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Unified ballistic transport relation for anisotropic dispersions and generalized dimensions
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An analytical formula is derived for particle and energy densities of fermions and bosons, and their ballistic
momentum and energy currents for anisotropic energy dispersions in generalized dimensions. The formulation
considerably simplifies the comparison of the statistical properties and ballistic particle and energy transport
currents of electrons, acoustic phonons, and photons in various dimensions in a unified manner. Assorted
examples of its utility are discussed, ranging from blackbody radiation to Schottky diodes and ballistic tran-
sistors, quantized electrical and thermal conductance, generalized ballistic Seebeck and Peltier coefficients, their
Onsager relations, the generalized Wiedemann-Franz law and the robustness of the Lorenz number, and ballistic
thermoelectric power factors, all of which are obtained from the single formula. The new formulation predicts a
thermoelectric power factor behavior of three-dimensional Dirac bands which has not been observed yet.
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I. INTRODUCTION

The need for analytical expressions for particle, energy,
and current densities arises frequently in various branches
of science and engineering. They are typically handled sep-
arately for each case of interest. This is because the densities
depend on the quantum statistics of the type of particle or
field of interest (i.e., whether they are fermions or bosons),
on their specific energy dispersions (e.g., E = h̄2|k|2/2m or
E = h̄vF |k|), or the specific dimensionality under considera-
tion (e.g., d = 1, 2, 3). A single unified analytical expression
is found in this work for all the above densities and their
ballistic momentum and energy currents for anisotropic dis-
persions in the noninteracting ballistic transport regime. This
enables particle and energy densities, and ballistic particle and
energy transport currents of electrons, phonons, and photons
to be treated in a unified manner amplifying their similarities
and differences, the need for which has been advocated [1].
Although the discussion in this work is limited to electrons,
phonons, and photons, the results apply to ballistic transport
in general, such as that of ultracold atoms and molecular gases
(see, e.g., Ref. [2]).
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II. SETUP

For particles in a box of dimension d = 1, 2, 3 and vol-
ume Ld , wave-particle duality allows discrete wave vectors
ki = pi(2π/L) where pi = 0,±1, . . . are integers. The re-
sulting energy dispersion is written as E = [

∑d
i=1(αiki )2]

t
2 .

Here the type t = 1 represents linear (or conical) dispersion
with αi = h̄vi and t = 2 represents parabolic dispersion with
αi = h̄/

√
2mi, where h̄ = h/2π is the reduced Planck’s con-

stant. Table I shows that this formulation captures anisotropic
dispersions via direction-dependent wave velocities vi (e.g.,
anisotropic, nondispersive, and transparent optical or acoustic
media) or effective masses mi (e.g., the electron energy band
structure of the semiconductor silicon). Although the table
and the following discussion is restricted to massless Dirac-
like and massive parabolic dispersions, the formulation holds
for other t . Extensions to other dispersions ought to be feasible
along similar lines.

“Source” (1) and “drain” (2) reservoirs, characterized by
dimensionless parameters η1 = β1μ1 and η2 = β2μ2 are con-
nected to the box of particles of dimension d on opposite faces
of dimension d − 1 as shown in Fig. 1. Here β = (kbT )−1,
where kb is the Boltzmann constant. The chemical potentials
μ1 and μ2 and temperatures T1 and T2 of the source and drain
may in general be different. The particles in the source and
drain reservoirs follow the equilibrium distribution functions
f±(E ) = 1/{exp[β(E − μ)] ± 1} with + for fermions and −
for bosons with the corresponding chemical potential and
temperature.

The particles in the box are in quasi-equilibrium with
two reservoirs via ballistic transport; for example, parti-
cles injected from the source share the same distribution as
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TABLE I. Generalized energy dispersion in d dimensions.

E = [ ∑d
i=1(αiki )2

] t
2

t αi d = 1 d = 2 d = 3

Conical 1 h̄vi h̄vF k1 h̄
√

(v1k1)2 + (v2k2)2 h̄
√

(v1k1)2 + (v2k2)2 + (v3k3)2

Parabolic 2 h̄√
2mi

h̄2k2
1

2m1

h̄2k2
1

2m1
+ h̄2k2

2
2m2

h̄2k2
1

2m1
+ h̄2k2

2
2m2

+ h̄2k2
3

2m3

the source. Let x1 denote the coordinate along which the
potential difference is applied across the source and drain
reservoirs. The generalized current injected from reservoir
1 flowing in the positive x1 direction is given by J1 =
gL−d

∑
[vg1(k)]aEb f±(E ) in each valley of the dispersion.

Here vg1(k) = (h̄−1∇kE ) · x̂1 is the group velocity projected
along the x1 coordinate, a and b may be fractions or integers,
and g combines degeneracies (e.g., valley, spin, polarization)
and physical constants (e.g., electron charge, mass). The sum
runs over all k states in the dispersion such that k1 > 0. Choice
of exponents a and b of 0 or 1 describe scalar particle densities
or vector current densities. The subscript in Ji denotes the
reservoir from which the current is injected. The net current
flowing from reservoir 1 to reservoir 2 along the positive x1

direction is Jnet = J1 + J2 for scalar densities (e.g., particle
density or energy density) and Jnet = J1 − J2 for vector cur-
rent densities (e.g., particle current densities or energy current
densities). The parameters β and μ in f± are dictated by the
respective reservoirs, and the group velocity neglects Berry-
phase contributions.

III. MAIN RESULT

The generalized current J1 can be recast as a linear combi-
nation of sums of the type Iu,s

d,t = ∑
�k1

ku
1Es f±(E ) that run

over grid points in the d-dimensional hemisphere �k1 for
k1 � 0. This converts to the integral

Iu,s
d,t =

∫ ∞

k1=0

∫ ∞

k2=−∞
· · ·

∫ ∞

kd =−∞

dk1dk2 · · · dkd(
2π
L

)d
ku

1Es f±(E ).

(1)

Substituting αiki → ki and splitting off k1 using
k2

0 = k2
1 + k̃2 where k̃2 = k2

2 + · · · + k2
d , then passing

into spherical coordinates dd−1k̃ = Sd−2k̃d−2dk̃ where
Sd−1 = 2πd/2/�(d/2) and �(. . .) is the Gamma function, this

FIG. 1. Fermionic or bosonic systems whose ballistic transport
is explored in this work. The “particles” may be electrons, photons,
phonons, or atoms or molecules in a potential that produces either a
parabolic or conical energy eigenvalue dispersion with momentum.

becomes

Iu,s
d,t = Sd−2

(2π )dαu
1

(∏d
i=1 αi

)
/Ld

×
∫ ∞

0
dk1ku

1

∫ ∞

k1

dk0k0
(
k2

0 − k2
1

) d−3
2 Es f±(E ), (2)

which upon switching the order of integration evaluates to the
exact closed form

Iu,s
d,t =

( L

λdB

)d 1

βs
( λdB1

2
√

π

)u

�
(

u+1
2

)
�

(
s + d+u

t

)
t
√

π�
(

d+u
2

) F±
s+ d+u

t −1
(η),

(3)

where λd
dB = λdB1 · · · λdBd = (4π )d/2(α1α2 · · · αd )βd/t , and

λdBi = √
4παiβ

1/t is the generalized anisotropic thermal
de Broglie wavelength in the direction i that characterizes
the spatial spread of the wave packet carrying the cur-
rent. For example, λdBi = h/

√
2πmikbT for parabolic (t =

2) and λdBi = hvi/
√

πkbT for Dirac-like (t = 1) dispersion.
F±

j (η) = 1
�( j+1)

∫ ∞
0 dx x j

exp [x−η]±1 is the Fermi-Dirac or Bose-
Einstein integral [3]. Although Eq. (2) is not defined for
d = 1, Eq. (3) holds for all d .

The generalized current in terms of Eq. (3) therefore

is J1 = gL−d
∑

[vg1(k)]aEb f±(E ) = g/Ld (tα2
1/h̄)aI

a,b+a− 2a
t

d,t ,
which takes the compact form

Ja,b
d,t = g

1

λd
dBβb

(
λdB1

hβ

)a

Ca,b
d,t F±

j (η), (4)

which is the main result of this work. Ja,b
d,t is an explicit closed

formula for J1. Physically, this is the desired single expres-
sion for the density and current of particles, momentum, or
heat, carried by both fermions and bosons flowing in the x1

direction and injected from reservoir 1. Here a and b are
the exponents of the velocity and energy. j = a + b + r − 1,

r = d−a
t , and Ca,b

d,t = �( 1+a
2 )�( j+1)

(t
√

π )1−a�( a+d
2 )

are constants that depend

in a simple and compact way on the dimension d , band-
structure type t , and type of current (e.g., particle, momentum,
heat, etc.) via the whole numbers (a, b). The four numbers
(d, t, a, b) via Eq. (4) thus yield all currents.

The interpretation of Eq. (4) as a generalized current den-
sity becomes transparent by identifying it as a product of the
following quantities: g, which represents physical constants
and/or degeneracies, 1/(λd

dBβb), which is dimensionally the
(energy)b/volume, (λdB1/hβ )a, which is dimensionally the
(velocity)a, Ca,b

d,t , which is a dimensionless constant of order 1
for choices of {d, t, a, b}, and the dimensionless Fermi-Dirac
or the Bose-Einstein integral F±

j (η). Since this is a general
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formulation for ballistic transport, we expect it to both unify
previously known transport phenomena in new light, and also
predict new phenomena. We highlight both aspects in the rest
of this work.

IV. LOW-TEMPERATURE ASYMPTOTICS

To highlight the utility of the unified formalism, we first
explore the low-temperature limits of generalized fermion
and boson currents. For example, the ballistic charge current
(a = 1, b = 0) in parabolic bands (t = 2) in d dimensions for
fermions is obtained by choosing F+ in Eq. (4) as

J1,0
d,2 = q

(
kbT

h

)(
2πmkbT

h2

) d−1
2

F+
d−1

2

( μ

kbT

)
,

which in the limit of a highly degenerate fermion distribution
is

J1,0
d,2 (T � μ/kb) = q

hd
(2πm)

d−1
2

μ
d+1

2

�
(

d+1
2

)
×

[
1 + π2

6

�
(

d+1
2

)
�

(
d−1

2

)(
kbT

μ

)2]
,

indicating a T 2 dependence. While yielding the transport
coefficients explicitly for different dimensions d , the above
low-temperature limit of ballistic charge current shows that
this T 2 dependence is independent of the dimensions. The
independence of the J ∼ T 2 dependence actually is seen to
extend beyond the dimensionality to other ballistic currents,
which include heat or energy currents with a general (a, b)
and also to other dispersions (all t), because when expanded at
low temperatures for fermions for μ > 0 up to O(T 2), Eq. (4)
gives

Ja,b
d,t

(
T � μ

kb

)
= g(4π )

a−d
2 αa

1Ca,b
d,t

(α1α2 · · · αd )ha

μ j+1

�( j + 1)

×
[

1 + π2

6
j

(
kbT

μ

)2]
, (5)

which guarantees the same temperature dependence for all
dimensions d , as well as for all currents (a, b) and types of
band structures.

Unlike the “universal” T 2 dependence that results from
the Sommerfeld expansion for all fermion currents in the
degenerate limit, that of bosons depends on the dimensions,
band structure, and the type of current. Bose-Einstein statistics
enforces η → 0 as T → 0 for all dimensions [4]. In the de-
generate limit the generalized bosonic current obtained from
Eq. (4) is

Ja,b
d,t (T → 0) = g(4π )

a−d
2 αa

1Ca,b
d,t

(α1α2 · · ·αd )ha
(kbT ) j+1ζ ( j + 1), (6)

where ζ (. . .) is the zeta function. As an example the ther-
mal energy density (a = 0, b = 1) stored in long-wavelength
acoustic phonons with a linear dispersion (t = 1) in a d-
dimensional crystal is J0,1

d,1 (T → 0) ∝ T d+1, the specific case

of Ja,b
d,t (T → 0) ∝ T a+b+ d−a

t , which leads to a heat capacity
≈T d . We now remove the low-temperature restriction to sys-
tematically illustrate with assorted examples the versatility

of the new formulation in unifying the treatment of several
disparate physical phenomena across dispersions and dimen-
sions, and in predicting new phenomena.

A. Particle densities (a = 0, b = 0)

From Eq. (4) the generalized particle density for various
statistics, dispersions, and dimensions is obtained with a =
0, b = 0:

nd,t = 2J0,0
d,t = 2g

λd
dB

�
(

d
t

)
t�

(
d
2

)F±
d
t −1

(η). (7)

The number density of photons of g = 2 polarizations in
thermal equilibrium with a radiation source at temperature
T is obtained by using F−

d
t −1

(0) in Eq. (7). The chemi-

cal potential μ = 0 for photons which are bosons whose
particle number is not conserved in thermodynamic equilib-
rium with matter at temperature T . In d = 3 it is 2J0,0

3,1 =
16πζ (3)( kbT

hc )3 where c is the speed of light, and in d = 2
it is 2J0,0

2,1 = 2π2( kbT
hc )2. Because the photon has a positive

branch dispersion, no energy gap, and Bose-Einstein statistics,
no mass-action law exists, unlike for electrons and holes in
semiconductors.

For a t = 2 parabolic conduction-band energy disper-
sion with E = Ec + ∑d

i=1(αciki )2 with spin degeneracy gs =
2, valley degeneracy gc, and the +ve sign for fermions,
Eq. (7) gives the generalized volume density of electrons in
d dimensions nd = 2J0,0

d,2 = Nd
c F+

(d/2)−1[(μ − Ec)/kbT ] where

the band-edge density of states Nd
c = 2gc/λ

d
dBc is twice

the inverse of the conduction band edge thermal de
Broglie volume [5,6]. The equivalent d-dimensional distri-
bution for the valence band E = Ev − ∑d

i=1(αviki )2 is pd =
Nd

v F+
(d/2)−1[(Ev − μ)/kbT ]. For an energy gap Ec − Ev = Eg,

the d-dimensional mass-action law governing equilibrium
carrier statistics is nd pd = n2

id which is obtained with nid ≈
(Nd

c Nd
v )1/2 exp[−Eg/2kbT ].

For t = 1 with a conical energy dispersion E =
h̄vF |k|, the fermion density per valley is nd (μ) = 2J0,0

d,1 =
(4/λd

dB)[�(d )/�(d/2)]F+
d−1(μ/kbT ). If the Fermi level is at

the Dirac point μ = 0 for metallic carbon nanotubes (d = 1),
monolayer graphene (d = 2), and HgCdTe (d = 3), the intrin-
sic thermally generated electron density in each valley is ndi =

4
(2

√
π )d ( kbT

h̄vF
)d ( �(d )

�(d/2) )F+
d−1(0), varying with temperature as

ni ∼ T d in d dimensions. This sets the lowest carrier density
(and hence highest electrical resistivity) that may be reached
in such materials at any temperature. For E = ±h̄vF |k| where
two cones touch, the sum of electron and hole densities is
nd (+μ) + nd (−μ), resulting in a corresponding mass-action
law for Dirac dispersions. The temperature dependence of the
intrinsic electrons or holes densities for conical band structure
is therefore identical to the density of photons.

B. Energy densities (a = 0, b = 1)

The volume density of energy stored in a photon field
in equilibrium with a radiation source of temperature T is
2J0,1

d,1 , which for d = 3 is 4π5(kbT )4

(hc)3 , with corresponding results
for other dimensions. For long-wavelength acoustic phonons,
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the thermal energy stored in a solid is similarly obtained
by choosing g = 1 for each branch of sound velocity vs via
αi = h̄vs, with t = 1 and a = 0, b = 1. This gives the thermal

energy density 2J0,1
3,1 = ( 4π5k4

b
15h3v3

s
)T 4, and a heat capacity per

atomic density n of

Cv

n
= 2∂J0,1

3,1 /∂T =
(

16π5k4
b

15h3v3
s

)
T 3,

the T → 0 limit of the Debye-T 3 law [5,7].
Because J0,0

d,t is the particle density and J0,1
d,t is the energy

density, their ratio

ud,t = J0,1
d,t

J0,0
d,t

= d

t
kbT

F±
d
t

(η)

F±
d
t −1

(η)
≈ d

kbT

t
(8)

is the generalized law of the equipartition of energy. For
−η 	 1, the Boltzmann approximation is valid for both
fermions and bosons. For particles in d dimensions with mass
and t = 2, there is kbT/2 energy per dimension. For linear
dispersion (t = 1), on the other hand, there is kbT energy per
dimension as identified by Tolman [8] in the relativistic limit
and investigated further for other dispersions [9,10].

For degenerate fermions characterized by η 	 +1, the
equilibrium average energy is ud ≈ μd/(d + t ) and the re-
sulting electronic specific heat cv = ∂J0,1

d,t /∂T = gπ2d
3t2

kbT
μ

nd kb

if d/t 
= 1 and cv = gπ2

3
kbT
μ

nd kb if d/t = 1 [8,11]. For ex-
ample, for electrons in metals with d = 3, g = 2, and t = 2,
cv = π2

2
kbT
μ

n3d kb, and for degenerately doped graphene with

d = 2, g = 4, and t = 1 is cv = 8π2

3
kbT
μ

n2d kb.

C. Ballistic charge currents (a = 1, b = 0)

Suppose a solid with electronic band structure valleys of
the types of Table I is connected to two reservoirs held at the
dimensionless potentials η1 and η2. By setting g = 2q where
q is the electron charge of spin degeneracy =2, a = 1, b = 0,
while using f + for fermions, Eq. (4) yields the charge current
density for each valley in quasi-equilibrium with the source
reservoir:

J1 = J1,0
d,t = 2q2

h

λdB1

λd
dB

�(1 + r)

�
(

d+1
2

) kbT

q︸ ︷︷ ︸
J0

F+
r (η1), (9)

where r = (d − 1)/t . The difference Jnet = J1 − J2 =
J0[F+

r (η1) − F+
r (η2)] is the net macroscopic current,

where the characteristic J0 depends on t , d , and λdB and
is independent of the potential difference across the terminals.

The generalized form enables direct computation of bal-
listic currents in diodes and transistors of various dimensions
and band structures. Applying Eq. (9) to a Schottky diode of
electron barrier height qφb between a metal and a semiconduc-
tor with anisotropic band structure of dispersion type t = 2
yields a generalized current density ∝[F+

d−1
t

(η1) − F+
d−1

t

(η2)]:

Jschottky ≈ 2q(2πme)
d−1

2 k
d+1

2
b

hd︸ ︷︷ ︸
Ad,2

fd T
d+1

2 e− qφb
kbT

(
e

qV
kbT − 1

)
, (10)

for β(η1 − η2) = qV in the limit of −η1,−η2 	 1 as is typ-
ically the case in experiments. The case for d = 3 was first
derived by Bethe [12]; Ad,2 is the d-dimensional Richard-
son coefficient, and the dimensionless form factor fd =∏

i 
=1

√
mi/me accounts for band structure anisotropy by ex-

cluding the mass component in the direction of transport.
For three-dimensional (3D) silicon, which has six valleys of

the type E = Ec + h̄2

2 ( k2
x

ml
+ k2

y

mt
+ k2

z

mt
) along the 100 axis in k

space, the form factor for d = 3 current along the 100 axis
is f3 = 2mt +4

√
ml mt

me
[13,14] where the form factor is obtained

from the 100 projections for each of the six valleys. The char-
acteristic J0 of Eq. (9) is the reverse saturation current density
in d dimensions for the diode relation given by Eq. (10). The
formulation presented here therefore generalizes and extends
the recent work of Ang emphet al. [15], which found that
the lateral two-dimensional (2D) Schottky reverse saturation
current scales universally with temperature as ln(J0/T 3/2) ∝
−1/T . This result is extended to d-dimensional ballistic
Schottky diodes using our formulation for J0 in the general-
ized Richardson formula:

ln

(
J0

T
d+1

2

)
= ln (Ad,2 f ) − qφb

kbT
, (11)

yielding for d = 2 the ln(J0/T 3/2) ∝ −1/T dependence of
2D lateral Schottky heterojunctions. For example, a lateral
monolayer NbSe2/WSe2 junction forms a 2D-2D ballistic
Schottky diode for which the current is

Jschottky ≈ A2,2

√
m�

me
T

3
2 e− qφb

kbT
(
e

qV
kbT − 1

)
for an isotropic 2D band structure. The ballistic current-
voltage characteristics of Schottky diodes in d dimensions
calculated from the unified formula is shown in Fig. 2 at
300 K. The formulation indicates the ranges of barrier heights
and voltages in which the signature of the dimensionality
should be imprinted in the variation of the ballistic current
with temperature, and therefore experimentally measurable.

Equation (9) also applies for ballistic electron transport
in two-terminal resistors, or three-terminal field-effect tran-
sistors (FETs). For example, for a 2D electron-gas channel
with d = 2 and band-structure type t = 2, the current per
unit width per valley is J = 2q2

h
1

λdB

kbT
q [F+

1/2(η1) − F+
1/2(η2)], in

Natori’s form [16]. For band-structure type t = 1 and d = 2
encountered in monolayer graphene or surface bands of topo-
logical insulators, the current is J = 2q2

h
2√

πλdB

kbT
q [F+

1 (η1) −
F+

1 (η2)]. The one-dimensional (1D) ballistic current per val-

ley for d = 1 is J = 2q2

h
kbT

q ln( 1+eη1

1+eη2
), which in the limit

η1, η2 	 +1 typically encountered in experiments reduces to
the Landauer limit [17] given by J = 2q2

h V , indicating the
conductance J/V is quantized to 2q2/h regardless of the type
of band structure. For ballistic currents for t = 2, simultane-
ously fixing the total d-dimensional fermionic density nd =
J0,0

d,t (η1) + J0,0
d,t (η2) (say via capacitive gate control) requires a

self-consistent solution for η1 and η2 for charge and current,
resulting in the saturation of the ballistic current beyond a
certain voltage difference between the source and drain. This
is the hallmark of ballistic transistors that provide electronic
gain for signal amplification, and switching for digital logic.
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FIG. 2. Panels (a)–(c) show representative 300 K J-V characteristics of metal-semiconductor (M, S) Schottky junctions in one, two, and
three dimensions, respectively, with qφB = 0.7 eV where the semiconductor has parabolic dispersion (t = 2). The solid curve is the logarithmic
scale plot with axis on the left and the dashed curve is the linear scale plot with axis on the right. (d) Jd (T )/Jd (300 K) vs temperature for a
small barrier (qφB ≈ 0.1 eV) and small positive bias (≈0.1 V) showing a T

d+1
2 dependence for T < 300 K. (e) Temperature dependence of

Jd (T )/Jd (300 K) converges for different dimensions for appreciable barrier heights and voltages.

D. Ballistic heat currents (a = 1, b = 1)

The heat current density is obtained directly from the en-
tropy in the ballistic case using a Landauer approach (see,
for example, Ref. [18]) or in the scattering-limited diffusive
case using the Boltzmann approach in the relaxation-time
approximation (see, for example, Ref. [19]). The ballistic
heat current from an electrode is Q = gL−d

∑
vg1(k)(E −

μ) f±(E ), where μ is the chemical potential and T is the
temperature of that electrode. The generalized ballistic heat
current density in quasi-equilibrium with the source reservoir
is then obtained from Eq. (4) as Q1 = J1,1

d,t − μ1J1,0
d,t :

Q1 = gk2
b

h

�(r + 1)

�
(

d+1
2

) λdB1

λd
dB

T 2[(1 + r)F±
r+1(η1) − η1F±

r (η1)],

(12)
and the net heat current density is Q = Q1 − Q2.

Since μ = 0 for bosons whose particle number is not con-
served, for t = 1 and vi = c the net heat current with f−
becomes

Q1 − Q2 = gπ
d−1

2 kd+1
b

hd cd−1

�(d + 1)

�
(

d+1
2

) F−
d (0)[T d+1

1 − T d+1
2 ],

(13)

which is a generalized d-dimensional radiative cooling law.
For a blackbody source at temperature T1 = T radiating in
d = 3 dimensions and g = 2 polarizations, Eq. (13) yields

Q = ( 2π5k4
b

15c2h3 )T 4. This is the Stefan-Boltzmann radiation law
[20,21], a spectral integral over the Planck blackbody radi-
ation density in the photon field. The corresponding currents

for blackbody radiators in d = 2 is J1,1
2,1 = ( 8ζ (3)k3

b
ch2 )T 3 and d =

1 is J1,1
1,1 = ( π2k2

b
3h )T 2. The case of d = 1 is special since it does

not depend on the speed of light; indeed, it is independent of
the energy dispersion altogether because the velocity cancels
the density of states. Identical behavior exists for phonons and
electrons, as discussed next.

For each branch of acoustic phonons, Eq. (13) also gives
the ballistic heat current between electrodes, with the speed
of light replaced by the corresponding sound velocity. When
the drain electrode is at T2 = 0 K, the d = 1 heat current
by an acoustic-phonon branch of polarization g = 1 is J1,1

1,1 =
(π2k2

b/6h)T 2, identical to the photon current per polarization.
Although the ballistic phonon heat currents depend on tem-
perature nonlinearly, for T2 = T0 and a slightly hotter source
at T1 = T0 + T , the heat current is

Q ≈ gπ
d−1

2 kd+1
b

hdvd−1

�(d + 2)

�
(

d+1
2

) F−
d (0)T d

0 T, (14)

which is linear in temperature difference, Q = GT . For
d = 1 the thermal conductance quantum G0 = π2k2

bT/(3h)
is obtained. This was theoretically anticipated [22,23] and
subsequently experimentally observed [24].

Because for electrons μ 
= 0, Eq. (12) gives a heat current
dependent nonlinearly on both μ and T of the source and drain
reservoirs. For small differences, for t = 2 dispersion and d =
1 to leading order in η = βμ 	 1 it is

Q ≈ gk2
bπ

2

6h

(
T 2

1 − T 2
2

) − g

2h

(
μ2

1 − μ2
2

)
, (15)

which when linearized around a temperature T and μ1 = μ2

gives the same heat conductance quantum π2k2
bT/(3h) per

spin channel as for photons and phonons. In spite of the
cancellation of the group velocity and the density of states
in d = 1, the heat conductance quantum due to electrons
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FIG. 3. Ballistic power factor in different dimensions plotted as a function of the Fermi level location via the dimensionless parameter
η = (EF − EC )/kbT at 300 K. The dotted curve is the power factor for materials with conical dispersion E = h̄vF |k| with vF = 106m/s and
solid curve is the power factor for parabolic dispersion with E = h̄2k2/2m with m = 0.2me. The arrows on the top show the η where the power
factor shows maximum for both dispersions. Inset of Fig. 3(b) shows the conical and parabolic E − k band structures with the position of EF

for maximum power factor.

derives from its fermionic statistics yet is identical to the heat
conductance quantum of phonons and photons that follow
bosonic statistics. This strange similarity was recognized in
Refs. [25–27], and Haldane’s fractional exclusion statistics
[28,29] was invoked to explain its possible origin [30]. The
similarity of the 1D energy conductance quantum as a phys-
ical quantity independent of bosonic or fermionic statistics
arising in the formulation here is traced to the following iden-
tities connecting the Fermi-Dirac and Bose-Einstein integrals:

F−
1 (0) = π2

6
= lim

η→∞

[
F+

1 (η) − [F+
0 (η)]2

2F+
−1(η)

]

= lim
η→∞

[
F+

1 (η) − ηF+
0 (η) + η2

2
F+

−1(η)

]
. (16)

Unlike photons and phonons though, the electron chemical-
potential difference also drives an energy current, which is
captured well in the generalized linear transport coefficients.

E. Linear response coefficients

Linearizing the above exact generalized formulations
for ballistic transport for small differences in the reser-
voir chemical potentials μ1 − μ2 = μ and temperatures
β1 − β2 = β brings correlations between particle and en-
ergy currents into sharper focus. Instead of linearizing the
distribution function (e.g., see Ref. [31] for ballistic and
diffusive thermoelectric coefficients), here the unified gen-
eralized currents embodied by various choices of (a, b) in
Eq. (4) are expanded to linear order Ja,b

d,t ≈ ga,b
μ μ + ga,b

β β

around the average chemical potential μ0 = (μ1 + μ2)/2
and the average temperature T0 given by β0 = 1/kbT0 =
(β1 + β2)/2. The linear coefficients are directly obtained
as ga,b

μ = (∂Ja,b
d,t /∂μ)|μ=μ0 and ga,b

β = (∂Ja,b
d,t /∂β )|β=β0 and

mapped to the traditional forms J = L11V + L12T and
Q = L21V + L22T , where J = J1,0

d,t is the charge current

density and Q = J1,1
d,t − μ0J1,0

d,t is the heat current density in
the linear-response regime. Instead of the coefficients Li j ,
the generalized linear coefficients obtained in experiments
are the resistivity ρ = σ−1 = L−1

11 , the Seebeck coefficient
S = L12/L11, the Peltier coefficient � = L21/L11, and the

electronic thermal conductivity κ = L22 − L12L21/L11. The
ballistic linear-response coefficients obtained from Eq. (4) are

ρ = σ−1 =
(

g0q2

h

λdB1

λd
dB

�(r + 1)

�
(

d+1
2

) F+
r−1(η)

)−1

,

S = −kb

q

[
η − (r + 1)

F+
r (η)

F+
r−1(η)

]
,

� = ST0,

κ = g0k2
bT0

h

λdB1

λd
dB

�(r + 1)

�
(

d+1
2

)
×

[
(r + 1)(r + 2)F+

r+1(η) − (r + 1)2 (F+
r (η))2

F+
r−1(η)

]
. (17)

where g0 is the product of spin and valley degeneracies, η =
μ0β0, and r = (d − 1)/t generalizes the expressions for the
several band-structure types and dimensions. A conceptual
difference of the ballistic coefficients is that the diffusive
coefficients represent local properties, whereas the ballistic
ones represent terminal (or system) properties, as discussed
lucidly for d = 1 by Butcher in Ref. [32]. The quantization
of both σ and κ in d = 1 for η 	 +1 is explicit for all t in
Eq. (17). The Onsager symmetry relation � = ST0 is seen
to remain valid for the ballistic situation for all d, t . The
generalized Lorenz number Ld,t = κ/(σT0) obtained from
Eqs. (17) goes to Ld,t → π2

3 ( kb
q )2 in the degenerate fermion

limit of βμ 	 1 for all d and t , highlighting the robustness
of the Wiedemann-Franz law in the ballistic limit [32,33]. In
the nondegenerate limit of −βμ 	 1 relevant for semicon-
ductors, Ld,t → ( d−1

t + 1)( kb
q )2.

The generalized formulation of Eqs. (17) brings a feature
of the dependence of the ballistic power factor (S2σ ) on di-
mensions and band structures into sharp focus, as highlighted
in Fig. 3. Because the Seebeck coefficient S ∼ − kb

q
EF −Ec

kbT
decreases with increasing EF , whereas σ increases with in-
creasing EF , conventional wisdom states that the power factor
product S2σ should exhibit a maximum somewhere near EF =
Ec. As Fig. 3 shows, for all d, t the ballistic thermoelectric
power factor S2σ indeed shows a maximum near μ = 0, ex-
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TABLE II. Generalized ballistic currents in d dimensions for fermions (+) and bosons (−).

[t = 1: E = h̄vF |k|] &
[
t = 2: E = h̄2 |k|2

2m

]
F±

j (η) = 1
�( j+1)

∫ ∞
0 dx x j

exp [x−η]±1 and F±
0 (η) = ± ln [1 ± eη]

Ja,b
d,t , with η = μ

kbT Particle density Energy density Particle current Heat current
(d, t ) ↓ (a, b) → (2)J0,0

d,t (2)J0,1
d,t J1,0

d,t J1,1
d,t − μJ1,0

d,t

(1,1) 2g
( kbT

hvF

)
F±

0 (η) 2g (kbT )2

hvF
F±

1 (η) gkbT
h F±

0 (η) g (kbT )2

h [F±
1 (η) − ηF±

0 (η)]

(2,1) 2πg
( kbT

hvF

)2
F±

1 (η) 4πg (kbT )3

(hvF )2 F±
2 (η) 2gvF

( kbT
hvF

)2
F±

1 (η) 2g (kbT )3

h2vF
[2F±

2 (η) − ηF±
1 (η)]

(3,1) 8πg
( kbT

hvF

)3
F±

2 (η) 24πg (kbT )4

(hvF )3 F±
3 (η) 2πgvF

( kbT
hvF

)3
F±

2 (η) 2πg (kbT )4

h3v2
F

[3F±
3 (η) − ηF±

2 (η)]

(1,2) g
( 2πmkbT

h2

) 1
2 F±

− 1
2
(η) gkbT

2

( 2πmkbT
h2

) 1
2 F±

1
2

(η) gkbT
h F±

0 (η) g (kbT )2

h [F±
1 (η) − ηF±

0 (η)]

(2,2) g
( 2πmkbT

h2

)
F±

0 (η) g2kbT
2

( 2πmkbT
h2

)
F±

1 (η) gkbT
h

( 2πmkBT
h2

) 1
2 F±

1
2

(η) g (kbT )2

h

( 2πmkbT
h2

) 1
2
[

3
2 F±

3
2

(η) − ηF±
1
2

(η)
]

(3,2) g
( 2πmkbT

h2

) 3
2 F±

1
2

(η) g3kbT
2

( 2πmkbT
h2

) 3
2 F±

3
2

(η) gkbT
h

( 2πmkBT
h2

)
F±

1 (η) g (kbT )2

h

( 2πmkbT
h2

)
[2F±

2 (η) − ηF±
1 (η)]

cept for the d = 3, t = 1 conical electron energy dispersion.
For this case, it increases monotonically with μ and saturates

to S2σ → ( gπ2k4
b

18h̄3v2
F

)T 2
0 . This behavior has neither been iden-

tified theoretically, nor observed experimentally in the past.
This dependence of the power factor on the dimensionality
warrants an experimental search for the monotonic increase
with the Fermi level. Such behavior could potentially be ob-
served in the bulk states of 3D topological Dirac semimetals
such as Na3Bi [34] and Cd3As2 [35]. This prediction emerged
from the ballistic transport study and highlights an example
of the value of the generalized d-dimensional formulation for
various band structures that is achieved in this work.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The generalized ballistic current expression obtained in
Eq. (4) is found to be a versatile tool to compute and com-
pare in a unified manner the particle and energy densities,
charge and energy currents, thermoelectric coefficients, and
more for fermions and bosons of various energy dispersions.
Such a compact formulation is well suited for optimization
problems, in which the extrema of one or more densities,
currents, transport coefficients, or their combinations need to

be determined as a function of the dimensionality, type of
dispersion, effective masses, wave velocities, etc. To facilitate
such studies, the generalized ballistic currents Ja,b

d,t for various
a, b are summarized in Table II, and Table III shows the
linear-response coefficients.

The energy dispersion types are not restricted to the spe-
cific cases of t = 1, 2 discussed, or to integers. The ballistic
current expression may be extended for mixed dispersions
of the tight-binding type E = E0 + 2t cos ka ≈ E0 + 2t[1 −
(ka)2/2 + (ka)4/24 · · · ] near band edges, and to those that
involve kik j and ka

i + kb
j , as present in some realistic sys-

tems, and topologically nontrivial terms may be introduced.
Extending the formulation to multiterminal cases in the spirit
of the Landauer–Büttiker formalism [36,37], and especially
for generalized nonlinear response in a magnetic field for
various dimensions and dispersions is of high interest. So
is exploring the various nonlinear-response predictions for
ballistic electronic and thermoelectric transport phenomena.
Extension of this approach to ballistic particle and energy
transport in hetero-dimensional situations (mixed d), and for
mixed dispersions and statistics (e.g., plasmons or phonon-
polaritons) is also suggested as future work. The formulation
is not limited to electrons, photons, and phonons as discussed

TABLE III. Generalized ballistic linear-response coefficients in d dimensions.

η = μ0
kbT0

and g0 = (spin degeneracy)×(valley degeneracy). Note: The Peltier coefficient � = ST0 by the Onsager relation.

Resistivity Seebeck Coefficient Thermal Conductivity
(d, t ) ↓ ρ = σ−1 S κ

(1,1)
( g0q2

h
1

1+e−η

)−1 − kb
q (η − (1 + e−η ) ln[1 + eη])

g0k2
b T0

h (2F+
1 (η) − (1 + e−η ) ln2[1 + eη])

(2,1)
( 2g0q2

h

( kbT0
hvF

)
ln[1 + eη]

)−1 − kb
q

(
η − 2F+

1 (η)

ln[1+eη]

)
4g0kb

(kbT0 )2

h2vF

(
3F+

2 (η) − 2(F+
1 (η))2

ln[1+eη]

)
(3,1)

( 2πg0q2

h ( kbT0
hvF

)2F+
1 (η)

)−1 − kb
q

(
η − 3F+

2 (η)

F+
1 (η)

)
6πg0kb

(kbT0 )3

h3v2
F

(
4F+

3 (η) − 3
(F+

2 (η))2

F+
1 (η)

)
(1,2)

( g0q2

h
1

1+e−η

)−1 − kb
q (η − (1 + e−η ) ln[1 + eη])

g0k2
b T0

h (2F+
1 (η) − (1 + e−η ) ln2[1 + eη])

(2,2)
( g0q2

h ( 2πmkbT0
h2 )

1
2 F+

− 1
2
(η)

)−1 − kb
q

(
η − 3

2

F+
1
2

(η)

F+
− 1

2
(η)

) 3g0
4

k2
b T0

h ( 2πmkbT0
h2 )

1
2
(
5F+

3
2

(η) − 3
(F+

1
2

(η))2

F+
− 1

2
(η)

)
(3,2)

( g0q2

h ( 2πmkbT0
h2 ) ln[1 + eη]

)−1 − kb
q

(
η − 2F+

1 (η)

ln[1+eη]

)
2g0

k2
b T0

h ( 2πmkbT0
h2 )

(
3F+

2 (η) − 2
(F+

1 (η))2

ln[1+eη ]

)
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here and is applicable to molecular systems that undergo
ballistic motion. Ballistic electron transport in condensed-
matter systems is seen primarily in nanoscale structures,
which also have small numbers of particles, sometimes on
the verge of failing the large number requirements on which
traditional thermodynamic relations rest. The implications of
recently revealed nonequilibrium thermodynamics equalities
in nanoscale systems and on fluctuations of the densities, en-
ergies, and currents discussed here are therefore of significant
theoretical and practical interest [38,39].
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