Ultrawide bandgap semiconductor heterojunction p–n diodes with distributed polarization-doped p-type AlGaN layers on bulk AlN substrates

Shivali Agrawal,1,4,5 Len van Deurzen,2,15 Jimy Encomendero,3,4 Joseph E. Dill,2,16 Hsin Wei (Sheena) Huang,5,13 Vladimir Protasenko,1,6 Huili (Grace) Xing,5,6,7 and Debdeep Jena2,3,4,5,13

AFFILIATIONS
1Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
2School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
3Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
4Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
5Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA
6Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
7School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
8Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
9Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
10Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
11Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
12Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
13Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
14Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
15Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
16Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA

ABSTRACT

Ultrawide bandgap heterojunction p–n diodes with polarization-induced AlGaN p-type layers are demonstrated using plasma-assisted molecular beam epitaxy on bulk AlN substrates. Current-voltage characteristics show a turn-on voltage of \(V_{\text{bi}} \approx 5.5 \text{ V} \), a minimum room temperature ideality factor of \(n \approx 1.63 \), and more than 12 orders of current modulation at room temperature. A stable current operation of the ultrawide bandgap semiconductor diode is measured up to a temperature of 300 °C. The one-sided n–p heterojunction diode design enables a direct measurement of the spatial distribution of polarization-induced mobile hole density in the graded AlGaN layer from the capacitance-voltage profile. The measured average mobile hole density is \(p \approx 5.7 \times 10^{17} \text{ cm}^{-3} \), in close agreement with what is theoretically expected from distributed polarization doping. Light emission peaked at 260 nm (4.78 eV) observed in electroluminescence corresponds to interband radiative recombination in the n–AlGaN layer. A much weaker deep-level emission band observed at 3.4 eV is attributed to cation-vacancy and silicon complexes in the heavily Si-doped AlGaN layer. These results demonstrate that distributed polarization doping enables ultrawide bandgap semiconductor heterojunction p–n diodes that have wide applications ranging from power electronics to deep-ultraviolet photonics. These devices can operate at high temperatures and in harsh environments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0189419

Aluminum gallium nitride (AlGaN)-based p–n junction diodes are promising devices for advancing high-power electronics and deep-ultraviolet (UV) photonics. These applications are enabled by the following desirable properties of the AlGaN semiconductor alloy system: a large tunable direct energy bandgap (3.4–6.2 eV), high critical electric field (3–15 MV/cm), and high thermal conductivity (260–340 W/m K), among others. p-type doping is the major bottleneck in realizing a p-type region. Several allied limitations with using a high concentration of Mg in active regions include surface polarity inversion, Mg precipitation, surface segregation, self-compensating defects formation, memory effects, and increased frequency dispersion in diodes, among others. In the design of waveguides for deep-UV laser diodes, Mg-doped cladding layers are undesirable because they cause high Mg-induced optical losses that increase the threshold gain.

One way to overcome these challenges is to leverage the spontaneous and piezoelectric polarization of wurtzite III/V nitride semiconductors. Spatial compositional grading of AlGaN along the polar axis creates a fixed bulk three-dimensional (3D) polarization bound charge, and increased on-resistance in the diode p-type region. The large disparity between electron and hole carrier concentration and mobility causes an efficiency droop in light-emitting diodes (LEDs). Several limitations with using a high concentration of Mg in active regions include surface polarity inversion, Mg precipitation, surface segregation, self-compensating defects formation, memory effects, and increased frequency dispersion in diodes, among others. In the design of waveguides for deep-UV laser diodes, Mg-doped cladding layers are undesirable because they cause high Mg-induced optical losses that increase the threshold gain. 14
whose electric field enables the formation of mobile three-dimensional charges of opposite polarity. The use of such distributed polarization-doped (DPD) layers has played a key role in the demonstration of deep-UV laser diodes,15-18 LEDs,19,20 and power diodes.21-24 In this work, we create a DPD p-type layer by linearly grading down the AlGaN composition along the c direction of the crystal. The grading creates a three-dimensional hole gas.25-27 We use a one-sided n-/p heterojunction to measure the spatial density profile of the 3D hole gas. We also find that the resulting ultrawide bandgap heterojunction diode current–voltage characteristics exhibit close to unity ideality factor, stable high-temperature operation, and electroluminescence.

Space-charge profiling of DPD-based diodes grown on bulk AlN was recently reported in metal organic chemical vapor deposition (MOCVD) grown diodes.28 There are no reports of such measurements on molecular beam epitaxial (MBE) grown devices. MBE offers some differences from MOCVD, such as lower growth temperature, lower hydrogen incorporation, and the absence of memory effects, enabling precise dopant profiles and sharp heterointerfaces. While MBE grown two-dimensional (2D) hole gases were demonstrated on single-crystal AlN bulk substrates,29 polarization-induced 3D hole gases on bulk AlN have not been realized yet. In this study, we present an MBE grown quasi-vertical p-n diode that uses an undoped distributed polarization-doped layer for hole injection. We find an average mobile hole concentration of 5.7 × 10^{17} cm^{-3}, consistent with what is expected from spontaneous and piezoelectric polarization effects. These findings make unintentionally doped (UID) DPD-based diodes an attractive alternative to the conventional impurity-based pn diodes.

The diode heterostructures were grown in a nitrogen plasma-assisted Veeco Gen10 molecular beam epitaxy (MBE) system on c-plane single-crystal bulk AlN substrates. The substrates were subjected to two essential cleaning steps as described in detail elsewhere:30 (1) an ex situ cleaning using solvents and acids and (2) an in situ cleaning achieved through repeated cycles of Al adsorption and desorption, referred to as Al-assisted polishing. These steps eliminate the native surface oxides to enable high-quality homoepitaxy.

As shown in Fig. 1(a), a 500 nm thick AlN buffer layer was grown at a high temperature of T_{sub} ~ 1060 °C in Al-rich conditions to isolate the device layers from remaining substrate surface impurities. The subsequent AlGaN epilayer was grown under Ga-rich conditions at a lower substrate temperature of 880 °C to enhance Ga incorporation.

Excess metal was thermally desorbed at the end of each layer to ensure sharp heterojunctions. From bottom to top along the metal-polar growth direction, the targeted p–n heterostructure, as seen in Fig. 1(a), consists of (1) a 500 nm MBE grown AlN buffer layer, (2) a 400 nm Al_{0.35}Ga_{0.65}N layer with Si doping density N_{D} ≈ 3 × 10^{13} cm^{-2}, which resulted in a free electron density n ≈ 2 × 10^{19} cm^{-3} at room temperature from Hall-effect measurements, (3) an unintentionally doped (UID) DPD layer linearly graded from Al_{0.8}Ga_{0.2}N to Al_{0.6}Ga_{0.4}N over 300 nm, and followed by (4) a 50 nm heavily Mg-doped GaN capping layer to form the metal p-contacts. In the entire device stack, Mg impurity doping is only incorporated in the GaN p-contact layer and not in the Al containing UAVBG layers.

Following the epitaxy of the device heterostructures, the layers were fabricated into quasi-vertical diodes as indicated in Fig. 1(a) and shown in Fig. 1(b). First, circular device mesa were formed by chlorine-base inductively coupled plasma reactive ion etching (ICP-RIE) with a totaletch depth extending 100 nm into the n-type AlGaN layer. The device mesa diameters range from 20 to 400 μm. Then, n-type metal–semiconductor contacts were formed by electron beam evaporation of a V/Al/V/Au stack with thicknesses of 20/80/40/100 nm, which was subsequently rapid thermal annealed (RTA) at 800 °C for 60 s in an N₂ ambience. Finally, p-type metal–semiconductor Ni/Au contacts with thicknesses of 15/20 nm were deposited by electron beam evaporation and annealed by RTA at 450 °C for 30 s in an O₃ environment. A 20/100 nm Ti/Au metal stack was subsequently deposited by electron beam evaporation for probing. Electrical measurements were performed using a Keithley 4200A semiconductor parameter analyzer. Electroluminescence spectra were collected using a Princeton Instruments spectrometer with 2400 grooves/mm and a blaze wavelength of 240 nm. All measurements were performed on devices with a 104 μm diameter, unless specified otherwise. Figure 1(a) shows a cross-sectional view of the device, and Fig. 1(b) shows a scanning electron microscope (SEM) image of the fabricated device at a 45° tilt. The SEM was taken by a Zeiss ULTRA microscope at a 5 kV tilt. Figure 1(c) shows atomic steps on the top p-GaN layer of the as-grown sample with a root mean square roughness of 0.33 nm over 2 × 2 μm² scan area measured by atomic force microscopy (AFM), confirming step flow growth mode throughout the structure. The x-ray diffraction (XRD) scans in Fig. 1(d), performed using a...
Panalytical Empyrean system, show good agreement between the measured and simulated 20–ω XRD scans of the sample across the (002) diffractions. The actual Al compositions found from XRD are 2%–3% higher than the targeted structure. The reciprocal space map (RSM) around the asymmetric (105) diffractions in Fig. 1(e) shows that the AlGaN layers are fully strained to the AlN, while the GaN layer is relaxed and has an in-plane lattice strain of approximately 1.9%.

Figure 2(a) shows the room temperature current–voltage characteristics of the diode. The reverse bias leakage current detection is limited by the 100 fA noise floor of the equipment until approximately –8 V, beyond which it increases gradually. In the forward bias, the diode turn-on voltage is approximately 5.5 V, and a specific on-resistance of 0.9 Ω cm² at 6 V. The maximum measured forward current density of 1.3 kA/cm² at ∼ 20 V was limited by the current limit of the equipment. The measured 12 orders of current modulation (limited by the measurement noise floor and compliance) illustrate the capability of the AlGaN heterojunction p–n diode without Mg doping in the AlGaN layers.

Figure 2(b) shows the turn-on behavior in linear scale and the corresponding ideality factor. The diode forward current is

\[J_f \approx J_0 \exp\left(\frac{q V}{\eta k T}\right) \]

where \(J_0 \) is a voltage-independent material-dependent coefficient, \(q \) is the electron charge, \(V \) is the junction voltage, and \(\eta \) is the ideality factor. \(\eta = 2 \) when non-radiative Shockley–Read–Hall interband recombination current is dominant, and \(\eta = 1 \) when minority carrier diffusion current dominates. The voltage-dependent ideality factor from the general diode relation,

\[\eta = \frac{q}{k T} \frac{d V}{d \ln(J/J_0)} \]

is used to obtain the \(\eta \) shown in Fig. 2(b). \(\eta \) reaches a minimum value of approximately 1.63 in a narrow voltage range around 4 V near turn on, one of the lowest reported to date in ultrawide bandgap pn diodes. The deviation of the experimental ideality factor from the theoretical models (1 ≤ \(\eta \) ≤ 2) in AlGaN/GaN p–n junction diodes has been attributed to non-ohmic metal–semiconductor junctions.\(^{21,22}\) By performing transfer length method (TLM) measurements, we found that both the p and n contacts are not entirely ohmic and exhibit some non-linearity. In this case, the total ideality factor is the sum of individual ideality factors of all the rectifying junctions in the system, as derived by Shah et al.\(^{23}\) The presence of the Schottky-like contact diodes in series with the pn junction diode, therefore, complicates an accurate determination of the true ideality factor of the p–n junction itself.

Figure 2(c) and 2(d) show the temperature dependence of the diode current from 25 to 300 °C. The reverse leakage current in Fig. 2(c) increases with increasing electric field and temperature. This is a signature of trap-assisted tunneling being the dominant leakage mechanisms, such as the Frenkel–Poole (FP) process or variable-range hopping (VRH).\(^{24}\) A far more dramatic temperature dependence is observed in the forward bias current in Fig. 2(d). For example, at a forward bias of 3.5 V, the current density increases by 5 orders of magnitude when the temperature is increased from 25 to 300 °C. A large exponential increase in current is indeed expected with temperature because the intrinsic interband thermally generated carrier density is \(n_i \propto \exp(-E_g/(2kT)) \), and in the ideal diode theory, \(J_0 \propto n_i^2 \propto \exp(-E_f/(kT)) \) is a strong function of temperature. The minimum ideality factor increased to 2.0 at 300 °C, which could be due to heat or current induced degradation to the device, resulting in an increased recombination current. Stress induced degradation has been shown to result in an increased point defect density in UV LEDs.\(^{25,27}\)

Figure 3(a) shows the calculated energy band diagram of the pn heterojunction diode at zero bias, highlighting the depletion region. Unlike in non-polar pn diodes, at this polar AlN/AlGaN p–n heterojunction, there is no depletion region in the n-side. Across the heterointerface of n-Al0.75Ga0.25N and AlN, there is a polarization discontinuity and an energy band discontinuity. Since the n-AlGaN is...
doped with donors, the combination gives rise to a two-dimensional electron gas (2DEG) of density \(\sim 1.64 \times 10^{13} \, \text{cm}^{-2} \) at the heterojunction. Because of this n-type accumulation region, the depletion region falls completely in the p-side. Furthermore, the mobile holes in the linearly graded AlGaN layer are due to distributed polarization doping. Thus, capacitance-voltage (CV) profiling should unambiguously extract the charge-density profile in the DPD layer. Despite the quasi-linear behavior of the diode, energy band diagram and free electron and hole concentration of the p-side junction from the extrapolation of 1/V measurements up to 20 V. The dc bias determines the depletion depth, and a 30 mV AC signal at a frequency of 30 kHz was used for the capacitance measurement in a standard parallel capacitance and conductance model. The charge density profile is extracted from the measured CV data of a one-sided abrupt function in this case. The charge-density at the edge of the depletion region is approximated by a linear interpolation (Vegard law). The net carrier-density profile in the DPD layer is the sum of both spontaneous and piezoelectric polarizations \(\rho_{\text{tot}} = \rho_{\text{sp}} + \rho_{\text{p}} \). The piezoelectric polarization of Al\(_{1-x}\)Ga\(_x\)N coherently strained on AlN is

\[
\rho_{\text{p}}(x) = 2 \times \left(\frac{\partial N_{\text{AlGa}}}{\partial x_{\text{AlN}}} \right) \times (\epsilon_{31} - \epsilon_{33} \frac{c_{31}}{c_{33}}),
\]

where \(c_{31} \) and \(c_{33} \) are elastic coefficients and \(\epsilon_{31} \) and \(\epsilon_{33} \) are piezoelectric moduli. The values of spontaneous polarization, elastic coefficients, and piezoelectric moduli for AlN and GaN were taken from Table 1 of Ref. 28. The corresponding values for Al\(_{1-x}\)Ga\(_x\)N were obtained by linear interpolation. The net carrier-density profile in cm\(^{-3}\) along the [0001] direction (z axis) is

\[
\rho(z) = \frac{1}{q} \nabla \cdot \rho_{\text{tot}} = \frac{1}{q} \frac{\partial \rho(x(z))}{\partial z},
\]

where \(x(z) \) is the graded Al-content profile along the z axis, a linear function in this case. The charge-density at the edge of the depletion region is extracted from the measured CV data of a one-sided abrupt junction \(\rho_{\text{tot}} \)

\[
N = -\frac{2}{q \epsilon_{\text{f}} \epsilon_0} \times \frac{1}{d\left(1/C^2/dV\right)},
\]

where \(q \) is the electron charge, \(\epsilon_{\text{f}} \) is the relative permittivity of the semiconductor at the edge of the depletion region, and \(\epsilon_0 \) is the permittivity of the vacuum. A constant value of 9.35 was used for \(\epsilon_{\text{f}} \) corresponding to an average Al composition of 83% in the DPD layer, interpolated between AlN (\(\epsilon_{\text{f}} = 9.21 \)) and GaN (\(\epsilon_{\text{f}} = 10.04 \)). The depletion width in the DPD layer is \(W_{\text{D}} = (\epsilon_0 \epsilon_{\text{f}})/C \).

Figure 3(c) shows the experimentally measured and the calculated charge-density profile (dashed line) along the z direction. The experimental average charge density of 5.7 \times 10^{17} \, \text{cm}^{-3} is approximately equal to the calculated density of 5.8 \times 10^{17} \, \text{cm}^{-3}. Thus, the presence of a high-density polarization-induced 3D hole gas close to the theoretically predicted density is observed. The rather interesting oscillations of the charge density observed in all devices are not captured in the simulation. They could originate either due to periodic fluctuations in Al composition, or Friedel oscillations of the three-dimensional hole gas. \(\frac{1}{q} \epsilon_{\text{f}} \epsilon_0 \) The root of these oscillations will be investigated in a future work. The destructive breakdown of the devices occurred in the range of \(-55 \to -60 \) V without any passivation and edge termination structure.

Figure 4(a) shows the measured room temperature electroluminescence (EL) collected from the backside of large 400 \, \mu m diameter devices at a forward current density of 110 A/cm\(^2\) at room temperature. A peak at 4.78 eV dominates the emission spectrum. Additionally, a far less intense deep-level luminescence peak of energy \(\sim 3.4 \) eV is also observed. To identify the origins of these peaks, room temperature photoluminescence (PL) experiments were also conducted on an Al\(_{0.72}\)Ga\(_{0.28}\)N/AlN sample with the same Si doping density and without the DPD and p-contact layers using a 193 nm ArF excimer laser excitation. The inset in Fig. 4(a) shows a comparison of the EL and PL spectra. It confirms that the dominant emission peak in EL is from interband radiative recombination in the Si-doped Al\(_{0.72}\)Ga\(_{0.28}\)N layer.

Figure 4(b) shows the calculated energy band diagram of the diode at a junction bias of 5 V, along with the spatially resolved radiative recombination rate, simulated using STR SILENE. The purple arrow on the plot indicates the interband transition responsible for the dominant peak in the EL spectra, where the radiative recombination rate is nearly 10^4 times more intense than in the p-DPD layer. The low to non-observable emission from the DPD layer in the EL spectrum is...
due to two reasons: (1) the product of electron and hole concentrations under forward bias is significantly higher in the n-layer, leading to a higher radiative recombination rate since $R \propto np$, and (2) the luminescence resulting from recombination within the DPD layer has higher energy than the energy bandgap of $\text{Al}_{0.72}\text{Ga}_{0.28}\text{N}$. This means photons emitted in the p-DPD layer moving toward the bulk will be absorbed and re-emitted at a photon energy equal to the n-layer energy bandgap during backside collection.

The weak sub-bandgap peak at approximately 3.4 eV is very close to the energy bandgap of GaN. This peak could be due to optical excitation of the top GaN layer from the emitted 4.8 eV photons, which then make it across the wafer to the backside collector. However, the appearance of a weak 3.4 eV peak in the inset of Fig. 4(a) in the PL spectra of $\text{Al}_{0.72}\text{Ga}_{0.28}\text{N}$ without any GaN layer indicates that the EL peak is also from the n-AlGaN layer. Chichibu et al. have proposed the existence of defect complexes consisting of cation vacancies and silicon (V_{Si}-nSi_{II}) as an explanation for the deep PL emission bands. These complexes act as self-compensating acceptor-type defects in Si-doped AlN and AlGaN. It should be noted that literature reports on luminescence in AlN and AlGaN grown by MBE are scarce, and that defect formation may strongly depend on the method of deposition. The presence of these point defects does not affect the calculated polarization charge, since the dispersion in capacitance was less than 10% in the frequency window of ~1 kHz–1 MHz.

In summary, ultrawide bandgap semiconductor diodes exhibiting low reverse bias leakage and high on/off ratio are realized by MBE, thanks to the low dislocation density of the epilayers grown on bulk AlN substrates. Completely one-sided p–n heterojunction diodes are realized by exploiting polarization-induced doping on the n-side to remove the depletion layer, and distributed polarization doping instead of Mg acceptor doping for the p-type depletion layer. Through capacitance-voltage measurements, the mobile hole concentration and their spatial distribution in the graded AlGaN layers were directly measured and found to be consistent with what was expected from polarization effects. These polarization-induced ultrawide bandgap semiconductor diodes show stable performance up to 300°C. The electroluminescence from these diodes is dominated by interband radiative recombination, and deep-level luminescence is greatly suppressed. This suggests the presence of low point defect densities in the MBE grown Si-doped AlGaN layer. Overall, this study demonstrates the flexibility in the design of p–n heterojunction diodes through polarization-induced doping to achieve properties that are not possible in standard diodes. Such heterostructure design that combines bandgap engineering intimately with polarization engineering opens opportunities for more efficient photonic and electronic devices with ultrawide bandgap polar semiconductors than what is possible in nonpolar semiconductors.

The authors thank Takeru Kumabe from the Nagoya University for helpful discussions. This work was supported as part of the Ultra Materials for a Resilient Energy Grid, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012330. The authors acknowledge the use of the Cornell NanoScale Facility (CNF), a member of the National Nanotechnology Co-ordinated Infrastructure (NNCI), which was supported by the National Science Foundation (NSF Grant No. NNCI-2025233).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions
Shivali Agrawal: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Writing – original draft (lead); Writing – review & editing (equal). Len van Deurzen: Conceptualization (lead); Formal analysis (supporting); Investigation (supporting); Methodology (supporting); Writing – review & editing (equal). Jimy Encomendero: Formal analysis (supporting); Investigation (supporting); Methodology (supporting). Joseph E. Dill: Investigation (supporting); Methodology (supporting); Writing – review & editing (supporting). Hsin Wei (Sheena) Huang: Investigation (supporting); Methodology (supporting). Vladimir Protasenko: Investigation (supporting); Methodology (supporting); Writing – review & editing (supporting). Huili (Grace) Xing: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal). Debdeep Jena: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES

5. R. Ishii, A. Yoshikawa, M. Funato, and Y. Kawakami, “Revisiting the substitu-

