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ABSTRACT

To make complementary GaN electronics a desirable technology, it is essential to understand the low mobility of 2D hole gases in III-Nitride
heterostructures. This work derives both the acoustic and optical phonon spectra present in one of the most prominent p-channel hetero-
structures (the all-binary GaN/AlN stack) and computes the interactions of these spectra with the 2D hole gas, capturing the temperature
dependence of its intrinsic mobility. Finally, the effects of strain on the electronic structure of the confined 2D hole gas are examined and a
means is proposed to engineer the strain to improve the 2D hole mobility for enhanced p-channel device performance, with the goal of
enabling wide-bandgap CMOS.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099957

Decades after the celebrated invention of Mg p-doping1 in
Gallium Nitride (GaN) and the subsequent development of GaN-based
light emitting diodes, the manipulation of holes in GaN remains a fun-
damental challenge. Consequently, despite the expected dominance of
GaN High Electron Mobility Transistors (HEMTs) in the coming gen-
eration of power electronics2 and communications systems,3 there is
no complementary p-channel device which can be readily integrated.
This incompleteness restricts the possible circuit topologies and system
designs achievable in GaN electronics but arises quite straightforwardly
from the physics of the GaN valence band. These bands, both heavy
and deep in energy, have proven difficult to contact with typical metal
workfunctions,4 difficult to dope with high efficiency,5 and difficult to
flow current through with high conductivity. Nonetheless, the com-
mercial interest in generating complementary GaN-based circuits6 and
scientific interest in studying highly degenerate hole physics7 have
prompted great recent progress in p-channel devices.8

Of the various structures6,9–16 which have been proposed as a
platform for p-channel III-Nitride electronics, the single GaN/AlN
heterojunction field-effect transistor has received recent attention for
its high sheet conductance7 and excellent device performance.8 In this

structure, depicted in Fig. 1(a), the all-binary materials provide a
straightforwardly repeatable growth with no possible parasitic electron
channels, a tremendous hole-inducing polarization-charge for low
sheet-resistance, and maximal bandgaps for extreme voltage-handling
capability. Given the recent reports of temperature-dependent trans-
port studies in this heterostructure7 and recent first-principles sugges-
tions of possible enhancements to hole mobility in bulk p-GaN,17 this
work presents a model to explain the measured mobility of the 2D
hole gas (2DHG) at the GaN/AlN interface and evaluates the poten-
tial of strain-engineering approaches to alter the band structure in a
favorable way. First, the valence band structure including confine-
ment and multiband mixing effects is computed. Then, the spectra
of both acoustic and optical phonons in the heterostructure are
determined and the mobility limitation due to these mechanisms is
derived. Finally, the effects of strain on the band structure and
mobility are presented.

The multiband k.p (MBKP) approach, based on Burt Exact
Envelope Function Theory,18,19 describes the electronic states of heter-
ostructures wherein multiple subbands may be intermixed by nonuni-
form potentials and material interfaces. MBKP has been extended to
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wurtzite heterostructures by various authors20,21 and is available in
certain commercial packages.22 The PyNitride software package23

employed here self-consistently24 solves the 6! 6 MBKP equation of
the wurtzite valence band (see the supplementary material) simulta-
neously with the Poisson equation, accounting for the large fixed inter-
face polarization charge. Figure 1(a) depicts a highly confined 2D hole
gas at the GaN/AlN interface. The hole gas represents contributions
mainly from the first quantized subband of both the heavy hole (HH)
and light hole (LH) bands (including spin, this is four subbands). The
transverse dispersion is shown in Fig. 1(b). By density, as clear from
Fig. 1(c), the HH band dominates, though as shown in Fig. 1(d), the
LH band has lighter in-plane mass near the Fermi energy, and so
it contributes significantly to transport. To evaluate transport, we
proceed to describe the phonons.

The Dielectric Continuum model25 describes polar optical pho-
nons (POPs) in arbitrary heterostructures. As POP scattering is the
main limitation on electron mobility in quality GaN, numerous
authors have invested significant theoretical effort into the elaboration
of POP spectra in various wurtzite heterostructures.26–30 A structure
as simple as this, in fact, can be solved analytically. For a uniaxial crys-
tal, the effect of polar optical phonons can be incorporated into two
frequency (x) dependent, directional dielectric functions, e?and ek,

e?¼ e1
x2

LO?# x2

x2
TO?# x2 and ek ¼ e1

x2
LOk # x2

x2
TOk # x2 ; (1)

where those longitudinal (xLO) and transverse (xTO) POP frequencies
and high-frequency dielectric constant !1 can be determined

experimentally for the materials in play (see tabulation in Komirenko
et al.29). For a mode with in-plane wavevector q, the POP problem
reduces to solving a frequency-dependent Poisson eigenvalue equation

@z!k@z/ ¼ q2!?/ (2)

for the potential /. At every characteristic frequency appearing in
Eq. (1), a dielectric constant changes sign, which changes the character
of the involved modes (locally decaying vs oscillating). Altogether,
there are three classes of modes depending on the energy range: (1)
oscillating in GaN, decaying in AlN, (2) oscillating in AlN, decaying in
GaN, and (3) decaying bidirectionally from a GaN/AlN interface. For
each class, both transverse and longitudinal polarizations are possible.
The spectrum and example modes are depicted in Fig. 2, and the solu-
tion is elaborated in the supplementary material.

The Elastic Continuummodel25 aptly describes acoustic phonons
in arbitrary heterostructures. Given the centrality of “optical” phonons
in electron-based devices, the literature on acoustic phonons in wurt-
zite heterostructures31–34 is significantly less comprehensive. The basic
approach is to link a continuum Newton’s law with a material stress-
strain relation

q
@2ui
@t2
¼
@Tij

@rj
; Tij ¼ cijkl!kl; (3)

where ui is the local displacement vector, q is the density, Tij is the
stress tensor, cijkl is the stiffness tensor, and !ijkl is the strain tensor
!ij ¼ 1

2 ð@rj ui þ @ri ujÞ. Due to symmetry constraints on the stiffness
tensor, the in-plane shear component is uncoupled (“Y” modes), while
longitudinal and out-of-plane components constitute two coupled dif-
ferential equations (“XZ” modes). These are solved by the Finite
Element Method. For both types of modes, there are two characters

FIG. 1. (a) A 13 nm GaN layer on top of a thick AlN buffer induces a two-dimensional
hole gas of density '4.4! 1013/cm2, which is confined at the interface by strong
polarization fields. (b) The relevant bands are the first spin-degenerate HH subband-
pair (blue) and LH subband-pair (red). (c) The DOS of the two bands is indicated by
solid lines and the occupation of the bands by filled shapes. (d) The effective masses
vs position in k-space, capped by the occupation probability as a function of k. The
energy axes of (b) and (c) align, and the k-axes of (b) and (d) align. Dashed lines
that show the effective masses near the Fermi energy are guides to the eye.

FIG. 2. Polar optical phonons. (a) Spectrum of the various extra-ordinary POP
modes, with the character of each mode labeled. The bottom three bands (within
red frequency labels) are predominantly transverse (TO), and the top three bands
(within blue frequency labels) are predominantly longitudinal (LO). Examples of (b)
modes confined to GaN, (c) to the interface, and (d) to AlN. For each, the potential
of both possible polarizations is shown. As expected, the TO phonons contribute
weaker potential.
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possible depending on the energy range. At energies above !hvtq, where
vt is the relevant AlN sound velocity, modes are able to propagate in
the AlN and are thus of a continuum sort. Below this energy, any
modes which exist must decay into the AlN, so are GaN-confined
modes. The spectrum and example modes are revealed in Fig. 3, and
the solution methodology is elaborated in the supplementary material.

We now turn to the interactions of the phonons and carriers.
First, both types of phonon modes are normalized25 by the quantiza-
tion condition

Ð
d3~r qð~rÞj~uðrÞj2 ¼ !h

2x. Once the oscillations are nor-
malized, the Hamiltonian term for each mode can be generated. For
optical phonons, this is just Hpop¼ #e/(r). For acoustic phonons, the
deformation potential Hadp ¼ D (!) is a six-by-six matrix function of
position: at each position, it recruits the valence deformation matrix of
the local material and also the local strain from a given acoustic mode.
There is also a (coherently combined) piezo termHpz¼ #e/(r) where
/ is found32 by solving the Poisson equation given the piezoelectric
charge induced by the mode (see the supplementary material). Finally,
to account for the low-temperature mobility, which is around
200 cm2/Vs in these structures to date, some extrinsic limitation must
be included. The exact cause (e.g., interface roughness, dislocation,
impurity, etc) is irrelevant to this study, since all these elastic mecha-
nisms are temperature-independent and have similar dependence on
effective masses. So the exact cause is not deduced here, but rather a
generic scatterer with a constant scalar matrix element is applied to set
the low-temperature mobility to 200 cm2/Vs. This matrix element is
the only “tuning parameter.”

To calculate the perturbed carrier distribution, we employ the
linearized Boltzmann Transport Equation (LBTE)

q~E
!h
(rkf 0mðkÞ ¼

X

k0m0
Rk0m0
km f Am ðkÞ # Rkm

k0m0 f
A
m0ðk

0Þ; (4)

where ~E is the in-plane electric field, f 0 is the equilibrium occupation
function, f A is a small change in occupation to be solved for, and the
transition rate R is given by

Rk0m0
km ¼

2p
!h

X

al

jhw k0m0 jHlðqÞjw kmij
2

! N þ 1
2

1# að Þ þ af 0m0ðk
0Þ

" #

! dðEk0m0 # Ekm # aelðqÞÞ; (5)

where a ¼61 represents the absorption/emission, respectively, w km is
the state with in-plane wavevector~k, of subband m, HlðqÞ is the per-
turbation due to mode l with wavevector~q ¼~k

0
#~k, and E/e are the

electronic/phonon energies. Once this is discretized on a k-space
mesh, the LBTE is solved as a linear matrix equation for the change in
occupation @f A=@E under an applied field, from which the mobility is
extracted. The results, Fig. 4, compare agreeably to experiment over a
wide temperature range and verify Ponc"e’s prediction17 that acoustic
phonons dominate scattering at room temperature.

Now, we discuss what can be done to improve the mobility. In a
recent first-principles study of the mobility of bulk p-type GaN, Ponc"e
et al.17 suggested the application of significant tensile in-plane strain
(or compressive c-axis strain) to raise the split-off band (SO) above the

FIG. 3. Acoustic phonons. Spectrum of the (a) XZ polarized and (b) Y polarized
modes. In each, there is a characteristic velocity dividing discrete modes and con-
tinuum modes:

ffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11 # C12Þ=2q

p
, respectively. (c) An example of a

continuum Y mode: oscillations are more concentrated in the GaN where the higher
density leads to lower sound velocity. The lower sound velocity of GaN relative to
AlN also allows for confinement, such as in (d), which depicts a confined XZ mode.

FIG. 4. (a) The hole occupation of the HH band at equilibrium and (b) the antisym-
metric change in occupation per applied electric field in the þx direction, obtained
by direct solution of the linearized Boltzmann Transport Equation. (The hole popula-
tion is enhanced at negative kx, which, given the negative group velocity for holes,
implies a rightward current.) (c) Model mobility vs Hall measurements reported by
Chaudhuri et al.7Dashed curves are also shown for the various scattering mecha-
nisms alone (polar optical, acoustic, and extrinsic). Note: the model is obtained by
a full solution incorporating all mechanisms simultaneously, not by a Matthiessen
approximation of the component limitations.
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heavy-hole and light-hole bands. The lighter mass of the split-off band
would allow for a drastically increased hole mobility. Such a proposal,
while potentially revolutionary for bulk p-GaN, is difficult to apply
to the particular heterostructure discussed here-in, since the GaN-
pseudomorphic-to-AlN is already compressively strained by 2.4% as-
grown and that large strain would have to be overcome first before
applying further tensile strain. Moreover, applying tensile strain dra-
matically changes the interface between GaN and AlN, significantly
reducing the valence band offset (VBO) and thus the confining poten-
tial. (The role of strain in the asymmetry of the GaN/AlN and
AlN/GaN VBO is well-known.)35

This raises the question of whether reasonable strain can
improve the mobility of holes in this heterostructure, without access
to the deep SO band. Based on the theory of Suzuki and Uenoyama36

in the context of lasers, two converse techniques may be suggested
employing strain along only one in-plane axis. Dasgupta et al.37 con-
sidered the application of compressive strain along the direction of
current flow. Conversely, Gupta et al.38 tested the application of
tensile strain perpendicular to current flow. Figures 5 and 6 consider
what effects these two proposals have, not on bulk p-GaN as with pre-
vious authors but rather on the heterojunction band structure. To
take full advantage of the changing band structure near the band
edge, the charge density is lowered (by thinning the well layer to
8 nm) and kept constant at 1! 1013/cm2 by variable applied bias even
as the strain is changed. These adjustments to thickness and charge
match closely the actual 2DHG environment in p-channel FETs.8 In
parts (b) and (c) of these figures, uniaxial in-plane strain is seen to
split the topmost two-bands. Depending on the sign and orientation
of the strain, the topmost band may become light or heavy in the
current flow direction (x).

In the case of tensile x-strain, Fig. 5(c), or compressive y-strain,
Fig. 6(b), the topmost band is heavy along x, and so even though the
available scattering DOS is reduced by the band-splitting, the net
mobility remains low. However, in the case of compressive x-strain,
Fig. 5(b), or tensile y strain, Fig. 6(c), the topmost band is light along x
and interband scattering is diminished. As such, these strain

conditions result in an enhanced mobility. The mobility improvement
due to x-compressive strain is more pronounced than that due to
y-tensile strain because of the aforementioned effect which tensile
strain has on the VBO. However, these two enhancement mechanisms
are not mutually exclusive: a fin relaxation and a compressive regrowth
would complement each other via the Poisson effect to reduce the total
amount of stress which each mechanism would have to apply.

Of course, any enhancements will still be limited by whatever
extrinsic mechanisms are at play, and so Figs. 5 and 6 include two
mobility curves: (1) a (solid blue) prediction which assumes the extrin-
sic scattering element is similar to the present data and (2) a (dashed
blue) intrinsic calculation using only phonon mechanisms, corre-
sponding to space for further improvements in growth.

In conclusion, this work has combined solutions for both the
optical and acoustic phonon spectra in a GaN/AlN heterostructure
with a multiband description of the hole gas to model the hole mobil-
ity. The model qualitatively matches experimental observations and
can be used to estimate what sort of intrinsic mobility enhancements
are possible by strain engineering, suggesting that a unixial compres-
sion is the best approach for optimizing the GaN/AlN hole gas. A
high-mobility 2DHG could join the celebrated GaN 2DEG to realize
the future of energy-efficient complementary GaN-based circuits.

See the supplementary material for mathematical and numerical
simulation details.
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Supplement to “Wurtzite Phonons and the

Mobility of a GaN/AlN 2D Hole Gas”

S1) Multiband kp model

The Multiband k.p matrix di↵erential equation1 can be split into four terms by
the order of derivatives

⇥
C

0(z)� iC
L(z)@z � i@zC

R(z)� @zC
2(z)@z

⇤
f(z) = �f(z) (S1)

where, for a wurtzite valence band f(z) is a six-component spinor. In the basis
|X "i , |Y "i , |Z "i , |X #i , |Y #i , |Z #i, these position-dependent matrices can
be written
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where I2 is the 2x2 identity matrix,

L
u

1 = A2 +A4 +A5, L
u

2 = A1

M
u

1 = A2 +A4 �A5, M
u

2 = A1 +A3, M
u

3 = A2

N
+
1 = 3A5 �A2 �A4 + U ; N

�
1 = �A5 +A2 +A4 � U

N
+
2 =

p
2A6 �A1 �A3 + U, N

�
2 = A1 +A3 � U

with U = h̄
2

2me
and

l1 = D2 +D4 +D5, l2 = D1

m1 = D2 +D4 �D5, m2 = D1 +D3, m3 = D2

n1 = 2D5, n2 =
p
2D6

where Ai are the Rashba-Sheka-Pikus parameters and Di are the deformation
potentials. Notes:

• The A7 parameter is neglected as is common in heterostructural multi-
band kp analysis1. The e↵ects of this negligence are known8

• Since none of the important scattering mechanisms interact with spin
and the spin-splitting is a small energy scale in the band structure, one
can “cheat” that degree of freedom to speed up calculations. For faster
evaluation of mobility, the o↵-diagonal 3x3 blocks of C0D are zeroed and
a sub-meV up-down term is added along the diagonal to ensure the spins
have a finite non-degeneracy. Then the mobility calculation can account
for only one of the spins and assume the same for the other.

• The above calculation is a 6x6 kp method in which the valence bands
are accounted for directly and the conduction band appears only as a
perturbation. Since GaN is a wide-bandgap material, this convenient sim-
plification is reasonably accurate as compared to a slower 8x8 kp imple-
mentation.

S2) Acoustic phonon dispersion

As given in the main text, the elastic continuum model joins the continuum
Newton’s law with the material stress-strain relation7:

⇢
@
2
ui

@t2
=

@Tij

@rj
, Tij = cijkl✏kl (S9)
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where ui is the local displacement, ⇢ is the density, Tij is the stress tensor, cijkl
is the sti↵ness tensor, and ✏ijkl is the strain tensor ✏ij =

1
2

�
@rjui + @riuj

�
. The

latter equation can be re-expressed in Voigt notation

T↵ = c↵�✏� (S10)

where ↵,� run 1-6 and the Voigt tuples are related to the actual tensors by

T1 = Txx, ✏1 = ✏xx (S11)

T2 = Tyy, ✏2 = ✏yy (S12)

T3 = Tzz, ✏3 = ✏zz (S13)

T4 = Tyz, ✏4 = 2✏yz (S14)

T5 = Txz, ✏5 = 2✏xz (S15)

T6 = Txy, ✏6 = 2✏xy (S16)

For a wurtzite crystal, the c↵� can be written
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For a wurtzite structure uniform in the basal plane but possibly inhomoge-
nous along z, we note that the elastic continuum model is rotationally symmetric
in plane, so we can choose the in-plane wavevector along x and assume phonons
have a form

u =

0

@
ux(z)
uy(z)
uz(z)

1

A e
i(qx�!t) (S18)

We will hide the explicit z dependence for now. The the strain can be evaluated

✏1 = iqux, ✏4 = @zuy (S19)

✏2 = 0, ✏5 = iquz + @zux (S20)

✏3 = @zuz, ✏6 = iquy (S21)

Then the two constitutive laws can be combined as
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This matrix can be split by order
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This generalized eigenvalue problem can be solved by the Finite Element Method
once boundary conditions are prescribed. Specifically, the upper boundary will
be treated as free to vibrate (i.e. Neumann), so Tiz = 0. The bottom boundary
is unimportant in the limit of a thick bu↵er, but, to preclude the appearance of
an irrelevant bottom-boundary mode decaying upwards into AlN, one may set
the bottom boundary by Dirichelet ui = 0 condition.

We note here that in the above matrices, there is no coupling between the Y
(second) component and the XZ (first and third) components, so the problem
could be further broken apart into a pair of problems if desired.

S2.1) Piezoelectric potential

Once the acoustic phonon modes are solved for, each mode can be considered
a source of piezoelectric charge, which induces a further scattering potential.
This approximation of treating the acoustic and electric problem separately is
common practice6 given the low-frequency of zone-center acoustic phonons. A
phonon in a piezoelectric material induces a charge
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where e↵� are the piezoelastic moduli
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where uL is the in-plane longitudinal component of the displacement. Plugging
this into the Poisson equation, we find a potential

�r ["r�] = ⇢ (S33)
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and solved by the Finite Element Method.

S3) Polar optical phonon dispersion

As discussed in the main text, the interaction of the uniaxial polar atomic
lattice with electromagnetic waves can be incorporated as a pair of frequency-
dependent dielectric constants "k and "?, upon which solving the Poisson equa-
tion gives all the modes which produce an electric potential [that is, all the
modes which are important for POP scattering]. For in-plane wavevector q,

@z✏k@z� = q
2
✏?� (S39)

The normalization condition given in the main text, applied to both classes of
phonon, is expressed in terms of u, but, by solving for u as a function of �, this
condition can be re-expressed directly in terms of �:
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Given the frequency-dependence of the parameters in the equation, a numerical
solution of the eigenvalue problem is actually somewhat involved. Fortunately,
the discretely layered binary heterostructure structure lends itself to analytic
solutions. We will solve a single heterojunction structure 1/2 where materials 1
and 2 are GaN or AlN in either order, and the bottom material is semi-infinite.
The top surface at z = 0 is assumed Dirichelet. The thickness of the top layer
is t1 and a normalization thickness of t2 is set for the bottom layer which will
discretize the bottom-region-confined states.
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In a given region, solutions are oscillating if "?"k < 0 and exponential if
"?"k > 0. At an interface, the derivative switches signs i↵ "1k"2k < 0. We will
use the following convenient definitions, similar to the notation of Komirenko5

but for a factor of two in ↵

⇠i =
q��"i?"ik

��, ↵i =
q��"i?/"ik

�� (S41)

Then the vertical wavevector of a mode in a given region is ki = q↵i.
If the solution is written in Region 1 with some normalization constant A

and Region 2 with some normalization constant B, then the first matching con-
dition �(t�1 ) = �2(t

+
1 ) gives us some expression for B/A, and the normalization

condition will be written for A:
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From there on out, the solution is a simple mechanical procedure, depending
on the signs of the dielectric constants.

S3.1) Confined to Region 1

If the solution is oscillating in Region 1 and decaying in Region 2, we can write

�1 = A sin(k1z), �2 = Be
�k2z (S46)

Matching interface conditions gives

q =
1
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with B/A = sin(k1t1)ek2t1 and
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S3.2) Confined to Interface

If the solution is decaying in both regions, we can write

�1 = A sinh(k1z), �2 = Be
�k2z (S50)

Matching interface conditions gives

q =
1
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log
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(S51)

with B/A = sinh(k1t1)ek2t1 and
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�k2 =
1
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1

2k2
e
�2k2t1 (S53)

S3.3) Confined to Region 2

If the solution is decaying in Region 1 and oscillating in Region 2, we can write

�1 = A sinh(k1z), �2 = B sin(k2z + ✓) (S54)

Matching interface conditions gives

✓ = tan�1

✓
⇠2

⇠1
tanh(k1t1)

◆
� k2t1 (S55)

with B/A = sinh(k1t1)/ sin(k2t1 + ✓). The t2 thickness normalization gives
k2 = ⇡(n+ 1)/t2, so

q =
⇡(n+ 1)

↵2t2
(S56)

Normalization is accounted for via
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�k2 =
t2

2
, �?2 =

t2

2
(S58)

S4) Numerical details

Most material parameters are drawn from Vurgaftman and Meyer’s compila-
tion11, but anisotropic dielectric constants are from the measurements of Kane3

and Kazan4, optical phonon parameters are from the compilation in Komirenko5

and the polarization-related quantities are computed from the calculations of
Dreyer2. To ensure that the results do not depend on the specific choice of k · p

7



parameters, we performed the entire calculation with not only the k · p param-
eters from Vurgaftman and Meyer but also ran a comparison with more recent
parameters fitted by Rinke9 from atomistic GW calculations (but keeping the
�SO since Rinke neglects this). Results and trends were quite similar despite
the di↵erences in individual parameters.

The first step in each mobility point is calculation of the band diagram by a
standard Newton iteration of a charge model (including analytical derivatives)
and the Poisson equation (as laid out in Tan’s work10). The Poisson equation
includes a Dirichelet boundary at the surface (SBH of 1.4 eV) and a Neumann
boundary at the artificial bottom termination (500nm of AlN). The charge den-
sity consists of polarization contributions (from the interface discontinuities),
quantum carrier densities (from occupation of the MBKP-solved states in a
region extending from the surface to several nanometers below the interface),
classical carrier densities (from occupation of the band-edge DOS in a region
extending from several nanometers below the interface down the rest of the
domain), and a small background (1 ⇥ 1017/cm3) of deep donor-like defects
throughout. To achieve convergence over a wide range of conditions and tem-
peratures despite extreme charges, the algorithm begins by artificially scaling
up all dielectric constants by orders of magnitude to decouple the charge and
fields, and then ramps the dielectric constants to their true values. For the sim-
ulations with varied strain, the Fermi level at the surface is adjusted (mimicking
application of a gate) to keep the hole sheet density at a particular set value.

Separately, the phonon energies are evaluated by the means described in
the above sections, with the caveat that the artificial bottom termination for
the phonon solution domain is 40nm into the AlN (rather than 500nm as used
for electrical simulation). This abridgment drastically reduces the time and
storage requirements of the mobility solution, mainly by reducing the number
of pseudo-continuum modes which must be considered, but is deep enough that
the artificial confinement e↵ects on the phonon spectra are at an energy scale
well below thermal energy over the entire temperature range where phonons
contribute significantly to scattering. Specifically, the phonon states used are
the first 400 acoustic modes (including discrete and pseudo-continuum states
indiscriminately), the first 20 AlN-confined optical modes of each polarization,
the first 30 GaN-confined modes of each polarization, and both polarizations of
the interface optical mode.

With both phonon and electron states solved, we then solve the Linearized
Boltzmann Transport Equation. We first discretize k-space. In regions of k-
space where the occupation changes rapidly with k (that is, essentially, regions
within a kbT scale of the Fermi energy and with significant group velocity), it is
vital to define a dense grid. However, since this equation is to be solved over a
wide range of temperatures and under many variations of the bandstructure, the
precise locations of these important regions are not known in advance. Thus,
an adaptive mesh is formed by the following procedure.

The mesh will be uniform in the ✓ direction, but variably spaced along k. The
derivative D of circularly averaged occupation with respect to k is calculated
(D = 1

2⇡@k

R
d✓f(k, ✓) ), and an upper bound kmax for the k-mesh is determined
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by a point beyond which D has fallen o↵ to a negligible value compared to its
peak. The simplest strategy would be then to space mesh points evenly with
respect to k from zero to this upper bound. A more aggressive strategy is to
space mesh points evenly with respect to circularly averaged occupation, thus
regions with a rapidly changing occupation have the higher density of points. For
this work, a compromise is struck in which the k-points are placed evenly along
a weighted average (.7+.3) of 1

2⇡

R
d✓f(k, ✓) and k/kmax, ensuring a spread of k-

points which cluster around the vital regions. Employing this adaptive scheme,
a relatively small grid of 25 k-values x 18 ✓ values (or, for simulations in which
hexagonal symmetry broken, 25x24) was found su�cient. This is the mesh on
which transition matrix elements will be calculated.

This mesh is further refined by even subdivision (here by a factor of 4)
for the computation of the energy-conserving � function factor, a more rapidly
varying factor of position. For each subcell, all the other subcells into which the
centerpoint of that subcell may legally scatter are found, and the delta-function
determinant is computed using k-derivatives evaluated at the subcell centers.
These contributions over subcells are then summed to produce a sparse matrix
of the conservation factors between each cell of the original mesh described in
the previous paragraph. Then, on the original mesh, the necessary transition
matrix elements can be calculated only where needed by the relevant interaction
Hamiltonian and the two factors are multiplied.

Explicitly, those transition matrix elements, the H
l(q) in Eq 5 of the main

text, are as follows. For acoustic phonons, H l = H
l

adp
+ H

l
pz
. H

l

adp
= C

0S(z)
from Eq (S5) using the strain phasors eii(z) from the acoustic mode of level
l solved for in Sec S2) and the material dependent Di(z) parameters. H

l
pz

=
�e�(z) where � is the piezoelectric potential generated by the acoustic mode of
level l as solved in Sec S2.1). For polar optical phonons, H l

pop
= �e�(z) where

�(z) is the potential coupled with the POP mode of level l. Finally, for the
“generic extrinsic scatterer”, H l is just a constant (17.3 meV) tuned to fit the
low-temperature mobility.

The transition rates are arranged to form a transition matrix R
k
0
m

0

km
, and

thus Eq (4) of the main text is solved by a least squares procedure to find the
perturbation-per-electric-field of the carrier distribution function, from which
the mobility is extracted by an occupation-weighted sum of the group velocities.
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