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Introduction:

Schottky barriers in wide bandgap (WBG) semiconductors can sustain very large electric fields under reverse bias due
to the access of very large barrier heights (>1 eV) and the very high intrinsic breakdown field (>3 MV/cm) of WBG
semiconductors [1]. Under high surface electric-fields (E), the ideal reverse-bias leakage current (J) is dominated by
barrier tunneling rather than thermionic emission (TE), thus thermionic-field-emission (TFE) or field-emission (FE)
becomes the dominant mechanism [1][2]. Therefore, to accurately describe the reverse current over the entire surface
electric-field range, TFE and FE models are required in addition to the TE model.

We have recently developed a unified TE-TFE model that covers the entire TE and TFE regimes [3], however, the
model is not applicable in the FE regime, the same goes for all other stand-alone TFE models. On the other hand, the
well-known Murphy-Good FE model works well in the FE regime [2], but it is not applicable in the TFE regime. As
a result, a gap exists in the TFE-to-FE transition region, as illustrated in Fig. 1, where no good analytical model exists.
There has been an attempt to derive a unified TFE and FE model, however, the model is based on highly simplified
emission integral with questionable accuracy, and image-force lowering is ignored [4]. In this context, we present a
simple composite analytical model that covers the entire E-field range with excellent accuracy, with the use of an
empirically-derived extrapolation function in the TFE-to-FE transition region.

Methods:

The integral for the barrier tunneling current under reverse bias is analytical intractable in the TFE-to-FE transition
region [2]. To overcome this difficulty and knowing that the TE/TFE region and the FE region are well-described by
the unified TE-TFE model [1] and Murphy-Good FE model [2][5], respectively (see Fig. 1), we seek to find an
appropriate extrapolation function for the TFE-to-FE transition region. Based on the dominant exponential dependence
of the TFE and FE models, it can be shown that leading term of d(VE In Jy)/dE undergoes a transition from E3/2 to
E~3/2 in the TFE-to-FE transition region, which means that d(WE In Jg)/dE~E® in the transition region. This has
been confirmed empirically by numerical calculations, as shown in Fig. 2a. Thus, it is appropriate to adopt a linear
relationship between VE In Jp and E in the transition region, where the current is defined as Ji,aps (Fig. 3). The linear
coefficients therein are determined by two Ji values, J; and J,, calculated at the upper E-limit of the unified TE-TFE
model (Ejiy trg) and at the lower E-limit of the Murphy-Good FE model (Ejy;p, rg), respectively (see Fig. 1b). To
ensure good accuracy of the extrapolation function for Jy..,s, the conditions for E iy, rrg and Eyyy pg have been
modified with more strict requirements, as shown in Fig. 4. These modified conditions yield improved accuracy for
J; and J,, which in turn, enables a more accurate extrapolation function in the transition region.

Results and Discussion:

Comparisons between the composite TE-TFE-FE model relative to the reference numerical model [1] is shown in Fig.
5. The log error across the entire E-field range is within 2 dB (equivalent to a factor of 1.25) (Fig. 2¢). The first
derivative also shows very good agreement with the numerical model (Fig. 2b), indicating the extrapolation function
for Jians allows for a smooth transition between TFE and FE. We have used the composite model to analyze the
reverse leakage characteristics in near-ideal 4H-SiC SBDs [6] and Ga20s; SBDs [1]. Very good agreement between
experimental data and the composite model is observed across both the TE/TFE and the FE regimes, with the barrier
height as the only fitting parameter (Fig. 6). Such an accurate analysis over the entire temperature and surface electric-
field range is only possible with numerical calculations previously, as illustrated in Table I.

Conclusion: The composite TE-TFE-FE model successfully bridges the gap between the unified TE-TFE model and
the Murphy-Good FE model with a simple empirical extrapolation function, allowing for accurate modeling of the
Schottky barrier reverse current across the entire electric-field range. The closed-form and local nature of the composite
model allows for easy implementation in TCAD tools for device design and analysis.
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