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There is considerable excitement recently in the field of transparent conducting-oxide-semiconductors due 

to the successful realization of large-area single crystals of the wide-bandgap semiconductor -Ga2O3 by bulk 
growth methods [1].  The availability of bulk -Ga2O3 crystals led to the rapid demonstration of high-voltage metal-
semiconductor field-effect transistors (MESFETs) by controlled Sn-doped epilayers grown by molecular beam 
epitaxy (MBE) [2].  -Ga2O3 has an energy bandgap of ~4.9 eV, significantly larger than both GaN and SiC. 
Coupled with the availability of low-cost bulk crystals, this material is highly attractive for high-voltage switching 
applications.  Here we show preliminary results that show that similar to layered crystals [3] and rather surprisingly, 
one can peel-off nanoscale layers of -Ga2O3 from a nominally undoped bulk single-crystal.  Conducting channels 
can then be created electrostatically in these nanomembranes with a back-gate, and the resulting transistors are able 
to sustain very high voltages and still switch by several orders of magnitude.   

The process-flow for the fabrication of -Ga2O3 nanomembrane field-effect transistors is shown in Fig. 1.  
The crystal -Ga2O3 was grown by Czochralski method at IKZ Berlin [1].  Nanomembranes ~50 to 100 nm thick 
were mechanically exfoliated and transferred to a back-gated substrate.  The source and drain contacts were defined 
by electron beam lithography (EBL) using Ti/Au (5/150 nm) contacts.  The final device went through an annealing 
process in Ar/H2 at 300 oC for 3 hours to reduce the contact resistance.  Optical transmission spectra of the flake are 
shown in Fig. 2 and it clearly shows an optical bandgap of 4.8 eV.  Figure 3(a) shows the drain current versus gate-
source bias, ID vs. VGS, at room temperature at three drain biases.  The gate modulation is ~107x and the device 
shows n-type semiconducting behavior.  Electron-beam evaporated Ti/Au contacts do not result in ohmic contacts, 
but rather show leaky Schottky barrier characteristics.  Nevertheless, from the transfer characteristics, we extract an 
“extrinsic” field-effect mobility of ~ 10 cm2/Vs as shown in Fig. 3(b).  This value represents a lower limit; it should 
be possible to obtain ~300 cm2/V.s with de-embedding for this device or better still by lowering the contact 
resistance [2].  The subthreshold swing (SS) of the device in Fig. 3(c) can approach ~150 mV/dec, not significantly 
different from two-dimensional transition-metal dichalcogenide semiconductor FETs.  The family of ID-VDS curves 
at various VBG in Fig. 3(d) shows a typical transistor performance including resistive behavior at low VDS and current 
saturation at high VDS.  Figure 4(a) shows a comparison of electrical breakdown voltage of various thin-film channel 
materials ( -Ga2O3, MoS2, and MoTe2) of similar geometries and back-gates.  A MoTe2 FET shows the lowest 
breakdown voltage around 0.05 MV/cm due to the lowest bandgap (~0.6 eV).  For the MoS2 FET, avalanche 
breakdown field occurs around 0.1 MV/cm.  -Ga2O3 FETs shows a decent gate modulation even under a high drain 
voltage of 40 V.  These properties of -Ga2O3 FET are attractive for high-power and high-voltage device 
applications.  The cross-section TEM image in Fig. 5 shows the crystalline nature of -Ga2O3 and the contact metals 
and the back gate SiO2 dielectric.  The low subthreshold value observed may be related to the qualitatively sharp 
interface observed between -Ga2O3 and SiO2 but more studies are needed to quantify this observation.     

In summary, nanomembrane high-voltage FETs with -Ga2O3 channels were fabricated and characterized 
for the first time.  The large bandgap leads to a high on/off ratio.  A flat interface between -Ga2O3 and SiO2 leads to 
a steep slope of ~ 150 mV/dec.  The high breakdown field of -Ga2O3 allow significantly higher voltages to be 
applied to the drain, while still switching by orders of magnitude.  Since -Ga2O3 has been found to have a rather 
poor thermal conductivity, nanoscale membranes might offer opportunities for efficient heat removal.  Nanoscale 
membranes can also be self-depleted even when doped lightly, and thus form semi-insulating layers, which may 
make it possible to make FETs without controlled epitaxy.  A primary challenge is the formation of ohmic contacts. 
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