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A semiclassical treatment of spin relaxation in direct-gap compound semiconductors due to scattering by
edge dislocations from both charged cores, and the strain fields surrounding them is presented. The results
indicate a deleterious effect on spin transport in narrow bandgap III-V semiconductors due to dislocation
scattering. However, this form of scattering is found to be surprisingly benign for wide-bandgap semiconduc-
tors with small spin-orbit coupling(such as GaN). This observation leads to a proposal for possible lattice-
mismatched hybrid heterostructure devices that take advantage of the long spin lifetimes of the wide-bandgap
semiconductors for transporting spin over large distances acting as spin-interconnects, and the wide tunability
of spin in the narrow-bandgap semiconductors for spin logic operations.
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I. INTRODUCTION

The list of proposed semiconductor-based spintronic de-
vices starting with the Datta-Das spin field-effect transistor
(FET)1 rely on two competing requirements, provided that
spin polarized carriers can be efficiently injected into the
channel.2 First, one needs to be able to controllably flip the
spin of a population of injected polarized carriers in the
channel. Second, impurity and defect scattering that occurs
in the spin FET channel should not cause complete spin re-
laxation. This is necessary, so that spin polarization of the
carriers is controlled exclusively by the electric field applied
by the gate voltage(by the Rashba effect). Strong spin con-
trol is achieved in narrow bandgap semiconductors such as
InAs (or the alloy InGaAs) due to the large spin-orbit(SO)
splitting in these materials. However, due to the very same
reason, spin scattering is also enhanced; scattering from the
variations in the electric potential due to impurities and de-
fects is just as effective in randomizing the spin.

One approach to address these contradictory requirements
is to use a narrow bandgap semiconductor for spin manipu-
lation, and a wide-bandgap semiconductor for spin transport.
The relative advantages of a wide-bandgap semiconductor
(with low SO splitting) for spin transport was studied by
Krishnamurthyet al. in their recent work.3 They compared
the spin transport properties in GaN and GaAs. They find
that the spin lifetimes in GaN can be up to three orders of
magnitude longer than in GaAs at all temperatures, and pre-
dict a room-temperature spin mean-free path of,1 cm for
high-purity GaN(i.e., without dislocations). Such high spin
mean-free paths would make the wide bandgap semiconduc-
tor ideal for communication of spin states between spin
FET’s separated by macroscopic distances, akin to global
interconnects in integrated circuits.

Having narrow and wide bandgap semiconductor layers in
the same structure calls for lattice-mismatched epitaxy. This
will result in the formation of dislocations upon growth of
bulk layers, as is observed upon growth of semiconductors
for which no lattice matched substrates are currently avail-
able. How harmful are dislocations for spin transport? This
topic is investigated in this work using a semiclassical ap-
proach.

II. THEORETICAL FORMALISM

The effect of various defects and scattering sources on
spin relaxation has been studied previously. Scattering from
ionized impurities, and optical and acoustic phonons have
been used to explain the spin relaxation rates in various
semiconductors.4,5 However, the effect of dislocations on
spin transport in semiconductors has not received much at-
tention. Spin relaxation by dislocation scattering has been
investigated by Zholkievskiiet al. for metals6 with a strong
spin-orbit coupling, and by Stroudet al. for hybrid II-VI/
III-V heterostructures for electrical spin injection.7 Bescho-
ten et al. have performed an experimental study8 of the spin
relaxation time in doped GaN. They qualitatively suggest
that dislocation scattering is a benign process for spin scat-
tering. However, due to the lack of theoretical analysis of
spin scattering due to dislocations, no quantitative analysis
was presented. This work presents a semiclassical analysis of
the effect of dislocations on spin transport, and points out
how the results are useful in light of the discussion of the
hybrid spin FET architecture proposed. The results show that
the experimental room-temperature spin-scattering rate mea-
sured in GaN may be explained by invoking dislocation scat-
tering.

This work concentrates on conduction electron spin relax-
ation by dislocation scattering due to the precessional
D’Yakonov-Perel’(DP) mechanism and by the Elliot-Yafet
(EY) mechanisms due to spin-orbit interaction with the host
lattice in n-type direct-bandgap semiconductor crystals. The
Bir-Aronov-Pikus mechanism for spin relaxation, which is
important inp-type crystals, the weak nuclear hyperfine in-
teraction mechanism, and relaxation by the exchange-
interaction with magnetic impurities are not considered
here.4 The treatment is strictly valid for cubic crystals. In that
aspect, the results are strictly valid for cubic GaN, and must
be modified for the more common wurtzite form of the crys-
tal. Note that with the above assumption, spin-scattering due
to dislocations becomes linked to momentum scattering.

Fermi’s Golden Rule for transition rate from state
ukl→ uk8l by a scattering potentialV is
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Ssk,k8d =
2p

"
ukk uVuk8lu2ds«k − «k8d. s1d

One can define a generalized scattering rate for functions of
the stateukl as

1

tnskd
= o

k8

Ssk,k8df1 − Pnscosudg, s2d

where Pnsxd is the nth order Legendre polynomial. For
n=1, P1scosud=cosu and thus 1/t1skd is the momentum
scattering rate, and forn=0, one recovers the quantum scat-
tering rate 1/t0skd=ok8Ssk ,k8d. However, if the scattering
process involves the change of afunction of a polynomial
poweruk un, the scattering rate gets weighted by thenth order
Legendre polynomial factor. This distinction will be essential
in evaluating scattering rates by the EY and DP mechanisms.
Furthermore, this distinguishes momentum(and hence spin)
scattering rates by ionized impurities and dislocations, since
dislocation scattering is inherently moreanisotropic9,10 due
to its spatially extended nature.

The conduction band Hamiltonian in the effective mass
approximation for a direct-gap semiconductor around theG
point in the Brillouin zone may be written as11

Hc =
"2k2

2mc
+ 1

2ac
"3

Î2mc
3Eg

sk · sd + 1
2C3ss · wd + W, s3d

where s are the Pauli spin matrices,kx=kxsky
2−kz

2d (other
terms by cyclic permutation), ac=s4mc/3m0dhs1−h /3d−1/2,
C3 is related to the conduction band deformation potential,
andwz=ezxkx−ezyky (other terms by cyclic permutation). The
(direct) bandgap isEg, the valence band spin orbit splitting is
D, andh=D / sD+Egd. Also, mc is the conduction band effec-
tive mass(at theG point), m0 is the free electron mass,"ki is
the electron quasimomentum along thei direction, andei j are
strain components.W is the perturbation potential.

The second term in the Hamiltonian depicts thek3

Dresselhaus spin splitting of the conduction band in the ab-
sence of inversion symmetry,12 and the third term depicts the
modification of electron energy spectrum in the presence of
uniaxial strain. This work is concerned with dilute concen-
trations of dislocations, whose localized strain fields are as-
sumed to cause negligible change to the crystal energy spec-
trum. Furthermore, it is assumed that the lattice-mismatched
layer has relaxed completely by the formation of disloca-
tions. So the third term in the Hamiltonian is neglected in the
analysis, and the dislocation potential is treated as a pertur-
bation to the Hamiltonian of the first two terms, resulting in
spin scattering.

A. Eliott-Yafet scattering

The perturbation potential may be split into two parts
sW=Vdirect+VSOd—one arising from the direct potential of
the perturbation, and the second due to the spin-orbit inter-
action. It is now well established that spin-orbit interaction
of electrons results in the mixing of the spin states in the
eigenfunctions of the crystal Hamiltonian. As a result, for
semiconductors, spin is scattered much more strongly by the

direct perturbation potential than the spin-orbit part associ-
ated with it. This was first pointed out by Elliott13 and
Yafet,14 and is now known as the Elliott-Yafet(EY) scatter-
ing mechanism.

The problem of finding the scattering rate thus hinges on
finding the matrix elementskk ↑ uVdirectuk8↓ l, and summing
them over all available states via the application of Fermi’s
Golden rule of scattering rates. In this formalism, the spin
scattering rate is naturally linked with the momentum scat-
tering rate; a certain fraction of momentum scattering events
result in spin flip. It has been shown by Chazalviel15 that the
relation between the spin scattering rate 1/ts

EYskd and mo-
mentum scattering rate 1/t1skd for the EY mechanism is

1

ts
EYskd

=
1

t1skd
4G

3
S«skd

Eg
D2

F, s4d

where«skd is the electron energy,Eg the bandgap,

G = S2h

3

1 − h/2

1 − h/3
D2

, s5d

and the factorF is given by16

F =

E
−1

+1

dms1 − m2dssmd

E
−1

+1

dms1 − mdssmd
. s6d

Here, m=cosu, u being the angle of scattering; for elastic
scattering, the relation cosu=k ·k8 / uk u2 holds. sscosud is
the scattering cross section, which is proportional to the scat-
tering matrix elementsscosud~ ukk uVdirectuk8lu2. Note that for
dislocations, it is preferable to define a scattering “diameter”
rather than a scattering “cross section” due to the linear na-
ture of the defect; however, the proportionality still holds,
thus enabling the evaluation ofF once the effective matrix
element is known.

B. Dyakonov-Perel scattering

In the absence of inversion symmetry, the conduction
band energy eigenvalues are spin-split at every quasimo-
menta value"k into "2uk u2/2mc±huku, according to the sec-
ond Dresselhaus term in the Hamiltonian. However, the spin
splitting D«k =2huku is much smaller than typical carrier en-
ergies (D«k ,kT/300 for «k ,kT at T=300 K). Thus, this
splitting is treated as the perturbation potential leading to
spin scattering. The electron spin precesses about the vector
k, which is perpendicular to the electron quasimomentum
directionk / uk u. With each momentum scattering, the preces-
sion axis changes irreversibly, and precession starts anew,
leading to a diffusive spreading of electron spin direction.
The more frequent the momentum scattering, the less time
the spin has to change from its initial precession axis; thus,
in this form of scattering, spin relaxation time isinversely
proportional to the momentum scattering time. This method
of spin relaxation was first recognized by D’Yakonov and
Perel17 (it is referred to as DP scattering).
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By decomposing the components of the vectork=kxsky
2

−kz
2dx+kyskz

2−kx
2dy+kzskx

2−ky
2dy into spherical coordinates,

and carrying out a spherical unweighted average, one obtains
for a parabolic energy dispersion ki

2=4k6/105
=32mc

3«skd3/105"6. D’Yakonov and Perel have shown in
their seminal work17 by using the time-evolution property of
spin density matrices that the spin-relaxation rate is then
given by

1

ts
DPskd

= V0
2t3skd, s7d

where V0
2=s32/105dac

2f«skd3/"2Egg. Since the precessional
spin relaxation rate depends on the rate of dephasing of
k,k3 instead ofk, the weighting factor for spin relaxation
rate becomes 1−P3scosud. Sincemomentumscattering rates
are usually known from electrical transport theory, it is use-
ful to relate the two rates by introducing a new factor

1/t3skd
1/t1skd

= g3skd =

E
−1

+1

dmf1 − P3smdgssmd

E
−1

+1

dmf1 − P1smdgssmd
. s8d

III. TWO DISLOCATION POTENTIALS

In this work, edge dislocations are considered exclusively.
The case for screw dislocations can be treated using a similar
formalism with the corresponding scattering potentials. The
crystal lattice around an edge dislocation is strained, leading
to a scattering potential for electrons. Similarly, the core of
the dislocation has a line of dangling bonds, which donate or
accept electrons from the host lattice, and get charged. As a
result, the dislocation becomes a line charge, and the Cou-
lombic potential leads to scattering of electrons moving in
the conduction band. Both these potentials are schematically
shown in Fig. 1. In the following, the spin scattering rates
due to the two dislocation related potentials are calculated.

A. Dislocation strain fields

Since the bandgap of the semiconductor depends on the
strain via the deformation potential, the variation of the
conduction/valence band extrema around the dislocation fol-
lows the strain fields. The deviation of conduction band-edge
from flat-band conditions around an edge dislocation is18,19

Vstsrd = −
aC

!be

2p

sinw

r
, s9d

where aC
! =aCfs1−2sd / s1−sdg, aC is the conduction band

deformation potential,s is the Poisson ratio of the crystal,
andbe= ubeu is the length of the Burgers vector.r = ur u is the
radial distance from the dislocation core, andw is the angle
betweenr and the Burgers vectorbe. Note that upon scatter-
ing, the electron quasimomentum component"k' is changed
only; the dislocation does not change the parallel component
owing to the translational invariance of the dislocation po-
tential along its axis. Long-range variations from flat-band
conditions in semiconductors are screened by mobile carri-
ers. The characteristic screening length of long-range poten-
tials is the Debye screening length for non-degenerate carri-
ers, and the Thomas-Fermi length for degenerate carrier
densities. For now, the screening lengthl is retained as a
parameter to be evaluated for different regimes.

The square of the screened momentum matrix element
(with screening lengthl) is given by

uṼstsqdu2 =
saC

!d2be
2

8p2

l2

1 + sqld2 , s10d

where the scattering is from stateukl→ uk +ql. Note that this
is evaluated by an angle-averaging over various randomly
oriented Burgers vectors for different dislocations.19 By sum-
ming the scattering rates over all possible finalk states, the
exactmomentum scattering rate is

1

t1
stskd

=
Ndislmcbe

2saC
!d2

2"3

y − 1

k2y
, s11d

where Ndisl is the areal dislocation density,x=kl, and y=
Î1+2x2.

For the EY mechanism, the factorFst has an asymptotic
valueFstsx→`d=1. Similarly, the factorg3 for DP scatter-
ing has an asymptotic behaviorgstsx→`d=9/4. The
asymptotic values are important, since the first Born approxi-
mation from which Fermi’s Golden Rule is derived requires
that 2skld2@1; this holds in general in the degenerate and
nondegenerate limits.15 The exact formulas of the two factors
appear in the Appendix.

B. Dislocation charge

If the dislocation is considered a line charge with charge
densitye/c C m−1, then the screened potential surrounding
the dislocation is given by20,21

Vchsrd =
e

2pesc
K0S r

l
D , s12d

whereK0 is the zero-order modified Bessel function,es is the
dielectric constant of the host semiconductor, andl is the

FIG. 1. The strain and Coulomb fields around edge dislocations
that cause spin scattering are shown schematically. Without screen-
ing by free carriers, the strain field follows a sinw / r dependence
from the dislocation core, and the Coulomb field follows a 1/r
dependence.
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screening length. The same screening length as used for scat-
tering from strain fields appears for charged dislocation scat-
tering. This is justified since both unscreened potentials have
a characteristic 1/r long-range variation, which results in
similar screening.

The squared scattering matrix element thus becomes22

uṼchsqdu2 = S e2

esc
D2S l2

1 + sqld2D2

, s13d

and leads to a momentum scattering time10

1

t1
chskd

=
e4m!Ndisl

"3es
2c2

l4

y3 . s14d

The EY factor for dislocation charge field scattering has
an asymptotic behaviorFchsx→`d=2, and the DP factor
gchsx→`d=6 (from the Appendix), similar to small-angle
scattering for ionized impurities.16

IV. SPIN SCATTERING RATES

With the above formulation, spin scattering rates may be
calculated in the case of arbitrary degeneracy of carriers, and
at all temperatures, by taking the energy distribution of car-
riers into account. However, the most useful cases arise for
the extreme cases of nondegenerate distributions and degen-
erate distribution of electrons. For such cases the spin scat-
tering rates due to dislocation strain and charge fields reduce
into particularly simple forms.

A. Scattering rates in the degenerate and nondegenerate limits

In the degenerate limit, transport occurs by carriers at the
Fermi level, and the scattering rates can be evaluated at the
Fermi surface. As a result, the dimensionless term
kl→kFlTF, where kF=s3p2nd1/3, n being the 3D electron
density andlTF=Î2es«F /3e2n is the Thomas-Fermi screen-
ing length. For the Born approximation to be valid,
2skFlTFd2@1, and for nominal values of electron density
(1016/cm3ønø1020/cm3), we find 8ø2skFlTFd2ø50,
weakly satisfying the required condition. The carrier energy
is given by the Fermi energy, which is determined by the
carrier density via«F="2kF

2 /2mc. In this aspect, the proper-
ties of the degenerate semiconductor are similar to that in a
metal.

Similarly, for nondegenerate carrier distributions, the
Fermi-Dirac distribution of carrier energies may be approxi-
mated by a Maxwell-Boltzmann distribution. With this ap-
proximation,«skd<kT, and a parabolic energy dispersion is
used to relate the electron quasimomentum to the tempera-
ture "k<Î2mckT. For finding the ensemble spin-scattering
rate, energy averaging by following the prescription for a
Maxwell-Boltzmann gas yields

U 1

ts
U

ND
=
E tss«d−1Î«e−«/kTd«

E Î«e−«/kTd«

. s15d

The screening length is the well-known Debye length given
by lD=ÎeskT/e2n!, wheren! is the free-carrier density ef-

fective in screening. Forn-type doped semiconductors, the
effective screening density is assumed to be the doping den-
sity for nondegenerate cases due to complete ionization.

1. Eliott-Yafet scattering mechanism

The EY spin scattering rate for a degeneratesDd electron
distribution by the strain field of the dislocation is

U 1

ts
EYU

D,str

<
G

3
Ndislbe

2SaC
!

Eg
D2«F

"
. s16d

The asymptotic factors evaluated earlier forkl→`, with
Eqs.(4) and (11) are used here. Using the same forms for a
nondegenerate(ND) electron gas, the spin scattering rate
from the dislocation strain field is found to be

U 1

ts
EYU

ND,str

<
G

2
Ndislbe

2SaC
!

Eg
D2kT

"
. s17d

The derived formulas yield close estimates at best; the exact
scattering rates for the model of dislocation potentials may
be evaluated by averaging the scattering rates over the exact
Fermi-Dirac carrier energy distributions.

In a similar fashion, spin scattering rates by the EY
mechanism for the dislocation charge potentials for a degen-
erate distribution is given by

U 1

ts
EYU

D,ch

< GÎ128p3

27

Ndisl"
3«F

smccEgd2ÎaB
3n

, s18d

where Eqs.(4) and (14) are used. For a nondegenerate dis-
tribution,

U 1

ts
EYU

ND,ch

<
16pG

3

Ndisl"
3kT

smccEgd2ÎaB
3n!

. s19d

Here, aB=4p"2es/e
2mc is the effective Bohr radius of the

semiconductor.

2. Dyakonov-Perel scattering mechanism

The spin scattering rates due to strain fields of disloca-
tions by the DP mechanism for a degenerate electron gas is
found to be

U 1

ts
DPU

D,st

<
96

35
F ac

2

Ndislbe
2GF «F

4

"EgsaC
!d2G , s20d

by using Eqs.(7) and(11), and the fact that transport occurs
due to carriers at the Fermi energy.

Since uts
DPust,«4, for the nondegenerate case, a Maxwell-

Boltzmann averaging of the scattering rate over carrier ener-
gies k«4l=Gs11/2d /Gs3/2dskTd4<59skTd4 can be used to
obtain

U 1

ts
DPU

ND,st

< F 162ac
2

Ndislbe
2GF skTd4

"EgsaC
!d2G . s21d

Similarly, for charged-core scattering from dislocation,
the DP scattering rate for a degenerate electron gas is evalu-
ated to be
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U 1

ts
DPU

D,ch

<
64Î3p3

35Î2

sacmccd2ÎaB
3n

"5EgNdisl
«F

4 , s22d

and for a nondegenerate electron gas

U 1

ts
DPU

ND,ch

<
3 3 210

7p2

sacmccd2ÎaB
3n!

"5EgNdisl
skTd4. s23d

B. Interference effects

For spin scattering from the strain and charge-fields of the
samedislocation, there is no interference, since the electron
being scattered will experience no path difference. The scat-
tering potentials add in such a case due to simultaneous scat-
tering from both fields, and Matheissen’s rule is applicable
for finding the combined scattering rate. However, for scat-
tering from different dislocations, interference effects need to
be considered. Since this work considers adilute distribution
of randomly placed dislocations in the semiconductor, it is
safe to assume that the individual uncorrelated phase contri-
butions from the two potentials from different dislocations
average to zero, similar to a random phase approximation.25

For example, at the highest dislocation density we consider
s1010/cm2d, there is on an average one dislocation for every
square area of side 1000 Å. The interaction of scattering po-
tentials from different dislocations placed far apart is indeed
weak, and even weaker when screening is taken into account.
This justifies ignoring interference effects in evaluating spin
scattering rates.

V. DISCUSSION AND APPLICATION

Before describing the results, some qualitative observa-
tions of the derived spin scattering rates are presented. Ex-
perimental evidence shows that in the absence of an external
magnetic field, spin scattering by the EY mechanism due to
defects (ionized impurities) dominates the spin-scattering
rate at the lowest temperaturessTø20 Kd.15 At higher tem-
peratures, DP mechanism dominates.11 This behavior is also
expected for dislocation scattering.

From the results for a nondegenerate electron population,
dislocation strain scattering has ats,sTNdisld−1 dependence
for the EY mechanism and ats,n! / sTNdisld dependence for
charged core scattering. Strong screening(large n!) is
expected to make spin scattering less susceptible to charged
core scattering. EY scattering becomes more severe as
the density of dislocations increases, as well as when the
carriers become more energetic, i.e., at high temperatures.
Similarly, spin scattering time by dislocation strain fields by
the DP mechanism has ats,Ndisl/T

4 dependence, and a

ts,Ndisl/T
4În! dependence for charge scattering. DP scat-

tering becomes less severe with increasing dislocation den-
sity, but is very strongly dependent on temperature; it is evi-
dent that DP scattering is expected to dominate spin
scattering times at high temperatures(including room tem-
perature). Similar observations can be made for degenerate
electron distributions.

The derived spin-scattering rates due to dislocations are
applied to study the effects on spin transport in three repre-
sentative direct-gap III-V semiconductors InAs, GaAs, and
GaN. The material properties that are relevant to the calcu-
lation are listed in Table I. Note that the SO-splitting termD
is rather small for GaN, as expected for a wide bandgap
semiconductor. Note also the general trend that for smallD,
G,D2/Eg

2, and ac,D /Eg, and the spin scattering times
ts

EY,Eg
4/D2 andts

DP,Eg
3/D2. This indicates a rather strong

dependence of spin scattering times on the band structure—a
wide bandgap semiconductor with a small spin-orbit cou-
pling is very resistant to spin scattering.

Figure 2 shows a plot of the dislocation-scattering limited
spin relaxation time for a non-degenerate electron population
of concentrationn3d=3.531016/cm2 in bulk GaN, GaAs,
and InAs. Each of the semiconductor crystals is assumed to
be infected with a threading edge dislocation density of
Ndisl=53108/cm2. The parameters used for the calculation

TABLE I. Material properties of InAs, GaAs, and GaN.

Material Egs300 K,eVd DseVd aCseVd a0sc0d Å «s mc/m0 s

(1) InAs 0.4 0.39 5.1 6.058 15.2 0.026 0.35

(2) GaAs 1.4 0.34 7.2 5.653 12.9 0.063 0.31

(3) GaN 3.4 0.02 8.0 3.189(5.185) 8.9 0.20 0.30

FIG. 2. Spin-scattering time due to dislocations calculated for
the nondegenerate regime. The electron concentration and disloca-
tion density is assumed constant. The room-temperature spin-
scattering rate for GaN is in good agreement with the experimen-
tally measured value(Ref. 8). Also note that spin scattering by
dislocations is very weak for wide-gap semiconductors with small
spin-orbit coupling.
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are ubeu=a0, and the line charge densityc=a0 for GaAs and
InAs andc=c0 for GaN. For the same dislocation densities
and similar carrier concentrations, spin transport in GaN is
much more resistant to dislocation scattering than in GaAs or
InAs. Figure 3 shows a breakup of the different scattering
mechanisms that determine the spin-scattering rates for GaN
at each temperature. At the lowest temperatures, EY-
scattering from charged dislocation cores is found to be most
effective in determining the spin-scattering rates. At tempera-
turesTù20 K, spin scattering occurs predominantly by the
strain fields surrounding dislocations by the DP mechanism.
Note that EY scattering from dislocation strain fields and DP
scattering from charged dislocation cores are relatively inef-
fective processes.

The dislocation scattering-limited spin scattering times for
degenerate electron distributions as functions of dislocation
densities and carrier concentrations is shown in Fig. 4. The
dominance of DP scattering is highlighted by the increase of
spin-scattering time with increasing dislocation density. For
the same reasons, as the carrier density increases, dislocation
potentials are better screened, the momentum scattering rate
decreases, and as a result, DP scattering rate increases. Note
here that any experimentally measured spin-scattering time
depends upon the momentum scattering times in the form
ts

EY,t1 andts
DP,1/t1, wheret1 is the momentum scatter-

ing time due toall scattering mechanisms. By Matheissen’s
rule, t1 is determined by thestrongestscattering mechanism.
At very low dislocation densities,t1 is determined by either
phonon scattering or inonized impurity scattering, and dislo-
cations would not play a part in spin relaxation. Figure 4
should be understood in that light—it shows the spin scatter-
ing time due to dislocations alone.

Comparison with experimental data. A comparison with
experimental observations is now presented. Beschotenet
al.8 have reportedts<20 ns asT=5 K (n<3.531016/cm3

and Ndisl<53108/cm2), and ts<35 ps atT<300 K for a
GaN sample withn<131017/cm3 and Ndisl<53108/cm2.

They mention the possibility of dislocation scattering being
benign to spin relaxation, enabling surprisingly long spin
memory in the material in spite of the many orders of mag-
nitude larger dislocation density. The same carrier and dislo-
cation densities as in the sample used by Beschotenet al. in
their experimental work is used for GaN, GaAs, and InAs for
illustrating the dependence of dislocation spin scattering on
the bandgap and spin-orbit splitting of the semiconductors.

The calculated spin-scattering timests<43 psd for GaN
sn<131017/cm3d is in reasonably good agreement at room
temperature with the experimental datasts<35 psd.8 At
lower temperatures, other scattering mechanisms(e.g., ion-
ized impurity scattering) probably dominate the measured
lifetimes, which are much shorter than what would be ex-
pected from dislocation scattering. Krishnamurthyet al.
calculated3 spin-scattering times from all scattering mecha-
nisms (phonons, ionized impurities) excludingdislocations
for GaN to bets<100 ns at 300 K, which is much larger
than the experimental value. This work offers an explanation
for the experimentally observed value by considering dislo-
cation scattering. DP scattering by the strain fields surround-
ing dislocations is identified to be the primary spin-scattering
mechanism at and around room temperature.

Note also that for bulk InAs grown on GaAs with a carrier
concentration n3d<231016/cm3–ts,10–20 ps was re-
ported by Boggesset al.26 However, they do not discuss the
individual scattering mechanisms in their work. Due to the
scarcity ofsystematicstudies of the effect of dislocation scat-
tering on spin transport in InAs and GaAs materials, experi-
mental data is not discussed any further in this work. As such
studies are carried out with lattice-mismatched materials
with high dislocation densities, the theory presented here

FIG. 3. Relative strengths of individual dislocation spin-
scattering mechanisms for GaN. Note that for spintronic devices
operating near room-temperature, DP scattering from the strain
fields surrounding dislocations dominates spin transport.

FIG. 4. Spin-scattering times by dislocations for degenerate
electron populations for the three semiconductors. Note that in the
regime covered, the larger the dislocation density, the less is the
spin scattering for the same carrier concentration, highlighting the
importance of the DP scattering mechanism. For the same disloca-
tion density, spin-scattering becomes more efficient with increasing
carrier density. Temperature does not play a role for the ideal de-
generate carrier distribution considered.
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may be used as a guideline for interpreting trends and the
effect of dislocation scattering.

VI. CONCLUSIONS

An important observation is that at high temperatures,
since DP mechanism dominates, a sample with more dislo-
cations will have alonger spin scattering time due to dislo-
cations. This might prove to be beneficial for achieving spin
transport over long distances. A wide bandgap semiconduc-
tor (with small SO splitting, such as GaN) with a fair amount
of dislocations can be deposited on a narrow bandgap semi-
conductor, and still retain large spin lifetimes. This counter-
intuitive result may prove to be especially advantageous for
the design of lattice-mismatched heterostructure spintronic
devices for spin communication over long distances. Note
that if the dislocation density becomes too large, EY mecha-
nism may start playing an important role at higher tempera-
tures. In addition, space-charge regions around charged dis-
locations can overlap, leading to reduction of free carriers,
and to carrier localization as well.23,24

So there exists a window of dislocation densities within
which spin transport at normal operating temperatures for
devices is improved by the controlled introduction of dislo-
cations. There should be no confusion about thetotal spin-
scattering rate due to phonons, ionized dopants, and other

defects; for any given semiconductor, if one prevents dislo-
cations altogether, one gets the least spin scattering. How-
ever, if one wants to take advantage of the small spin scat-
tering in a wide bandgap spin-transport layer in conjunction
with a narrow-gap spin-control layer, dislocations are inevi-
table. Then, it is better to have a controllably large disloca-
tion density in the spin-transport layer for large room-
temperature spin lifetimes. Though any form of scattering is
a bane for spin transport, the relative insensitivity of dislo-
cation scattering for wide-bandgap semiconductors might
prove to be a boon, leading to novel design paradigms for
spintronic devices.

APPENDIX

The crucial link between the momentum and spin-
scattering rates by both the EY and DP spin scattering
mechanisms are the ratiosF andg defined earlier. Here, the
exactforms of the ratios for spin scattering by dislocations as
functions of the dimensionless quantityx=kl are listed.

For the EY mechanism, the factorFst for scattering by
strain fields of dislocations is found to be

Fstsxd =
ys1 + x2 − yd

x2sy − 1d
, sA1d

which has an asymptotic valueFstsx→`d=1. Here y
=Î1+2x2. Similarly, the factorg3 for DP scattering by the
strain field is

gstsxd =
3x4s3y − 8d − 30x2 + 10sy3 − 1d

4x4sy − 1d
, sA2d

with an asymptotic behaviorgstsx→`d=9/4.
For the Coulombic charge field around dislocation, the

EY factor is found to be

Fchsxd =
y2s1 + x2 − yd

x4 . sA3d

The asymptotic value isFchsx→`d=2. Similarly, the DP
factor is

gchsxd =
2x6 + 5x4y2 − 10y3s1 + x2d + 10y4

2x6 , sA4d

with an asymptotic value ofgchsx→`d=6. The dependence
of the four spin-scattering factors on the dimensionless quan-
tity kl, with the mentioned asymptotic values is shown in
Fig. 5.
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