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Introduction: GaN vertical power devices have many advantage over lateral device in device scaling, reliability and
thermal management, etc. Traditional power transistors employ p-type pockets to achieve E-mode, RESURF and
avalanche capabilities. However, this topology in GaN vertical power transistors has been challenging to implement
[1] due to the difficulty to achieve selective area doping without compromising breakdown: p-type pockets in n-type
regions or vice versa. The GaN UMOS-FETs or trench MOSFETSs can be realized using epitaxial p-layers, however,
suffer from low channel mobility in the inversion channel [2, 3]. Using n-type GaN only, depletion mode vertical
MISFETs can be achieved with attractive current densities and breakdown voltages [4]. To get normally-off
operation, Fin or nanowire (NW) pillars are necessary geometries. Compared with Fins, GaN nanowires have added
advantages including superior electrostatic control and possibility for low-cost growth on foreign substrates [5, 6]. In
this work, we report the first experimental demonstration of NW-MISFETs on bulk GaN substrates and compare
them with Fin-MISFETs with the state-of-the-art performance fabricated on the same sample. The benefit of better
electrostatic gate control in nanowire MISFETs are highlighted.
Device Epitaxy and Fabrication: The GaN epi structure is grown on bulk GaN substrates by MOCVD, consisting
of a 7 um n-GaN drift layer with a net donor concentration of ~6x10" cm™ (F ig. 1). The NWs and Fins are formed
by a top-down approach: dry etch followed by a hot TMAH wet etch to form vertical side walls, first reported by
Kodama et al. [2]. Images of fabricated NWs are shown in Fig. 2. The key device fabrication steps after the NW/Fin
formation are shown in Fig. 3.
Results: The output characteristics of the Fin-MISFET are shown in Fig. 4. An on-current of 14 kA/cm® and R, of
0.4 mQcm’ are extracted, which are on a par with the state-of-the art values reported in [4]. Fig. 5 shows the
transfer characteristics of a Fin-MISFET with a single pillar and a NW-MISFET with 120 pillars. Due to the non-
uniformity in NW fabrication, the off-state leakage of the NW-MISFET is higher than the single-pillar Fin device.
The off-state characteristics of the Fin-MISFET under different gate-bias is shown in Fig. 6. Under more negative
gate-bias, the breakdown voltage of the same device increases, reaching a highest value 513 V under Vg=-15 V
where the device undergoes a hard breakdown. This behavior is attributed to the drain induced barrier lowering
(DIBL) effect. Due to the all-around gate geometry in NW-MISFETs, the electrostatic control of the channel is
better. Thus, the NW-MISFET promises a higher and more stable breakdown voltage thanks to the suppressed DIBL
effect. In addition, the NW geometry allows for a higher Vy, than Fins of the same width (diameter for NWs). Using
an abrupt depletion edge approximation, an analytical expression for the threshold voltage is derived for NWs:
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Fig. 7 shows the comparison of the calculated Vy, of the Fin- and NW- MISFETs. When the Fin width (Wg;,) and the
NW diameter (dnw) are the same, Vy, is always higher for NW-MISFETs, regardless of the insulator interface charge
density. Due to the limited device yield, we are not able to get a good fit and a comprehensive comparison of the Vy,
between the two device geometries experimentally; nonetheless, this work represents the first attempt to use NWs on
bulk GaN to curb DIBL-impacted breakdown behavior in vertical GaN power transistors.
Conclusion: Vertical NW-MISFETs on bulk GaN for power electronics have been fabricated and compared with
the vertical GaN Fin-MISFETs with the state-of-the-art performance simultaneously fabricated on the same sample.
DIBL effect is observed in the off-state characteristics, indicating the importance of gate-control in such devices.
With the all-around gate geometry, the NW-MISFET has better electrostatic control, which promises higher BV and
V. The added possibility of low-cost, bottom-up realization on foreign substrate makes GaN vertical NW-MISFET
an attractive candidate for the new generation, high performance power devices.
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Fig. 1. Schematic of NW/Fin MISFETs.
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Fig. 2. SEM images of the GaN-on-GaN nanowires
after dry etch and hot TMAH wet etch.
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Fig. 3. Schematic of the key process steps after forming NWs/Fins. (a) ALD Al,O; dielectric deposition and Cr
gate sputtering after NW/Fin formation. (b) Photoresist (PR) planarization and thinning followed by gate metal
etch. (c) SiO, spacer deposition and 2™ PR planarization. (d) Source pad metallization.
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Fig. 4. Output characteristics of the Fig. 5. Transfer I-V of the (a) Fin-MISFET, (b) nanowire-MISFET.
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Fig. 6. Off-state characteristics of Fin-MISFETs

under different gate bias.
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Fig. 7. Calculated Vy, of the fabricated Fin- and NW-
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