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ABSTRACT

Superconducting nanowires used in single-photon detectors have been realized on amorphous or poly-crystalline films. Here, we report the
first use of single-crystalline NbN thin films for superconducting nanowire single-photon detectors (SNSPDs). Grown by molecular beam
epitaxy (MBE) at high temperature on nearly lattice-matched AIN-on-sapphire substrates, the NbN films exhibit a high degree of uniformity
and homogeneity. Even with relatively thick films, the fabricated nanowire detectors show saturated internal efficiency at near-IR wave-
lengths, demonstrating the potential of MBE-grown NbN for realizing large arrays of on-chip SNSPDs and their integration with AIN-based

X(z) quantum photonic circuits.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0018818

Superconducting nanowire single-photon detectors (SNSPDs)"*
have become an indispensable resource for a range of quantum and
classical applications due to their high detection efficiency over a broad
spectrum,” ° ultra-fast speed,”” exceptional timing performance,” "'
and ultra-low dark count noise.'”'” Two categories of superconduct-
ing materials have so far been used for the fabrication of high-
efficiency SNSPDs—poly-crystalline nitride and amorphous alloy
superconductors. SNSPDs patterned from thin-film amorphous super-
conducting materials, such as WSi™'* and MoSi,"””""” have exhibited
excellent homogeneity over a large device area'® due to the absence of
grain boundaries. However, they require relatively low operation tem-
perature and have lower ultimate counting rates, resulting from the
longer hot spot relaxation time in comparison with the SNSPDs made
from nitride superconductors, such as NbN'?"?? and NbTiN.”>*” On
the other hand, Nb(Ti)N-based detectors have shown relatively supe-
rior timing performance, demonstrating < 3 ps jitter measured with a
short straight nanowire'’ and <8 ps with a large-area meandered
nanowire.”” Despite these advantages, the homogeneity of Nb(Ti)N-
SNSPDs is ultimately limited by the poly-crystalline nature of the
Nb(Ti)N films, leading to non-uniform distribution of critical currents
and limited fabrication yields in a large array of single-photon detec-
tors required for future integrated quantum photonic circuits.

In this Letter, we demonstrate SNSPDs made from single-crystal
NbN thin films grown by molecular beam epitaxy (MBE)* on nearly
lattice-matched AIN-on-sapphire substrates. This substrate platform is
attractive for the integration of SNSPDs with several other elements of
nitride-based photonic integrated circuits.”’ ** The epitaxial NbN
films exhibit a high degree of thickness uniformity and structural per-
fection owing to the 2D layer-by-layer growth unique to the MBE
technique. The fabricated device consisting of 20 nm-wide and
6.3 nm-thick nanowire shows saturated internal efficiency at wave-
lengths of 780nm and 1050 nm, while a further reduction in the
achievable thin film thickness holds promise for saturating the effi-
ciency at longer wavelengths with a more relaxed wire width. We
expect that the MBE-NbN directly grown on the AIN-on-sapphire
substrate shown here could provide a scalable material platform for
realizing large arrays of on-chip SNSPDs and their integration with
nitride-based photonic circuits.

As illustrated in Fig. 1, epitaxial NbN films are grown by radio
frequency plasma-assisted MBE on a commercial 2in.-diameter c-
plane sapphire substrate with a 3 yum-thick AIN film grown by hydride
vapor phase epitaxy (HVPE). A 240 nm-thick AIN film of Al-polar
orientation is grown by MBE, followed by the growth of NbN as
shown in Fig. 1(d). During the growth of the films, reactive nitrogen is
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FIG. 1. (a) In situ RHEED pattern measured after the film growth demonstrating the
epitaxial nature of the NbN film. The streakiness of the pattern evidences that the
surface is effectively 2D. (b) AFM surface height map of the NbN thin film exhibiting
R.ms = 0.29nm. (c) RHEED intensity monitored throughout the NbN thin film
growth. The exhibited oscillations of the specular spot brightness indicate the 2D
layer-by-layer growth mode of NbN. (d) Cross-sectional sketch of the thin film layer
structure. (e) Measured sheet resistance of the NbN thin film vs temperature with
the inset showing the T; value of 12.1K.

generated using a radio frequency plasma source fed by ultrahigh-
purity N, gas, which is further purified by an in-line purifier.
Aluminum (99.9999% purity) is supplied using a Knudsen effusion
cell. The Nb flux is generated using an in situ electron-beam evapora-
tor source with 3N5-pure (excluding tantalum, Ta) Nb pellets in a
tungsten hearth liner. The NbN films are grown at the temperature of
1100 °C, measured using a thermo-couple behind the substrate, and at
a growth rate of approximately 1.0 nm/min.

The MBE film growth is monitored in situ using a reflection
high-energy electron diffraction (RHEED) system operated at a volt-
age of 15kV and a current of 1.5A. Figure 1(a) shows sharp and
streaky patterns formed by electron diffraction from the smooth sur-
face of the NDN film, indicating the epitaxial nature of the single-
crystal NbN film. As shown in Fig. 1(c), the in situ observation of
oscillations of the RHEED intensity vs the growth time confirms that
NDN grows in a 2D layer-by-layer growth mode on the AIN surface.
The thicknesses of the NbN film and its native oxide layer are 6.3 nm
and 1.2nm, obtained by fitting the measurement data from x-ray
reflectivity (XRR) with a Rigaku SmartLab diffractometer using
CuKua1 radiation. Figure 1(b) shows the morphology of the NbN film
surface characterized employing tapping mode atomic force micros-
copy (AFM); the root mean square roughness (R,;s) of the film surface
is less than 0.3 nm within a scan size of 1 um x 1 pum. In addition, the
crystal orientation of NbN is determined using RHEED and x-ray dif-
fraction (XRD), which indicates that cubic NbN grows with the {1 1 1}
crystal axis aligned to the c-axis of AIN.

Figure 1(e) shows the temperature dependence of the sheet resis-
tance of the MBE-NDbN thin film with the inset showing a zoom-in
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view of the superconducting transition region. The transition tempera-
ture of the film is measured to be T. = 12.1 K, defined as the tempera-
ture where the normal state resistance of the film drops to 50% of that
measured at 20 K. This value is higher than the previous results of
NbN™ and NbTiN™ thin films sputtered on AIN substrates for
SNSPD fabrication. The high T. value is also consistent with the sig-
nificantly low resistivity of the film, which is calculated to be only
~100 uQ - cm obtained by multiplying the thickness with the room-
temperature sheet resistance.

We fabricate SNSPD devices by patterning the MBE-NbN thin
film. The nanowires are defined by the exposure of negative-tone 6%
hydrogen silsesquioxane (HSQ) resist using 100kV electron-beam
lithography (Raith EBPG 5000+) and the subsequent development in
25% tetramethylammonium hydroxide (TMAH) for 2min at room
temperature. The HSQ resist is spun at the speed of 4000 rpm, result-
ing in an approximate thickness of 90 nm. In a second electron-beam
lithography step, contact electrodes are defined using double-layer pol-
ymethyl methacrylate (PMMA) positive-tone resist. After the develop-
ment in the mixture of methyl isobutyl ketone (MIBK) and isopropyl
alcohol (TPA), we lift off the electron-beam evaporated 10 nm-thick Cr
adhesion layer and 100 nm-thick Au in acetone overnight to form the
contact pads. The HSQ nanowire pattern is then transferred to the
NbDN layer in a timed reactive-ion etching (RIE) step employing CF,
chemistry and 50 W RF power. The HSQ resist is left on top of the
NbN nanowires after fabrication, serving as a barrier to oxidation.

For initial tests, we fabricate short-nanowire detectors with
widths ranging from 20 nm to 100 nm for comparison of the internal
efficiencies. As shown in Figs. 2(a) and 2(b), the active detection parts
of the devices are made of 20 um-long straight nanowires, which are
suitable for future waveguide integration. All the nanowires are serially
connected to long 1 um-wide meandered wires to prevent the detector
latching at high bias currents. The sheet resistance of the devices is
measured to be around 180 Q/sq, which slightly increases compared
to the value measured on the bare film prior to fabrication.

In order to characterize the optical response of the fabricated
detectors, the detector chip containing multiple devices is mounted on
a 3-axis stack of Attocube stages inside a closed-cycle refrigerator and
cooled down to a base temperature of 1.7 K. Continuous wave (CW)
laser light with varying wavelengths is attenuated to the single-photon
level and sent to the detector chip via a standard telecommunication
fiber (SMF-28) installed in the refrigerator. The detectors are flood-
illuminated by fixing the fiber tip far away from the surface of the
detector chip. We control the Attocube stages to move the detector
chip at low temperature and make an electrical contact between the
RF probes and the gold pads of the detectors. The RF probes are con-
nected to a semi-rigid coaxial cable installed in the refrigerator, while
the room-temperature end of the cable is attached to a bias-tee (Mini-
Circuits ZFBT-6GW+-) to separate the DC bias current and RF output
pulses for the detectors. The bias current is supplied by a programma-
ble sourcemeter (Keithley 2401) in conjunction with a low-pass filter
(1kHz cut-off frequency). The output pulses of the detectors are
amplified by a low-noise RF amplifier (RF bay LNA-650) and sent to a
4GHz oscilloscope for the pulse observation or a pulse counter
(PicoQuant PicoHarp 300) for the photon counting measurement.
Figure 2(c) shows a single-shot trace measurement of the output volt-
age pulse from the 20 nm-wide detector. The decay time constant
extracted from the exponential fitting (red dashed line) is 5.4 ns, which
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FIG. 2. (a) Optical micrograph image of the fabricated SNSPD device. (b) Close-up scanning electron micrograph (SEM) image of the active straight nanowire and the series
inductor made of 1 um-wide meandered wire. The inset shows the further zoom-in view of the 20 nm-wide straight nanowire. (c) Single-shot trace of output voltage pulses from
the 20 nm-wide detector measured using a 4 GHz oscilloscope. The decay time constant (z) extracted from an exponential fitting (red dashed line) is 5.4 ns.

translates into a sheet kinetic inductance of 24 pH/sq of the NbN film,
assuming 50 Q input impedance of the readout amplifier.

Figure 3 demonstrates the normalized photon counting rates
(PCRs) as a function of the relative bias current to the switching cur-
rent (Ihias/Isw) for 20 nm-wide and 30 nm-wide nanowire detectors.
Isw values of the devices are measured to be 25.5 uA and 38.8 uA,
respectively, indicating a critical current density of ~20 MA/cm?*. We
also measure Iy for wider nanowires (40-100 nm width), which
show an excellent linear dependence on the wire width. The extrapola-
tion of the data indicates a negligible “dead” width of the wires within
the measurement errors, thereby confirming the absence of the edge
damage effect during the fabrication process in contrast to the results
reported by Charaev et al.”” As expected, detectors made of narrower
nanowires with reduced Isy show better saturated internal efficiencies
at a shorter wavelength. For the 20 nm-wide nanowire detector, we
observe a clear saturation plateau at a wavelength of 780 nm, while the
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FIG. 3. Normalized photon counting rates (PCRs) vs the relative bias current
(ias /Isw) measured with the 20 nm-wide and 30 nm-wide nanowire detectors for
varying wavelengths of photons. sy values of the nanowires are measured to be
25.5 A and 38.8 pA, respectively.

efficiency is only nearly saturated at a wavelength of 1050 nm. The
minor fluctuation in the curve corresponding to a wavelength of
780 nm is due to the polarization instability of the laser since the pho-
ton absorption of the nanowire is significantly dependent on the polar-
ization status of the incident photons. Neither the 20 nm-wide nor the
30 nm-wide nanowires show saturation behavior at a wavelength of
1550 nm. We attribute the inefficiency of the detectors to the possibly
larger diffusion coefficient (D) of the single-crystal MBE-NbN material
in comparison with sputtered'” or atomic-layer-deposited (ALD)****
poly-crystal NbN that has been utilized for the fabrication of high-
efficiency SNSPDs. As indicated by the theory of photon detection
mechanism based on hot-spot and vortex assistance,””*’ a larger D
allows faster diffusion of electrons, which favors a relatively low
“temperature” of the hot electrons, because the energy of absorbed
photons is confined to a relatively large volume at the initial stage of
hot-spot formation. This, in turn, reduces the internal efficiency of the
detectors owing to the decreased probability of superconducting state
collapse under the assistance of the vortex-antivortex pair, which
nucleates in the region with a less-suppressed superconducting order
parameter. However, we expect that by further reducing the MBE-
NbDN film thickness down to 2-3 nm, this effect could be compensated,
and saturated efficiency can be obtained at longer wavelengths with
relaxed nanowire widths up to > 100 nm, as recently demonstrated
with ultra-thin WSi and MoSi films.*"** The growth of high-crystal-
line-quality NbN films of 3nm thick or less is achievable by MBE
although a method to protect such thin films from oxidation upon
exposure to the ambient air is necessary and under investigation.
Future work will explore the suitability of such ultra-thin films for
SNSPDs.

In summary, we have demonstrated the first SNSPDs patterned
from MBE-grown single-crystal NbN thin films on AIN substrates.
The 20nm-wide SNSPDs show saturated internal efficiency at the
wavelength of 780 nm and near-saturation at 1050 nm. We expect that
single-crystal MBE-NbN could address the limited fabrication yield
problem, which conventional poly-crystalline-Nb(Ti)N detectors suf-
fer from, by removing the grain boundaries and thus reducing the
defect area in the film to the minimum level. It is also worth mention-
ing that the AIN-on-sapphire substrate, which the epitaxial growth of
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NbN relies on, is particularly attractive due to its potential of the on-
chip integration of SNSPDs with versatile AIN nanophotonic circuits.
The excellent optical functionalities of AIN, such as strong 72 /7
nonlinearity”’ and large electro-optic effect,”*” render NbN on AIN-
on-sapphire a very attractive material platform for realizing fully inte-
grated quantum photonic circuits with the generation, routing, active
manipulation, and the final detection of single photons on a single
chip.
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