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There is considerable excitement recently in the field of transparent conducting-oxide-semiconductors due
to the successful realization of large-area single crystals of the wide-bandgap semiconductor f-Ga,O; by bulk
growth methods [1]. The availability of bulk 5-Ga,O; crystals led to the rapid demonstration of high-voltage metal-
semiconductor field-effect transistors (MESFETs) by controlled Sn-doped epilayers grown by molecular beam
epitaxy (MBE) [2]. fS-Ga,O; has an energy bandgap of ~4.9 eV, significantly larger than both GaN and SiC.
Coupled with the availability of low-cost bulk crystals, this material is highly attractive for high-voltage switching
applications. Here we show preliminary results that show that similar to layered crystals [3] and rather surprisingly,
one can peel-off nanoscale layers of $-Ga,0; from a nominally undoped bulk single-crystal. Conducting channels
can then be created electrostatically in these nanomembranes with a back-gate, and the resulting transistors are able
to sustain very high voltages and still switch by several orders of magnitude.

The process-flow for the fabrication of f-Ga,0O; nanomembrane field-effect transistors is shown in Fig. 1.
The crystal f-Ga,0; was grown by Czochralski method at IKZ Berlin [1]. Nanomembranes ~50 to 100 nm thick
were mechanically exfoliated and transferred to a back-gated substrate. The source and drain contacts were defined
by electron beam lithography (EBL) using Ti/Au (5/150 nm) contacts. The final device went through an annealing
process in Ar/H, at 300 °C for 3 hours to reduce the contact resistance. Optical transmission spectra of the flake are
shown in Fig. 2 and it clearly shows an optical bandgap of 4.8 eV. Figure 3(a) shows the drain current versus gate-
source bias, Ipvs. Vs, at room temperature at three drain biases. The gate modulation is ~10x and the device
shows n-type semiconducting behavior. Electron-beam evaporated Ti/Au contacts do not result in ohmic contacts,
but rather show leaky Schottky barrier characteristics. Nevertheless, from the transfer characteristics, we extract an
“extrinsic” field-effect mobility of ~ 10 cm?/Vs as shown in Fig. 3(b). This value represents a lower limit; it should
be possible to obtain ~300 cm?/V.s with de-embedding for this device or better still by lowering the contact
resistance [2]. The subthreshold swing (SS) of the device in Fig. 3(c) can approach ~150 mV/dec, not significantly
different from two-dimensional transition-metal dichalcogenide semiconductor FETs. The family of Ip-Vps curves
at various V¢ in Fig. 3(d) shows a typical transistor performance including resistive behavior at low Vpg and current
saturation at high Vps. Figure 4(a) shows a comparison of electrical breakdown voltage of various thin-film channel
materials ($-Ga,O3, MoS,, and MoTe,) of similar geometries and back-gates. A MoTe, FET shows the lowest
breakdown voltage around 0.05 MV/cm due to the lowest bandgap (~0.6 eV). For the MoS, FET, avalanche
breakdown field occurs around 0.1 MV/cm. f-Ga,0; FETs shows a decent gate modulation even under a high drain
voltage of 40 V. These properties of f-Ga,0O; FET are attractive for high-power and high-voltage device
applications. The cross-section TEM image in Fig. 5 shows the crystalline nature of 5-Ga,O; and the contact metals
and the back gate SiO, dielectric. The low subthreshold value observed may be related to the qualitatively sharp
interface observed between $-Ga,05 and SiO, but more studies are needed to quantify this observation.

In summary, nanomembrane high-voltage FETs with $-Ga,0; channels were fabricated and characterized
for the first time. The large bandgap leads to a high on/off ratio. A flat interface between £-Ga,0; and SiO, leads to
a steep slope of ~ 150 mV/dec. The high breakdown field of f-Ga,0O; allow significantly higher voltages to be
applied to the drain, while still switching by orders of magnitude. Since $-Ga,O; has been found to have a rather
poor thermal conductivity, nanoscale membranes might offer opportunities for efficient heat removal. Nanoscale
membranes can also be self-depleted even when doped lightly, and thus form semi-insulating layers, which may
make it possible to make FETs without controlled epitaxy. A primary challenge is the formation of ohmic contacts.
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FIG. 1. Schematic process flow for nanomembrane f-Ga,O; field-effect FIG. 2. Optical transmission spectra of

transistors. The nanomemgrane thicknesses are in the range of 50 to 100 nm. Ga,0; flake indicating bandgap of 4.8
eV.
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FIG. 3. Transport properties of f-Ga,0; field-effect transistor with W/L = 2/2 pm. (a) Drain current, /, vs. back gate-to-
source voltage, V5, showing ~10” on/off current ratio and n-type semiconductor behavior. (b) Field-effect mobility and (c)
subthreshold swing vs. Vps. (d) Common-source transistor characteristics, /p vs. Vpg, showing current saturation.
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FIG. 4. (a) Comparison of breakdown voltage of various FIG. 5. Cross-sectional TEM image of f-Ga,O; FET,
multilayered channel materials (Ga,03;, MoS,, and MoTe,). (b) showing a flat interface between Ga,0O; and the SiO,
Transfer characteristic of the f-Ga,O; FET at high drain dielectric, as well as between the Ga,O; and the Ti/Au
voltage. Insert show a family of I, vs. Vps showing robust electrode.

device characteristic even at high Vpg.
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