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ABSTRACT

Lattice-matched aluminum scandium nitride (AIScN) on gallium nitride (GaN) is an attractive material platform for high-power, high-speed
GaN electronics. This study investigates the molecular beam epitaxy growth and transport properties of lattice-matched single- and multi-
channel AIScN/GaN heterostructures. A two-dimensional electron gas (2DEG) forms at the AISCN-GaN interface with a lattice-matched
AIScN barrier as thin as 2.5nm and increases with AIScN thickness, exceeding 2.5 x 10'*/cm? for a 10 nm barrier. Stacking of lattice-matched
AlScN/GaN multilayers produces parallel 2DEGs whose total density scales linearly with the number of AIScN/GaN periods, reaching
1 x 10"/cm? for five-period structures, with moderate average electron mobility of 583 cm®/V.s and sheet resistance of 106 Q/[] at 300 K.
Structural analyses reveal that coherently strained epilayers with sub-nm surface roughness were achieved. The electron mobility in the
lattice-matched AIScN/GaN single- and multichannel heterostructures is limited by alloy disorder and interface roughness scattering.
Temperature-dependent Hall effect measurements confirm the presence of multiple conducting 2D carrier sheets with less than 15% carrier
freeze out, carrier mobility of 851 cm?/V.s, and sheet resistance of 78 Q/0 at 10K. Lattice-matched AlScN/GaN multichannel heterostruc-
tures can overcome the strain-induced limitations of Al(Ga)N/GaN to deliver GaN-based multilayer structures for RF, power, and photonic
devices.
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The addition of Sc into AIN induces a strong increase in spon- molecular beam epitaxy (MBE and metal organic chemical
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taneous and piezoelectric polarization coefficients of AIScN alloy
compared to that of AIN."” The vast improvement not only results
in the widespread applications of AIScN in electroacoustic devices
but also leads to the emergence of properties such as ferroelectricity,’
strong optical nonlinearity, and high-k dielectric constants.’ Single-
layer AIScN has been employed to realize state-of-the-art CMOS
compatible filters, GaN high-electron mobility transistors
(HEMTs)," © and ferroelectric memory,g among others. Moreover,
AlScN, which can be lattice-matched to GaN, is also a promising
material for multilayer GaN-based heterostructures such as resonant
tunneling diodes, quantum cascade lasers, photodetectors,] Y and dis-
tributed Bragg reflectors."'

One AIScN research avenue that has gained high traction is the
integration of AIScN with existing GaN-based platforms for RF'* "
and ferroelectric-resistive memory” applications. Various efforts in

vapor deposition (MOCVD)'>'”*" of single-channel AIScN/GaN
HEMT heterostructures have yielded two-dimensional electron gas
(2DEG) densities greater than 3 x 10"3/cm?, electron mobilities above
1500 cm?/V.s with the use of interlayers between AIScN and GaN, and
sheet resistance below 200 Q/C]. Devices fabricated on these hetero-
structures can deliver ON current > 2.4 A/mm”'">* and output
power >8 W/mm at 30 GHz.'>*” The AIScN barrier can also enable
ferroelectric gating effects in single-channel AIScN/GaN HEMTs,
demonstrating the potential for high-speed, high-power reconfigurable
all-nitride electronics.'****

Multichannel Al(Ga,In)N/GaN heterostructures consisting of
vertically stacked 2DEGs can bypass the density-mobility trade-off of
single-channel structures by combining the high-electron mobility per
channel with the high total multichannel 2DEG density, thereby
enabling lower lateral resistance and higher power handling capability

Appl. Phys. Lett. 127, 102106 (2025); doi: 10.1063/5.0281623
Published under an exclusive license by AIP Publishing

127, 102106-1


https://doi.org/10.1063/5.0281623
https://doi.org/10.1063/5.0281623
https://doi.org/10.1063/5.0281623
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0281623
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0281623&domain=pdf&date_stamp=2025-09-09
https://orcid.org/0000-0002-1193-834X
https://orcid.org/0000-0001-7174-1103
https://orcid.org/0009-0001-7330-1256
https://orcid.org/0000-0002-2709-3839
https://orcid.org/0000-0002-4076-4625
mailto:tn354@cornell.edu
mailto:djena@cornell.edu
https://doi.org/10.1063/5.0281623
pubs.aip.org/aip/apl

Applied Physics Letters

of GaN power and RF devices. Specifically, Al(Ga,In)N/GaN multi-
channels have been employed to demonstrate power amplifiers with
outstanding output power,”**” RE switches with high linearity and low
insertion loss,”" > and Schottky barrier diodes with low on-resistance
and high breakdown voltage.”” ™

Compared to AIN, AlGaN, and AlInN barriers, AIScN offers the
following notable advantages. First, near lattice-matched AIScN has a
higher critical thickness than Al(Ga)N on GaN,””" thereby reducing
the adverse effects of strain relaxation, wafer curvature, and cracking.
Second, AIScN possesses a stronger spontaneous polarization than
AlGaN and AlInN,” which suggests AIScN/GaN multichannel
structures can deliver higher total carrier density using a thinner multi-
channel stack thickness and reduce the time for epitaxy. Third, the
lattice-matched AIScN grown by MBE has higher Al composition
(~86%-90%)"" " than lattice-matched ~ AlInN  (~82%)."
Consequently, it offers a higher bandgap, higher conduction band off-
set, and stronger charge confinement. Finally, the optimal growth tem-
perature of MBE AIScN between 500 and 750°C**' is also more
compatible than AlInN for epitaxial integration with GaN. Thus,
AIScN/GaN is a promising candidate for further improving the perfor-
mance of GaN-based multichannel heterostructures and devices.

Here, we report the MBE growth, structural characterization, and
transport properties of multichannel AIScCN/GaN heterostructures
using the near lattice-matched composition (11%-12% Sc) for
AIScN."' First, single-channel AIScN/GaN heterostructures were
grown with various AIScN film thicknesses between 2.5 and 15nm,
and the dependence of 2DEG density on barrier thickness is identified.
Next, a five-channel AIScN/GaN sample with 10-nm near lattice-
matched AIScN barriers was grown on GaN on sapphire template to
study structural and transport properties of multichannel AISCN/GaN
heterostructures. The epilayers in the multichannel sample were pseu-
domorphically grown on the GaN template with root mean square
(rms) roughness below 1 nm, showing sharp interfaces and well con-
trolled barrier thicknesses as confirmed by x-ray diffraction (XRD).
This five-channel heterostructure delivered a net sheet charge density
~1 x 10"/cm> Finally, temperature-Hall effect measurements con-
firmed the presence of multiple 2DEGs between 10 and 300 K.

The AIScN single-channel and multichannel heterostructures were
grown on Ga-polar GaN on sapphire templates with dislocation density
~10%cm? in a Veeco® GenXplor MBE reactor. Active nitrogen species
were provided using a RF plasma source with a nitrogen flow rate of
1.95sccm and 200W RF power. Scandium (99.99%), aluminum
(99.9999%), and gallium (99.99999%) were supplied using effusion cells.
The growth temperatures were measured by a thermocouple. Epitaxial
growths were monitored in situ using a kSA Instruments® reflection
high energy electron diffraction (RHEED) apparatus with a Staib elec-
tron gun. AIScN films were grown at ~ 2.9 nm/min under nitrogen-rich
conditions using a (Sc + Al)/N ratio of 0.7 to achieve phase pure wurt-
zite AIScN. GaN layers were grown under metal-rich conditions with a
~4.0nm/min growth rate. All layers were grown at 630°C substrate
thermocouple temperature. While multiple studies have reported differ-
ent lattice-matched Sc compositions between 9% and 20% Sc,'*****
for AIScN film grown by MBE, we found that the lattice-matched com-
position is closer to 9%-11%."" Therefore, ~ 11% Sc composition was
targeted for AIScN layers in this work.

A PANalytical Empyrean® system with Cu K,; radiation was
used for x-ray diffraction (XRD) and reciprocal space mapping (RSM).
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An Asylum Research Cypher ES atomic force microscope (AFM) was
used for surface morphology characterization. The transport properties
of the multichannel structures were measured using a van der Pauw
geometry and soldered indium Ohmic contacts. The sample’s corners
were scratched before indium soldering to ensure Ohmic contact to all
channels. A HL5500 Nanometrics Hall system with & 0.325T mag-
netic field was used for room temperature Hall effect measurements. A
Lakeshore” Hall system with a magnetic field of = 1T was used for
temperature-dependent Hall effect measurement down to 10K. The
energy band diagram and transport properties of AISCN/GaN hetero-
structures were simulated using 1D Poisson, a one-dimensional
Schrédinger—Poisson solver.*”

Figure 1(a) shows the heterostructure schematic of single-
channel AIScN/GaN samples grown on Ga-polar GaN on sapphire
templates using near lattice-matched Sc composition (9%-12% Sc).
The AIScN barrier thickness was varied between 2.5 and 15nm, fol-
lowed by a 2nm GaN cap. The room temperature Hall effect carrier
density as a function of AIScN barrier thickness is shown in Fig. 1(b).
The 1D Poisson simulated carrier densities vs AljgoScy 1N,
Aly20Gag goN, Alyg:Ing gN, and AIN barrier thickness are added as a
guide to the eye. The AIScN-GaN conduction band offset used in the
simulation is AE. = 1.53eV, as suggested by Ambacher et al.”® The
relative dielectric constant used for 1D Poisson simulation is x = 14,
and the surface barrier height is g¢, =1.5€V. Another important
parameter that affects the simulated 1D Poisson 2DEG density is the
total polarization induced by spontaneous and piezoelectric polariza-
tion of the barrier. The experimental 2DEG density matches well with
1D Poisson simulation using Al goSco 1N polarization that is ~ 10%
lower than that of AIN, as suggested by Ambacher et al."* Specifically,
the 1D Poisson total polarization used for the metal polar GaN, AIN,
and Aly goSco 11N is 3.4, 13.7, and 12.6 uC cm ™2, respectively, following
the zinc blende unit cell reference for polarization calculation.*’

The measured 2DEG carrier sheet density n of a oy (> 2.1)
nm thick AlggeSco 11N barrier lattice-matched AIScN/GaN single
channel with a 2nm GaN cap layer is found to approximately follow
the relation:

ns ~ 1.3 X In(tasen — 1.1) x 10" /cm?, (1)
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FIG. 1.(a) Schematic of single-channel AIScN/GaN heterostructures. (b)
Experimental barrier thickness-dependent sheet carrier density of the 2DEG at the
AIScN/GaN interface (red circles) vs 1D Poisson simulation 2DEG density of vari-
ous GaN 2DEG heterostructures (dashed lines).
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as indicated by the red dashed line in Fig. 1(b). A comprehensive
model for the dependence of channel carrier densities on the design
parameters of single- and multiple-channel lattice-matched AIScN/
GaN heterostructures will be presented in future work. It is important
to note that parameters such as the conduction band offset’”" and
spontaneous/piezoelectric polarization™ vary in the literature. Recent
studies using a hexagonal unit cell reference based on ferroelectric
switching of AIScN suggested modifications to the values and direc-
tions of both spontaneous and piezoelectric polarizations in wurtzite
III-nitrides.”” >* The zinc blende reference polarization values chosen
in this work and the hexagonal reference polarization values yield the
same simulated 2DEG density for metal polar AISCN/GaN hetero-
structures, as discussed by Yassine et al”

Figure 1(b) highlights that compared to the commonly used alloy
barriers for GaN HEMTS, such as tensile strained Aly,GaggoN and
lattice-matched Aljg,Ing 1N, lattice-matched AlygoScy N barriers
deliver a significant 2DEG density boost for the same barrier thickness.
Moreover, a lattice-matched AIScN barrier is not limited by a strain-
induced critical thickness of AIN barriers, making it suitable for
multiple-channel applications. The 15nm AIScN barrier experimental
2DEG density is lower than the 1D Poisson simulated value. As dis-
cussed in Yassine ef al.,”” maintaining the optimum material quality in
thicker AIScN barriers is needed to achieve higher experimental 2DEG
density. For example, using lattice-matched 45nm AIScN barriers in
an AIScN/GaN multilayer structure on bulk GaN substrate with low
dislocation density (~ 10*/cm®), we recently reported a sheet electron
density of up to 4.5 x 10">/cm* per 2DEG, closely matching the pre-
dicted 2DEG density shown in Fig. 1.

Next, multichannel AISCN/GaN heterostructures were grown to
study the structural quality and transport properties of this multilayer
stack. The number of periods (five) and AIScN barrier thickness
(10nm) were chosen for direct comparison with similar thin barrier
multichannel AIN/GaN, AlGaN/GaN, and AlInN/GaN heterostruc-
tures.”” > A five-channel AISCN/GaN multichannel heterostruc-
ture (sample A) was grown with a near lattice-matched Al,_,Sc,N
(x=0.11) barrier thickness of 10 nm and a GaN channel thickness of
50 nm per period. The sample was capped with 5nm GaN to protect
the top AIScN layer from surface oxidation.

Table T summarizes the 300 K transport properties of sample A
and a single-channel 10-nm AIScN/GaN single-channel sample
from Fig. 1(b). Both samples exhibited n-type conductivity, with
sample A showing a net sheet charge density of 10.14 x 10"*/cm?,
almost four times higher than the single-channel sample. The room
temperature electron mobility and sheet resistance of sample A are
583 cm?/V.s and 106 Q/J, respectively. Electron mobilities between
300 and 600 cm*/V.s are typically reported for 2DEGs at the direct
AIScN-GaN interface,'”"” as seen here in the single-channel sample.
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However, the 2DEG mobility in sample A is relatively low compared
to other AIScN/GaN HEMT heterostructures that employ an
AIN interlayer, which have yielded mobilities exceeding
1500 cm®/V.s.>”'> A future study will explore the effect of optimal
AIN interlayer growth conditions to further increase carrier mobility
per channel by up to 3 times and, therefore, potentially reduce the
sheet resistance to below 50Q/[1 in AIScN/GaN multichannel
heterostructures.

Figure 2(a) shows the heterostructure schematic of sample A with
5 AIScN/GaN periods. The 2 x 2 um> AFM micrograph in Fig. 2(b)
shows a low rms roughness of ~ 0.71 nm and retention of atomic steps
even after multiple N-rich AIScN epilayers. A 5 x 5 um* micrograph
(not shown) indicates a slightly increased rms roughness of 1.16 nm
and a similar spiral hillock density of ~1.5 x 10%/cm?. Surface hillocks
are typical for epilayers on GaN on a sapphire template with a sub-
strate dislocation density of ~1 x 10%/cm®. Additional formation of
hillocks could be attributed to typical surface roughening for N-rich
AIScN growths.'"” Streaky RHEED patterns along the ( 110 ) azimuth
were captured throughout the growth, suggesting a smooth surface
with a dominant two-dimensional growth mode. This corroborates the
retention of atomic steps observed in the AFM micrograph.

As indicated by the detailed layer stack in Fig. 2(b) and the simu-
lated energy band diagram in Fig. 2(c), both two-dimensional electron
gases (2DEGs) and two-dimensional hole gases (2DHGs) can form at
the AIScN-GaN and GaN-AlIScN interfaces, respectively. As depicted
in Fig. 2(c), the electron density in the first 2DEG is expected to be
higher than in subsequent 2DEGs due to the absence of an AIScN
backbarrier. Specifically, the simulated electron density for the first
2DEG is 2.0 x 10**/cm?, and subsequent 2DEGs (2DHGs) have elec-
tron (hole) density of 1.7 (1.2) x 10"%/cm? per channel. The measured
net sheet charge density of sample A in Table I corresponds well to the
total electron density of five 2DEGs. The background n-type impurity
doping of the unintentionally doped GaN is expected to contribute less
than 4% of the measured charge density. "'

Figure 2(d) depicts the symmetric 2 0 — » XRD scan of sample
A. Strong interference fringes were observed, suggesting smooth
AIScN-GaN interfaces. The RSM scan in Fig. 2(e) about the AIScN
and GaN [101 5] peaks confirmed all layers were pseudomorphically
grown on the GaN template. This showcases how lattice-matched
AIScN can enable AIScN/GaN heterostructures with less strain-
induced degradation and more effective stackable 2DEG channels.

Figure 3(a) shows the total electron density obtained from 1D
Poisson simulations for five-channel AIScN/GaN heterostructures
with various AIScN barriers and GaN channel thicknesses, with the
experimental data of this study. Several important points for multi-
channel AIScN/GaN heterostructures are evident in this figure. The
AIScN barrier needs to be thicker than ~5nm to induce multiple

TABLE I. 300K Hall effect transport properties, including 2DEG densities (ns), 2DEG mobilities (uypeg), and sheet resistance (Rsn), of the 5-channel AIScN/GaN heterostructure
on GaN-on-sapphire template in this study. The targeted Sc composition and layer thicknesses are listed. Transport properties of a single-channel AISCN/GaN 2DEG heterostruc-
ture are shown for comparison. The negative carrier densities indicate net n-type conductivity.

Sample AIScN/GaN xin toan FAISeN n3K 15DEG RR™
1D periods Al,_,Sc, N (nm) (nm) (103 /cm?) (cm?/Vs) (Q/00)
A 5 0.11 50 10 —10.14 583 106
Control 1 0.11 50 10 —2.61 343 698
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FIG. 2. (a) Heterostructure schematics of sample A. (b) /n situ RHEED of AIScN showed a streaky pattern throughout the growth, and a 2 x 2 um? AFM micrograph with rms
roughness of 0.71nm. (c) 1D Poisson simulated band diagram indicated five 2DEGs and five 2DHGs at the AIScN-GaN and GaN-AIScN interfaces, respectively. (d)
Symmetric 20— with strong interference fringes showed that the targeted thicknesses were achieved. (€) RSM about the (1015) reflection confirmed the coherently strained
epitaxial layers on the GaN template. The AIN peaks in both symmetric XRD and RSM scans belong to the AIN nucleation layer in the GaN on sapphire template.

2DEGs. Increasing the AIScN barrier layer thickness strongly increases
the net carrier sheet density. Changing the GaN channel thickness
from 10 to 20nm has a drastic impact on the total carrier density,
while varying thicknesses from 20 to 50 nm induces a more gradual
increase.

The experimental carrier density of sample A is ~ 15% higher
than the 1D Poisson simulated density of a 5 x (10 nm AIScN/50 nm
GaN). As shown in Fig. 2(c), if polarization-induced 2D hole gases
(2DHG) form at the bottom GaN/AIScN interfaces, the parallel con-
duction would contribute to the conductivity and measured apparent
carrier density of the multichannel structures. Due to the higher effec-
tive mass of holes, 2DHGs have a substantially lower mobility than
2DEGs”” and consequently lower the net measured mobility compared
to a heterostructure with only 2DEGs. Formation of 2DHGs at the
AIScN-GaN interfaces has not yet been reported to date. In the future,
to study 2DEG transport alone, and for unipolar multiple n-channel
heterostructures, the 2DHGs can be eliminated by compensation
donor doping.

Figure 3(b) depicts the dependence of total sheet charge density
on the number of AIScN/GaN periods. The 1D Poisson total sheet
charge densities vs AIScN/GaN periods of corresponding multichannel
structures with 10, 12, and 15nm AlygeScy ;1N barriers and 50-nm
GaN channels are also shown. Again, the experimental carrier density
of sample A agrees well with an AIScN barrier thickness between 10
and 12nm for a five-channel heterostructure, highlighting the ability
to scale the total carrier density using the multichannel structure.
Specifically, using the 1D Poisson average sheet carrier density of
~1.8 x 10"*/cm® per 2DEG and ~1.2 x 10"*/cm? per 2DHG, we can
estimate 5-6 effective electron channels in this heterostructure, match-
ing the number of AIScN/GaN periods. More importantly, the total
2DEG density is predicted to have a linear dependence on the number
of AIScN/GaN periods, n. We have observed this scalability for up to
n=20 in a prior study." Though the full range of carrier densities
achievable with AIScN/GaN periods will be further evaluated experi-
mentally in future studies, the range of densities achievable makes the

AIScN/GaN heterostructure an attractive option for transistors and RF
switches.

Figure 4 shows the results of temperature-dependent Hall effect
measurements of sample A between 300 and 10K using a magnetic
field of = 1T. The conductivity remained n-type down to 10K, sug-
gesting a robust contribution of multiple 2DEGs. The signatures of
2DEG transport properties, namely minimal carrier freeze out and
monotonically increasing carrier mobility at cryogenic temperatures,
were both observed. The carrier density decreased from 10.9 x 10"/
cm® at 300K to 9.5 x 10"*/cm® at 10K, corresponding to less than
15% carrier freeze out. Time-of-flight secondary ion mass spectrome-
try analysis on AISCN/GaN heterostructures in our system (not shown)
indicated an oxygen impurity level of between 1 x 10'” and 5 x 10"/
cm® in UID GaN, directly correlating to the observed 1.4 x 10"*/cm?
carrier freeze out. Reduction of unintentional background doping,
introduction of compensating acceptors such as C or Fe, and use of a
high-purity Sc source can reduce the unintentional n-type conductivity
in future works. The measured net carrier mobility increased to
~ 870 cm*/V.s below 100K before saturating. In AIScN/GaN 2DEGs
with minimal contribution from extrinsic scattering mechanisms, elec-
tron mobility is expected to increase in the cryogenic regime as pho-
non scattering is reduced at low temperatures.'” The low temperature
plateau in the measured carrier mobility suggests extrinsic scattering
mechanisms such as interface roughness and alloy scattering dominat-
ing at cryogenic temperatures. Elimination of potential 2D hole gases
and using a metal-rich AIN interlayer can reduce the impact of inter-
face roughness and alloy scattering to further boost the electron mobil-
ity in each channel.

Thus, compared to AlGaN/GaN and AlInN/GaN heterostruc-
tures with the same number of periods,3 45859 A1SeN/GaN multichan-
nel structures deliver more than 3 X the total carrier density thanks to
the stronger spontaneous polarization of AIScN. The lattice-matching
capability promises future AISCN/GaN heterostructures with even
more 2DEG channels without structural degradation due to strain
relaxation. From a practical perspective, the growth temperature of
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FIG. 3. (a) Total sheet charge density of five-channel AISCN/GaN heterostructure
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function of GaN channel and AIScN barrier thickness compared to the Hall effect
carrier density measured at 300K for sample A. (b) Total simulated 2DEG density
and experimental Hall effect carrier density (n-type) as a function of AIScN barrier
thickness and the number of channels, n.

AlScN on GaN is more compatible than AlInN on GaN, which suffers
from InN phase separation at elevated growth temperatures. Despite
the impressive carrier densities, higher electron mobility must be
achieved in AIScN/GaN multichannel structures by integrating a
metal-rich AIN interlayer."” The introduction of tensile strained AIN
interlayers also demands careful selection of Sc composition and
AIScN thickness for strain engineering,”

The high total sheet charge density can help deliver higher ON
current and lower sheet and contact resistances. Thinner total multi-
layer thickness for device processing and lower charge density per
channel for electrical gating are desirable because the etch rate of
AIScN is much slower than that of GaN and AIN.®” From Fig. 3, we
see that an AIScN thickness of 5-10nm and a GaN thickness of
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FIG. 4. Temperature-dependent Hall effect measurements between 10 and 300 K of
the 5 x (10 nm AIScN/50 nm GaN) heterostructure, or sample A in Table |.

20-30nm are sufficient to deliver a reasonable total stack thickness
with high total carrier density (>5 x 10'*/cm?) and moderate carrier
density per channel (~1 x 10"*/cm?), which is not achievable by
similar AlGaN/GaN multichannel heterostructures without a
thicker, tensilely strained AlGaN barrier and additional Si doping in
the GaN channel.

Such AIScN/GaN multilayer heterostructures have applications
beyond GaN RF electronics. Typical Al(Ga)N/GaN heterostructures
with multiple quantum wells, such as THz quantum cascade lasers,”’
resonant tunneling diodes,”* distributed Bragg reflector,’' and inter-
subband absorption photodetectors,’’ can benefit from the wide
bandgap, large band offset, and lattice-matching capability of AIScN
on GaN. The ability to electrically switch the polarization in ferroelec-
tric AIScN layers when combined with multilayer and superlattice
geometries can enable several potential opportunities.

In summary, AISCN/GaN multilayer structures with five conduc-
tive channels were grown and examined in this work. Structural char-
acterization indicated pseudomorphic AIScN/GaN multichannel could
be realized using near lattice-matched AlScN. Room temperature Hall
effect transport properties revealed total mobile carrier densities in the
order of ~ 1 x 10"*/cm? among the highest carrier densities reported
for GaN-based HEMT structures. The total sheet carrier density indi-
cated five effective 2DEG channels were achieved, proving the feasibil-
ity of AIScN/GaN as a viable multichannel 2DEG platform. The
polarization-induced 2D carrier densities were confirmed by
temperature-dependent Hall effect measurements. Compared to the
existing multichannel Al(Ga,In)N/GaN, multichannel AIScN/GaN
heterostructures can deliver 3-5 times more charge for the same num-
ber of periods or total thickness, while enabling a simpler growth
method. This work thus demonstrates AISCN/GaN as a promising
approach to delivering GaN-based multichannel structures for power
and RF applications.
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