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In this work, fundamental results for carrier statistics in graphene two-dimensional sheets and
nanoscale ribbons are derived. Though the behavior of intrinsic carrier densities in
two-dimennsional graphene sheets is found to differ drastically from traditional semiconductors,
very narrow �sub-10 nm� ribbons are found to be similar to traditional narrow-gap semiconductors.
The quantum capacitance, an important parameter in the electrostatic design of devices, is derived
for both two-dimensional graphene sheets and nanoribbons. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2776887�

Graphene, a two-dimensional �2D� honeycomb structure
of carbon atoms, has generated intense interest recently.1–5 It
has been now demonstrated that narrow graphene nanoscale
ribbons �GNRs� possess band gaps that are tuned by the rib-
bon width.3 These properties, along with the good transport
properties of carriers �high mobility, high Fermi velocity�
suggest that it is possible that graphene may be used in the
near future in high speed electronic devices.6,7 In spite of
rapid advances in the study of transport properties of
graphene, basic tools of semiconductor device design such as
temperature dependent carrier statistics and electrostatic
properties such as quantum capacitance remain unexplored.
This work investigates these properties for both 2D sheets,
and GNRs in a comparative fashion, and analytical results
for these quantities are presented.

The dispersion of mobile � electrons in graphene in the
first Brillouin zone �BZ� is given by

E�k� = s�vF�k� , �1�

where s= +1 is the conduction band �CB� and s=−1 is the
valence band �VB�, � is the reduced Planck’s constant, vF
�108 cm/s is the Fermi velocity of carriers in graphene, and
�k�=�kx

2+ky
2 is the wave vector of carriers in the 2D �x−y�

plane of the graphene sheet. The point �k�=0, referred to as
the “Dirac point,” is a convenient choice for the reference of
energy; thus, E��k�=0�=0 eV. Each k point is twofold spin
degenerate �gs=2�, and there are two valleys in the first BZ
�the K and K� valleys�, gv=2. Deviations from the conical
bandstructure are neglected in this work.

In an undoped layer of graphene in thermal equilibrium,
there are mobile electrons in the CB and holes in the VB,
similar to the intrinsic carriers in a pure bulk semiconductor.
To find the 2D sheet density of such intrinsic carriers in
graphene, the linear density of states �DOS�,

�gr�E� =
gsgv

2���vF�2 �E� , �2�

is used to write the 2D electron gas sheet density in graphene
as

n = �
0

�

dE�gr�E�f�E� , �3�

where f�E� is the Fermi-Dirac distribution function given by
f�E�= �1+exp��E−EF� /kT��−1, k the Boltzmann constant, T
the absolute temperature, and EF the Fermi level. With the
aid of the dimensionless variables u=E /kT and �=EF /kT,
the electron density may be rewritten as

n =
2

�
	 kT

�vF

2

I1�+ �� , �4�

and the hole density is symmetric, given by

p =
2

�
	 kT

�vF

2

I1�− �� , �5�

where I j���=1/��j+1��0
�duuj / �1+eu−�� is the Fermi-Dirac

integral with j=1 and ��¯� is the gamma function.
Under thermal equilibrium and under no external pertur-

bation �no applied bias, no optical illumination�, the Fermi
level is unique, and moreover, it is exactly at the Dirac point
�EF=0 eV�. Then, the intrinsic carrier concentration in 2D
graphene is given by

n = p = ni =
�

6
	 kT

�vF

2

, �6�

which is dependent on only one material parameter—the
Fermi velocity. The point to note is that the intrinsic sheet
density of electrons/holes does not depend on temperature
exponentially; it has a T2 dependence, due to the absence of
a band gap, and the linear energy dispersion. At room tem-
perature, the intrinsic electron and hole sheet densities evalu-
ate to ni�9�1010 cm−2.

The situation changes for nanoscale ribbons cut from
infinite graphene sheets. Consider a GNR of width W. Cur-
rent experimental evidence suggests no clear dependence of
the band gap of GNRs on the chirality.3 Regardless, the re-
sults derived here remain applicable for GNRs with band
gaps. We make the assumption that the electron and hole
quasimomenta are isotropic in the graphene plane. By align-
ing the x axis along the longitudinal direction of the ribbon,
the electron wave vector in the y direction is quantized by
hard-wall boundary conditions to be ky =n� /W �n
= ±1, ±2, . . . �, and the energy dispersion relation �Eq. �1��
for the nth subband becomesa�Electronic mail: djena@nd.edu
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E�n,kx� = s�vF�kx
2 + 	n�

W

2

, �7�

indicating that the CB �s=1� and VB �s=−1� split into a
number of one-dimensional �1D� subbands, indexed by n. It
is obvious that breaking the symmetry of a graphene sheet by
cutting out a ribbon opens up a band gap. For the isotropic
case assumed here, the band gap for a GNR of width W is
given by Eg=Es=+1�1,0�−Es=−1�1,0�=2��vF /W, dependent
only on the Fermi velocity and the width of the GNR. The
DOS relation for the nth 1D subband is then given by

�GNR�n,E� =
4

��vF

E

�E2 − En
2
��E − En� , �8�

where ��¯� is the Heaviside unit step function and En

=n��vF /W=nEg /2. This directly leads to a total DOS
�GNR�E�=�n�GNR�n ,E�. The expression for the total DOS is
the same for the CB and VB and exhibits Van Hove singu-
larities at energies En from the Dirac point. The electron
density as a result is given by

n =
4kT

��vF
�
n	0

S�xn,�� , �9�

where xn=En /kT, �=EF /kT, and

S�x,�� = �
x

� u
�u2 − x2

du

1 + eu−� . �10�

The intrinsic carrier concentration in GNRs is obtained
when �=EF=0, i.e., the Fermi level is at midgap; this leads
to ni= �4kT /��vF��nS�xn ,0�. For narrow GNRs, Eg
kT,
then one can use the approximation S�x ,0�
xK1�x� where
K1�¯� is the Bessel function of first order, and the
asymptotic approximation of the Bessel function K1�x�

�� /2xexp�−x� for large x to write the intrinsic carrier den-
sity of GNRs as

ni 

4

W
��kT

Eg
�

n

�ne−n�Eg/2kT�. �11�

For band gaps well in excess of the thermal energy, it suf-
fices to retain only the first term in the summation to recover
the familiar dependence,

ni 

4

W
��kT

Eg
e−Eg/2kT. �12�

This relation has to be used with caution when experimen-
tally extracting band gaps from the slope of Arrhenius-like
plots; it is applicable only when the band gap is well in
excess of the thermal energy, as has been done in a recent
report.8 The 1D carrier concentration of GNRs may be con-
verted to an effective 2D sheet density by writing n2D
=n1D/W for comparing their properties with graphene, as is
done in Fig. 1. This figure shows that the intrinsic carrier
concentrations in GNRs differs significantly from graphene
only if the ribbon widths are below �0.1 �m, and indicates
when Arrhenius dependence of intrinsic carrier concentra-
tions is valid.

The carrier sheet density in graphene can be changed by
an electrostatic gate voltage, and the on-state sheet densities
can approach, and exceed those in conventional field-effect
transistors. If the Fermi level in a 2D graphene sheet is

driven from the Dirac point to EF=�kT electrostatically
by means of a gate voltage, then the electron density
is given by n=niI1��� /I1�0� and the hole density by
p=niI1�−�� /I1�0�, leading to a mass-action law
np=ni

2
I1���I1�−�� /I1

2�0�.
Similarly, if the local electrostatic potential in a GNR

is tuned by a gate voltage such that the Fermi level
is at EF=�kT, then the electron density is given by Eq. �9�.
For �	x
1, one can make the approximation
�1+exp�u−���−1
���−u� to rewrite the 1D electron con-
centration as

n 

4

��vF
�

n

�EF
2 − En

2��EF − En� , �13�

On the other hand, for a nondegenerate condition when the
Fermi level is located inside the GNR band gap, using the
approximation S�x ,��
��x /2exp��−x� the electron con-
centration may be written as n
nie

�, and similarly, for
holes, p
nie

−�, which is similar to traditional semiconduc-
tors. Figure 2 shows the calculated exact 2D carrier concen-
trations in graphene and GNRs of different widths as a func-
tion of the location of the Fermi level �qVch=EF� at room
temperature. Though narrow GNRs exhibit large charge
modulation due to the existence of a gap, they become simi-
lar to 2D graphene sheets when the Fermi level is deep inside
the bands. Ripples appear in the GNR density due to Van
Hove singularities, as indicated by arrows.

An important quantity in the design of nanoscale devices
is the quantum capacitance.9 Writing the total charge in a
graphene sheet with a local channel electrostatic potential
Vch as Q=q�p−n� where q is the electron charge, and using
the definition of quantum capacitance CQ=�Q /�Vch, one ob-
tains for 2D graphene,

CQ =
2q2kT

���vF�2 ln�2	1 + cosh
qVch

kT

� , �14�

which under the condition qVch
kT reduces to

FIG. 1. �Color online� Intrinsic sheet carrier concentrations in graphene
sheets and nanoribbons. Wide GNRs and 2D graphene have non-Arrhenius
dependence on temperature, which becomes increasingly Arrhenius-like as
the ribbon width decreases.

092109-2 Fang et al. Appl. Phys. Lett. 91, 092109 �2007�

Downloaded 29 Aug 2007 to 129.74.160.64. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp



CQ 
 q2 2

�

qVch

��vF�2 = q2�gr�qVch� . �15�

If the electrostatic capacitance formed between a gate elec-
trode and the graphene layer is given by Cox=�ox/ tox, then
the electron density in the graphene layer can be written as a
function of the gate voltage as

n = nG − nQ	�1 + 2
nG

nQ
− 1
 , �16�

where nG=CoxVG /q is the traditional carrier density one
would obtain by neglecting the quantum capacitance and
nQ= �� /2��Cox�vF /q2�2, which arises solely due to the quan-
tum capacitance. Applying the same method to find the quan-
tum capacitance �per unit width� of GNRs, one obtains for
the condition �	x
1,

CQ 

4q2

��vF
�

n

�

��2 − xn
2
��� − xn� = q2�GNR��� . �17�

The quantum capacitance of 2D graphene and GNR is plot-
ted in Fig. 3 �left�, and compared with the oxide gate capaci-
tance of 1 nm SiO2 and HfO2. Figure 3 �right� shows the
carrier density dependence in 2D graphene on the gate volt-
age �Eq. �16�� for different SiO2 thicknesses. Gate modula-
tion of the charge is strong but nonlinear for very thin tox

since CQ
Cox under that condition. The field-effect be-
comes weak but increasingly linear as tox is increased since
Cox
CQ under that condition. Thus, by measuring the quan-
tum capacitance, one can directly infer the band gap from the
separation of the van Hove singularities. The results pre-
sented here would prove useful for the design of electronic
devices using graphene sheets and GNRs.
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FIG. 2. �Color online� 2D carrier concentration in graphene and GNRs of
different widths as a function of the location of the Fermi level. Though
narrow GNRs exhibit large charge modulation due to the existence of a gap,
they become similar to 2D graphene sheets when the Fermi level is deep
inside the bands.

FIG. 3. �Color online� Left: quantum capacitance of 2D graphene and a
5 nm GNR compared with the parallel-plate capacitance of 1 nm SiO2 and
HfO2. Right: 2D carrier density in a graphene sheet as a function of gate
voltage for different oxide thicknesses.
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