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Abstract—We demonstrate AIN/GaN/AIN pseudomor-
phic high electron mobility transistors (pHEMTs) on bulk
AIN substrates with silicon §-doping near the bottom of
the 20-nm GaN channel. Our recent studies on epitaxy and
low-field transport show that §-doping in pseudomorphic
AIN/GaN/AIN heterostructures increases electron mobility
and two-dimensional electron gas density while preserv-
ing the advantages of the thin GaN channel, compared to
undoped counterparts. In this work, we present DC and RF
characteristics of these pHEMTs with PECVD SiN passiva-
tion, exhibiting an average fr - Lg product of 12.5 GHz.um,
a representative output power density of 4.2 W/ mm with an
associated power-added efficiency of 41.5% at 10 GHz.

Index Terms— AIN, GaN, HEMT, RF, power.

. INTRODUCTION
OUBLE-HETEROSTRUCTURE GaN-channel HEMTs
(DH-HEMTs) have gained considerable attention over

the years for high-power RF applications. The Al(Ga)N back
barrier in DH-HEMTs, with its larger energy band gap,
offers superior electron confinement, higher buffer electrical
resistivity, and enhanced breakdown voltage compared to
the conventional AlGaN/GaN single-heterostructures. Taking
advantage of these improvements, superior performance of
DH-HEMTs with an AlGaN back barrier have been demon-
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strated [1], [2], [3]. However, the inclusion of an AlGaN
back barrier presents several challenges. First, AlIGaN exhibits
significantly lower thermal conductivity compared to GaN or
AIN [4], [5]. The presence of high thermal resistance beneath
the channel raises the channel temperature, thereby reducing
device reliability and efficiency [6], [7]. Second, for epitaxial
layers thicker than the pseudomorphic limit, lattice mismatch
leads to a high density of threading dislocations and thermal
boundary resistance, even with the use of free-standing bulk
GaN or AIN substrates [8], [9].

To enhance device-level thermal management, pseudomor-
phic HEMTs (pHEMTs) on the AIN platform have been
previously introduced [10], [11], [12], [13], [14], [15]. In this
structure, a thin, coherently strained GaN channel is sand-
wiched between high thermal conductivity, ultra-wide bandgap
AIN. When pHEMTSs are grown on single-crystal AIN sub-
strates, the dislocation density in the heterostructure can be
minimized (limited by the dislocation density in the sub-
strates), as the thin GaN channel layer is coherently strained
on the underlying AIN back barrier, which is homoepitaxi-
ally grown on the single-crystal AIN substrates. Furthermore,
homoepitaxy of AIN back barrier can eliminate thermal
boundary resistance at the back barrier-substrate growth inter-
face [16]. Combined with the high thermal conductivity
of AIN (k¢ ~ 340 W/m-K), heat dissipation in pHEMTsSs
on AIN can be significantly improved over conventional
GaN HEMTs.

However, undoped pseudomorphic AIN/GaN/AIN het-
erostructures have exhibited electron mobility limited to
@ ~ 600 cm?/V-s due to the high electric field in the GaN
channel layer [17]. In our recent study, we showed that
inserting compensation §-doping near the bottom of the GaN
channel can address this challenge while preserving good
crystal quality, resulting in increased electron mobility and,
consequently, lower sheet resistance [18]. Here, we demon-
strate the DC and RF characteristics of HEMTs fabricated
on this silicon §-doped, pseudomorphic AIN/GaN/AIN het-
erostructure.

Il. EPITAXIAL GROWTH AND DEVICE DESIGN
The HEMT epitaxial heterostructure was grown by molec-
ular beam epitaxy (MBE) (Fig. 1(a)), consisting of a 500 nm
AIN buffer layer homoepitaxially grown on single-crystal AIN
substrates from Asahi-Kasei Corporation [19], followed by a
20 nm coherently strained GaN channel and a 6 nm AIN top
barrier capped with a 1 nm thick GaN layer. Silicon §-doping
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Fig. 1. (a) Cross-sectional representation of the fully processed silicon
§-doped pHEMT on bulk AIN and (b) simulated energy band diagrams.
(c) SEM images of a fully processed device with two gate fingers with
a 220 nm T-gate. (d) Capacitance-voltage characteristics (black) and
extracted 2DEG density under the gate (blue).

was inserted 1 nm above the bottom GaN/AIN interface.
The coherency of the 20 nm GaN layer was confirmed by
the reciprocal space mapping around the asymmetric (—105)
diffraction peak, revealing —2.4% compressive strain in GaN
on single-crystal AIN, which corresponds to the lattice mis-
match between GaN and AIN. Detailed studies on epitaxy
are summarized in [18]. Fig. 1(b) shows the simulated energy
band diagram, illustrating the reduced electric field in the
GaN channel as indicated by the slope of the conduction
band. Hall-effect measurements performed on the as-grown
heterostructure at room temperature revealed a 2DEG density
of 2.77 x 10" c¢m™ and electron mobility of 690 cm?/V-s.
For a more recently grown sample, a 2DEG density of 3.24 x
1013 cm™? and an electron mobility of 855 cm?/V-s were
measured (devices not yet fabricated) [18].

The device fabrication process includes n™ GaN regrowth
for ohmic contact formation, device isolation using BCls-
based inductively coupled plasma etching, Ti/Au non-alloyed
ohmic metallization, electron-beam lithography-defined Pd/Au
T-gate formation via electron-beam evaporation, and final
device passivation with plasma-enhanced chemical vapor
deposition (PECVD) SiN. Scanning electron microscope
(SEM) images of a fully processed device are shown in
Fig. 1(c). Unless otherwise specified, all measured devices
feature a source-to-drain spacing Lsp = 2 um, a gate length
Lg = 220 nm, and a total gate width Wg = 2 x 25 pum.

[1l. RESULTS

Following the device fabrication, capacitance-voltage mea-
surements were performed on a surface-passivated test
structure with a large gate periphery (Lg =6 um and Wg =
1 x 50 um). As shown in Fig. 1(d), the measured CV curve
confirms a single-channel operation of the fabricated HEMTs
with no secondary channel induced by silicon §-doping. The
two-dimensional electron gas (2DEG) density at different
gate biases under the gate was extracted following ny =
‘XhGS CdV/(qA), where Vy, is the threshold voltage, g is the
mgnitude of the electron charge, and A is the area of the
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Fig. 2. Transfer characteristics in (a) logarithmic scale and (b) linear
scale of unpassivated §-doped pHEMTs on bulk AIN, showing a peak
extrinsic transconductance of 0.32 S/mm and an on/off ratio spanning
7 orders of magnitude. (c) Die map of contact resistance and sheet
resistance extracted from linear TLM patterns across nine dies on the
sample. (d) output characteristics of unpassivated d-doped pHEMTSs,
showing a maximum drain current density of 1.25 A/mm.

Schottky gate contact. The extracted 2DEG density at a zero
gate bias is 2.76 x 10'3 cm™2.

Fig. 2(a) and 2(b) show the logarithmic- and linear-scale
transfer characteristics of the fabricated HEMTs, respectively,
prior to PECVD SiN passivation. The threshold voltage of the
device was —3.95 V, defined as the gate voltage at which
the drain current density reaches 1 mA/mm. Unpassivated
pHEMTs showed good gate control, demonstrating a 7 orders
of on/off ratio and sharp pinch-off characteristics at a drain
bias of 10 V. A peak extrinsic transconductance g, =
0.32 S/mm was measured at the same drain bias. The measured
gm is lower than expected for the 6 nm AIN barrier, which is
attributed in part to unoptimized contact resistance. Contact
resistance and sheet resistance, extracted using the linear
transfer length method, ranged from 0.27 to 0.39 Q-mm and
from 249 to 385 2/sq, with the average values of 0.33 Q-mm
and 330 2/sq, respectively, as shown in Fig. 2(c). Accordingly,
gm ranged from 0.26 to 0.41 S/mm, with the average value of
0.33 S/mm. Devices after PECVD SiN passivation exhibited
a higher off-state gate leakage current density of Ig ~ 5 X
10> A/mm. No significant changes in on-state drain current
density or transconductance were measured after device passi-
vation. Further optimization of the device passivation process
will be needed to minimize the gate leakage current. The
output curves in Fig. 2(d) show a maximum drain current
density of 1.25 A/mm at a gate voltage Vgs = 2 V and
repeatable current saturation over a wide range of Vgs.

Next, small-signal RF measurements were performed to
examine the device speed using GSG probes on surface-
passivated two-finger HEMTs. After short-open-load-through
calibration, scattering parameters were measured in the fre-
quency range of 100 MHz to 40 GHz, and pad parasitics were
de-embedded using on-wafer open and short pads. As shown
in Fig. 3(a), the cutoff frequency fr and maximum oscillation
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respectively, for a representative 220 nm gate length device Fig. 4. Pulsed I-V characteristics of surface-passivated §-doped

biased at the peak gy condition. To extract fpax, the values
of U in the frequency range from 20 GHz to 24 GHz were
used for extrapolation, following a —20 dB/dec slope. Due to
the limited frequency span and noise in U, a broader frequency
measurement window will be needed to more accurately deter-
mine fpax. Upon lateral scaling, the extracted fr increased
to 110 GHz in a device with Lg = 120 nm, demonstrating the
promise of pHEMTSs on single-crystal AIN for high-frequency
applications. Fig. 3(b) shows the 1/Lg scaling behavior of the
pHEMTS on single-crystal AIN with varying Lg and fixed Lsp
of 2 um, showing an ft - Lg product ranging from 10.1 to
13.9 GHz-pum, which is comparable to that of the GaN DH
HEMTs reported in the literature. A curve corresponding to
12.5 GHz-um is shown in Fig. 3(b) to represent the average
Jf1 - Lg value of the pHEMTs.

To investigate the dynamic response of §-doped pHEMTs,
pulsed /-V measurements were carried out using 500 ns long
pulses at a 1 ms period. As shown in Fig. 4(a), moderate
DC-RF dispersion was observed in surface-passivated devices
under a stress bias condition of Vgsq, Vbsq = —6 V, 20 V,
compared to the cold bias condition of Vigsq, Vpsq =0V, 0 V.
The current collapse, evaluated at Vgs = 0V, is approximately
15% at the knee voltage. This non-negligible DC-RF disper-
sion is likely due to the remaining surface traps associated with
the PECVD SiN passivation process, which was not optimized
for these 5-doped pHEMTSs and was performed without any
surface pretreatment.

The continuous-wave (CW) large-signal characteristics of
the 5-doped pHEMTs were measured. Surface-passivated
devices, biased at Vpsq, Ipsq = 20 V, 0.3 A/mm, demonstrated
an output power density (Poy) of 4.2 W/mm and associated
power added efficiency (PAE) of 41.5% at 10 GHz, as shown
in Fig. 4(b). Based on the expression for Poy of class A
amplifiers, Pout = IDxnee(VDS,max — VDS knee)/8, the dynamic
knee current density Ip knee = 0.96 A/mm is estimated, which
is consistent with the pulsed /-V data shown in Fig. 4(a).
The source and load reflection coefficients were I's = 0.04 -
j0.02 and I'L = 0.77 + j0.12, respectively. Due to the source
impedance not being conjugate matched, the transducer gain

pHEMTs. (b) Continuous-wave load-pull power sweep at 10 GHz per-
formed on surface-passivated devices, showing Pgyt of 4.2 W/mm and
associated PAE of 41.5%. (c) Poyt and PAE of a pHEMT biased at
Vbsq =10, 15, and 20 V, showing a linear increase in Poyt as a function
of VDSq-

(Gt) at the available power at source P, = 0 dBm was
11 dB, which is lower than the measured power gain (Gp) of
20.5 dB. At P,y = 20 dBm, the measured Py, input power
(Ppn), DC drain current, and DC voltage were 23.25 dBm
(4.23 W/mm), 10.94 dBm (0.25 W/mm), 0.48 A/mm, and
20.0 V, respectively, yielding a PAE = (Powx — Pin)/Ppc
of 41.5%. Biasing beyond 20 V is presently limited by
device breakdown. Improvements in device design and proper
impedance matching are expected to further enhance the large-
signal performance. Fig. 4(c) shows P,y and PAE of the
device measured at different drain biases, showing a linear
increase in Pgyy;.

V. SUMMARY

The DC and RF characteristics of silicon §-doped, pseudo-
morphic AIN/GaN/AIN HEMTs with PECVD SiN passivation
are reported. The as-grown heterostructure exhibits higher
electron mobility and lower sheet resistance compared to its
undoped counterpart [18]. The fabricated devices demonstrated
good gate control and strong potential for mmWave operation,
showing, in devices with Lg = 220 nm, representative values
of fr/fmax = 57/154 GHz, Py of 4.2 W/mm and associated
PAE of 41.5% under CW operation at 10 GHz. While further
device optimization is needed, this initial demonstration of
silicon §-doped pseudomorphic HEMTsS on single-crystal AIN
substrates provide a promising path toward the development
of thermally efficient RF transistors.
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