JOURNAL OF APPLIED PHYSICS 102, 023703 (2007)

Hydrodynamic instability of one-dimensional electron flow

in semiconductors
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The hydrodynamic instability of one-dimensional flow of electrons in an ungated semiconductor
driven by a voltage difference is studied. The governing transport and electrostatic equations are
linearized about the steady flow, and the eigenspectrum of perturbations is calculated. The carrier
flow is found to be unstable under certain circumstances through oscillations that manifest
themselves as planar waves. Higher voltages lead to greater rates of growths of the instability. The
frequencies of oscillation are found to be of the order of terahertz, making the phenomenon suitable
for consideration as a solid-state radiative source at this frequency range. © 2007 American Institute

of Physics. [DOI: 10.1063/1.2753692]

I. INTRODUCTION

A number of solid-state devices are being currently ex-
plored for filling the so-called “terahertz gap”—both narrow
and broadband electromagnetic wave emitters spanning the
frequency range from 300 GHz to 3 THz (corresponding to
wavelengths from 100 wm to 1 mm). Though non-solid-state
sources such as free electron lasers' and relativistic electron
accelerators® exist for this purpose, compact solid-state
sources offer the unique advantage of portability and the pos-
sibility of integration with integrated circuits (ICs). Optical
devices such as quantum-cascade lasers (QCLs) are ap-
proaching this gap from the high-frequency regime.3 How-
ever, the operation of QCLs is limited to cryogenic tempera-
tures (since Aiw~ 1 meV <kgzT at room temperature). On the
other hand, high-speed electronic transistors are rapidly ad-
vancing to fill the terahertz gap from the low-frequency end.*
The switching speeds of ultrascaled transistors, however, are
limited by transit time effects and parasitics. Switching speed
in such transistors is approaching the 1 THz mark, indicating
that a room-temperature all-electronic terahertz emitter is
possible in the near future. Compact, tunable, and physically
small terahertz sources are needed for the detection of
chemical reactions, the characterization of chemical and bio-
logical systems, imaging, and a host of other yet-unrealized
applications.

In 1993, Dyakonov and Shur proposed that the current
flow in a two-dimensional electron gas (2DEG) channel in
traditional high-electron mobility transistor (HEMT) can be-
come inherently unstable under certain bias conditions.” This
instability stems from the fluidlike correlated flow of elec-
trons in the 2DEG, which can result in the formation of
plasma waves, much alike the formation of waves on the
surface of shallow water. Using Shockley’s gradual channel
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approximation for the relationship between the gate potential
and the local channel charge, they showed that plasma waves
could be generated. A close analogy of this hydrodynamic
model with shallow-water equations was obtained.®’ Subse-
quently, they have also shown that current instabilities and
plasma waves can be generated in an ungated two-
dimensional electron layer.8 Transit time effects in plasma
instability related to the electron drift across the high field
region in HEMTs have also been studied.” Plasma oscilla-
tions in both gated two-dimensional layers and strips in
HEMTs have been recently analyzed.qull

The proposal for the all-electronic plasma-wave tera-
hertz emitter has inspired a number of experimental efforts.
Subterahertz and terahertz radiation in silicon field-effect
transistors (FETs) and deep submicron gate length HEMTs
due to plasma waves have recently been claimed to be
observed.'*"® Theoretical and experimental studies have
showed the nonresonant and resonant detection of terahertz
radiation in both Si metal-oxide-semiconductor FETs (MOS-
FETs) and gated two-dimensional structures such as GaAs
HEMT.'*" Under special conditions, a nanoscale FET made
of InGaAs/InAlAs can also produce terahertz emission.'®"’
Techniques and algorithms to determine the radiation spec-
trum of terahertz sources have been analyzed.18

Thus, a large body of theoretical work has been done,
primarily based on the solutions of the hydrodynamic trans-
port equations of field-effect transistors. The problems that
have received most attention are those for which the electro-
static part (governed by Poisson’s equation) relating the
charge to the electrostatic potential yields an analytically
tractable solution. For example, in Ref. 5, the capacitor ap-
proximation greatly simplifies the system of transport equa-
tions by relating the charge in the channel linearly to the gate
voltage. However, the complete solution of the hydrody-
namic transport equations has not been analyzed analytically
for a general charge distribution. The purpose of this work is
to present an analytical formalism for the treatment of insta-
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FIG. 1. Schematic of semiconductor material.

bilities in one-dimensional current flow in semiconductors.
The formalism makes use of a perturbative treatment of the
hydrodynamic transport equations, and yields a broadband
spectrum of collective plasma excitations, whose frequencies
are given analytically. Various boundary conditions can be
easily incorporated, and the formalism should prove useful
for the analysis of instability in collisionless hydrodynamic
transport in semiconductors.

Il. MATHEMATICAL MODEL

We consider a doped semiconductor of one-dimensional
geometry as shown in Fig. 1. Current is driven through the
device by a voltage difference between the two contacts at
x=0,L. The coordinate x is in the direction of the electron
flow, and ¢ is time. In this work, we assume the simplest case
of instabilities, where all the transverse fluctuations in the
(v,z) plane are neglected, similar to the plane-wave approxi-
mation in the propagation of electromagnetic waves. In bulk
semiconductors, this forms a subspace of collective excita-
tions, whereas for charge flow in quantum wires, fluctuations
in the transverse direction are not allowed. As in previous
analyses, we will also neglect the generation of heat due to
interaction between electrons and phonons. This can be ex-
perimentally realized if the transport in the semiconductor is
ballistic, and the voltage drops occur only at the contacts.

The one-dimensional hydrodynamic equations for elec-
tron flow are'

wv o,

—+E"=0, (1a)
ox
JE" .

L =Ny =0, (1b)
ox €&

an” aw'n") B

ot ox (1e)
wn" *ﬁv* e . v

—+0 —+—E +—=0, (1d)
ot ox m T

where V*(x",1") is the voltage, E"(x",") is the electric field,
n"(x",t") is the charge density, and v"(x",#") is the average
electron velocity. The system parameters are the doping con-
centration N, the permittivity €, the charge of an electron e,
its effective mass m, and the momentum relaxation time 7.
Here, the Poisson equation [Eq. (1b)], the continuity equa-
tion [Eq. (Ic)], and the momentum conservation equation
[Eq. (1d)] are effectively decoupled from the energy conser-
vation equations by choosing the length of the semiconduc-
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tor layer to be less than a mean free path of electrons (i.e.,
weak elastic scattering in the ballistic regime).

The voltage at both ends and the charge density at x*
=0 are prescribed boundary conditions. The physical realiza-
tion is an Ohmic contact at x=0, which does not allow any
perturbations in the majority carrier density due to an infi-
nitely high surface recombination velocity. The carrier den-
sity at the right contact allowed perturbations, but across the
whole semiconductor layer, charge neutrality is enforced at
all times. This form of a contact can be achieved, for ex-
ample, by an inductive boundary condition, as in Ref. 5.
Charge neutrality of the semiconductor layer also implies the
absence of space charge injection effects. Then, we must
have [5n"(x",1") dx"=N,L, where L is the length of the de-
vice, which can be put in terms of the electric field E using
Eq. (1b).

Thus the boundary conditions are

V(0,6 ==V, V(Lt)=0,

n'(0,f)=ny, E(0,6)=E(L1).

For convenience, the hydrodynamic transport equations
are nondimensionalized. Writing V=V'/V,, n=n"/Np, x
=x"/L, v=v"\m/eV,, and t=t"\eV,/mL?, the dimensionless

versions of Eq. (1) are

A%

—+E=0, (2a)
ox

oE

—+an-1)=0, (2b)
ox

17 J

o, Ao o (20)
ot ox

w0 la

—+v—U+E+Ev=O, (2d)
ot ox 0%

where the dimensionless parametric groups are «
=eNpL*/Vye, and y= \r’TZeZND/ESm:wpr, with o,
=\e?N,/ €;m being identified as the fundamental plasma fre-
quency of the free electrons in the semiconductor. The di-
mensionless parameter vy can be expected to play a major
role in any phenomena related to collective excitations of the
electron gas, as will be seen later. The only electrically tun-
able parameter is «, which is inversely proportional to the
applied bias V. The dimensionless boundary conditions are

V(O0,0)=-1, V(1,0)=0, n(0,1)=8, E0,:)=E(1,1),

where B=ny/Np, ny being the free electron density at the left
contact. By choosing an Ohmic contact, we clamp the value
to ng=Np, and B=1 at all times.

lll. ONE-DIMENSIONAL ELECTRON FLOW

The steady state solutions of Eq. (2) that satisfies the
boundary conditions are
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Ex)=-1, Vix)=x-1, akx) =1, v(x)——

Q\I

where (_) indicates time independence. The steady state so-

lution captures the drift flow, with the dimensional form of

the electron concentration and velocity given by n”(x)=Np,

and v"(x)=(er/m)(V,/L) for all x. Any instabilities that exist

are due to time-dependent fluctuations to this steady state.
Applying small perturbations of the form

E=E+E'(x,1), V=V+V'(x1),
3)
n=n+n'(x,t), v=0+v'(x1),
substituting in Eq. (2) and linearizing, we get

v’

—+E'=0, (4a)
ox

O’

—+an' =0, (4b)
ox

an’ an' v’
oy ”
ot Va ox ox

—
o' v’ Va
—+%—+E’+—v’= . (4d)
ot Vo ox b2

The boundary conditions on the perturbations are

V'(0,1)=0, V'(1,0)=0, n'(0,1)=0, E'(0,1)=E'(1,1).
©)
Using normal modes of the form
4 14
E: — E ekx+wt’
n 7
v’ b

where the wavenumber k, the frequency w, and the ampli-

tudes, denoted by A, are all complex, Eq. (4) becomes

k1 0 0 1% 0
0 k a 0 gl Jo
0 0 w+ky a k P 0
01 0 w+kyNa+Valy || 5 0

For a nontrivial solution, the determinant should vanish, so
that the characteristic polynomial is given by

~
—k{k(m%k)(m%mﬂ)mk]:0. (6)
Var Va Y

A critical value of the electron mobility defines two distinct
phases of the collective excitations possible in the electron
system. This critical mobility is defined by
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1 €

== s 7
Prer =75 N, (7)

It is equivalent to satisfy the critical condition 7=1/2w,. If
the mobility of electrons is higher than the critical value, the
condition 49?>1 is obtained, and vice versa. For most semi-
conductors, this critical mobility is in the range of
1-10 cm?/V's, and therefore the condition 4y2> 1 is
achievable in reasonably clean semiconductors doped to a
nominal level N~ 10'7 cm™.

A. For 492>1

The four roots of Eq. (6) are kj,=0 and k;4=a=ib,
where

a (2yw )
a=———|—F7=+1]/, (8a)
23’2< Va

b= yzmz_ I (8b)

Then we can write the amplitudes of the perturbations as

=[A + Bx + Cel™)* 4 pela-ib¥]por, (9a)

=[- B~ C(a+ib)e' ™" — D(a - ib)e' e, (9b)

1 ) )
n' = {—(C(a +ib)%e X 4 D(a - ib)ze(”_’b)x)] e”, (9c)
a

+ib
v'= —{(a +ib)Ce <a+zb)x{ —7’“’(“3/2 ib)
oy+Va a
+ib)? b
+72(a l ) }+(a lb)De(a ib)x {%
a a
ib 2
,Ylazib) 1} +B}e“”. (9d)
a?
The boundary conditions [Eq. (5)] can be written as
10 1 1 A
1 e(l+ib e(l—ib B
0 (a+ib)? (a-ib)? C
0 0 (a+ib)(1-e™™") (a—ib)(1-e*") [| D

o O O

1

0

0

[0
For a nontrivial solution the determinant must vanish, which
gives

(a+ib)(1-e"™) = (a—ib)(1 - ™) =0,
from which the condition
—b cot b
et (g b coth) =— —
sin b

is obtained. This can be written as
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FIG. 2. w spectra for =1 and y=20.

( be‘h cot b

- )=a—bcotb.
sin b

where the Lambert W function is defined as the solution of
W(z)e"@=7.2"?! Finally, substituting a from Eq. (8a), we get

¥ o be—bcotb
w=——"7= —+bc0tb+W(—_—> .
Va 2)/2 sin b

W(z) has an infinite number of complex values even for real
z (as it is here), so that w also has an infinite number of

(10)
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values corresponding to the branches of the function. We can
split the complex frequency into its real and imaginary parts
as w=w,+iw;, and then normalize them using wI,:\s’:v (a
physical meaning for w, is given in Sec. IV B). Positive o,
represents unstable, growing exponentials in time in Eq. (9),
whereas w; is the frequency of oscillation. A portion of the w
spectra for three different values of « is shown in Fig. 2. The
complex frequencies shift to the left and the oscillations be-
come more stable as « is increased; this corresponds to a
decrease in the applied voltage. The distribution of electron
density perturbation n'(x,f) for =10 and for an unstable
eigenvalue at different instants in time within the first period
of oscillation is shown in Fig. 3. The behavior is the same to
that of a wave that is growing in time. The corresponding
unstable behavior of the small signal voltage V' (x,1), electric
field E'(x,1), electron density n’(x,1), and velocity v’ (x,7) at
x=0.5 is shown in Fig. 4; again the variables are seen to be
growing in time.

Thus the hydrodynamic instability of electron flow in an
ungated doped bulk semiconductor exhibits a broadband
spectrum, which can be tuned from the damped stable oscil-
lations (for w,<<0) to growing, unstable ones (for w,>0) by
increasing the applied bias. These collective oscillations of
the electron density will lead to broadband radiation at those
frequencies. With appropriate cavity design, the energy in
selected modes can be enhanced at the expense of others,
similar to what is done in Ref. 5.

T FIG. 3. Spatial distribution of electron density n’(x,7)
in arbitrary scale for a=10, =1, and y=20 at w;
~20w,,.
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FIG. 4. Time variation of voltage V'(x,?), electric field E'(x,1), electron
density n’(x,1), and electron velocity v’(x,7) in arbitrary scale at x=0.5 for
a=10, B=1, and y=20 with w;~20w,.

The low-mobility cases exhibit similar behavior, the ma-
jor difference being that higher voltages are necessary to
achieve undamped plasma oscillations.

B. For 4y2=1

Equation (6) now has two pairs of repeated roots. Instead
of Eq. (10), we have

w=—lr[§+l+W(—e_l)].
Va

The w spectra for three different values of a are shown in
Fig. 5. Again, the tendency is to move toward greater stabil-
ity as « is increased. For =1, the spatial distribution of the
electron density n'(x,f) at an unstable eigenvalue and its
evolution in time within the first period of oscillation is
shown in Fig. 6. It describes a wave that is growing in time.
However, as is clear from a comparison of Figs. 5 and 2, the
hydrodynamic instability is damped strongly, and larger volt-
ages are now necessary to achieve growing unstable oscilla-
tions with ,>0.

C. For 4+2<1

The roots of Eq. (6) are now all real. The analysis of Sec.
IIT A still holds as long as it is remembered that b is imagi-
nary. On writing b=ib', where b'=a\1-49?/29” is now
real, Eq. (10) becomes
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FIG. 5. w spectra for 8=1 and y=1/2.

y a b/e—b' coth b’
w=——7=|—+b cothd' + W| - —————| |.
Val 29 sinh b

The complex values of w for three different values of « are
shown in Fig. 7. As before, stability is increased on increas-
ing a. For a=1, the spatial distribution of the electron den-
sity n'(x,r) at an unstable eigenvalue, and its evolution in
time within the first period of oscillation, is shown in Fig. 8.
A growing wavelike behavior is also observed here.

D. Phase and group velocities

The constant b in Eq. (8b) is real, but @ in (8a) is com-
plex, so that

o (2yw, 1) 2yw;
a=—-_— +1)+i—— |,
27|\ Va Va

where w; is the frequency of oscillation of the wave. The
wave number k=a+ib can also be separated into its real and

imaginary parts as
2yw; ———
1) +i< i ay 1)}
Vo

a <2ywr
k=-— = +
27 [\ Va

where the imaginary part is the wave number of the spatial
oscillations. From this dispersion relation, the phase and
group velocities can be deduced to be

Y 2yw;
U, = — N
P Na2yw+ a4y - 1)

D=

¢~ o
respectively. Waves running in both +x and —x directions are
possible. Since the magnitude of the group velocity of the
plasma excitation is found to be exactly the same as the
steady state electron velocity, it indicates that the fluctuation
rides on the steady state velocity, and in a stationary rest
frame, the effective plasma velocity is e =0 and 2y/Va,
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~20w,),.

n!

n'

meaning the “right going” plasma wave is twice as fast as the
steady state flow, and there are no left going waves.

IV. SPECIAL CASES

A. Asymptotic approximation

The Lambert W function can be approximated for values
of w around the origin such that the ratio between the real
and imaginary components is much less than 1. In this case,
Eq. (10) becomes

100

80 =
o=100
60 b

40 =10 4

20 o=1 1

wi/wp

-100
-10 -8 -6 -4 -2 0 2

Wy / Wp

FIG. 7. o spectra for =1 and y=1/3.

Y o e—b cot b .

w=——=| ——S+bcotb+log|———F | +iy,|,
Val 29 y, sin b

where y,==(7/2)(4n+1) (keeping the argument of the log

function positive) and n=1,2,3,....

B. Zero electron flow

A possible dimensionless steady state solution of Eq. (2)
is E:O, \_/=const, 0=0, and n=1. For small perturbations, as
in Eq. (3), we have upon linearization

—+E'=0,
ox

!

—+an' =0,
ox

on' o’
=z .z _
ot ox

)

—
!

Va
—+E'+—v' =0.
ot Y
It is possible to reduce the equations to a single fourth-
order equation,
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+— + =0.
i’ ox? 0% x> “ ox?

This can be solved by writing it first as

Fl AV Naov
S|+t ——+aV' =0,
ox“| ot y ot

and then integrating twice with respect to x to get
+——+aV' =A{)x+B(1).
Yy Jt

The homogeneous part of the temporal solution is obtained
as usual by setting V' ~ ", where

[

r= -1 +\1-497].
2y

Damped oscillatory solutions are possible if 49?>>1. The
solution then takes the form

V' (x,1) = e[ C(x)sin wt + D(x)cos wi] + g(x,1),

where

i

w= BV"4,},2 - 1,
2y

and g is the particular solution corresponding to A(#)x+ B(r).
If the momentum relaxation time 7— %, then y— % also, so

may occur.

V. CONCLUSIONS

In summary, a perturbative formalism for studying insta-
bilities in the hydrodynamic model of carrier flow in semi-
conductors is presented. The treatment allows an analytic
evaluation of plasma oscillation modes in a generic semicon-
ductor. The eigenvalue spectrum indicates that there is an
unstable region which depends strongly on the applied volt-
age; the spectrum becomes more stable as the applied volt-
age decreases. Considering GaAs with an electron effective
mass m=6.6% of the free electron mass, €,=12.5¢,, L
=100 nm, Np=5X10" cm™3, 7=0.4 ps, and V,=1 V gives
a=7.072 and y=17.365. The corresponding plasma fre-
quency is w,= Ve’Np/ eqm=6.9 THz. Eigenvalues around the
origin with positive real parts thus have frequencies of the
order of terahertz, so that the ungated semiconductor could
be a possible source of radiation in this frequency range. The
major result is a broadband spectrum of eigenvalues tunable
by the applied voltage due to the instabilities, and these fre-
quencies can be analytically evaluated for general boundary
conditions using the perturbative formalism presented. The
formalism presented should prove useful in the analysis and
design of plasma-wave instability based terahertz sources in
the future.
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