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Abstract: The 246 nm AIN-delta-GaN quantum well ultraviolet light-emitting diode was
proposed and realized experimentally, with the dominant transverse electric-polarized emission
been verified by both the k-p simulation and the room-temperature polarization-dependent

electroluminescence measurements.
OCIS codes: (230.3670) Light-emitting diodes; (230.5590) Quantum-well, -wire and -dot devices

High-efficiency deep ultraviolet (UV) light emitting diodes (LEDs) operating at wavelengths (1) below 300 nm are
required for a wide variety of important applications such as sterilization, medical diagnostics and water
purification. High Al-content AlGaN quantum wells (QWSs) are employed to pursue such deep-UV LEDs and have
been widely studied and reported for 220-280 nm spectral regimes [1-3]. Nevertheless, UV LEDs with AlGaN
active regions usually suffer from low external quantum efficiencies (<10%), especially at shorter emission
wavelengths [3]. The efficiency in such deep-UV LEDs is limited by the poor carrier injection efficiency caused by
the low electrical conductivity in p- and n-types AlGaN layers; low internal quantum efficiency (7iqe) resulted from
reduced optical matrix element; and the low light extraction efficiency. Furthermore, the valence subband crossover
in conventional AlGaN QWs and their role in determining the direction of optical emission is of crucial importance
[2, 4]. Thus, it is important to explore novel QW active regions which can suppress the challenges and lead to
improved quantum efficiencies.

Our previous work has proposed the use of the AIN-delta-GaN QW structure with 3-4 monolayers of the delta-
GaN layer for 298 nm UV LEDs to reduce degradation due to the Quantum Confined Stark Effect, when compared
to conventional AlGaN QWs that emit at a similar wavelength [5]. Pushing to shorter wavelengths such as ~250 nm,
the use of conventional AlGaN QWs suffer from significant band-mixing effect as the Al-content is near the
crossover point beyond which the energy separation between heavy hole (HH) and crystal-field split-off hole (CH)
leads to both low transverse electric (TE)- and transverse magnetic (TM)-polarized optical emission [4]. Thus, in
this work, we propose the use of the AIN-delta-GaN QW with thinner delta-GaN thickness in order to address the
band-mixing effect with A~250 nm. The valence band structure and corresponding polarization-dependent
spontaneous emission of the proposed AIN-delta-GaN QW was investigated by the 6-band k-p simulations [4, 8-9].
The AIN-delta-GaN QW-like UV LEDs with 2-3 monolayers of delta-GaN layer were grown on the AIN/sapphire
template by plasma-assisted molecular beam epitaxy (MBE) [6-7]. The angle-dependent and polarization-dependent
electroluminescence (EL) measurements were conducted to validate the physics from the proposed QW design.

A schematic layer structure of the AIN-delta-GaN QW is shown in figure 1 which includes the 2-nm AIN sub-
QW region with 4-A delta-GaN layer to aim for ~250 nm peak emission. Here, the AIN sub-QW and the AIN barrier
regions are clearly separated into the k-p simulations. From the calculated valence band structure, we identify two
major advantages of using the AIN-delta-GaN QW: 1) the HH subband has been flipped into the topmost position,
and 2) there exists a large separation between the HH1 and CH1 subbands which successfully resolves the band
mixing issue. Thus, it is expected that the dominant conduction band (C) - HH1 transition will be endured by the
AIN-delta-GaN QW active region. As a result, from the spontaneous emission spectra in figure 1, dominant TE-
polarized spontaneous emission is obtained with A = 243 nm.

To verify the polarization properties and the physics of the proposed AIN-delta-GaN QWs, the MBE-grown UV
LED with such active region was investigated in this study. As shown in figure 2, the active region consists of 2-3
monolayers delta-GaN layer embedded in 1.75 nm AIN layer with graded AlGaN p- and n-polarization-induced-
doped cladding layers. More MBE growth and device fabrication details can be found in Refs. 6-7. Room
temperature EL measurement was first carried out, showing that the peak emission wavelength is 246 nm with
current density (j) of 16.67 A/cm? from the AIN-delta-GaN QW with 2-3 monolayers delta-GaN layer.
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Figure 2: EL spectrum of MBE-grown AIN-delta-GaN QW-like
LED with peak emission wavelength of 246 nm at j=16.67 A/cm?.
Inset: schematic of MBE-grown AIN-delta-GaN QW LED.

Figure 1: TE- and TM-polarized spontaneous emission spectra at
n =5 x10' cm?. Inset left: band structure of AIN-delta-GaN QW
structure with electron and hole wavefunctions; inset right:
valence band structure.

The polarization-dependent EL measurements were performed with the setup plotted in figure 3(a), similar with
Refs. 2, 5, 10. A Glan-Taylor polarizer is placed between the stationary stage and the optical fiber and can be rotated
to resolve the |, (electric field parallel to the incident plane) and | (electric field perpendicular to the incident

plane). At a particular detection angle (6), TE and TM components can be derived by the equations
I, =g o820+ 1, sin? 0 and | =1, . Figure 3(b) presents the polarization-dependent EL spectra at & = 30 for the

AIN-delta-GaN QW LED. The results show that the | /1, ratio is 1.18 for # = 30° with the corresponding TE/TM

ratio calculated as 17.731. Thus, dominant TE-polarized emission is demonstrated from the AIN-delta-GaN QW
structure which can be attributed to the dominant C-HH transition from the proposed design.
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Figure 3: (a) Schematic of polarization-dependent EL measurement setup; (b) Polarization-dependent EL measurement at 6 = 30°.

In summary, the AIN-delta-GaN QW is proposed, and experimentally demonstrated for 246 nm UV LED, and
the polarization properties are investigated for the first time. The use of the AIN-delta-GaN QW with 2-3
monolayers delta-GaN layer addresses the band mixing problem, and leads to dominant C-HH transition. As a result,
dominant TE-polarized emission is demonstrated by polarization-dependent EL measurements. Thus, it is expected
that the use of the AIN-delta-GaN QW will serve as a promising alternative for 250 nm UV LEDs.
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