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Abstract— We demonstrate AlN/GaN/AlN pseudomor-
phic high electron mobility transistors (pHEMTs) on bulk
AlN substrates with silicon δ-doping near the bottom of
the 20-nm GaN channel. Our recent studies on epitaxy and
low-field transport show that δ-doping in pseudomorphic
AlN/GaN/AlN heterostructures increases electron mobility
and two-dimensional electron gas density while preserv-
ing the advantages of the thin GaN channel, compared to
undoped counterparts. In this work, we present DC and RF
characteristics of these pHEMTs with PECVD SiN passiva-
tion, exhibiting an average fT · LG product of 12.5 GHz·µm,
a representative output power density of 4.2 W/mm with an
associated power-added efficiency of 41.5% at 10 GHz.

Index Terms— AlN, GaN, HEMT, RF, power.

I. INTRODUCTION

DOUBLE-HETEROSTRUCTURE GaN-channel HEMTs
(DH-HEMTs) have gained considerable attention over

the years for high-power RF applications. The Al(Ga)N back
barrier in DH-HEMTs, with its larger energy band gap,
offers superior electron confinement, higher buffer electrical
resistivity, and enhanced breakdown voltage compared to
the conventional AlGaN/GaN single-heterostructures. Taking
advantage of these improvements, superior performance of
DH-HEMTs with an AlGaN back barrier have been demon-
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strated [1], [2], [3]. However, the inclusion of an AlGaN
back barrier presents several challenges. First, AlGaN exhibits
significantly lower thermal conductivity compared to GaN or
AlN [4], [5]. The presence of high thermal resistance beneath
the channel raises the channel temperature, thereby reducing
device reliability and efficiency [6], [7]. Second, for epitaxial
layers thicker than the pseudomorphic limit, lattice mismatch
leads to a high density of threading dislocations and thermal
boundary resistance, even with the use of free-standing bulk
GaN or AlN substrates [8], [9].

To enhance device-level thermal management, pseudomor-
phic HEMTs (pHEMTs) on the AlN platform have been
previously introduced [10], [11], [12], [13], [14], [15]. In this
structure, a thin, coherently strained GaN channel is sand-
wiched between high thermal conductivity, ultra-wide bandgap
AlN. When pHEMTs are grown on single-crystal AlN sub-
strates, the dislocation density in the heterostructure can be
minimized (limited by the dislocation density in the sub-
strates), as the thin GaN channel layer is coherently strained
on the underlying AlN back barrier, which is homoepitaxi-
ally grown on the single-crystal AlN substrates. Furthermore,
homoepitaxy of AlN back barrier can eliminate thermal
boundary resistance at the back barrier-substrate growth inter-
face [16]. Combined with the high thermal conductivity
of AlN (κ ∼ 340 W/m·K), heat dissipation in pHEMTs
on AlN can be significantly improved over conventional
GaN HEMTs.

However, undoped pseudomorphic AlN/GaN/AlN het-
erostructures have exhibited electron mobility limited to
µ ∼ 600 cm2/V·s due to the high electric field in the GaN
channel layer [17]. In our recent study, we showed that
inserting compensation δ-doping near the bottom of the GaN
channel can address this challenge while preserving good
crystal quality, resulting in increased electron mobility and,
consequently, lower sheet resistance [18]. Here, we demon-
strate the DC and RF characteristics of HEMTs fabricated
on this silicon δ-doped, pseudomorphic AlN/GaN/AlN het-
erostructure.

II. EPITAXIAL GROWTH AND DEVICE DESIGN

The HEMT epitaxial heterostructure was grown by molec-
ular beam epitaxy (MBE) (Fig. 1(a)), consisting of a 500 nm
AlN buffer layer homoepitaxially grown on single-crystal AlN
substrates from Asahi-Kasei Corporation [19], followed by a
20 nm coherently strained GaN channel and a 6 nm AlN top
barrier capped with a 1 nm thick GaN layer. Silicon δ-doping
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Fig. 1. (a) Cross-sectional representation of the fully processed silicon
δ-doped pHEMT on bulk AlN and (b) simulated energy band diagrams.
(c) SEM images of a fully processed device with two gate fingers with
a 220 nm T-gate. (d) Capacitance-voltage characteristics (black) and
extracted 2DEG density under the gate (blue).

was inserted 1 nm above the bottom GaN/AlN interface.
The coherency of the 20 nm GaN layer was confirmed by
the reciprocal space mapping around the asymmetric (−105)
diffraction peak, revealing −2.4% compressive strain in GaN
on single-crystal AlN, which corresponds to the lattice mis-
match between GaN and AlN. Detailed studies on epitaxy
are summarized in [18]. Fig. 1(b) shows the simulated energy
band diagram, illustrating the reduced electric field in the
GaN channel as indicated by the slope of the conduction
band. Hall-effect measurements performed on the as-grown
heterostructure at room temperature revealed a 2DEG density
of 2.77 × 1013 cm-2 and electron mobility of 690 cm2/V·s.
For a more recently grown sample, a 2DEG density of 3.24 ×

1013 cm-2 and an electron mobility of 855 cm2/V·s were
measured (devices not yet fabricated) [18].

The device fabrication process includes n+ GaN regrowth
for ohmic contact formation, device isolation using BCl3-
based inductively coupled plasma etching, Ti/Au non-alloyed
ohmic metallization, electron-beam lithography-defined Pd/Au
T-gate formation via electron-beam evaporation, and final
device passivation with plasma-enhanced chemical vapor
deposition (PECVD) SiN. Scanning electron microscope
(SEM) images of a fully processed device are shown in
Fig. 1(c). Unless otherwise specified, all measured devices
feature a source-to-drain spacing LSD = 2 µm, a gate length
LG = 220 nm, and a total gate width WG = 2 × 25 µm.

III. RESULTS

Following the device fabrication, capacitance-voltage mea-
surements were performed on a surface-passivated test
structure with a large gate periphery (LG =6 µm and WG =

1 × 50 µm). As shown in Fig. 1(d), the measured CV curve
confirms a single-channel operation of the fabricated HEMTs
with no secondary channel induced by silicon δ-doping. The
two-dimensional electron gas (2DEG) density at different
gate biases under the gate was extracted following ns =∫ VGS

Vth
CdV/(q A), where Vth is the threshold voltage, q is the

mgnitude of the electron charge, and A is the area of the

Fig. 2. Transfer characteristics in (a) logarithmic scale and (b) linear
scale of unpassivated δ-doped pHEMTs on bulk AlN, showing a peak
extrinsic transconductance of 0.32 S/mm and an on/off ratio spanning
7 orders of magnitude. (c) Die map of contact resistance and sheet
resistance extracted from linear TLM patterns across nine dies on the
sample. (d) output characteristics of unpassivated δ-doped pHEMTs,
showing a maximum drain current density of 1.25 A/mm.

Schottky gate contact. The extracted 2DEG density at a zero
gate bias is 2.76 × 1013 cm−2.

Fig. 2(a) and 2(b) show the logarithmic- and linear-scale
transfer characteristics of the fabricated HEMTs, respectively,
prior to PECVD SiN passivation. The threshold voltage of the
device was −3.95 V, defined as the gate voltage at which
the drain current density reaches 1 mA/mm. Unpassivated
pHEMTs showed good gate control, demonstrating a 7 orders
of on/off ratio and sharp pinch-off characteristics at a drain
bias of 10 V. A peak extrinsic transconductance gm =

0.32 S/mm was measured at the same drain bias. The measured
gm is lower than expected for the 6 nm AlN barrier, which is
attributed in part to unoptimized contact resistance. Contact
resistance and sheet resistance, extracted using the linear
transfer length method, ranged from 0.27 to 0.39 �·mm and
from 249 to 385 �/sq, with the average values of 0.33 �·mm
and 330 �/sq, respectively, as shown in Fig. 2(c). Accordingly,
gm ranged from 0.26 to 0.41 S/mm, with the average value of
0.33 S/mm. Devices after PECVD SiN passivation exhibited
a higher off-state gate leakage current density of IG ∼ 5 ×

10−5 A/mm. No significant changes in on-state drain current
density or transconductance were measured after device passi-
vation. Further optimization of the device passivation process
will be needed to minimize the gate leakage current. The
output curves in Fig. 2(d) show a maximum drain current
density of 1.25 A/mm at a gate voltage VGS = 2 V and
repeatable current saturation over a wide range of VGS.

Next, small-signal RF measurements were performed to
examine the device speed using GSG probes on surface-
passivated two-finger HEMTs. After short-open-load-through
calibration, scattering parameters were measured in the fre-
quency range of 100 MHz to 40 GHz, and pad parasitics were
de-embedded using on-wafer open and short pads. As shown
in Fig. 3(a), the cutoff frequency fT and maximum oscillation
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Fig. 3. (a) Small signal characteristics of surface-passivated δ-doped
pHEMTs on bulk AlN with a gate length of 220 nm, showing an extracted
fT and fmax of 57 GHz and 154 GHz, respectively. (b) Gate length scaling
behavior of surface-passivated pHEMTs on AlN (red symbols) from this
work along with that of metal-polar GaN DH-HEMTs with a T-gate and
surface passivation reported in the literature [14], [20], [21], [22], [23],
[24], [25]. Measured devices feature source-to-drain spacing of 2 µm
and a device width of 2 × 25 µm.

frequency fmax were estimated to be 57 GHz and 154 GHz,
respectively, for a representative 220 nm gate length device
biased at the peak gm condition. To extract fmax, the values
of U in the frequency range from 20 GHz to 24 GHz were
used for extrapolation, following a −20 dB/dec slope. Due to
the limited frequency span and noise in U , a broader frequency
measurement window will be needed to more accurately deter-
mine fmax. Upon lateral scaling, the extracted fT increased
to 110 GHz in a device with LG = 120 nm, demonstrating the
promise of pHEMTs on single-crystal AlN for high-frequency
applications. Fig. 3(b) shows the 1/LG scaling behavior of the
pHEMTs on single-crystal AlN with varying LG and fixed LSD
of 2 µm, showing an fT · LG product ranging from 10.1 to
13.9 GHz·µm, which is comparable to that of the GaN DH
HEMTs reported in the literature. A curve corresponding to
12.5 GHz·µm is shown in Fig. 3(b) to represent the average
fT · LG value of the pHEMTs.

To investigate the dynamic response of δ-doped pHEMTs,
pulsed I -V measurements were carried out using 500 ns long
pulses at a 1 ms period. As shown in Fig. 4(a), moderate
DC–RF dispersion was observed in surface-passivated devices
under a stress bias condition of VGSq, VDSq = −6 V, 20 V,
compared to the cold bias condition of VGSq, VDSq = 0 V, 0 V.
The current collapse, evaluated at VGS = 0 V, is approximately
15% at the knee voltage. This non-negligible DC-RF disper-
sion is likely due to the remaining surface traps associated with
the PECVD SiN passivation process, which was not optimized
for these δ-doped pHEMTs and was performed without any
surface pretreatment.

The continuous-wave (CW) large-signal characteristics of
the δ-doped pHEMTs were measured. Surface-passivated
devices, biased at VDSq, IDSq = 20 V, 0.3 A/mm, demonstrated
an output power density (Pout) of 4.2 W/mm and associated
power added efficiency (PAE) of 41.5% at 10 GHz, as shown
in Fig. 4(b). Based on the expression for Pout of class A
amplifiers, Pout = ID,knee(VDS,max − VDS,knee)/8, the dynamic
knee current density ID,knee = 0.96 A/mm is estimated, which
is consistent with the pulsed I -V data shown in Fig. 4(a).
The source and load reflection coefficients were 0S = 0.04 -
j0.02 and 0L = 0.77 + j0.12, respectively. Due to the source
impedance not being conjugate matched, the transducer gain

Fig. 4. Pulsed I-V characteristics of surface-passivated δ-doped
pHEMTs. (b) Continuous-wave load-pull power sweep at 10 GHz per-
formed on surface-passivated devices, showing Pout of 4.2 W/mm and
associated PAE of 41.5%. (c) Pout and PAE of a pHEMT biased at
VDSq = 10, 15, and 20 V, showing a linear increase in Pout as a function
of VDSq.

(GT) at the available power at source Pavs = 0 dBm was
11 dB, which is lower than the measured power gain (GP) of
20.5 dB. At Pavs = 20 dBm, the measured Pout, input power
(Pin), DC drain current, and DC voltage were 23.25 dBm
(4.23 W/mm), 10.94 dBm (0.25 W/mm), 0.48 A/mm, and
20.0 V, respectively, yielding a PAE = (Pout − Pin)/PDC
of 41.5%. Biasing beyond 20 V is presently limited by
device breakdown. Improvements in device design and proper
impedance matching are expected to further enhance the large-
signal performance. Fig. 4(c) shows Pout and PAE of the
device measured at different drain biases, showing a linear
increase in Pout.

IV. SUMMARY

The DC and RF characteristics of silicon δ-doped, pseudo-
morphic AlN/GaN/AlN HEMTs with PECVD SiN passivation
are reported. The as-grown heterostructure exhibits higher
electron mobility and lower sheet resistance compared to its
undoped counterpart [18]. The fabricated devices demonstrated
good gate control and strong potential for mmWave operation,
showing, in devices with LG = 220 nm, representative values
of fT/ fmax = 57/154 GHz, Pout of 4.2 W/mm and associated
PAE of 41.5% under CW operation at 10 GHz. While further
device optimization is needed, this initial demonstration of
silicon δ-doped pseudomorphic HEMTs on single-crystal AlN
substrates provide a promising path toward the development
of thermally efficient RF transistors.
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