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ABSTRACT
GaN and AlN compounds have been proven useful in wide bandgap microelectronics and optoelectronics. Also
properties of bulk GaN and AlN have been studied extensively. However, many characteristics of AlGaN/GaN
superlattices are not well known. In particular, the properties of phonons have not been determined. In order
to determine phonon properties, this study measured infrared reflectivity spectra on short period superlattices,
which were grown by high quality molecular beam epitaxy. The superlattices consisted of 300 periods of alternat-
ing layers of GaN and AlGaN, each containing between 1 and 8 monolayers. Next, the reflectivity of each sample
was measured using a Bruker IFS-66V spectrometer. From these experimental spectra the dielectric function,
and hence the optical phonon properties (namely phonon frequency and phonon damping), were determined.
Mapping the experimental spectra with theoretical calculations determined the longitudinal and transverse opti-
cal phonon energies present in the AlGaN/GaN superlattices. Through the examination of different AlGaN/GaN
superlattice combinations, plots of phonon energies versus material composition were obtained. Furthermore,
new phonons, that were not present in bulk AlN and GaN, were discovered. Finally, phonon characteristics were
measured as a function of temperature, confirming that phonon energies decrease with increasing temperature.
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1. INTRODUCTION
Superlattice (SL) semiconductors are crystals grown with alternating atomic layers. The first superlattice was
grown only thirty years ago. Since their creation, superlattices have been used in many optical and electronic ap-
plications. For example, superlattices are used as channels in high current and high power field effect transistors.
Superlattices are used as a buffer layer in heterostructure devices to alleviate strain. Quantum Cascade Lasers,
Bloch Oscillator devices, and Avalanche Photo Diodes also contain superlattices. Some of the latest superlattice
applications include superlattice solar cells and Ultra-fast optical switches.1

Phonons, which are atomic vibrational waves, greatly affect electron mobility due to scattering. Phonons
can be longitudinal or transverse waves. These waves displace atoms in semiconductor crystals which in turn
alter the electronic potential and cause electron scattering. In compound semiconductors, like AlN and GaN, the
bond is ionic. This dipole of different atoms oscillating in opposite directions creates an optical phonon which
produces an electric field. Due to these polar optical phonons, the electric field causes very strong scattering,
which is typically the dominating scattering mechanism in compound semiconductors.2 The effects of phonons
are not always negative as in the instance of impeding electron mobility. Phonons can be useful in dissipating
heat out of semiconductors.

Many studies have analyzed phonon properties in Bulk GaN and AlN,3 and a number of studies have also
examined superlattices such as AlAs/GaAs. The purpose of the current study is to further superlattice phonon
research by examining the phonon characteristics of AlGaN/GaN superlattices.
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Figure 1. Cross section of a sample: superlattice grown on a sapphire substrate. A 30nm GaN buffer is between the
superlattice and the substrate. Also illustrated is the reflectivity angle of 15 degrees.

2. SUPERLATTICE STRUCTURE
The AlGaN/GaN superlattices in this work have been grown by molecular beam epitaxy (MBE) at the University
of Notre Dame. First, a thin (30-70nm) GaN buffer layer was deposited on a sapphire substrate. Then the
superlattice made of 300 short periods was grown on this buffer layer. A cross section of a standard sample is
shown in Fig. 1. A short period consist of n monolayers of AlGaN plus m monolayers of GaN, where 0 < m,n ≤ 8.
Six different superlattices samples were studied which vary in layer thickness and thickness ratio. They are
summarized in Table 1. X-ray diffraction measurements confirmed structure composition by using Xpert Epitaxy
software to verify the aluminum concentration of each sample.

Table 1. Aluminum concentration, period monolayer composition, and period length of each superlattice sample. Each
superlattice consists of 300 periods and each period consists of n + m monolayers.

Sample Name Al concentration (%) AlGaN:GaN (n:m) Period Length (nm)
092505b 10.0 2:8 2.5
091805 16.5 1:2 0.75
092505a 25.0 4:4 2
091605 25.5 2:2 1
092705 36.0 2:1 0.75
092605 42.0 8:2 2.5

3. EXPERIMENTAL PROCEDURE
Room and low temperature infrared reflectivity spectroscopy measurements were taken on each superlattice
sample using the Bruker IFS-66V Fourier Transform Infrared (FTIR) spectrometer. The measurements were
in the infrared wavenumber range of 400cm−1 to 2000cm−1 because the optical phonons of interest were also
contained in this region. The reflection angle of incident, shown in Fig. 1, was held constant at 15o in order
to minimize the number of variables but also because of the geometric constraints of the cryostat. Low and
room temperature measurements were conducted inside a cryostat. Room temperature measurements were also
performed without the cryostat to verify that the cryostat did not bias the results.
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Figure 2. Reflection spectrum of bulk GaN calculated with the plotted dielectric function ε′′(ω) and −1/ε′′(ω). The
optical phonon frequencies of GaN are shown on the x-axis in wavenumber ν̃ = ω/c. The reflectivity y-axis (0 < y ≤ 1)
is not shown.

4. THEORY
Calculating the dielectric function of the semiconductor material is the foundation in relating phonon frequencies
to the reflectivity spectrum. This is accomplished using the expression

ε(ω) = ε∞ +
m∑

j=1

4πFj

ω2
Tj − ω2 − iωγTj

, (1)

where ε∞ is the high-frequency dielectric constant and Fj , ωTj , and γTj are the jth-mode oscillator strength,
transverse optical (TO) phonon frequency, and damping respectively. Oscillator strength is also a function of
transverse and longitudinal optical (LO) phonon frequencies:4

Fj =
ε∞
4π

(ω2
Lj − ω2

Tj)
m∏

k #=j

ω2
Lk − ω2

Tj

ω2
Tk − ω2

Tj

. (2)

In general, the dielectric function can be separated into real and imaginary parts, ε(ω) = ε′(ω) + iε′′(ω). The
imaginary part of the dielectric function ε′′(ω) is the energy absorbed as a function of frequency and therefore
directly affects the reflectivity spectrum of that material.5

Fig. 2 shows a simple example of how optical phonons frequencies of bulk GaN affect the imaginary part of
the dielectric function, ε′′(ω), by plotting this function. The transverse optical (TO) phonon is at 558xcm−1, and
the longitudinal optical (LO) phonon in GaN is at 734xcm−1. These phonons frequencies are where the dielectric
functions ε′′(ω) and −1/ε′′(ω) peak. Shown in the GaN spectrum, light with frequencies between the TO and
LO phonons has high reflectivity. The spectrum is the total unpolarized reflectivity Ru which was calculated
from the s- and p-polarized reflectivity components:6

Rs(ω) =

∣∣∣∣∣
cos θi − [εx(ω) − (sin2 θi)]

1
2

cos θi + [εx(ω) − (sin2 θi)]
1
2
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2

, (3)
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Ru(ω) =
1
2

(
Rs(ω) + Rp(ω)

)
. (5)

For bulk materials, the reflection spectrum is calculated with Eq. (3), (4), and (5). Notice in these equations
that the reflectivity spectrum is strongly dependant on the dielectric function. Fig. 2 graphically illustrates how
the reflectivity, the dielectric function, and phonon frequencies are related.

The reflectivity spectrum calculation become more complex in thin multilayered semiconductors due to the
interfaces between the different materials that make up the sample. For some simplicity, the superlattice (SL) is
approximated to be one layer, reducing the sample to three thin layers: SL, GaN buffer, and sapphire substrate.
Reflectivity due to each layer is calculated from Eq. (3), (4), and (5) as in bulk materials. The total multilayered
reflectivity spectra are then computed from these results, as described in detail in Ref. 6. Fig. 3 shows the total
multilayered reflectivity spectrum. Comparing Fig. 3 to Fig. 2 shows the similarities and additional complexities
that arise in the multilayered structures.

5. MAPPING
The optical phonon energies were obtained from the reflectivity spectrum of the superlattice by using the equa-
tions previously outlined. Mapping was used to match the calculated theoretical spectrum with the measured
experimental spectrum. Many inputs were used in order to calculate the reflectivity spectrum. Some of the
inputs are the phonon energies of the substrate and the buffer layer. The phonon energies of these layers are
given and are used to calculate the dielectric function. The dielectric function of these two layers, shown in the
top graph of Fig. 3, are held constant during mapping. The superlattice dielectric function on the other hand,
which is shown in the middle plot of Fig. 3, is varied by changing the frequencies of the optical phonons of the
superlattice.

Changing the superlattice dielectric function alters the theoretical reflectivity spectrum. The superlattice
phonon energies are therefore adjusted until the theoretical calculations match the infrared spectrum experimen-
tal results. The lower plot of Fig. 3 shows the best mapping of this theoretical calculation with experimental
results. The local minima of experimental and theoretical spectra are the critical frequencies that are matched by
tuning the SL phonon frequencies. Note that the strong reflectivity between 440-480cm−1 is due to the sapphire
substrate. The substrate’s transverse and longitudinal phonons at those frequencies plotted in the upper graph
form this reflected band. Since the substrate parameters are held constant and affect the low wavenumber range,
the local minima less than 500cm−1 do not need to match with theoretical results. The low energies of the
spectrum are also not of interest in determining characteristics of phonons in the SL since phonon frequencies in
the SL are greater than 500cm−1. In the region below 500cm−1, a shift in the minima between the theoretical
and experimental plots exists. This misalignment could be due to strain in the substrate caused by the super-
lattice. The high reflectivity range from 550-740cm−1 is primarily from GaN (as shown in Fig. 2), but much of
the additional structure in the reflectivity arises from SL phonons, especially in the 500-600cm−1 range.

6. RESULTS
Room temperature experiments were conducted to determine the phonon energies as a function of aluminum
concentration and the number of phonons that exist in each sample. Next low temperature experiments were
preformed to see how these phonon energies were affected by change in temperature.

6.1. Room Temperature Results
All six superlattice samples were mapped to determine the optical phonon that exist at room temperature in
the superlattice structure. Fig. 4 shows how all the phonons in each sample are related and how each sample
also have similar phonons to bulk AlN and GaN. Bulk AlN has optical phonons at approximately 900 cm−1

and 660 cm−1 as shown on the right side of the graph while bulk GaN has optical phonons near 558 cm−1 and
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Figure 3. Top graph displays the dielectric functions ε′′x(ω) and −1/ε′′x(ω) of the GaN buffer layer and the sapphire
substrate, the parameters of which are held constant during calculations of the reflectivity. The middle graph contains the
superlattice dielectric functions, which will also be used to calculate the reflectivity. The lower graph displays both the
calculated theoretical reflectivity and experimental measurements. During mapping, the superlattice dielectric functions
are adjusted by changing the superlattice optical phonon energies until the theoretical reflectivity and experimental results
match appropriately.

734 cm−1 (plotted on left). Note that an additional phonon, e(1a), exists only in the superlattice samples, but
does not exist in the bulk materials. This phenomenon of a new phonon also has been observed in AlAs/GaAs
superlattices.

6.2. Low Temperature Results
The low temperature reflectivity spectra were studied on the superlattice samples. In Fig. 5 one can see that the
minima of the reflectivity shift towards higher energy as the temperature decreases. This shift in the minima
corresponds to a shift in the phonon energies. The reflectivity at each temperature was mapped to determine the
phonon energy at each temperature. The results of the optical phonon energies versus temperature are plotted in
Fig. 6. This shift is to be expected because as the temperatures decrease, the distance between atoms decreases
causing the bonds between each atomic pair to become stronger. This stronger bond can be thought of as a
spring constant and is proportional to the frequency of oscillation or in other words, the phonon energy. These
results show that optical phonon energy decrease exponentially as temperature increases and also match GaN
results in literature.7 Plotted in Fig. 6 are the phonon energies of sanple 091605 which is the sample with 25.5%
aluminum. Also labeled are the optical phonons that are present in the superlattice corresponding with Fig. 4.
The data points are approximated with a least square fit which is the solid line. This approximation is also what
is shown for bulk GaN phonon temperature dependance.7
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Figure 4. Optical phonon energies in each AlGaN/GaN sample at room temperature as a function of aluminum concen-
tration. Each vertical set of data represents the phonons present in a single sample. Plotted on the edges are the phonon
modes in bulk AlN and GaN. Notice the phonon e(1a) which is a new phonon that exists in the superlattices but not in
the bulk.

Reflectivity with Varying Temperature
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Figure 5. The varying reflectivity of sample 092505b as a function of temperature. These spectra are shown in the range
from 600-800 cm−1 in order for the shift in the minima to be observed. This temperature dependance on the minima of
the reflectivity results in a phonon energy dependancy on temperature.
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Figure 6. The optical phonon energy of sample 091605a as a function of temperature. Each vertical set of data represent
a single spectrum mapping to give the phonon frequencies at that specific temperature. The phonon labels correspond to
Fig. 4. The lines are the least square fit approximation of each phonon temperature dependance. The least square fit is
also an approximation for the phonon energy dependance in bulk GaN.7

7. CONCLUSIONS AND FUTURE WORK
7.1. Conclusions
With the use of infrared reflectivity spectroscopy, the phonon energies in the AlGaN/GaN superlattices of
this study have been determined. The optical phonon frequencies have been plotted as a function of aluminum
concentration in order to observe the energy shift with the change in aluminum concentration. Another significant
finding of the study is the observation of a new phonon frequency in the superlattice sample that does not
correspond to any of the native phonon energies that are present in the bulk materials. This new phonon is
similar to a new phonon occurrence in other compound semiconductors.

Temperature dependance of phonon energies have also been measured in this work. It has been discovered
that AlGaN/GaN superlattice phonon frequencies increase as temperature decreases. This matches the same
trend as in bulk GaN as expected.

7.2. Future Work
The future direction of this research is to study additional superlattice samples in order to continue to characterize
optical phonon properties. Another direction will be to study AlN/GaN superlattices in order to observe the
phonons that are present in these superlattices, specifically the new phonon that does not exist in the bulk
materials. Future studies will examine what specifically causes these new modes.
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