writing these equations, we have extended the notation of 
Section 2.4 so that interface phases are represented by mismatched pairs 
of brackets, braces, and parentheses to denote the bulk phases the inter-
face is sandwiched between. In this notation, the two phases of interest, 
the crystalline bulk and surface phases, are denoted ( A g ^ ^ A u ^ ) and 
)Ag1_I«rAu^(, and their compositions are denoted x@ and χσ. 

For the crystalline solid, g^Ag^ and g(Au) are the known molar Gibbs 
free energies of the pure-component phases Ag and Au,4 and 

n<Agl_x/JAux/J> =A + Bxß + CT (7.7) 

is a known composition and temperature-dependent interaction parameter.5 

4 The molar Gibbs free energies of the pure crystals were calculated accord-
ing to the prescription described in Chapter 2, using the heat capacity expression 
cp = (c0 + c i T ) T 2 / ( T 2 + θ2^). The heat capacity parameters for (Ag) were cQ = 
0.253 meV/(atomK), c\ = 0.0553 µ β ν ^ ί ο π ι / ^ ο ι τ ι Κ 2 ) , θ τ = 55.4 K; the parame-
ters for (Au) were c0 = 0.248 meV/(atomK), c\ = 0.563 µ ε ν ^ ΐ ο π ι / ^ ΐ ο π ιΚ 2 ) and 
θ τ = 43.5 K. 

5Following J.L. White, R.L. Orr, and R. Hultgren, "The thermodynamic properties 
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Figure 7.1: Left: Molar Gibbs free energies of the crystalline bulk and surface 
phases of the Ag-Au system at 700 K. Right: Chemical potentials of Ag and Au 
in these phases. As in Figure 3.1, the intercepts of the tangents to the molar 
Gibbs free energies with the x — 0 and x = 1 axes are the chemical potentials. 
As the tangents sweep around the arc of the molar Gibbs free energy curves, 
the intercepts of those tangents trace out the chemical potentials at the various 
compositions. 

For the crystalline surface at the endpoint compositions, the molar 
Gibbs free energies are those for pure crystalline (Ag) and (Au), but offset 
upward by their known surface tensions. In other words, 

JAg( = 0<Ag> _|_ 7<Ag)Ag( 

JAu( _ = 9 (Au) + 7 <Au)Au( (7.8) 

where the experimentally measured values6 for 7 ^ ) and 7^A u), the work 
per unit area required to form new surfaces of pure crystalline Ag and Au, 
have been normalized by the number of atoms per unit area on close-packed 
(111) planes. 

For the crystalline surface away from the endpoint compositions, the 
molar Gibbs free energy has been found to be consistent with a sub-regular 
solution behavior tha t mimics tha t of the crystalline bulk phase.7 In other 

of silver-gold alloys," Acta Metall. 5, 747 (1957) and H. Okamoto and T.B. Massalski, in 
Phase Diagrams of Binary Gold Alloys, H. Okamoto and T.B. Massalski, Eds. (ASM In-
ternational, Metals Park, Ohio, 1987), pp. 4-12, the sub-regular solution parameters were 
taken to be A = -0 .210 eV/atom, B = 0.0347eV/atom and C = 0.0000596 eV/(atomK). 

6We use the values 7<As>As( = 0.50 eV/atom and 7<Au)Au( = 0 6 3 e v / a t o m [H. 
Jones, "The surface energy of solid metals," Met. Sei. J. 5, 15 (1971)]. 

7J .Y. Tsao, "Graphical representation of Ag-Au surface segregation," Surf. Sei. 262, 
382 (1992). 
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words, 
Ωσ = Ω^. (7.9) 

As drawn in the left panel of Figure 7.1, the shape of the molar Gibbs free 
energy of the surface alloy is the same as that of the bulk alloy, but is offset 
upward by amounts that vary linearly from 7^Ag)As( Qn one end to 7<Au>Au( 
on the other end. 

7.1.2 Atom Transfers between Surface and Bulk 
Having defined, in Subsection 7.1.1, the thermodynamic functions for the 
crystalline bulk and surface phases, let us consider, in this subsection, trans-
ferring atoms between the two phases. Such transfers can take place in two 
ways, and are discussed separately in the following two subsubsections. 

Parallel Tangents and Equilibrium Segregation 

In the first way of transferring atoms between the two phases, the overall 
number of surface sites is preserved. Then, if we move, e.g., a Au atom from 
the bulk to the surface, we must at the same time move a Ag atom from 
the surface to the bulk: atom transfers between bulk and surface must be 
atom exchanges. Hence, they are accompanied by free energy changes equal 
to the difference between (a) the "excess" chemical potentials required to 
move a Au atom from the bulk to the surface, or 

,,exc _ jAg^^Au^l (Α&1_χβΑχιχβ) 
^Au = MAu " ^ A U ' \(ΛΌ) 

and (b) the "excess" chemical potentials required to move a Ag atom from 
the bulk to the surface, or 

,,exc _ )Α&1_χσΑηχσ( (Α&1_χβΑηχβ) 
^Ag = ^Ag ~ ^Ag · I ' · 1 1 ; 

In other words, they are accompanied by a free energy change of 

„exc ,,exc _ / >ASi-x-A"*- ( , (A&i-Xß Au
xß >\ 

MAu _ ^Ag = ^ A u ~ ^Au J 

f )Agl_xaAux*( (Agl_xßAuxß)\ 
~ \ßAg ^Ag ) ' \ ί Λ Ζ ) 

This free energy change can be rewritten as 

„exc „exc _ / )*&i-x*Au*<* ( > Α β ΐ - ^ Aux<x (\ 
Â Au ~ PAg — ^ A u ^Ag J 

{ (Agl_xßAuxß) (Agl_xßAuxß)\ 
- ^MAU ~ ^Ag J ' \*'LO) 
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Figure 7.2: Surface and bulk phase equilibria in the Ag-Au system at 700 K. 
Left: The two tangents to the molar Gibbs free energies have different slopes and 
there is a driving force for Ag or Au atoms to segregate to the surface. Center: 
the two tangents are parallel and the surface is in equilibrium with the bulk. 

and can be seen to be the difference between the slope of the tangent to 
µ)Α&1_χσΑηχσ( a t χσ a n d t h e s k ) p e o f t h e t a n g e n t t o µ <Α 8 ι _ ^Αα ^ > ^ χβ 

When µ ^ — µ^ is positive, as in the left panel of Figure 7.2, Au surface 
atoms will tend to exchange with Ag bulk atoms, and the surface will 
become enriched in Ag. When it is negative, then Ag surface atoms will 
tend to exchange with Au bulk atoms. When it is zero, as in the right 
panel of Figure 7.2, then the surface is in equilibrium with the bulk. In 
other words, the crystal and surface phases are in equilibrium with each 
other when the tangents to their molar Gibbs free energies have the same 
slopes, or, equivalently, when the tangents are parallel.8 

Now, according to this parallel tangent criterion, to find the composition 
of a surface in equilibrium with a bulk crystal of a particular composition, 
we must solve Θ9^Α^-*σΑχι*σ(/Θχσ = dg{Agi-*ßAu*ß)/dxß by varying χσ 

for fixed χΡ. Equivalently, and sometimes more conveniently, one can (see 
8 M. Hillert, "The role of interfaces in phase transformations," in The Mechanism of 

Phase Transformations in Crystalline Solids, Monograph and Report Series No. 33 (The 
Institute of Metals, London, 1969), pp. 231-247; and M. Guttmann, "Grain boundary 
segregation, two dimensional compound formation, and precipitation," Met. Trans. 8A, 
1383 (1977). 
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Exercise 1) minimize the function 

\ A A / da{Agi-*ßAu*ß) 

η{χσ,Χβ) = 0>A8i—Aux.( _ χσ^_ ? ( 7 > 1 4 ) 

by varying χσ for fixed x^. Both numerical prescriptions are general, and 
can be used even if the molar Gibbs free energies of the surface and bulk 
are represented by very complicated semi-empirical forms. 

For example, consider the relationship between the equilibrium surface 
and bulk compositions of strictly regular bulk and surface phases β and 
σ. In the limit of small x@ and χσ, this relationship can be shown (see 
Exercise 4) to be given by 

^equ 
— = e-[7<b>b(-7<a>a(+nff-n'J]/fcT / J ^ N 

where 7 ^ a ( and 7<b>b< are the surface tensions of the pure a and pure b 
phases. The quanti ty Kequ, the ratio between the equilibrium bulk and 
surface compositions, can be thought of as an equilibrium "partition" co-
efficient, in tha t it describes the physical parti t ioning of a dilute impurity 
between two adjacent phases. 

More generally, Equation 7.14 must be solved numerically. For the A g -
Au system, the resulting dependence of the surface composition on bulk 
composition is shown as the segregation isotherm in Figure 7.3. Note tha t 
at all compositions, the surface tends to be enriched in Ag relative to the 
bulk. The reason is tha t , even though ^)A gi-^< rΑυ*σ( n a s the same shape 
as g(AZi-*eAu*e\ its offset relative to 0<A«i-«0Au«<3> increases linearly with 
composition because pure Au has a higher surface tension than does pure 
Ag. As a consequence, at the same composition, the slope of the tangent to 
flf>Ag1_x<rAux<T( w i u b e g r e a t e r t han the slope of the tangent to g^A^-^An^\ 
and is compensated for by a decrease in the composition of ^ A ß i - ^ A U i < 7 ( . 

Surface Work 

In the second way of transferring atoms between the crystalline bulk and 
surface phases, the overall number of surface sites is not preserved. Instead, 
as Ag or Au are transferred from the bulk to the surface, new surface sites 
are created to accommodate them. The work per a tom required to create 
new surface of composition χσ from bulk crystal of composition x^ is now 
the sum of the changes in the chemical potentials of the two components, 
weighted by their mole fractions on the surface: 

7 <Ag1_x/JAu^>Ag1_x.Auxa( Ξ ^ _ χ " ) µ « £ + xVA
x

u
c . (7.16) 
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a G .C. Nelson, "Determination of the surface versus bulk composition of silver-gold 
alloys by low energy ion scattering spectroscopy," Surf. Sei. 59, 310 (1976). 

bS.H. Overbury and G.A. Somorjai, "The surface composition of the silver-gold sys-
tem by Auger electron spectroscopy," Surf. Sei. 55, 209 (1976). 

CM.J. Kelley, D.G. Swartzfager, and V.S. Sundaram, "Surface segregation in the Ag-
Au and P t -Cu systems," J. Vac. Sei. Technol. 16, 664 (1979). 

K. Meinel, M. Klaua, and H. Bethge, "Segregation and sputter effects on perfectly 
smooth (111) and (100) surfaces of Au-Ag alloys studied by AES," Phys. Stat. Sol. 
A106, 133 (1988). 

This equation defines the surface work, 7<ASi-*£Au*£>ASi-*-Au*<T(, in terms 
of the surface and bulk compositions and chemical potentials. 

Let us now expand µ ^ and µ™£ using Equations 7.10 and 7.11, and 
apply the identities 

fl<Ag1.,,A„./>> = {ί_χβ)µ(Α,1_χ,Αηχβ)+χβ^1_χ0Α^) 

g)ASl_x„Aux<,( = ( 1 _ χσ)µ)Α^_χ,Αηχ,( + ^ j A g , . , . A u . . ^ ^ ^ 

which can be derived from Equations 7.2 and 7.5. Then, the surface work 
can be writ ten as 

7 
(Ag1_x/3Aux /g)Ag1_x (TAux <T( _ 

(** ~ *ß)(µϊϊ <Ag 1 _ x ^Au x / 3 ) (Α&1_χβΑ\ιχβ) -»iT-*ßAun- σ-18) 
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If we define the "excess" molar Gibbs free energy to be gexc = ^ A S i - ^ A u ^ ( -
^ ( A g j . ^ A u ^ t h e n w e a l g o h a v e 

Oexc = ΛΑ&ι-χβΑχιχβ)Α&ι-χσΑχιχσ( 

+ {x° - xß) ( ^ - ' ^ - „<£-.<·*».'>) . (7.19) 

This last expression for the relationship between the excess molar Gibbs 
free energy and the surface work can be understood graphically by inspec-
tion of Figure 7.2. If the surface and bulk compositions are the same, as 
in the left panel, then χσ = x? and gexc = 7 < A 8 i - . / » A v ) A 8 i - . ' A u « ' ( itself. 
Otherwise, as in the right panel, we must add a correction term equal to 
the slope of the tangent to </ g i - *^ u*0' times the difference between the 
surface and bulk compositions. The surface work can thus be seen to be 
the vertical distance between the tangent to the molar Gibbs free energy 
of the surface at composition χσ , evaluated at χσ , and the tangent to the 
molar Gibbs free energy of the bulk at composition x@, also evaluated at 
χσ'. Importantly, this graphical interpretation of the surface work holds 
whether or not the tangents are parallel, hence whether or not the surface 
and bulk are in equilibrium with each other. 

To make contact with s tandard t reatments of surface thermodynamics, 
note tha t Equation 7.19 can be rewritten in yet another equivalent form: 

„exc _ (Ag1_i/3Aui/3)Ag1_I,AuIa( exe <A8i-*0 Au
xß > , exc. <Α8ι-*0 A V ) 

if " I ' xAgPAg ' xAuA^Au 
(7.20) 

This equation reproduces the well-established relation9 (at constant tem-
perature) between the excess molar Gibbs free energy of the surface, the 
surface work, and the excess Ag and Au at the surface, and 

exc — σ _ ~.β 
xAu — x x ' 

Finally, let us return to Equation 7.16, to understand more clearly the 
difference between the work required to transfer atoms to the surface in 
the two different ways. In the first way, we form new surface area at fixed 
composition. The work required is then ^ ^ i - x ^ v ) ^ - ^ ^ ! . i n the 
second way, we change the composition of the surface at fixed surface area. 
The work required is then &γΙΑ*ι-*βΑ"*β)Α*ι-*~Α"*σ(/8χσ = µ%£ - µ^ 
(see Exercise 3). In equilibrium, tha t work must be zero, as in the discussion 
following Equations 7.12 and 7.13. 

9A.W. Adamson, Physical Chemistry of Surfaces, 4th Ed. (John Wiley and Sons, 
New York, 1982). 
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7.2 Adsorption and Desorption 
In Section 7.1, we outlined a simple semi-empirical framework for under-
standing surface thermodynamics. The framework hinged on approximat-
ing the outermost exposed atomic monolayer as a phase whose composition 
and thermodynamic properties are distinct from those of the bulk. In fact, 
this approximation is most inaccurate for the surfaces of condensed alloy 
phases, whose composition and thermodynamic properties vary gradually 
over more than one atomic layer into the bulk. 

In this section, we apply the framework to monolayer adsorbate phases 
on one-component bulk solids. We assume, as is often the case, tha t the 
adsorbate component does not indiffuse into the bulk and hence remains on 
the surface. Then, the composition of the system does change abruptly be-
tween the outermost surface monolayer and the bulk, and our approximate 
t reatment is much more realistic. We will begin, in Subsection 7.2.1, by 
deriving two important equilibrium constructs: adsorption isotherms and 
adsorption isobars. Then, in Subsection 7.2.2, we discuss nonequilibrium 
adsorption and desorption. 

7.2.1 Adsorption Isotherms and Isobars 
Let us start , in this subsection, by deriving the equilibrium adsorbate cov-
erages associated with an ambient vapor at a particular pressure and tem-
perature. Consider a low-vapor-pressure bulk crystal composed of a single 
component, "m," bathed in a vapor composed of a single component, "a." 
As indicated in the left panel of Figure 7.4, the molar Gibbs free energy of 
the crystal is denoted < / m \ and the molar Gibbs free energy of the vapor 
is denoted g^\ 

In the absence of atoms of component a on the surface, the molar Gibbs 
free energy of the surface, g^m(, is just offset upward from g^ by the 
surface tension, 7^m)m(. In the presence of a full monolayer of atoms of 
component a on the surface, the molar Gibbs free energy of the surface is 
denoted g*^. 

At intermediate compositions, as discussed in the previous section, the 
molar Gibbs free energy is a linearly weighted interpolation between <^m( 
and (^a(, plus entropy and enthalpy of mixing terms. For example, a strictly 
regular solution would be writ ten 

5 > m i - i a i ( = (1 - % > m ( + 0<?)a( + fcT[01n0 + (1 - θ) 1η(1 - Θ)] 
+ Ω 0 ( 1 - 0 ) , (7.21) 

where Θ is the "composition" of the surface phase. In a sense, the surface 
phase can be considered a mixture of surface sites covered by adatoms and 
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Figure 7.4: Vapor and surface adsorbate phase equilibria. Left: The two tangents 
to the molar Gibbs free energies are parallel, hence there is no driving force for 
the coverage of a atoms on the surface to change. Right: Schematic of adsorption 
and desorption of a atoms from the vapor onto a surface and from the surface 
back into the vapor. 

surface sites not covered by adatoms, so tha t Θ is also the average adatom 
coverage on the surface. 

To find, given these molar Gibbs free energies, the equilibrium adatom 
coverage, we can apply the same arguments we applied in Section 7.1. 
Suppose, as illustrated in the left half of Figure 7.4, the surface coverage is 
θ0, so tha t the chemical potential of atoms a is the intercept of the tangent 
to # ) m i - ö a * ( (0 o ) with the Θ = 1 axis, 

µ; ) m i θΆθ( _ > 1 θ&θ( + (1-θ) 
5 > i - « a 9 ( 

ΘΘ " 
(7.22) 

and the chemical potential of atoms m is the intercept with the Θ = 0 axis, 

ßq)m1_eae( 
)mi_0a0( _ ) m i 

^m — if 
eae{ _ Q_ 

de 
(7.23) 

If we adsorb an a tom a from the vapor, then the free energy of the system 
increases by µ» 1 _ e a ^ — g^ due to the movement of a tom a from the vapor 
to the surface phase, but it decreases by g^ — µ^~θΆθ because the m 
atom tha t was covered has moved from the surface phase into the bulk. 
The equilibrium condition is therefore 

µ 
)mi_öaö( ■µ ; >m, >Wa)-s<m\ (7.24) 
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which is equivalent to the parallel tangent construction derived in Sec-
tion 7.1. 

Now, recall from Equation 2.47 that the molar Gibbs free energy of an 
elemental vapor is 

S(a)(p,T) = g^\Po,T)+ kTIn (ξλ , (7.25) 

where p0 is a reference pressure. Hence, as the pressure of (a) increases, the 
molar Gibbs free energy of (a) also increases. As a consequence, the slope 
of g^ — g^m( increases, causing the parallel tangent to pivot around the 
g)mi_öaö( c u r v e^ a n d ultimately causing the equilibrium coverage 0equ itself 
to increase. For a strictly regular adsorbate phase, this parallel tangent 
condition is expressed by combining Equations 7.21, 7.22, 7.23, 7.24 and 
7.25, giving 

flequ cn(l-e^u)/kT __ P_eAgdes/kT^ (J.2$) 

A "equ Po 

where Agdes = (g{a)(Po,T) - #>a<) - (#<m> - g^) is the "activation" free 
energy of desorption at the reference pressure p0. This equation defines the 
coverage of the surface phase in equilibrium with a vapor at pressure p and 
temperature T, and can be used to construct both adsorption isotherms 
(the pressure dependence of the coverage at constant temperature) and 
adsorption isobars (the temperature dependence of the coverage at constant 
pressure). 

For example, if Ω = 0, so that the solution is ideal, then 

P 
^ u = p + p o e-AWfcT ' 

which reproduces what is known as Langmuir's isotherm. The adatom 
coverage increases linearly at first with increasing pressure, then saturates 
beyond a critical temperature-dependent pressure, p0e~Agdes^kT. 

If Ω φ 0, then the solution is nonideal. On the one hand, if Ω > 0, 
then adatoms and "missing" adatoms repel each other, which is equiva-
lent physically to adatoms attracting each other. The adatom coverage 
increases more rapidly at first with increasing pressure, before again sat-
urating beyond a critical temperature-dependent pressure. On the other 
hand, if Ω < 0, then adatoms and "missing" adatoms attract each other, 
which is equivalent physically to adatoms repelling each other. The adatom 
coverage increases less rapidly at first with increasing pressure, before again 
saturating beyond a critical temperature-dependent pressure. 

(7.27) 
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7.2.2 Sticking Coefficients and Desorption 
In Subsection 7.2.1, we discussed the composition, or coverage, of an adsor-
bate surface phase in equilibrium with its vapor. Physically, tha t equilib-
rium can also be viewed as the balancing of a dynamic competition between 
adsorption of atoms or molecules from the vapor and desorption of atoms 
or molecules back into the vapor. As a consequence, if we know the ad-
sorption rate, then, at equilibrium, we know the desorption rate as well. 
In this subsection, we derive expressions for this desorption rate, as well 
as for the rates at which coverages, per turbed away from their equilibrium 
values, will re turn to those equilibrium values. 

From the kinetic theory of gases, the rate at which atoms or molecules 
in a vapor impinge upon a surface, per lattice site, is ρλ2/ V^nmkT', where 
p and T are the pressure and temperature of the vapor, m is the atomic or 
molecular mass, and λ2 is the area per lattice site of the surface. If s(6,T) 
is the coverage and temperature dependent fraction of impinging atoms or 
molecules tha t "stick" to the surface, then the adsorption rate will be 

Jdes - vsr ( 7 · 2 8 ) 

At equilibrium, atoms or molecules must, by detailed balance, desorb 
exactly as fast as they adsorb. Since, at equilibrium, the coverage of a 
strictly regular solution surface phase is related to the pressure by Equa-
tion 7.26, the equilibrium desorption rate can also be expressed in terms of 
coverage as 

= ρλ*8(θ,Τ) = Ρο\*8{θ,Τ) ί Θ \ n ( 1 _ , ) / f c r W f c r ( 29) 
J V2nmkT V2nmkT \ l - Θ J V * J 

If we now assume tha t desorption depends directly on coverage, and only 
indirectly on the equilibrium pressure required to achieve tha t coverage, 
then Equation 7.29 holds even away from equilibrium. Hence, the net 
adsorption rate for a regular solution surface phase is 

Θ = in 

— Jads Jdes 

\28(Θ,Τ) 
V2wmkT »-«•(rb)«""- e)/kTe-Agd„/kT , (7.30) 

which is a first-order differential equation for the t ime evolution of the 
coverage. 
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Often, the sticking coefficient decreases linearly with coverage as s(6, T) 
s 0 ( l - Θ). Then, 

Θ = j n e t = *0>? [p(l -Θ)- poeeW-°VkTe-*°*«'kT] . (7.31) 

The net adsorption rate can be seen to be the difference between the rate 
at which atoms or molecules stick on uncovered portions of the substrate , 
and the rate at which atoms or molecules desorb from the covered portions 
of the substrate. 

If the surface phase is an ideal solution, then Ω = 0, and Equation 7.31 
simplifies to 

0 = jnet = 
s0X2 

y/2nmkT 
p - 0 ( p + P o ) e - A 9 d ~ / f c r ] . (7.32) 

A surface having initially a coverage of 0ini approaches exponentially the 
equilibrium coverage given by Equation 7.27 with a time constant r given 
by 

1 _ So\2(p + Poe-^^kT) _ s0X2
Poe-^^kT 

\f2-KmkT V2wmkT(l - 0 e q u ) ' 

In other words, 
0 — #equ + (#ini — #equ)e -t/r (7.34) 

Note tha t for small deviations from the equilibrium coverage at pressure 
Pequ, the rate at which the surface will re turn to its equilibrium coverage is 

ά(ΑΘ) 
= jnet(0equ + Δ 0 ) = jnet(0equ) + Δ 0 dt 

Since inet(^equ) = 0 at equilibrium, 

1. d(Afl) 
r ~ ~ A0dt 

Ojn 
3Θ 

Jnet 
θθ 

(7.35) 

(7.36) 
equ 

is the "small signal" approach rate back toward the equilibrium coverage. 
For an ideal solution surface phase, Equations 7.32 and 7.36 give 

1. _ So\2{p + p0e-^*lkT) _ s0X2p0e-A^/kT 

T V27rmkf V2nmkT(l - 6equy 
(7.37) 

which reproduces Equation 7.33. For a strictly regular solution surface 
phase, Equations 7.31 and 7.36 give 

1. = s0X2 ( 1 _ 2ft(9equ 

r ~ y/2nmkT \0equ kT 
equ \ e-Agdes/kT (7.38) 
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ΚΓ 'Γ -

Figure 7.5: Coverage dependences of the small-signal vapor-adsorbate 
equilibration rate for CO on C u ( l l l ) . The open and filled circles are data 
measured0 at the various indicated temperatures. The solid lines are the pre-
dictions of Equation 7.39, with a desorption molar Gibbs free energy of Agdes = 
(0.67 eV) — (37.8/cT), a mixing enthalpy of Qh = 0.107 eV, and a mixing entropy 
of ns = 20.7k. 

a B . J . Hinch and L.H. Dubois, "First-order corrections in modulated molecular beam 
desorption experiments," Chem. Phys. Lett. 171 , 131 (1990). 

where 0e q u is given by Equation 7.26. For a regular solution with both an 
enthalpy and entropy of mixing, Ω = Ώ,^ — ΤΩ 8 , and 

1 S0\2 

r y/2nmkT \0« 
2fth0, equ 

kT + 
2Ωβ0* -Agdes/kT (7.39) 

Examples of such coverage and temperature-dependent small-signal equi-
libration rates are illustrated in Figure 7.5 for CO on C u ( l l l ) . In this case 
there are both positive enthalpies and entropies of mixing. A positive en-
thalpy of mixing implies a repulsion between adatoms and missing adatoms, 
or, equivalently, an at t ract ion between adatoms. Hence, the enthalpic bar-
rier to desorption increases with increasing coverage. A positive entropy of 
mixing, however, implies an entropic barrier to desorption tha t decreases 
with increasing coverage. The two effects "compensate" each other to some 
extent, although, as illustrated in Figure 7.5, the balance tilts toward in-
creasing the desorption rate with increasing coverage. 
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7.3 Surface Segregation and Trapping 
In Section 7.1 we discussed the preferential segregation of one compo-
nent from the bulk to the surface. In equilibrium, such segregation oc-
curs when there are differences either between the surface tensions of the 
pure-component endpoint materials or between the free energies of mixing 
in the surface and bulk phases. Away from equilibrium, such segregation 
may or may not be significant, and will depend on the relative kinetics of 
crystal growth and interdiffusion between the surface and bulk phases. In 
this section, we discuss these dependences. 

We will begin, in Subsection 7.3.1, by discussing the important simple 
case of segregation of a dilute solute under steady-state growth conditions.10 

This discussion will lead to an expression for the nonequilibrium parti t i t ion 
coefficient, κ;, governing the ratio between the solute concentrations in the 
bulk and surface phases. 

Then, in Subsection 7.3.2, we will make the assumption tha t , under 
non-steady-state conditions, this nonequilibrium parti t ion coefficient still 
applies locally to the ratio between solute concentrations in the bulk phase 
just adjacent to the surface phase and in the surface phase itself. In this 
way, the nonequilibrium parti t ion coefficient can be used to define a bound-
ary condition connecting the non-steady-state evolution of solute concen-
trations in the bulk and surface phases. 

7.3.1 Steady-State Compositional Partitioning 
In this subsection, we consider steady-state segregation of a dilute solute b 
in a host solvent a. As illustrated in Figure 7.6, there are three phases 
to consider: the vapor, (a i_ x vb x v) , at composition x v , the bulk solid, 
(&\-xßhxß), at composition x@, and the surface monolayer dividing the 
two, )&ι-χ°\)χσ(, at composition χσ. 

Between these three phases there are two basic kinetic processes tha t 
compete with each other.1 1 First, vapor condenses, forming simultaneously 
a new surface layer (layer 1 in the right side of Figure 7.6), and transforming 
the previous surface layer into a new bulk solid layer (layer 2 in the right side 
of Figure 7.6). If condensation is "partitionless," in tha t the composition of 
the new surface layer mimics the composition of the vapor, then the system 

10We do not treat the more complicated case of a nondilute solute; see, e.g., J.M. 
Moison, C. Guille, F. Houzay, F. Barthe, and M. Van Rompay, "Surface segregation of 
third-column atoms in group III-V arsenide compounds: ternary alloys and heterostruc-
tures," Phys. Rev. B40, 6149 (1989). 

n J . J . Harris, D.E. Ashenford, C.T. Foxon, P.J. Dobson, and B.A. Joyce, "Kinetic 
limitations to surface segregation during MBE growth of III-V compounds: Sn in GaAs," 
Appl. Phys. A33 , 87 (1984). 
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Figure 7.6: Left: Schematic molar Gibbs free energies of crystal (&i-xßbxß), 
vapor (ai-xvbxv) and surface )ai_x<Tbx<r( phases. Right: Schematic of two com-
peting kinetic processes: partitionless growth followed by solute partitioning via 
diffusion. 

moves from point A to point B in the left side of Figure 7.6. At the same 
time, the previous surface layer, possibly enriched in solute, is transformed 
into a new bulk layer. Therefore, the system also moves from point C to 
point D in the left side of Figure 7.6. 

Second, if the previous surface layer (layer 2 in the right side of Fig-
ure 7.6) were enriched in solute, then as it becomes a new bulk layer, it will 
also be enriched in solute. As a consequence, solute will tend to diffuse out 
into the new surface layer (layer 1 in the right side of Figure 7.6), moving 
the system from point D to point E and from B to C on the left side of 
Figure 7.6. In other words, partitionless condensation from vapor to sur-
face to bulk solid is followed by partit ioning by interdiffusion between the 
surface and the bulk solid. Note tha t , from start to finish, the system has 
moved downward from point A to point E in the left side of Figure 7.6, so 
tha t there is a net driving force for condensation. 

Two extremes of behavior may be imagined, depending on the ratio 
between the rate of growth, j (in ML/s ) , and the rate of interdiffusion be-
tween bulk and surface layers, Di/a2. As in Section 6.3, this ratio, a2j/Di, 
is a kind of Peclet number in tha t it is a dimensionless measure of the 
relative importance of convective over diffusional mass flow. Also as in Sec-
tion 6.3, another way of understanding this Peclet number is to note tha t it 
is also the ratio between the t ime required for diffusion between the surface 
layer and its adjacent bulk layer, a2/Di, and the monolayer growth t ime, 
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On the one hand, if a2j/Di <C 1, then interlayer diffusion is fast relative 
to growth. The surface layer will be in compositional equilibrium with its 
adjacent bulk layer, and the ratio between their compositions will be given 
by the equilibrium partition coefficient Kequ. This extreme of behavior is 
therefore characterized by equilibrium solute segregation. On the other 
hand, if a2j/Di ^> 1, then interlayer diffusion is slow relative to growth. 
The surface layer and its adjacent bulk layer will not have time during a 
monolayer growth cycle to reach composition equilibrium, and the ratio be-
tween their compositions, /c, will approach unity. This extreme of behavior 
is therefore characterized by nonequilibrium solute trapping. 

Periodic and Aperiodic Step-Wise Growth 

To quantify the dependence of κ on the Peclet number, consider a sim-
ple model in which growth proceeds by the passage of steps on a vicinal 
surface.12 Suppose the composition of the surface layer just ahead of a 
moving step is χσ. At time t = 0, just after the step has passed, that 
surface layer has become a bulk layer. If the new bulk layer has preserved 
its composition, then 

n=0=x°. (7.40) 
During the subsequent time interval TML = 1/j until yet another step 
passes, solute atoms in the bulk layer will diffuse to the surface layer, at a 
rate proportional to the deviation of the composition of the bulk layer from 
its equilibrium value, κβ(ιχιχσ. In other words, 

^ = ^ V - Kequa-). (7.41) 

From Equations 7.40 and 7.41, the solute concentration in the bulk 
decays exponentially with time according to 

χβ = Kequxa + (χσ - Kequxa)e-Da^a2. (7 .42) 

Suppose now that once this bulk layer has been covered by yet another sur-
face layer, further interdiffusion becomes negligible. There are two extreme 
possibilities for the ways in which the next layer may arrive. 

On the one hand, if the steps on the surface are equispaced, then they 
pass over the surface periodically, at time intervals separated by TML = 1/j· 

1 2M.J. Aziz, "Model for solute redistribution during rapid solidification," J. Appl. 
Phys. 53, 1158 (1982). 
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Figure 7.7: Dependence of nonequilibrium partition coefficients on the Peclet 
number, a2j/Di, for periodic and aperiodic step flow. The equilibrium partition 
coefficient in both cases was taken to be 10~ . 

Then, the steady-state composition of the bulk layer will be tha t which it 
has reached at t ime TML = 1/j, or 

^equ*^ i v*£ ^ e q u ^ ) ^ (7.43) 

In other words, when segregation occurs by interdiffusion of solute punctu-
ated by the periodic passage of steps, then the steady-state ratio between 
bulk and surface compositions is 

v per — — ^ e q u "I v-*- ^ e q u j ^ 
-Di/(a2j) (7.44) 

As illustrated in Figure 7.7, κ is Kequ for a2j/Di much less than unity, but 
increases to unity as a2j/Di approaches and exceeds unity. 

On the other hand, if the steps on the surface are distributed randomly, 
then they pass over the surface aperiodically . 1 3 If this aperiodic passage 
obeys a Poisson arrival distribution, then the probability tha t a step will 
pass in an interval dt after t ime t will be e~t^TMLdt/ruL — ge~gtdt. Hence, 
the average composition of the bulk layer will be its composition after t ime 
£, weighted by this probability, or 

— / ^equ«£ 
JO L 

+ (*σ 
v equ χ

σ)β -Di/(a2j) je ~jtdt 

13L.M. Goldman and M.J. Aziz, "Aperiodic stepwise growth model for the velocity 
and orientation dependence of solute trapping," J. Mater. Res. 2, 524 (1987). 
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J_ 
'j + Di/a?' 

^equ^ ~\~ \X — f^equx ) A , ρ> / Λ 2 ' \ * ^ ^ / 

In other words, when segregation occurs by interdiffusion of solute punctu-
ated by the aperiod passage of steps, then the steady-state ratio between 
bulk and surface composition is 

χΡ_ _ Kequ + ja2/Di 
χσ l+ja2/Di 

(7.46) 

Again, as illustrated in Figure 7.7, κ is Kequ for a2j/Di much less than 
unity, but increases to unity as a2j/Di approaches and exceeds unity. The 
increase is not as steep, however, as it is for Kper. 

A Segregat in g D o p a n t : S b o n Si (001) 

To illustrate this behavior, consider the well-established14 segregation of Sb 
impurities during MBE of Si on Si (001). Figure 7.8 shows measurements 
of the part i t ion coefficient κ at various growth rates and temperatures. As 
temperature increases the part i t ion coefficient initially decreases as Sb in-
terdiffuses more and more quickly to the surface. At high temperatures, Sb 
diffusion is so fast tha t equilibrium is reached, and the parti t ion coefficient 
approaches the equilibrium parti t ion coefficient ttequ- Finally, as tempera-
ture continues to increase, the surface and bulk phase compositions tend to 
equalize, and K,equ itself approaches unity (see Equation 7.15). Therefore, 
as temperature continues to increase, ultimately κ begins to increase again, 
due to an increase in Kequ. 

Also shown in Figure 7.8 are the predictions of Equation 7.44 for segre-
gation mediated by periodic step flow. As can be seen, the predictions agree 
reasonably well with the data , although there is some disagreement at the 
lower growth temperatures for the higher growth rates. The disagreement 
may be due to the onset of a 2D nucleation and growth mode, hence the 
onset of segregation mediated by aperiodic step flow. 

7.3.2 Non-Steady-State Compositional Partitioning 
In Subsection 7.3.1, we derived expressions for the nonequilibrium parti t ion 
coefficient, κ,. There, we assumed a steady-state solute concentration in the 
surface layer. In other words, we assumed tha t surface solute depletion due 
to incorporation into the bulk was just compensated for by adsorption from 
the vapor. 

1 4 J .C. Bean, "Arbitrary doping profiles produced by Sb-doped Si MBE," Appl. Phys. 
Lett. 33 , 654 (1978). 
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Figure 7.8: Temperature dependence of nonequilibrium partition coefficients 
for Sb during MBE of Si on Si (001). The data points0 and predictions of 
Equation 7.44 are for growth rates of 3.0 Ä/s (open circles and solid line), 
1.0 Ä/s (open triangles and dashed line), and 0.3 Ä/s (filled circles and dot-
ted line). The diffusivity was assumed to be Arrhenian, and given by Di/α2 = 
2X1011 exp( — l.QleV/kT), while the equilibrium partition coefficient was assumed 
to be ftequ = exp( — 1.23eVy/cT), consistent with the form given by Equation 7.15. 

aH. Jorke, "Surface segregation of Sb on Si (100) during molecular beam epitaxy 
growth," Surf. Sei. 193, 569 (1988). 

In this subsection, we relax this assumption, and allow the solute con-
centration in the surface layer to evolve. To do so, recall tha t the nonequi-
librium part i t ion coefficient, «, is the ratio between solute concentrations in 
a bulk layer just adjacent to the surface layer and in the surface layer itself. 
It can therefore be thought of as the fraction of solute in the surface layer 
tha t becomes "trapped" in the adjacent bulk layer during each monolayer 
growth cycle. If the overall growth velocity is t>, then the rate of decrease 
of solute in the surface layer due to t rapping will be vκχσ ja, where a is a 
monolayer step height. 

At the same time, solute may also adsorb from the vapor onto the 
surface, or desorb back into the vapor from the surface. If νΆ(\8 = j^"tea 1S 

the adsorption "velocity" and vdes = j^ltex<Ta is the desorption "velocity" 
of solute, then the overall rate of change of solute concentration in the 
surface layer will be 1 5 

a 
(vdes + VK)X° 

(7.47) 

15C.E.C. Wood and B.A. Joyce, "Tin-doping effects in GaAs films grown by molecular 
beam epitaxy," J. Appl. Phys. 49, 4854 (1978). 
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This equation describes the time evolution of the solute concentration in 
the surface layer during growth. It increases due to adsorption from the 
vapor, and decreases due to a combination of desorption back into the vapor 
and trapping in the bulk. 

Note, though, that even after the solute has become trapped in the bulk, 
it may still diffuse, albeit at rates determined by the bulk diffusivities, which 
may be much slower than the diffusivity for exchange between the surface 
layer and its adjacent bulk layer. Therefore, the bulk solute concentration 
will evolve, after trapping, according to 

dxP „ d2x? Irj λ 

-ÖT = D ^ ( 7 ·4 8 ) 

where z is a distance scale perpendicular to the surface in a stationary 
reference frame.16 

The boundary condition on this diffusion equation is the solute concen-
tration most recently trapped in the bulk layer just adjacent to the surface, 
or 

[Αζ=ζΛι) = ™σ· (7.4») 
In this equation, ζσ{ί) = ζσ^0 — J0 vdt is the position of the interface between 
the surface layer and its adjacent bulk layer. Equations 7.47, 7.48 and 
7.49 together completely describe the time evolution of the overall bulk 
solute concentration due to nonequilibrium segregation followed by bulk 
diffusion. They are complicated, however, by the boundary condition in 
Equation 7.49, which must be applied at a moving surface. It is convenient, 
therefore, to transform into a reference frame, z' = z + / vdt', that moves 
with the surface.17 In this reference frame, Equation 7.48 becomes 

-θΓ = 0"Ί^-υ^ ( 7 ·5 0 ) 

and Equation 7.49 becomes 

[ζβ],,=0 = κχσ- (7·51) 

To illustrate the use of these equations, Figure 7.9 shows time evolu-
tions of the spatial distributions of solute during growth of a structure 

16 We neglect electrostatic effects near the surface, which may cause solute "drift" to-
ward or away from the surface. See, e.g., E.F. Schubert,, J.M. Kuo, R.F. Kopf, A.S. 
Jordan, H.S. Luftman, and L.C. Hopkins,, "Fermi-level-pinning-induced impurity redis-
tribution in semiconductors during epitaxial growth," Phys. Rev. B42 , 1364 (1990). 

17S.A. Barnett and J.E. Greene, "Si molecular beam epitaxy: a model for tempera-
ture dependent incorporation probabilities and depth distributions of dopants exhibiting 
strong surface segregation," Surf. Set. 151, 67 (1985). 
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Figure 7.9: Four series of snapshots in time of solute composition profiles during 
MBE. All four series correspond to a square doping pulse indicated by the dashed 
lines, but differ according to whether fdes is much less than or greater than v and 
whether κ is much less than unity or equal to unity. 

having a square pulse of solute. In the absence of bulk diffusion, there 
are four extremes of behavior, depending on (1) the relative rate between 
the growth velocity and the effective desorption velocity and (2) whether 
the nonequilibrium parti t ion coefficient is near-unity or very different from 
unity. 

Consider first the cases where the effective desorption velocity is much 
lower than the growth velocity. Then, a negligible fraction of the solute 
atoms tha t land on the surface leave, and virtually all ultimately incorpo-



7.3. Surface Segregation and Trapping 283 

rate into the growing crystal. On the one hand, if the parti t ion coefficient 
is unity, as in panel (c), then all the solute atoms in the surface layer are 
incorporated into the bulk as growth proceeds. The depth profile of the 
final solute concentration mimics within one to two monolayers the square 
pulsed arrival rate of solute. On the other hand, if the parti t ion coefficient 
is much less than unity, as in panel (a), then only a fraction of the solute 
atoms in the surface layer is incorporated into the bulk as growth proceeds. 
The depth profile of the final solute concentration now tails off gradually, 
as solute "rides" and gradually accumulates on the growing surface, and 
continues to be incorporated into the crystal even after the square pulse of 
solute has ended. 

Consider second the cases where the effective desorption velocity is much 
higher than the growth velocity. Then, many of the solute atoms tha t land 
on the surface leave, and only a fraction ultimately incorporates into the 
growing crystal. Tha t fraction is K,v/(v^es + κ,ν) « Kv/v^es, and increases 
linearly with the part i t ion coefficient. The depth profile of the final solute 
concentration again mimics the square pulsed arrival rate of solute, because 
any solute in the surface layer tha t does not incorporate in the bulk desorbs 
from, rather than "rides" on, the surface.18 Note tha t as growth proceeds, 
there is a competition between desorption and trapping of solute. On the 
one hand, if the part i t ion coefficient is much less than unity, as in panel 
(b), then most of the solute atoms in the surface layer eventually desorb, 
and the absolute concentration of solute in the bulk is low. On the other 
hand, if the parti t ion coefficient is unity, as in panel (d), then more of the 
solute atoms in the surface layer incorporate into the bulk, and the absolute 
concentration of solute in the bulk is higher. 

Of the four extremes of behavior just discussed, only one results in 
a solute composition profile tha t is broadened beyond the square solute 
arrival pulse. Unfortunately, tha t extreme is a commonly observed one, in 
which appreciable solute segregates to and rides on the surface, rather than 
either incorporating or desorbing. It may be circumvented to some extent 
by reduced growth temperature, which reduces solute diffusion from the 
bulk to the surface.19 

18S.S. Iyer, R.A. Metzger, and F.G. Allen, "Sharp profiles with high and low doping 
levels in silicon grown by molecular beam epitaxy," J. Appl. Phys. 52, 5608 (1981). 

1 9H.J. Gossman, E.F. Schubert, D.J. Eaglesham, and M. Cerullo, "Low-temperature 
Si molecular beam epitaxy: Solution to the doping problem," Appl. Phys. Lett. 57, 2440 
(1990). 
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Exercises 
1. Verify tha t minimizing Equation 7.14 is equivalent to the parallel 

tangent construction. 

2. Show tha t , for a given bulk composition, the surface work given by 
Equations 7.16 and 7.18 is minimum when the surface composition is 
such tha t the surface and bulk phases are in equilibrium with each 
other, i.e., when the parallel tangent construction is satisfied. 

3. Show, beginning with Equation 7.16, tha t 

Note tha t both µ ^ and µ^ depend on χσ'. 

4. Derive Equation 7.15, the equilibrium part i t ion coefficient between 
bulk and surface phases for strictly regular bulk and surface phases. 

5. Derive Equation 7.26 for the dependence of the equilibrium coverage 
of a strictly regular adsorbate phase on pressure. 

6. For a given Peclet number, the nonequilibrium part i t ion coefficient, /c, 
is higher for aperiodic than for periodic passage of steps. Physically, 
why is this so? 

7. In principle, solute segregation and t rapping may occur at a number 
of stages in the growth cycle. Solute may ride ahead of the edges of 
steps sweeping laterally over terraces by horizontal diffusion follow-
ing kink flow; they may also ride on the surface by vertical diffusion 
following step flow. Suppose the horizontal and vertical interdiffu-
sivities at the step edges and at the surface are Dhor a n d D\eri a n d 
tha t the average terrace width is L /α , in units of lattice spacings. 
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Assuming periodic partitionless kink flow followed by horizontal dif-
fusive segregation, what is the nonequihbrium partition coefficient 
«step associated with segregation ahead of the moving step? Then, 
assuming periodic, non-part it ionless step flow followed by vertical 
diffusive segregation, what is the nonequihbrium partition coefficient 
«terr associated with segregation on top of the growing terraces? 


