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SymFET: A Proposed Symmetric Graphene
Tunneling Field-Effect Transistor

Pei Zhao, Student Member, IEEE, Randall M. Feenstra, Gong Gu, and Debdeep Jena

Abstract—In this paper, an analytical model for calculating
the channel potential and current–voltage characteristics in a
symmetric tunneling field-effect transistor (SymFET) is presented.
The current in a SymFET flows by tunneling from an n-type
graphene layer to a p-type graphene layer. A large current peak
occurs when the Dirac points are aligned at a particular drain-to-
source bias VDS. Our model shows that the current of the SymFET
is very weakly dependent on temperature. The resonant current
peak is controlled by chemical doping and applied gate bias. The
on/off ratio increases with graphene coherence length and doping.
The symmetric resonant peak is a good candidate for high-speed
analog applications and can enable digital logic similar to the
BiSFET. Our analytical model also offers the benefit of permitting
simple analysis of features such as the full-width at half-maximum
(FWHM) of the resonant peak and higher order harmonics of the
nonlinear current. The SymFET takes advantage of the perfect
symmetry of the band structure of 2-D graphene, a feature that is
not present in conventional semiconductors.

Index Terms—Graphene, resonant tunneling devices, tunneling,
vertical FETs.

I. INTRODUCTION

GRAPHENE is an atomically thin 2-D crystal [1]. Due to
the high mobility of carriers in it, their linear dispersion,

and perfect 2-D confinement, graphene is being considered
as a channel material for future electronic devices. However,
some challenges such as opening a finite bandgap for digital
applications still remain.

A distinguishing feature of graphene is its symmetric elec-
tronic band structure. The valence band is a perfect mirror im-
age of the conduction band about the Dirac point. Such symme-
try carries over to gapped 2-D crystals such as hexagonal boron
nitride (h-BN) and less so to transition metal dichalcogenides
[such as molybdenum disulfide (MoS2)] [2]. This unique band
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structure symmetry has not been sufficiently exploited for active
device applications to date.

Most studies of graphene-based devices have focused on car-
rier transport in the 2-D plane of the crystal. Recently, however,
carrier transport out of the plane, i.e., vertical to the graphene
sheet, has received increased attention. These studies of out-
of-plane charge transport in 2-D crystals have been motivated
by the proposal of the bilayer pseudospin field-effect transistor
(FET) (BiSFET) in 2009 [3]. The BiSFET exploits the fact that
two graphene layers can be placed in close proximity and, if
populated by electrons and holes, the strong Coulomb attraction
between them can lead to exciton formation. Excitons are
bosonic quasi-particles and can undergo condensation below
a certain critical temperature. Since the Fermi degeneracy in
graphene is tunable over a large energy window, the critical
temperature for the excitonic condensate has been calculated
to be higher than room temperature. The formation of the
excitonic condensate is expected to lead to a macroscopic
tunneling current between the layers. Similar behavior has been
observed at low temperatures and at high magnetic fields in
coupled AlGaAs/GaAs electron–hole bilayers [4], [5]. Thus,
the BiSFET has the potential to realize many-body excitonic
tunneling phenomena at room temperature. The power dis-
sipation in computing using the functionality of BiSFET is
predicted to be many orders lower than conventional CMOS
switching.

Stacking of different 2-D crystals leads to a novel class
of heterostructures [6]. For example, stacking graphene with
BN results in a smooth surface, since BN shares the same
hexagonal lattice structure with graphene. The absence of out-
of-plane covalent bonds implies that strain effects in similar
lattice-mismatched heterostructures based on sp3-bonded 3-D
crystals are much reduced or, perhaps, even eliminated. At low
carrier concentration n ∼ 1011 cm−2, the device exhibits mo-
bilities on the order of 100 000 cm2/V · s at room temperature,
which are much higher than those for graphene on SiO2 or
SiC [7]. Electron transport out of the plane of graphene has
also started receiving attention in experiments. For example, a
graphene/BN/graphene sandwich heterostructure was recently
reported [8], and interlayer electron transport was measured.
This stacked graphene/BN/graphene heterostructure showed a
room-temperature switching ratio of 50 and 10 000 for a similar
graphene/MoS2/graphene structure [8]. Another recent report
[9] showed that electrons can be moved from 2-D graphene into
and out of silicon to form a variable-barrier-height device (the
barristor).

As charge transport out of the plane of graphene receives
increasing attention, a pertinent question emerges upon careful
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Fig. 1. (a) Sketch of the SymFET and the energy-band diagrams for a doped GIG junction at voltages of (b) qVDS < 2∆E, (c) qVDS > 2∆E, and
(d) qVDS = 2∆E. A qualitative I–VDS characteristic is shown in (e). The inset in (a) shows the symbol defined for the SymFET.

analysis of the proposed BiSFET device. What is the ex-
pected behavior of a similar device structure consisting of a
graphene–insulator–graphene (GIG) p-n junction heterostruc-
ture in the absence of the many-body excitonic condensate?
Similar devices already exist in III–V resonant tunneling
diodes, where single-particle tunneling itself leads to a number
of interesting and useful quantum phenomena that persist at
room temperature. Negative differential resistance is one such
effect. Single-particle tunneling current transport has found
enhanced attention recently in homo- and heterojunction tun-
neling FETs (TFETs). It has been measured across various
semiconductor heterostructures at room temperature, highlight-
ing its robustness [10].

One major novel feature of graphene is the perfect symmetry
of the band structure, which can lead to enhanced functional-
ity. Motivated by the above question, we recently calculated
the single-particle interlayer tunneling current–voltage (I–V )
curves explicitly for finite-area two-terminal GIG heterostruc-
tures [11]. The general finding was that, at most interlayer bias
voltages, energy and momentum conservations force a small
tunneling current to flow at one particular energy halfway be-
tween the two Dirac points. However, at a particular interlayer
voltage when the Dirac points of the p- and n-type graphene
layers align, a very large interlayer tunneling current flows. This
is because energy and momentum are conserved in this process
for all electron energies between the quasi-Fermi levels of the
n- and p-type graphene layers. The I–V curve is dominated
by a Dirac–delta function-like peak at the critical interlayer
voltage and smaller currents at all other voltages. Our explicit
calculation of the tunneling current also showed that the effect
is highly robust to temperature but less robust to rotational
misalignment of the two graphene layers. This surprising yet
conceptually simple behavior of the two-terminal GIG device
leads naturally to the following question: How will a transistor
geometry with the single-particle GIG tunneling junction as its
channel behave?

In this paper, we extend the detailed physical model of the
two-terminal GIG device described in [11] to a Symmetric

graphene tunneling FET, which we call the “SymFET” since
its unique characteristics derive from the symmetry of the
band structure. We derive analytical expressions for the channel
potential and I–V characteristics of the SymFET. Possible logic
and high-frequency applications are also discussed.

II. DEVICE MODEL

We assume a symmetric device structure as shown in
Fig. 1(a). Two graphene layers are separated by an insulator,
and this GIG structure is sandwiched between a top and a
bottom gate. Ohmic contacts are formed to the two graphene
layers, individually representing the source (S) and the drain
(D). The top- and bottom-gate voltages VTG and VBG control
the quasi-Fermi levels µn and µp in the top and bottom layers
of graphene, respectively. The gate insulator thicknesses of both
gates are assumed to be the same. The quasi-Fermi level is ∆E
above the Dirac point in the n-type graphene layer and below
the Dirac point in the p-type graphene layer. This is indicated
in Fig. 1(b)–(d). The top and back gates are symmetric VTG =
−VBG, and the drain–source voltage is VDS = VD − VS . The
inset in Fig. 1(a) shows the proposed device symbol for the
SymFET.

As shown in Fig. 1(b) and 1(c), under S/D biases when the
two Dirac points are misaligned, only a single energy (and lat-
eral k-momentum ring) in the Dirac cone meets the requirement
of simultaneous energy and momentum conservation, and thus,
the tunneling current is small. At VDS = 2∆E/q, however, the
two Dirac points align, and electrons at all energies between the
quasi-Fermi levels satisfy energy and momentum conservation.
A large tunneling current is thus expected; a resonant current
peak originating from the perfectly symmetric band structure
of the graphene layers should result. Since graphene is not a
metal, a part of the applied voltage will drop in the graphene
layer itself. This effect of the finite density of states (DOS)
is captured in the quantum capacitance of graphene and is
included in the model. This is critical since the gate capacitance
Cg = εg/tg and the tunneling capacitance Ct = εt/tt are large
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and can reach the quantum capacitance limit easily [12]. For
simplicity of calculation, we use the T → 0 K limit for quantum
capacitance

Cq =
2
π

|∆E|
(!vF /q)2

(1)

where q is the single electron charge, vF is the Fermi velocity
in graphene, and ! is the reduced Planck constant. It can
be verified that this approximation is a good one at room
temperature.

The source and drain electrodes are assumed to be perfect
ohmic contacts for simplicity. In practice, the contact resistance
will also force a voltage drop and can be added on top of the
intrinsic model. The interlayer tunneling current calculated in
[11] depends on the interlayer voltage difference. Therefore, to
find the behavior of the four-terminal SymFET, the potentials
of the two graphene layers ϕch1 and ϕch2 need to be identified
as a function of the gate and drain/source biases (the channel
potentials of graphene and Fermi levels are referenced to the
aligned channel potentials at flatband). To do so, we invoke the
charge neutrality condition

(
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q
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)
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)
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where VTG = −VBG = VG, N = ∆E2
doping/π(!vF )2 is the

chemical doping concentration, and we assume that the work
functions of the metals are matched with the undoped graphene
sheets, which gives the flatband conditions at zero gate bias.
The factors 1/2 in the third terms of (2) and (3) are due
to the linear dependence on ∆E in the graphene quantum
capacitance, which is a differential capacitance.

Then, taking (2) minus (3) and using the relationships
qVDS = 2∆E + ϕch1 − ϕch2, qVDS = µn − µp, µn − ϕch1 =
∆E, and ϕch2 − µp = ∆E, we can form a quadratic equation
with the only unknown parameter ∆E
(

VDS − 2
∆E

q
+ 2VG

)
Cg + 2

(
VDS − 2

∆E

q

)
Ct

− 2q∆E2

π(!vF )2
+ 2qN = 0 (4)

and the solution is

∆E(VG, VDS)

= − (2Ct + Cg)π(!vF /q)2

2

+

{
(2Ct + Cg)2π2(!vF /q)4

4
+

π(!vF )2

2q

× [(VDS + 2VG)Cg + 2CtVDS + 2qN ]

} 1
2

. (5)

The electrostatic model used here is based on a 1-D approxi-
mation, ignoring the intra-graphene-layer potential distribution
and current flows. A more rigorous treatment requires the
solution of the 2-D Poisson equation, which is suggested for
future work.

The analytical expression for the interlayer tunneling current
at zero temperature was derived in [11]. When the Dirac points
in the two graphene layers are misaligned, the nonresonant
tunneling current is

I = G1

(
2∆E

q
− VDS

)
, (0 < qVDS < 2∆E) (6)

I = G1

(
VDS − 2∆E

q

)
, (qVDS > 2∆E or qVDS < 0)

(7)

where the prefactor conductance G1 = (q2A/2!)(!κu2
12e

−κtt/
mdvF )2, κ is a decay constant for the tunneling current in
the barrier, m is the free electron mass, d is the normalization
constant for the z-component wavefunction in graphene, u12

is a constant of order unity, and A = L2, with L being the
coherence length of graphene (size of ordered areas in graphene
film). In this paper, we assume that the graphene size is A with
coherence in all areas.

The resonant current is a perfect Dirac–delta function at
qVDS = 2∆E for infinitely wide graphene sheets. For finite
widths of length L, it is broadened to [11]
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)2
]

(8)

where u11 is a constant of order unity similar to u12. The total
current is the combination of (6) or (7) and (8).

Equations (6)–(8) were derived assuming zero temperature.
At finite temperature, to capture the thermal occupation of
states, the current needs to be calculated by including the
Fermi–Dirac distributions in the integral over all states [11].
Equations (9) and (10) are the finite-temperature expressions
corresponding to (6) and (7) derived by a direct extension of
the theory in our previous work [11]
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where subscripts n and p refer to the n-type (top) and p-
type (bottom) electrodes, respectively, and the Fermi–Dirac
distribution for arguments δE and T are given by f(δE, T ) ≡
1/[1 + exp(δE/kBT )]. Following [11], for (9a), with 0 <
qVDS < 2∆E, we have En,k − µn = !vF k −∆E and Ep,k −
µp = −!vF k + ∆E, hence yielding (9b) and (9c). Those equa-
tions also hold for qVDS < 0, with the difference between
the Fermi–Dirac occupation factors changing sign. For (10a),
with qVDS > 2∆E, we have En,k − µn = −!vF k −∆E and
Ep,k − µp = !vF k + ∆E, yielding (10b) and (10c).

A finite-temperature correction to (8) is more complicated,
since that equation itself is a significant approximation [11].
Nevertheless, the dominant term in its temperature dependence
can be recognized as the increased number of states available
for tunneling, in the resonant situation of Fig. 1(d) with qVDS =
2∆E. For this resonant situation, the Dirac points of the two
electrodes are aligned at energy Ed. This number of states is
given simply by

Ns(T ) =

+∞∫

−∞

ρ(E − Ed) [f(E − Ed −∆E, T )

−f(E − Ed + ∆E, T )] dE (11)

where ρ(E) = 2|E|/[π(!vF )2] is the DOS per unit area of
graphene. Our correction to (8) is then made by multiplying it
by Ns(T )/Ns(0), with Ns(0) = 2∆E2/[π(!vF )2]. Expressing
the result in terms of Fermi–Dirac integrals of order 1, (1, we
have

Ns(T )
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=
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[
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−(1

(
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where (1(x) =
∫ +∞
0 t/[1 + exp(t − x)]dt.

Equations (9) and (10), as well as the product of (8) and (12),
are valid only in the limit of large L, although the L value
at which the approximations break down is different for the
two cases. In the former case, the dominant term in the slope
of I(VDS) at VDS = 0 is qVDS/4kBT , arising from the tanh
terms, and this slope becomes very large for small T values.
However, the exact solution for the current [11] yields a slope
that is limited by the L value. We find that simply multiplying
(9) and (10) by a factor of tanh(LqVDS/π!vF ) yields a slope
at that agrees very well with the exact solution, and it does not
significantly affect the I(VDS) curve elsewhere. For the product

of (8) and (12), the current from (8) is nonzero at VDS = 0, with
this discrepancy being significant only for sufficiently small L
values. In this case, we find that multiplying the product of
(8) and (12) by a factor of tanh(LqVDS/2π!vF ) solves this
problem of the nonzero current at VDS = 0 and produces a
slope at VDS = 0 that agrees fairly well with the exact solution.
Hence, our final formula for the total current is given by
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where sgn(VDS − 2∆E/q) equals 1 for VDS > 2∆E/q, 0 for
VDS = 2∆E/q, or −1 for VDS < 2∆E/q.

The single-particle tunneling model used in this work cap-
tures the relevant physics, e.g., wave function overlap (detailed
derivation in [11]), even in the case of strong interlayer interac-
tions at small insulator thicknesses. The only approximation we
made is that the electronic structure (band structure) of the GIG
system is the same as two noninteracting graphene sheets. We
have justified the approximation as follows: Any modification
to the band structure due to the interaction will be near the Dirac
energy. At sufficiently high doping ∆E, the error is negligible.

III. RESULTS AND DISCUSSIONS

We present the typical I–V characteristics of the SymFET at
room temperature first. The comparison of T = 300 K and T =
0 K will be discussed later. The values of the decay constant κ
can be calculated from the complex band structure inside the
bandgap of the insulator based on the effective mass approx-
imation [8]. Here, we use an estimated value κ = 17 nm−1,
following footnote 14 of [11]. The chemical doping level is
set to be ∆Edoping = 0.1 eV. A finite coherence length L =
100 nm is assumed; the effect of this parameter on the on/off
ratio for the device is discussed below. When the SymFET
scales down to 50 nm or less, momentum conservation does
not scale well with device size. The scaling limits of SymFET
will be a subject of future study; the quantum confinement and
quantized transverse momentum in graphene nanoribbon also
need to be considered near scaling limits, as discussed in [13].

The resultant ID–VDS characteristics with varying insulator
thickness are shown in Fig. 2. The tunneling insulator thick-
ness tt is similar as the tunneling barrier thickness in double
quantum-well heterostrucures [5]. As tt increases, the resonant
peak current decreases, as expected. The gate insulator can be
a high-k material similar to that employed in silicon CMOS
technology. In addition, 2-D materials such as BN might be a
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Fig. 2. ID versus VDS characteristics showing scaling with the (a) tunneling
and (b) gate insulator thicknesses (an arbitrary κ value is chosen here to give a
clear illustration of current density scaling).

Fig. 3. Contour plot of the complete bias space for (a) chemical doping
∆Edoping = 0.1 eV and (b) no chemical doping.

better choice to reduce the interface trap density since the dan-
gling bond can be reduced. The measured breakdown field is as
high as 7.94 MV/cm for BN [14]. Thinner tg offers better gate
control and higher gate-induced doping. When tg decreases,
∆E becomes larger at the same gate bias. The resonant peak
moves to a higher bias, and the peak current increases. For the
simulation results shown next, we fix the gate capacitance with
tg = 20 nm and dielectric contact εg = 9, tunneling insulator
thickness tt = 0.5 nm, and dielectric contact εt = 9. (BN might
have an even lower dielectric constant εBN = 3.5 [15]).

In Fig. 3, the entire bias phase space of the I–V characteris-
tics are shown. When the graphene sheets are chemically doped
(i.e., ∆Edoping = 0.1 eV), VDS drives the carriers tunneling
between the p- and n-types of graphene and the resonant
peak exists for VG = 0 V. With nonzero VG, gate electrostatic
doping further increases ∆E and the resonant peak shifts to a
higher VDS value. However, the current is quite small in the
nonresonant region.

If we define the peak current as the Ion and the current close
to VDS ∼ 0 as Ioff , from (6) and (8), the effective on/off ratio is

Ion

Ioff
=

0.8√
2π

L∆E

!vF
. (14)

The effective on/off ratio is independent of temperature
(ignoring the slight difference due to the Fermi tail) and in-
creases with the doping ∆E and the graphene size L. For
L = 100 nm, the ratio is ∼100 and ∼1000 for L = 1 µm. We
also point out that the on/off ratio is not necessarily a figure of
merit for the device (since the device might be employed for
analog applications where high modulation is not required). In

Fig. 4. (a) ID versus VDS curves with different VG’s. (b) ID versus VG at
different VDS’s.

a similar vein, the resonant peak is symmetric in voltage and
represents a rather strong negative differential resistance. The
peak-to-valley-current ratio (PVCR) of this NDR is identical to
the on/off ratio defined earlier.

In Fig. 3(b), we assume that ∆Edoping = 0 eV. At VG = 0 V,
∆E is nonzero since drain bias also induces doping, similar to
the case of the GIG junction in [11]. However, ∆E is small
and the resonant peak is small at low VG. When VG increases,
electrostatic doping induces an appreciable resonant current,
which further increases at higher VG.

The ID–VDS characteristics at fixed VG is shown in Fig. 4(a).
The resonant behavior shows clear ON and OFF states without
a saturation region. Because we assume a chemical doping
of graphene, the SymFET with a resonant current peak can
operate at VG = 0 V. As aforementioned, the gate will induce
electrostatic doping in the graphene layer. With larger VG,
∆E increases, the resonant condition qVDS = 2∆E occurs at
larger drain bias, and the resonant current peak moves to the
right. Higher VG induces more doping and, thus, large ON-state
current. In the two-terminal GIG device, the resonant current
peak is proportional to the coherence length L and the width is
proportional to 1/L [11]. In the gated SymFET, since the gate
bias electrostatically dopes the graphene, it offers the additional
flexibility to adjust the ON and OFF states. In Fig. 4(b), the
ID–VG curves are shown with a strong nonlinear and resonant
behavior but with wider peaks. When VG is small and outside
the resonant peak, the transconductance is small, but it is large
in the peak condition.

Different from the subthreshold region of MOSFETs, we
refer to the “OFF” state away from the resonant peak in the
SymFET as the nonresonant region. Although the graphene
sheets are doped, according to conservation laws, the current
near VG = 0 V is low [VDS = 0.7 V, as shown by the solid line
in Fig. 4(b)]. The gate voltage modulates the doping potential
∆E in SymFET. By (5), at fixed VDS, doping potential ∆E
is a sublinear function of VG. The current IDS(VG) at the
nonresonant region roughly follows the same hyperbolic form
as the first term of IDS(VDS) in (13):

I ∝ tanh

(
qVG

4kBT

)
tanh

(
LqVG

π!vF

)
. (15)

Hyperbolic functions may not offer a sharp subthreshold swing
(SS), but the SymFET is more attractive for analog applications,
where a steep SS is not necessary.
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Fig. 5. (a) Comparison of ID–VDS characteristics at T = 300 K and T =
0 K. (b) Sketch of the band diagram and Fermi–Dirac distribution at T = 300 K
and T = 0 K. The inset of (a) shows the current density near VDS = 0.

The resonant current peak follows a normal distribution
function I ∼ exp(−(qVDS −∆E)2/(2σ)2), with FWHM =
2.3548σ, where σ =

√
2π!vF /L for the resonant peak in Sym-

FET. In fact, ∆E is not a constant but, instead, dependent
on VDS and VG; thus, the FWHM shown here is only an
approximation. The reason for the narrower FWHM occurring
for VDS compared with VG in Fig. 4 is the large gate insulator
thickness (weaker gate control). A smaller FWHM of VG can
be achieved with a thinner gate insulator (not shown here).

Because tunneling is the main current transport mechanism,
the ID–VDS curve is quite insensitive to temperature, as shown
in Fig. 5. However, since the Fermi–Dirac distribution smears
out state occupancy at a finite temperature, slight differences
can still be observed between T = 300 K and T = 0 K. At low
VDS, the transport energy window (between the quasi-Fermi
levels µn and µp) is small [Fig. 5(b)]. Then, the Fermi distribu-
tion smearing reduces the carrier density at higher temperature
and the current decreases. The increase of the resonant peak
current at room temperature is because of the Fermi distribution
tail extending to higher energy with more states. When the
Dirac points are aligned, the states at all energies conserve a
lateral momentum upon tunneling and, thus, are allowed.

We note that the device current has symmetric resonances in
both the ID–VDS and ID–VG scans. This is quite unlike what
happens in a single-layer graphene FET where the “ambipolar”
nature manifests itself primarily in the gate bias sweep [16],
[17]. The nonlinear symmetric resonant ID–VDS behavior can
be used for the purpose of frequency multiplication (Fig. 6). If
a dc voltage bias at the current peak VDSp is superimposed with
an ac signal, the frequency of the output current will be doubled.
We can use (8) to calculate the output ac signal. Assuming that
VDS = VDSp + vdseiωt, the oscillatory part of the current is

I =
1.6√
2π

G1
L∆E2

(
2u4

11 + u4
12

)

u4
12q!vF

exp

(
− A

4π

[
vdseiωt

!vF

]2
)

.

(16)

To find out the higher order harmonics, we ignore the constant
prefactor

I ∝ exp

(
− A

4π

[
vdseiωt

!vF

]2
)

. (17)

Fig. 6. Nonlinear resonant current is highly symmetric. When a dc voltage
VDSp biased at the current peak is superimposed with an ac signal vds(t), the
frequency of the output current i(t) will be doubled.

This expression can be further extended as

I∝1−C1 exp(2jωt)+
C2

1

2!
exp(4jωt)−C3

1

3!
exp(8jωt)+ · · ·

(18)

where C1 = (A/4π(!vF )2)v2
ds. In (18), only even higher har-

monics occur.
The SymFET is expected to be intrinsically fast since it relies

entirely on tunneling. The extrinsic performance with parasitics
can be analyzed same as for any high-speed device and will not
be covered in this paper. High-frequency digital operation and a
host of analog applications such as frequency multiplication are
thus possible by exploiting the symmetry of the band structure
of 2-D graphene.

As explained in [11], the greatest amount of nonlinearity
in the I–V characteristics is achieved with a nearly perfect
rotational orientation of graphene layers. This presents a sig-
nificant challenge in the fabrication of such devices based on
the layer transfer technology. However, the epitaxial growth of
graphene, BN [18], or other 2-D materials provides a choice to
overcome this problem. We note that due to the many-particle
nature of the excitonic condensate, the BiSFET is expected to
be insensitive to rotational misalignment [3]. This is similar
to the robustness of superconductivity to defects. However,
the single-particle tunneling nature also makes the SymFET
robust to certain quantities to which the BiSFET is sensitive. As
discussed earlier, the SymFET is robust to temperature. Another
advantage is the robustness of single-particle tunneling—this is
an intrinsic advantage for the SymFET. Although the tunneling
current will vary with the tunneling insulator thickness and its
dielectric constant, the regular single-particle tunneling behav-
ior will survive in all temperature and thickness values. Thus,
unlike the BiSFET’s sensitivity to thickness variations, the
SymFET behavior is robust to thickness and dielectric constant
variations. Both thickness variations and inelastic scattering
processes can be significantly suppressed by using 2-D crystal
“insulators” such as BN or MoS2 between the graphene layers,
preferably in a rotationally aligned structure.
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In summary, we have presented an analytical model to cal-
culate the channel doping potential and I–V characteristics in
a novel electronic device structure, the SymFET. The current in
a SymFET flows by tunneling from one graphene layer to the
other. The current is insensitive to temperature. The resonant
current peak is controlled by chemical doping and applied gate
bias. The on/off ratio increases with graphene coherence length
and doping. The symmetric resonant peak is a good candidate
for high-speed analog applications, of which frequency multi-
plication is an example. The resonant peak behavior can also
be the framework for new digital architectures that consume
much lower power than the current state-of-the-art electronic
switches.
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