First Demonstration of Two-Dimensional WS$_2$ Transistors
Exhibiting 10^5 Room Temperature Modulation and Ambipolar Behavior

Wan Sik Hwang1, Maja Remskar2, Rusen Yan1, Vladimir Protasenko1, Kristof Tahy1, Soo Doo Chae1
Huili (Grace) Xing1, Alan Seabaugh1, and Debdeep Jena1

1Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
2Solid State Physics Department, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

Spurred by the knowledge of isolation of graphene, other 2D transition-metal dichalcogenide materials in the form of MX$_2$ (where M=transition metal such as Mo, W, Ti, Nb, etc. and X=S, Se, or Te) have drawn considerable attention. The MX$_2$ family material consists of one or more sets of triple layers with one M and two X in a sandwich structure (X-M-X). Atoms within each layer are strongly held together by covalent-ion mixed bonds, while interlayer van der Waals forces are weak. Prior investigations of 2D materials have concentrated on optical properties [1]. Field-effect transistors (FETs) in MoS$_2$ and WSe$_2$ have been demonstrated with substantial gate modulation and stable current saturation [2, 3]. A recent calculation shows that the single layer WS$_2$ has the potential to outperform Si and other 2D crystals in FET-type applications due to its favorable bandstructure [4]. No prior device results have been reported for WS$_2$ for logic or optical devices. Here we report the first fabrication and demonstration of 2D WS$_2$ FETs and explore the effects of photosimulation on the transistor characteristics.

A schematic cross section image of the back-gated WS$_2$ device is shown in Fig. 1(a). The source and drain contacts are defined by electron beam lithography (EBL) using Ti/Au (5/100 nm) contacts. The optical image of the WS$_2$ device with $L/W=2.5/5$ μm is shown in Fig. 1(b). The Raman spectra ($\lambda=488$ nm) of the WS$_2$ region shown in Fig. 1(c) shows two peaks: one in the E_{2g}^1 range at \sim356 cm$^{-1}$ and the other in the A_{1g}^1 range at \sim421 cm$^{-1}$. The 2D Raman signal is fit to two single Lorentzian models, revealing that the chemical vapor deposited (CVD) 2D WS$_2$ retains the single crystal properties of WS$_2$ with unnoticeable structural modifications. The energy band line-ups of Fig. 1(d) indicate that the Fermi level of the contact metal is aligned in the band gap of WS$_2$. Figure 2(a) shows drain current versus gate-source bias, I_D vs. V_{GS}, at room temperature for a multilayer WS$_2$ FETs at two drain biases. The gate modulation is $\sim10^5$ for $V_D=1$ V, and $\sim10^4$ for $V_D=5$ V. The device shows clear ambipolar behavior indicating accumulation of electrons (n-type conductivity) for positive V_{GS} and of holes (p-type conductivity) for negative V_{GS} regions. Thus, electrons or holes are preferentially injected depending on the gate bias as illustrated in Fig. 2(b) and 2(c), as a consequence of the Schottky contacts. This is seen clearly in the family of $I_D - V_{DS}$ curves in Fig. 2(d). The photosponse of the WS$_2$ Schottky barrier FETs was measured by illuminating the device with a halogen lamp; the result is shown in Fig. 3(a). The image of Fig. 3(b) shows a schematic representation of electron-hole pair generation upon photon absorption, and the increase of drain current due to conduction by these excess carriers. We observe that the saturation drain voltage increases under illumination which can be attributed to the photogeneration of carriers which require greater drain voltage to achieve pinch-off in the channel near the drain. Figure 3(c) shows multiple cycles of the transient photocurrent response under monochromatic illumination at two wavelengths, corresponding to photon energies of 2.1 eV (580 nm) and 1.9 eV (650 nm), both of which are above the expected bandgap of monolayer WS$_2$ (\sim1.8 eV).

In summary, two-dimensional (2D) WS$_2$ transistors were fabricated and characterized for the first time from chemically-synthesized material. Raman measurements confirm the 2D crystal nature of the material, and the presence of a bandgap leads to high on/off current ratios and current saturation in the transistors at room temperature. In addition, the observed photoresponse of the 2D layered semiconductor can enable optical device applications.

This work was supported by the Semiconductor Research Corporation (SRC), Nanoelectronics Research Initiative (NRI) and the National Institute of Standards and Technology (NIST) through the Midwest Institute for Nanoelectronics Discovery (MIND), and by the Office of Naval Research (ONR) and the National Science Foundation (NSF). We thank J. Jelenc for technical help in crystal growth, Slovenian Research Agency of the Republic of Slovenia for financial support, contract no. J1-2352, and the Centre of Excellence NAMASTE.

FIG. 1. (a) Schematic cross-section, (b) optical image of the WS$_2$ transistor with Ti/Au contacts. (c) Raman spectra ($\lambda = 488$ nm) of the multilayered WS$_2$. The inset shows the two primary vibrational modes of WS$_2$ leading to the two peaks in the Raman spectrum. (d) Work function, electron affinities, and bandgaps of each element indicating the formation of a Schottky barrier contact between metal and WS$_2$.

FIG. 2. (a) Drain current I_D vs. gate-to-source voltage V_{GS} showing $\sim 10^5 \times$ on/off current ratio and ambipolar behavior. Schematic image of (b) accumulation of holes (p-type conductivity) at negative V_{GS} and (c) accumulation of electrons (n-type conductivity) at positive V_{GS}. (d) Common-source transistor characteristics, I_D vs. V_{DS} indicating the presence of Schottky barrier limited-current injection and current saturation.

FIG. 3. (a) Dependence of WS$_2$ common-source characteristics on illumination. (b) Schematic representation of electron-hole pair generation by photon absorption, (c) The temporal photocurrent response of 2D WS$_2$ device at $V_{DS} = 5$ V and $V_{GS} = 0$ V at two wavelengths.