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Hydrodynamic instabilities in two-dimensional electron flow in ungated semiconductors are studied
here. The driving force for the electrons is an imposed voltage difference that generates a
unidimensional electric field inside the semiconductor and its surroundings. The governing
equations are linearized for small perturbations around the steady-flow solution. The eigenvalue
spectrum determining the rates of growth and wave numbers of the oscillations is calculated. The
electron flow undergoes oscillatory instability and becomes more unstable as the voltage difference
is increased. The results show that it is possible to obtain oscillation frequencies of the order of
terahertz, indicating the possibility of radiative power at this frequency. © 2009 American Institute
of Physics. #DOI: 10.1063/1.3158551$

I. INTRODUCTION

Terahertz radiation sources are of current interest due to
their advantages in leading edge applications such as bioim-
aging and sensing.1,2 Features such as compactness and tun-
ability are required in a terahertz source for applications in
chemical and biological systems, imaging, and radio as-
tronomy, among others. Semiconductors are among the pos-
sible candidates as potential sources. A necessary step for
this application is a fundamental understanding and control
of charged-particle interactions and dynamics in solid state
devices. This motivated both theoretical and experimental
studies of electron flow in semiconductors and it has been
found that instabilities can produce oscillations even when
the imposed electric field is steady.

Electrons in semiconductors scatter as a result of colli-
sions between themselves and with the lattice and impurities.
The most common theoretical approach for the analysis of
electron flow in semiconductors is to neglect energy transfer
between electrons and the lattice, for which hydrodynamic
models provide a useful description. This has been an impor-
tant perspective to explain physical phenomena involved in
electron transport in semiconductors and several inroads
have been made in this direction. Dyakonov and Shur3 found
analogies with shallow water equations that predict plasma
oscillations at terahertz frequencies and radiation emissions
in ballistic transport in an AlGaAs/InGaAs field effect tran-
sistor !FET". Subsequently, this description was generalized
and applied to high electron mobility transistors !HEMT".4–6

The mechanism of current saturation in a FET due to chok-
ing of electron flow and plasma waves was seen to show
similarities to shallow water phenomena in fluid dynamics.
Under this idea, nonlinear oscillations due to ballistic trans-
port in FETs and effects similar to hydraulic jumps were also
described.7 Nonlinear dynamic response and how the bound-

ary conditions influence the nonlinear effects were studied in
two-dimensional electron plasmas in FETs by using the hy-
drodynamic model.8 It was found that current and plasma
waves in an ungated two-dimensional electron layer may
present instability similar to that for a gated electron layer.9

Transit-time effects in plasma instabilities were related to the
electron drift across the high field region in HEMTs.10 Mi-
croscopically bounded plasma due to current-driven plasma
instability has been reported in lower-dimensional solid-state
systems.11 Plasma oscillations were analyzed in both gated
two-dimensional layers and HEMTs.12,13 Instabilities in mul-
tilayered semiconductor structures have been studied nu-
merically and theoretically.14 Drift wave instabilities have
been found in semiconductor electron-hole plasmas.15

Experiments have also been performed to detect and un-
derstand the mechanisms of terahertz radiation. Subterahertz
and terahertz radiation have been found in silicon FETs and
nanometer-scale gate-length HEMTs due to plasma
waves.16,17 A better understanding of the strengths and limi-
tations of experimental techniques, for instance in the two-
color diode laser,18 also helped in the study of terahertz ra-
diation. In addition, new techniques and algorithms to
determine the radiation spectrum of terahertz sources have
been analyzed recently.19 Experimental and theoretical stud-
ies have shown nonresonant and resonant detection of tera-
hertz radiation in both Si metal oxide semiconductor field
effect transistors !MOSFETs" and gated two-dimensional
structures such as GaAs HEMTs.20,21 Under particular con-
ditions, a nanoscale FET made of InGaAs/InAlAs can pro-
duce terahertz emission.22,23

Calderón-Muñoz et al.24 determined analytically the spa-
tial and time dependent instabilities in one-dimensional elec-
tron flow in ungated semiconductors. In this earlier work, on
assuming plane-wave propagation of electrons between the
contacts, the instabilities that can arise perpendicular to the
direction of particle flow were neglected. From analogy to
fluid dynamics, such instabilities are likely to be present, and
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their study is the goal of this work. Analysis of instabilities
in semiconductors based on a two-dimensional model, which
may be very useful for the study of potential terahertz
sources, has not been done. The two-dimensional geometry
can be implemented experimentally due to the simplicity of
the configuration and the boundary conditions can be pre-
scribed by specifying the kind of contacts at the source and
at the drain. In this paper we analyze the electrostatic and
hydrodynamic equations in a high FET and characterize the
instabilities present in them.

II. MATHEMATICAL MODEL

The problem is defined by a doped two-dimensional
semiconductor as shown in Fig. 1. The semiconductor has a
length L and width H and represents the !x! ,y!" plane at z!

=0. The two contacts at x!=0 and x!=L are larger than the
semiconductor width.

The driving force through the device is given by an elec-
tric field due to a voltage difference between the two contacts
at x!=0 and x!=L. The electric field surrounds the device
due to the size of the contacts. x!, y!, and z! are the Cartesian
coordinates and t! is the time. The electric field can have
components in the three Cartesian coordinates. The imposed
electric field in the x!-direction implies that the !y! ,z!" plane
describes an equipotential area. We are interested in captur-
ing instabilities in the !x! ,y!" plane, neglecting variations in
the direction normal to that plane. Electron-lattice interac-
tions are neglected, which implies that the heat generation
sources due to electron transport in the semiconductor are
not taken into account. Under these assumptions, the two-
dimensional hydrodynamic equations for electron flow in the
semiconductor are25
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where V!!x! ,y! ,z! , t!" is the voltage, n!!x! ,y! , t!" is the
charge density, and u!!x! ,y! , t!" and v!!x! ,y! , t!" are the drift
electron velocities in the x! and y! directions, respectively.
The system of Eq. !1" includes Gauss’ law Eq. !1a", the
continuity equation Eq. !1b", and the momentum conserva-
tion equations in the x! and y! directions, Eqs. !1c" and !1d",
respectively. The system parameters are the doping concen-
tration ND, the permittivity !s, the charge of an electron e, its
effective mass me, and the momentum relaxation time ". The
boundary conditions establish a voltage gradient along the
x!-direction, a fixed charge density at x!=0, a constant
charge in the semiconductor as a whole, and charge reflexion
along the edges y!=0 and y!=H. This is made possible by
imposing an Ohmic contact between the semiconductor and
the metal at x!=0 and an inductive boundary condition at
x!=L. The Ohmic contact does not allow fluctuations in the
majority carrier density, i.e., electrons, due to the infinitely
high surface recombination velocity, whereas an inductive
boundary condition does. These forms of contacts allow pre-
scription of the voltage at both ends, the charge density at the
source, and charge neutrality of the semiconductor layer.
This last condition is enforced at all times and implies the
absence of space charge injection effects.3,24 Then, the
boundary and charge neutrality conditions are

V!!0,y!,z!,t!" = − V0, V!!L,y!,z!,t!" = 0, n!!0,y!,t!" = n0,
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For convenience, the governing equations can be nondi-
mensionalized. Defining the aspect ratio as R=H /L and writ-
ing V=V! /V0, n=n! /ND, x=x! /L, y=y! /H, z=z! /H, u
=u!&me /eV0, v=v!&me /eV0, and t= t!&eV0 /meL2, the nondi-
mensional version of Eq. !1" is

#2V

#x2 +
1
R2

#2V

#y2 +
1
R2

#2V

#z2 − #!n − 1" = 0, !3a"

V ∗ = −V0

E∗

electron flow

y∗

x∗

z∗

V = 0
H

L

∗ FIG. 1. Schematic of semiconductor material.

014506-2 Calderón-Muñoz, Jena, and Sen J. Appl. Phys. 106, 014506 "2009!

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
132.236.27.111 On: Sat, 09 May 2015 19:51:59



#n

#t
+

#!un"
#x

+
1
R

#!vn"
#y

= 0, !3b"

#u

#t
+ u

#u

#x
+

1
R

v
#u

#y
−

#V

#x
+

&#

$
u = 0, !3c"

#v
#t

+ u
#v
#x

+
1
R

v
#v
#y

−
1
R

#V

#y
+

&#

$
v = 0. !3d"

The dimensionless parametric groups are #=eNDL2 /V0!s, $
=&"2e2ND /!sme=%p", and %p=&e2ND /!sme, which is the
fundamental plasma frequency of free electrons in the semi-
conductor. The only tunable parameter is # and it is inversely
proportional to the applied bias V0; the phenomena related to
collective excitations of the electron gas are captured by $.
The nondimensional boundary and charge neutrality condi-
tions are

V!0,y,z,t" = − 1, V!1,y,z,t" = 0, n!0,y,t" = 1, !4a"

v!x,0,t" = 0, v!x,1,t" = 0, !4b"
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where we use n0=ND.
The charge neutrality condition Eq. !4d" can be rewritten

by integrating Eq. !3a" in the !x! ,y!" plane to give
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Substituting Eqs. !4c" into Eq. !5", we get
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III. TWO-DIMENSIONAL ELECTRON FLOW

The steady-state solution of Eq. !3" in the semiconductor
satisfying the boundary conditions !4" is

V̄!x,y,0" = x − 1, n̄!x,y" = 1, ū!x,y" =
$
&#

, v̄!x,y" = 0,

!7"

where ! " indicates time independence. The steady-state so-
lution captures the drift flow and the electron velocity is
independent of position. Also, the electron density and elec-
tric field are independent of position, since the potential var-
ies linearly with x.26,27 In dimensional form the electron con-
centration is n̄!!x ,y"=ND, which is the doping density of
the semiconductor and the electron velocity ū!!x ,y"
= !e" /me"!V0 /L" is proportional to the electric field. Any in-

stability that may exist is due to the growth of fluctuations
from this steady state.

Applying small perturbations to the time-independent
solution, we have V= V̄!x ,y ,0"+V!!x ,y ,z , t", n= n̄!x ,y"
+n!!x ,y ,z , t", u= ū!x ,y"+u!!x ,y , t", and v= v̄!x ,y"
+v!!x ,y , t". Substituting in Eq. !3" and linearizing, we get
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In a two-dimensional semiconductor slab, the perturbation in
the electron density in the z!-direction can be considered
very small. This implies that any variation in the electric
field in the semiconductor in the z!-direction is small in mag-
nitude and can be neglected if compared to the steady-state
electric field and its perturbations in the !x! ,y!" plane. The
electric field outside the semiconductor generated by the
charge in the semiconductor can be neglected since the
strong electric field in the x!-direction is predominant. Due to
this, Eq. !8" only includes the perturbations for the voltage,
electron density, and longitudinal and transversal velocities
in the !x! ,y!" plane.

The boundary and charge neutrality conditions for the
perturbations in the semiconductor are

V!!0,y,t" = 0, V!!1,y,t" = 0, n!!0,y,t" = 0, !9a"

v!!x,0,t" = 0, v!!x,1,t" = 0, !9b"
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The system in Eq. !8" and the boundary conditions in Eq. !9"
describe the evolution of the perturbations in voltage, elec-
tron density, and longitudinal and transversal velocities from
the steady state of the two-dimensional electron flow in the
semiconductor.

In order to find the temporal and spatial modes that char-
acterize the perturbations, we use normal modes of the form

)V!n!u!v!*T = )Ṽ!y"ñ!y"ũ!y"ṽ!y"*Texp!kxx + %t" , !10"

where the wave number vector k=kxi+kyj, the frequency is
%, and the amplitudes denoted by ˜ are all complex. We will
write kx=kr

x+ iki
x, ky =kr

y + iki
y, and %=%r+ i%i. Therefore, Eq.

!8" becomes
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kxṼ − '% + kx $
&#

+
&#

$
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If !%+kx$ /&#+&# /$"=0, then Eqs. !11a" and !11c" give Ṽ
= ñ=0, which is not of interest, so we will assume that !%
+kx$ /&#+&# /$"$0. By differentiating Eq. !11d", the sys-
tem of equations can be reduced to

dṼ2

dy2 − !ky"2Ṽ = 0, !12"

with

!ky"2 = − !kx"2R2. !13"

By using Eq. !11d" with the boundary conditions in Eqs. !9b"
and !9c", we get
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The general solution for Eq. !12" is

Ṽ = C1 exp!kyy" + C2 exp!− kyy" . !15"

By applying the boundary conditions !14", this takes the
form

Ṽ = D cosh!ky,my" , !16"

with ky,m= & i2'm. Therefore, the general solution can be
written as

Ṽ = +
m=0

(

Dm cos!iky,my" . !17"

It is easy to show that the proposed solution in Eq. !10" can
satisfy the boundary conditions in Eqs. !9a" and !9d" inde-
pendently of the value of ky. Rewriting

)Ṽñũṽ*T = )V̂n̂ûv̂*Texp!kyy" ,

where the amplitudes denoted by ˆ are also all complex, Eq.
!8" becomes
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û

v̂
/ = .

0

0

0

0
/ .

For a nontrivial solution, the determinant should vanish, so
that the characteristic equation is
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The roots of Eq. !18" are
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R
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x = a + ib, k4
x = a − ib , !19"

where a=−!# /2$2"!2$% /&#+1" and b= !# /2$2"&4$2−1.
Since ky,m= & i2'm, we have two cases.

A. mÅ0

Now there are oscillations in both x- and y-directions.
The modes in the x-direction are described in Eq. !19" and
the modes in the y-direction are ky,m= & i2'm. We can write
the amplitudes of the perturbations as

V! = #Aeiky,mx/R + Be−iky,mx/R + Ce!a+ib"x + De!a−ib"x$ekyy+%t,

#V!

#x
= 0Ai

iky,m

R
eiky,mx/R − Bi

ky,m

R
e−iky,mx/R

+ C!a + ib"e!a+ib"x + D!a − ib"e!a−ib"x1ekyy+%t,

n! =
1
#
0Ce!a+ib"x'!a + ib"2 +

!ky,m"2

R2 (
+ De!a−ib"x'!a − ib"2 +

!ky,m"2

R2 (1ekyy+%t.

The boundary conditions can be written as
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For a nontrivial solution the determinant must vanish, which
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Equation !20" is satisfied by

a + ib = & i
ky,m

R
, a − ib = & i

ky,m

R
.

If b= &2'p, with p being a natural number, Eq. !20" is also
satisfied by a=0. Due to the complexity of Eq. !20" other
solutions may be possible, in which case the spectra may
include additional temporal modes. b may be real, zero, or
imaginary if 4$2 is greater than, equal to, or less than unity.

1. For 4!2>1

The solution for % is

%m =
&#

2$
0&

4$2'm

#R
− 1 & i&4$2 − 11 , !21"

which indicates temporal modes that are either growing or
decaying with an oscillatory component. Also, if b= &2'p,
the temporal mode is %=−&# /2$.

2. For 4!2*1

Now,

%m =
&#

2$
0&

4$2'm

#R
− 1 & &1 − 4$21 . !22"

In addition to this, if b= & i2'p, the temporal mode is %=
−&# /2$. The temporal modes % are real and therefore the
evolution in time is either growing or decaying without os-
cillations. Furthermore, a and b are real, which implies no
spatial oscillations. From the nonlinear nature of the prob-
lem, the growth must have an upper limit, though the linear
analysis does not provide this value.

B. m=0

This represents oscillations only along the x-direction. A
complete treatment of this has been described in Ref. 24. The
temporal modes are described by Lambert W functions #The
Lambert W function is defined as the solution of the equation
W!z"eW!z"=z$. There are three operating conditions that can
be determined by the value of 4$2. This also defines the
nature of the spatial modes in the x-direction: no oscillations
!purely real", constant amplitude oscillations !purely imagi-
nary", and oscillations with spatial growth or decay !com-
plex". By requiring a nontrivial solution over a wavelike so-
lution for the perturbed system, the temporal modes are

TABLE I. Temporal modes.

Condition %

4$2+1 %=−!$ /&#")!# /2$2"+b cot b+W#−!be−b cot b /sin b"$*
4$2=1 %=−!$ /&#"#!# /2$2"+1+W!−e−1"$

4$2,1
%=−!$ /&#")!# /2$2"+b! coth b!+W#

−!b!e−b! coth b! /sinh b!"$*
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FIG. 2. Spectrum of eigenvalues for GaAs semiconductor where effective
mass of electron is 6.6% of its actual mass, -s=113.28)10−12 C2 /m2 N,
L=100 nm, n0=5)1017 cm−3, ND=5)1017 cm−3, "=0.4)10−12 s, and
V0=1 V, which gives #=7.072, $=17.365, and %p=43.41)1012 s−1. The
shaded area represents the stable region and the unshaded the unstable.
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obtained. The solutions of Eq. !20" are in Table I, where b!
= !#&1−4$2" /2$2.

IV. DISCUSSION

A. Spectrum of eigenmodes

The spectrum presents both stable and unstable regions.
It is tunable mainly through the applied voltage, but the as-

pect ratio R can also determine instability when we have
spatial oscillations along the y-direction, i.e., if ky,m$0.
Since ky,m is purely imaginary, we get oscillations along the
y-direction with a constant amplitude in space. The number
of oscillatory temporal modes over a range of temporal mode
amplitudes is independent of the value of the oscillatory
component for ky,m=0. Otherwise, for ky,m$0 it presents two
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20.87%p !arbitrary scale" at the first unstable eigen-
mode m=1.
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delta functions at &!&# /%p"&%p−1 /4"2. Taking 4$2+1, the
spectrum for GaAs is shown in Fig. 2.

B. Aspect ratio dependency

We are interested in imaginary components of the tem-
poral modes %, which describe the oscillatory behavior in

time. Given an aspect ratio R, there is a critical positive
mode above which the system is unstable. From Eq. !21", the
critical positive mode is

mc =
#R

4$2'
. !23"
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FIG. 4. Electron density eigenfunction !left" and elec-
tric field !right" for #=10, $=1, R=1, and %i
20.87%p !arbitrary scale" at the first unstable eigen-
mode m=1.
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Moreover, this critical mode can be written in terms of the
plasma frequency as

mc =
#R

4'!%p""2 . !24"

It can also be written as

mc =
1

ū!' H

4'"
( . !25"

As an example, choosing #=10, $=1, and R=1, we get
mc20.8, therefore m.1 guarantees an unstable regime. As
is shown in Fig. 3, which describes the evolution of electron
density and electric field through the first period of oscilla-
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FIG. 5. Electron density eigenfunction !left" and elec-
tric field !right" for #=10, $=1, R=2, and %i
20.87%p !arbitrary scale" at the first unstable eigen-
mode m=2.
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tions in time for a configuration with R=0.5, the first un-
stable mode is m=1. When R=1, the first unstable mode is
m=1 and the evolution of electron density and electric field
are shown in Fig. 4. Otherwise, when R=2 the first unstable
mode is m=2 as is shown in Fig. 5. It illustrates how the first
unstable mode is determined by R. The magnitude of the
oscillatory components of the spectrum for ky,m$0 is
!&# /%p"&%p

2 −1 /4"2. It depends only on #, $, and " and
tends to the plasma frequency %p in the ballistic limit "
→(. This limit is reached when there is very low electron-
impurity scattering.

C. Dispersion relation

By definition, the dispersion relation provides a relation-
ship between the oscillatory component of the temporal
modes, %i, and the oscillatory component of the spatial
modes, ki

x and ki
y. Many situations of physical interest may

have multiple and discrete roots of %i. In the proposed prob-
lem, the relation can be obtained from Eq. !18".

For 4$2+1, the dispersion relation takes the form

#

2$20−
2$%i

&#
& &4$2 − 11 − ki

x = 0. !26"

This linear relationship between %i and ki
x is two parallel

lines as shown in Fig. 6. The values of %i are determined by
Eq. !21" and the corresponding values in Table I. From this,
the phase and group velocities can be deduced to be

cp =
$
&#

2$%i

2$%i + &#!4$2 − 1"
, cg =

$
&#

, !27"

respectively.
For 4$2*1, the expression for the dispersion relation is

&#%i

$
+ ki

x = 0. !28"

The relation is linear as in the previous case, but it is just one
straight line crossing the origin, as shown in Fig. 7. This
expression is valid only for ky,m=ky,0=0 since %i$0, other-
wise for ky,m$0, %i=0. From this, the phase and group ve-
locities can be deduced to be

cp = cg =
$
&#

, !29"

respectively. It can be noticed that the steady state electron
velocity in Eq. !7" and the group velocity of the instability
waves are equal.

V. CONCLUSIONS

The instabilities in the hydrodynamic model of a two-
dimensional electron flow in ungated semiconductors are
analyzed. Analytical expressions for the spatial and temporal
plasma oscillation modes are derived. The spectrum of tem-
poral modes shows a predominant unstable region, which
depends strongly in the applied voltage through the semicon-
ductor. As the applied voltage decreases, the spectrum is
more stable. Also, the aspect ratio determines how unstable
the temporal modes can be. As the aspect ratio decreases, the
unstable modes become more unstable. The unstable region,
which means temporal modes with positive real part, has
oscillatory components able to describe terahertz frequencies
under specific parameter values.

In summary, the required operating condition to support
semiconductors in a two-dimensional configuration !such as
in a HEMT structure" as a radiative source can be obtained
under the right set of parameters such as applied voltage,
aspect ratio and doping density, among others. The theoreti-
cal formalism presented extends the earlier works on the sub-
ject by revealing a spectrum of both stable and unstable
modes for plasma-mode oscillations and presents a direct
method for analyzing their dependence on the material and
geometrical parameters of the device. This will prove to be
valuable in the design process of compact electronic tera-
hertz sources of the future.
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