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Aluminum Scandium Nitride (AlScN) is an attractive material for use as a lattice-matched epitaxial barrier layer in GaN high-electron mobility
transistors (HEMTs). Here we report the device fabrication, direct current (DC) and radio frequency (RF) characteristics of epitaxial AlScN/AlN/
GaN HEMTs on SiC substrates with regrown ohmic contacts. These devices show record high on-current of over 4 A/mm, high cutoff frequency
( fT) of 92.4 GHz and maximum oscillation frequency ( fMAX) of 134.3 GHz. © 2025 The Author(s). Published on behalf of The Japan Society of
Applied Physics by IOP Publishing Ltd

H igh-performance radio frequency (RF) transistors
with nitride semiconductors are used in a wide range
of applications where high frequency,1–3) low

noise,4,5) high linearity,6) high power,6,7) and reliability8)

are required. III-nitride HEMTs with AlGaN or InAl(Ga)N
barrier layers enable high-power density at high frequencies
for millimeter wave applications.9–11) The large on-current
densities result from the large 2-dimensional electron gas
(2DEG) densities, which form due to polarization disconti-
nuities at the heterojunction interface with GaN. The high
electron mobility, a high breakdown field, and large thermal
conductivity make nitride HEMTs leaders in high-power and
high-frequency applications. These 2DEGs exhibit a much
higher electron mobility than silicon inversion channels for
higher speed, and simultaneously a wider energy bandgap
than silicon for higher breakdown voltage.
Despite the impressive performances in recent years,

several unresolved problems in III-nitride HEMTs restrict
reaping the entire benefit from the intrinsic material proper-
ties. For high-power RF applications these problems are
related to high gate leakage and current dispersion at higher
frequencies. The high gate leakage current leads to decreased
breakdown voltage, increased power dissipation, and reduced
device reliability. The current dispersion limits gain these
output power densities at larger frequencies. Several factors
contribute to the gate leakage and current dispersion in GaN
HEMTs, including high charge densities, electric field
crowding, material defects, trap states, and surface states at
the gate insulator/GaN interface. To address these concerns,
various approaches are being investigated, such as improving
the quality of the gate insulator/GaN interface, using passiva-
tion layers with high breakdown strength, and polarization-
neutral device structures.12,13)

Another way to address these concerns is by using new
materials in the barrier layer. The gain and the speed of the
transistor are related to its intrinsic transconductance
gm, int≈Cgs,int× υsat/Lg, where Cgs,int= ε× Lg×Wg/d is
the intrinsic gate-source capacitance, ε= ò0K is the dielectric

constant of the barrier material and K the relative dielectric
constant, d is its thickness, and υsat is the electron saturation
velocity in the electron channel. Decreasing d is necessary
when Lg is scaled to prevent short channel effects, but this
also increases the gate leakage current exponentially via
Fowler Nordheim tunneling,14,15) which decreases the break-
down voltage. High-K material gate insulator results in a
desired larger gate capacitance, while reducing the gate
leakage by allowing a thicker d, reducing the electric field
and therefore the gate leakage. In situ grown epitaxial high-K
dielectrics are ideal from this point of view since they
potentially eliminate chemical impurities and structural
defects at the gate and channel interface.
For GaN HEMTs, aluminum scandium nitride (AlScN) is

such a high-K gate insulator16,17) which has high thermal and
chemical stability, and offers the option of lattice matching
with GaN.18,19) The use of in situ high-K AlScN gate barrier
GaN HEMTs offers hope for the above advantages to
simultaneously enhance intrinsic transconductance and
breakdown voltage, akin to the metal-high K gate stack in
the Si MOSFETs, as well as curb the interfacial states.
In this work, HEMTs made from AlScN/AlN/GaN hetero-

structures are studied. The DC and RF characteristics of
unpassivated HEMTs with various gate lengths are investi-
gated, with 90 nm gate length devices showing large on-
current densities up to 4 A/mm and on/off ratios greater than
103 despite relatively low room temperature electron mobilities
(494 cm2/V · s) in these devices. Previous reports demonstrate
the promising device performance of scaled AlScN-GaN
HEMTs,20–22) and these results expand on those by showing
the largest on-current densities (4A/mm) reported to date.
These large on-current densities are partially facilitated by the
relatively small source-drain distance of 600 nm in the scaled
devices in this study. With expected future improvements in
electron mobility and heterostructure design to enhance
transconductance, these results demonstrate the great potential
of AlScN to improve the output power and maximum speed of
nitride based millimeter wave integrated circuits.
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Figure 1(a) shows the GaN/Al0.86Sc0.14N/AlN/GaN HEMT
structure, which consists of a 2 nm GaN cap layer, a 5 nm
Al0.86Sc0.14N barrier, a 2 nm AlN spacer (total barrier thickness:
9 nm), a 1000 nm unintentionally doped GaN channel, and AlN
nucleation layer on a 10 × 10 mm2 6H semi-insulating SiC
substrate, grown by plasma assisted molecular beam epitaxy
(PA-MBE). Figure 1(b) shows an AFM image of as-grown
surface of GaN/Al0.86Sc0.14N/AlN/GaN HEMT structure. The
corresponding root means square (RMS) roughness is 1.171 nm
for an AFM scan area of 10 × 10 μm2. Room temperature
Hall-effect measurements with In-dots prior to device fabrica-
tion showed a 2DEG sheet concentration of ~ 3× 1013 cm−2

and electron mobility of 494 cm2/V · s, corresponding to a sheet
resistance of 417 Ω/sq. Figure 1(a) also shows the regrown n+

GaN source/drain ohmic contacts schematic of the AlScN/AlN/
GaN HEMT device. The device fabrication process started with
patterning of a SiO2/Cr mask for n+GaN ohmic regrowth by
PA-MBE. The pre-regrowth etch depth into the HEMT structure
was 40 nm, and regrown n+GaN was 100 nm with a Si doping
level of 7× 1019 cm−3. Non-alloyed ohmic contacts of Ti/Au
were deposited by e-beam evaporation. T-shaped Ni/Au (30/350
nm) gates were formed by electron-beam lithography, followed
by liftoff. Transmission line measurements (TLM) yielded an
average contact resistance of 0.31 Ω · mm. The device presented
here has a regrown n+GaN source-drain distance Lsd of 600 nm,
a gate width of 2 × 25 μm, and a gate length Lg of 90 nm. An
SEM image of completed AlScN/AlN/GaN HEMT is shown in
Fig. 1(c) with the zoomed-in view of the gate shown in
Fig. 1(d).
Room temperature Hall-effect measurements on Van der

Pauw test structures on the same die as the HEMT devices in
this paper show a 2DEG sheet concentration of 2.20×
1013 cm−2 and electron mobility of 494 cm2/V · s, corre-
sponding to a sheet resistance of 573 Ω/sq. These values
allow for the performance of these HEMTs to be evaluated
but do not represent the lowest sheet densities that are
possible in these heterostructures. In a previous study,
room temperature electron mobilities exceeded 1500

cm2 V · s in a similar heterostructure by Casamento et al.17)

The mobility of our sample (494 cm2/V · s) is reasonable
considering the unoptimized GaN buffer growth on 6H-SiC
thus the interface roughness near where the 2DEG resides in
this study. The lower mobility compared to prior works, can
also be attributed to the higher sheet charge density
( ~ 3× 1013 cm−2) observed in our samples arising from a
higher Sc composition. This higher charge density contri-
butes to an enhanced device output current, even though it
increases scattering effects, which slightly reduces mobility.
The tunability of AlScN properties in terms of strain balance
and ferroelectricity affords a wide range of potential
applications.23) As demonstrated in recent studies,24) with
judiciously chosen Sc content, AlScN/AlN/GaN heterostruc-
tures can be strain balanced in the device structure while
exhibiting excellent polarization properties, strong 2DEG
confinement and reliable device operation. Integration of
heterostructures and fabrication of devices with lower sheet
resistances will be the subject of future work.
The following device results were obtained using a

Keithley 4200 semiconductor characterization system for
DC, and an Agilent Technologies E8364B network analyzer
for RF characteristics. For RF characterization, scattering
parameters were measured from 50 MHz to 50 GHz, and
calibrated using short, open, load, and through impedance
standards on an alumina substrate. The parasitics were de-
embedded using fabricated open and short test structures on
the same sample.
Figure 2(a) shows representative family I− V curves of the

device, measured for Vds = 0 to 6 V and Vgs = 4 to −10 V.
The device has a maximum drain current IdMAX = 4.07 A/mm
and an on-resistance Ron of 0.59Ω · mm is extracted at Vgs =
0 V. The transfer curves are shown in Fig. 2(b). A peak
transconductance gm of 0.50 S/mm is obtained at Vds = 5 V.
The transfer characteristics were measured after the output
characteristics and showed a decrease in maximum on-current
densities from approximately 4 to 2.1 A/mm. This decrease in
current density for scaled devices and ultra-thin barrier layers

(a) (b)

(c)

(d)

Fig. 1. (a) Cross Sect. schematic for the GaN HEMT with regrown contacts, and the high-K AlScN layer in the barrier layer is 5 nm thick. (b) AFM image of
the as-grown sample surface. (c) SEM image of a processed HEMT, and (d) inset shows the zoomed-in image of a T-gate.
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after several measurement cycles is not unexpected since the
devices were not passivated. Figure 2(c) benchmarks the
AlScN barrier GaN HEMTs of this work with earlier
reports25–28) of AlxSc1−xN/Al(Ga)N/GaN HEMTs. All
AlScN barrier GaN HEMTs show high output currents
compared to conventional GaN HEMTs with AlGaN or InAl
(Ga)N barriers with similar device designs. This is due to the
larger polarization discontinuity of AlScN with GaN thus a
high channel charge.17,23,29,30)

Figure 3(a) shows the current gain ∣H21∣2 and unilateral
gain U of the AlScN barrier HEMT as a function of
frequency at the peak fT bias condition, Vds = 6 V, and
Vgs = −1 V. The extrapolation of both ∣H21∣2 and U with
−20 dB/dec slope gives the current gain cutoff frequency/
maximum oscillation frequency fT/ fMAX of 92.4/134.3 GHz
after de-embedding. Figures 3(b) and 3(c) show the bias-
dependence heat maps of the fT/ fMAX values extracted in the
same manner as Fig. 3 (a) at various Vgs and Vds. The heat
maps indicate that the highest RF performance of the AlScN/
GaN HEMT is achieved at an on-current of 3.13 A/mm at
Vds = 6 V.
Figure 4 shows the three terminal off-state breakdown

measurements with various gate-drain distances (Lgd). The
breakdown voltage does not scale linearly with Lgd, as
expected, which is caused by the non-uniform distribution of
the electric field within the channel. Among all devices, the
highest breakdown voltage observed is BV = 78 V

(Lgd = 3.85 μm), corresponding to an average electric field
of 0.2 MV/cm. During the measurement and prior to break-
down, the gate current is found to be roughly equal to the drain
current. This indicates that the off-state drain current and
breakdown is dominated by gate-drain leakage, not avalanche
or channel breakdown, and is far from intrinsic material limits.
The breakdown mechanism appears to be a hard breakdown.
This is evidenced by the inability of the device to recover post-
breakdown and visible structural damage under optical inspec-
tion. The damage is predominantly observed around the gate
and drain electrode edges, as these regions are subject to the
highest electric field intensities during device operation.
Capacitance-voltage (C-V ) measurements (not shown) in these
heterostructures show a relative dielectric permittivity of
κ = 15 for the 5-nm AlScN barrier, similar to high-k values
reported in thicker AlScN samples.16) However, the lower than
expected breakdown voltage indicates the high-K aspect of
AlScN is not manifested in the device performance. Typically,
AlN-GaN RF HEMTs show breakdown electric fields upwards
of 1–2 MV/cm.7) This points to room for improvement in the
insulating behavior of the AlScN layer. Nevertheless, to
explore the potential for high-frequency applications, the
breakdown behavior of submicron channel length devices
was examined. An average breakdown voltage of 35.5 V was
measured for a device with a 455 nm gate-drain distance. This
corresponds to an effective breakdown field of 0.78 MV/cm.
Based on these results, the Johnson's figure-of-merit (JFOM =

(a) (b)

(c)

Fig. 2. (a) Family I − V curves and (b) transfer characteristics of the device with Lg = 90 nm and Lsd = 600 nm. (c) Output current benchmark of AlScN
HEMTs with previous reports.25–28).
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fT× BV ) of the fabricated AlScN HEMT is ~ 1.8 THz · V.
Future breakdown voltage values may also be improved by
introducing a passivation process to minimize contribution
from surface states and a field plating process to manage the
electric field distribution on the gate-drain side.
In summary, epitaxial AlScN barrier HEMTs with an AlN

interlayer deliver record high on-current of over 4 A/mm in
spite of a modest channel sheet resistance of 573 Ω/sq.
Simultaneously, a high cutoff frequency ( fT) of 92.4 GHz and
maximum oscillation frequency ( fMAX) of 134.3 GHz is

obtained, leading to a JFOM greater than 1 THz · V. This
heterostructure demonstrates an ongoing effort to integrate
the promising physical properties of AlScN with existing
III-nitride HEMT technology.
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