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A theory is developed for interband tunneling in semiconducting carbon nanotube and graphene
nanoribbon p−n junction diodes. Characteristic length and energy scales that dictate the tunneling
probabilities and currents are evaluated. By comparing the Zener tunneling processes in these
structures to traditional Group IV and III–V semiconductors, it is proved that for identical bandgaps,
carbon-based one-dimensional �1D� structures have higher tunneling currents. The high tunneling
current magnitudes for 1D carbon structures suggest the distinct feasibility of high-performance
tunneling-based field-effect transistors. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2983744�

Carbon-based one-dimensional �1D� materials such as
nanotubes and graphene nanoribbons �GNRs� are currently
under extensive investigation for the fundamental physics
they exhibit as well as for possible applications they might
have in the future.1,2 A large class of traditional semiconduc-
tor devices rely on the quantum mechanical tunneling of car-
riers through classically forbidden barriers. Among these, the
Esaki diode and the resonant tunneling diode are the prime
examples.3 The phenomena of tunneling have been studied
extensively for traditional parabolic-bandgap semiconductors
in three-dimensional �3D� bulk as well as for quasi-two-
dimensional �2D� and quasi-1D heterostructures. Semicon-
ducting carbon nanotubes �CNTs� and GNRs do not have
parabolic bandstructures, and the carrier transport in them
approaches the ideal 1D case. In that light, it is timely to
examine the phenomena of tunneling in these materials.

Tunneling currents in semiconducting CNT p−n junc-
tions have been measured and analyzed recently �see Refs.
4–6�. For tunneling probabilities, an energy-dependent car-
rier effective mass has been used7 to take advantage of pre-
viously existing results of parabolic bandstructure semicon-
ductors. In this work, we evaluate the Zener tunneling
probabilities of CNT and GNR based p−n diodes starting
from their intrinsic bandstructures, which removes the need
to define an effective mass. In addition to interband tunneling
probabilities, a number of fundamental associated parameters
characterizing the tunneling process are found.

The bandstructure of the nth subband of a semiconduct-
ing CNT or GNR is given by8

E = s�vF
�kx

2 + kn
2, �1�

where 2�� is Planck’s constant and vF�108 cm /s is the
Fermi velocity characterizing the bandstructure of graphene.
s= +1 denotes the conduction band and s=−1 denotes the
valence band. The electron momentum along the CNT or
GNR axis is �kx.

For GNRs, the transverse momentum is quantized
by the ribbon width,9 kn=n� /3W, where n
= �1, �2, �4, �5, �7, �8, . . . for a GNR of dimensions
�x ,y�= �L ,W�, where W�L. The corresponding bandgap is

Eg=2�vFk1=2��vF /3W�1.3 /W eV �where W is in na-
nometers�. For comparison, a semiconducting CNT of diam-
eter D has the same bandstructure with k1=2 /3D and a band-
gap of Eg=4�vF /3D�0.8 /D eV, where D is in nanometers.
If W=�D /2, the properties �bandgap and bandstructure� of
semiconducting CNTs and GNRs are similar. The results de-
rived below are applicable to GNRs and CNTs on equal foot-
ing. It is assumed that the length of the GNR �CNT� is much
larger than the width �diameter� such that the longitudinal
momentum of carriers in the ribbon is quasicontinuous.

We now evaluate the interband tunneling probability in a
n+− p+ GNR or CNT diode of bandgap Eg. We consider that
the doping of the n- and p-sides is such that the equilibrium
Fermi level is at the conduction band edge �Ec� in the n-side
and at the valence band edge �Ev� on the p-side. Such doping
could be either chemical or electrostatic.1 Under this situa-
tion, a forward bias would not lead to current flow �this is
similar to the “backward diode”10�. When a reverse-bias eV
is applied, the band diagram looks as shown in Fig. 1. Let the
electric field in the junction region be F. We assume that the
depletion region thickness and the net electric field do not
change appreciably from the equilibrium values �true under
small bias voltages�. Then, the potential energy barrier seen

a�Electronic mail: djena@nd.edu.
FIG. 1. �Color online� Interband tunneling in a reverse-biased GNR/CNT
p−n junction and the potential barrier seen by tunneling electrons.
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by electrons in the valence band of the p+ side is

V0�x� = eFx �2�

in the range 0�x�d such that d=Eg /eF. This is indicated
in Fig. 2. E0 is the Dirac point of the underlying graphene
bandstructure for both GNRs and CNTs and serves as a con-
venient reference of energy in the problem.

Since the energy of carriers near the band edge �kx�0�
is conserved during the tunneling of electrons from the va-
lence to the conduction band, the condition

−���vFkx�2 + �Eg

2
	2

+ Eg − eFx

= +���vFkx�2 + �Eg

2
	2

�3�

holds for the wavevector kx at all x. Within the tunneling
barrier, the wavevector is imaginary. Denoting this by
kx= i�x, where �x is real, we obtain

�x�x� = k0�1 − �1 −
x

d
	2

, �4�

where k0=Eg /2�vF is a characteristic wavevector for tunnel-
ing. Since 
0

d�1− �1− x
d

�2=�d /4, the Wentzel-Kramer-
Brillouin �WKB� band-to-band tunneling �BTBT� probability
for the p+−n+ junction given by T�exp�−2�
0

+d�x�x�dx��
leads to

TWKB�kx � 0� � exp�−
�

4
·

Eg
2

�vFeF , �5�

which can be expressed as TWKB�exp�−F0 /F�, where
F0=�Eg

2 /4e�vF denotes the characteristic electric field at the
junction for the onset of strong tunneling. The corresponding
characteristic barrier thickness for the onset of strong tunnel-
ing is d0�Eg /eF0=4�vF /�Eg.

Using the value of the Fermi velocity, the characteristic
field evaluates to F0�12.6� �Eg�2 MV /cm and the charac-
teristic tunneling distance evaluates to d0�0.8 /Eg nm,
where Eg is the bandgap of the GNR or CNT expressed in
electron volt in both these expressions. As an example, for a
GNR with W=5 nm, Eg�0.275 eV, the characteristic tun-
neling field is �0.9 MV /cm and the characteristic tunneling
barrier thickness is �11 nm.

The tunneling probabilities evaluated above are for
the first subband �n=1�. For the nth conduction and valence
subbands of CNTs and GNRs, the effective subbandgap
scales as �nEg. The tunneling probabilities of carriers near
the respective subband edges are then given by TWKB,n
�exp�−��vFkn

2 /F�, which decay as exp�−n2�, indicating a
rather strong damping of the tunneling probabilities of higher
subbands. This result turns out to be identical to one for the
nth transverse mode of a zero-gap 2D graphene p−n junc-
tion, as first evaluated by Cheianov and Fal’ko �see Ref. 11�.
Except for the narrowest bandgap CNTs and GNRs, the tun-
neling is primarily from the first valence subband in the
p-side to the first conduction subband on the n-side.

Note that the above derivation uses a triangular barrier
approximation. It has been shown by Kane12 that a parabolic
barrier more accurately represents the physics of the tunnel-
ing process and leads to an exponential factor with a differ-
ent coefficient than from the triangular barrier approxima-
tion. The difference is small. For the rest of this work, we
will use the result derived above.

The tunneling current may now be written in the form
IT=e�gsgv /L��kx

�fv− fc�TWKB�vg�kx�, where gs=2 is the
spin degeneracy, gv is the valley degeneracy �=2 for
CNTs and =1 for GNRs �Ref. 1��, L is the length of the
CNT or GNR, fv , fc are the occupation functions of
the valence band states in the p-type side and the conduc-
tion band in the n-side, respectively, and vg�kx� is the
group velocity. The summation over the kx states
�kx

�. . .�vg�kx� can be converted into an integral over energy
by using

�kx
�. . .�vg�kx� → L/�2��� dkx�. . .�vg�kx�

→ L/�2��� dE�. . .�vg�kx���kx/�E� .

Since vg�kx�=�−1�E /�kx for any bandgap of the CNT or
GNR, the tunneling current is then given by the equivalent
integral

IT =
2gve

h
�

0

eV

�fv�E� − fc�E��TWKBdE , �6�

where fv�E�=1 / �1+exp��E−eV� /kBT�� and fc�E�=1 / �1
+exp�E /kBT��. Here, kB is the Boltzmann constant. For the
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FIG. 2. Tunneling currents in GNR p−n junctions: �a� W=5 nm device, voltage dependence at various temperatures. Tunneling currents per unit width for
different GNR widths at �b� various temperatures at F=1 MV /cm and �c� for various F at 300 K. To maximize the tunneling current density, an optimum
�F ,W� combination exists as illustrated by the dashed lines.
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band diagram shown in Fig. 2, the net tunneling current
evaluates to

IT =
2gve2

h
TWKB � VT ln�1

2
�1 + cosh

V

VT
	 , �7�

where VT=kBT /e. This expression captures the temperature
and bias voltage dependence of the tunneling current. If
the applied bias is much greater than the thermal energy
�V�VT�, the current reduces to a form similar to the Land-
auer expression IT��2gve2 /h�TWKB�V−VT ln 4�. Thus, the
tunneling current has a negative temperature coefficient at
high bias conditions. The dependence of tunneling currents
in GNRs on voltage and temperature is illustrated in Fig.
2�a�.13

The tunneling current per unit width of GNRs is
maximized for W0=�2�3�vF /9eF. For example, for
F�1 MV /cm, the GNR width for maximum current drive
is W0�6.5 nm and the current density at that width is
�450 	A /	m, comparable to traditional field-effect tran-
sistors �FETs�. For thinner ribbons at higher fields, the cur-
rent densities can approach 1000 	A /	m, which is a typical
benchmark for Si metal-oxide semiconductor FETs. The de-
pendence of the current densities on temperature, electric
field, and GNR widths is shown in Figs. 2�b� and 2�c�.

The BTBT probability in traditional parabolic band-
structure semiconductors in the triangular barrier
approximation depends on the bandgap as3 Tparabolic�exp
�−4�2m�Eg

3/2 /3e�F�, where m� is a reduced carrier effective
mass. The probability for GNRs and CNTs retains the same
dependence on electric field. The effective mass does not
appear in the tunneling probability of the GNR or CNT di-
odes since their bandstructure is not parabolic at any energy.
If one compares the Zener tunneling probabilities in diodes
made of CNTs or GNRs with other direct-bandgap semicon-
ductors of the same bandgap, then the ratio

Tcarbon

Tparabolic
� exp�−

Eg
3/2

e�F���Eg

4vF
−

4�2m�

3
	 �8�

indicates that the GNR or CNT p−n diode will have a higher
interband tunneling probability if the relation Eg
� �16vF /3��2�2m� is satisfied. From the k ·p theory for
traditional direct-bandgap semiconductors, the electron ef-
fective mass �in the conduction band� is related to the band-
gap by the approximation14 mc

���Eg /20�m0, where the band-
gap is in electron volts and m0 is the free electron mass. This
leads to the requirement

m0vF
2 
 �3�

16
	2

� 10 eV, �9�

which is satisfied since the left-hand side is m0vF
2 �5.7 eV

and the right-hand side is 3.5 eV. By this comparison, the
CNT or GNR p−n diode will have a higher reverse-bias
Zener tunneling probability than a traditional semiconductor
of the same bandgap. However, the effective mass used for
BTBT probability in traditional semiconductors is typically a
reduced effective mass, which for narrow-gap semiconduc-
tors is equal to mr

��mc
� /2. In that case, the WKB probability

of the GNR is slightly smaller. The above analysis shows
that the WKB tunneling probabilities of GNRs and tradi-
tional narrow-gap semiconductors are similar in magnitude
when they are bandgap matched.

However, two facts tilt the tunneling currents decisively
in favor of CNTs and GNRs. First, for bulk 3D p−n junc-
tions, the transverse kinetic energy of carriers can be large
and leads to a further exponential decrease in carrier tunnel-
ing probability,3 which is avoided in 1D structures. Second,
if normal parabolic-bandgap semiconductors are shrunk to
length scales comparable to those of CNTs and GNRs, their
bandgaps and effective masses increase further due to quan-
tum confinement.

Although Zener tunneling currents are detrimental in tra-
ditional devices such as rectifiers, field-effect, and bipolar
transistors, it is important to note that the fundamental
switching action in these devices is controlled by thermionic
emission over barriers, which requires a minimum of
�kBT /e�ln�10��60 mV per decade change in current at 300
K �the “classical” limit�. However, a crop of tunneling FETs
has been recently proposed and demonstrated,4,15,16 which
rely on the very mechanism studied in this work. These de-
vices are capable of reaching far below the classical limit for
switching by exploiting quantum mechanical tunneling. It is
for such devices that high interband tunneling current drives
in carbon-based 1D nanostructures hold a distinct advantage
and much promise in the future.
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