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It is shown that current saturation in semiconducting carbon nanotubes is indistinguishable from
metallic nanotubes if the carrier density is above a critical value determined by the bandgap and the
optical phonon energy. This feature stems from the higher number of current-carrying states in the
semiconducting tubes due to the van Hove singularity at the band edge. Above this critical carrier
density, the ensemble saturation velocity at high fields is found to be independent of the bandgap,
but strongly dependent on the carrier density, explaining recent observations. The results derived are
valid in the limit of ultrafast electron-optical phonon interaction and diffusive transport at high
electric fields. The analytical results derived are then applied to one-dimensional �1D�
semiconducting graphene nanoribbons as well as semiconductor nanowires with parabolic bandgap.
A generalized concept of phonon-limited saturation currents in high-field transport in 1D structures
emerges from these considerations. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3147877�

I. INTRODUCTION

Carbon nanotubes �CNTs� exhibit exceptional current
carrying capability. For example, Yao et al.1 in a seminal
work on single-wall metallic CNTs �m-CNT� observed that
the current carrying capacity as high as 109 A /cm2 was fun-
damentally limited by the emission of longitudinal optical
�LO� phonons by energetic electrons at high electric fields.
The exceptionally high current carrying capacity was attrib-
uted by the authors to the fact that each carrier within a
energy bandwidth determined by the LO phonon energy
��LO�160 meV moves with the Fermi velocity �vF

�108 cm /s�, leading to a fundamental limit of the current
determined by I0= �4e /L��kfkvF=4efLO, where fLO

=�LO /2�, L is the CNT length, the factor g=gsgv=4 is the
product of the spin and valley degeneracy, and fk is the oc-
cupation probability of state �k�. The current evaluates to
	25 �A, precisely explaining the experimental saturation
current. This result is fundamental for long m-CNTs, where
transport is in the diffusive limit; for short m-CNTs, the cur-
rent can exceed the diffusive limit of 25 �A due to ultrafast
phonon emission leading to nonuniform heating. It has been
shown that the increase in the saturation current over this
limit can be explained by consideration of nonequilibrium
�hot� phonons.2,3

There have been reports of similar current saturation in
semiconducting CNTs �s-CNT� as well.4–6 However, the
physical mechanism of current saturation is not yet clear.
Previous theoretical considerations indicate a velocity
saturation7 and in Ref. 10, a dependence of the ensemble
saturation velocity on the carrier density was established by
the solution of the Boltzmann transport equation �BTE�. The
purpose of this paper is fourfold:

�a� to show that for one-dimensional �1D� s-CNTs current

saturation is as fundamental as in m-CNTs,
�b� as opposed to m-CNTs, the saturation current in a

s-CNT is sensitive to the location of the Fermi level EF
0

before the application of a bias,
�c� the net ensemble velocity �“saturation velocity”� of car-

riers in s-CNTs is not universal, but strongly dependent
on EF

0 as well, and can range from 0.1–1�vF, and
�d� the saturation velocity of carriers in s-CNTs becomes

independent of the bandgap for large carrier densities.

These four facts are proved using analytical arguments
based on the band structure, and the ultrafast electron-optical
phonon interactions in CNTs. The results derived are valid in
the limit of ultrafast electron-optical phonon interaction and
diffusive transport at high electric fields. They offer a simple
explanation for various recent observations made from ex-
periments and numerical simulations.7 Furthermore, the re-
sults are generalized for 1D graphene nanoribbons, as well as
for semiconductor nanowires with parabolic band structures,
and a universality of current-carrying capacities of 1D struc-
tures emerges from these considerations.

A. CNT band structure and saturation current

For the analysis of transport properties, it suffices to con-
sider expansions of the energy dispersion for small momenta
around the K ,K� points of the underlying graphene band
structure.8 Let the band structure of the nth subband of a
s-CNT be given by the dispersion En�kx�=�vF


kx
2+kn

2, where
� is the reduced Planck’s constant, kx is the longitudinal
wave vector, and kn is the transverse wave vector quantized
by the diameter of the CNT. All energies are measured with
respect to the Dirac point of the underlying graphene band
structure. The bandgap of the CNT with this band structure is
given by Eg=2�vFk0, where k0 is the smallest allowed �non-a�Electronic mail: debdeep.jena.1@nd.edu.
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zero� transverse wave vector, fixed by the size quantization
�Eg�800 /d meV, where d is the diameter of the s-CNT in
nanometers�.

An electric field F=−F0x̂ is applied across the drain-
source contacts to the s-CNT, which are assumed to be per-
fectly transparent to electron flow.9 To determine the exact
shape of the new Fermi surface, one needs to solve the BTE,
as has been done in Ref. 10 for T=300 K. However, for the
T→0 limit, various analytical results may be derived to il-
lustrate the physics of current saturation in s-CNTs. When
the Fermi energy is much larger than kT—as is typically the
case when CNT transistors are in the on state, the analytical
results derived for low temperature remain valid at room
temperature �see Ref. 1�. The Fermi surface at low tempera-
tures is sharp and the force due to the electric field �−e�F
=�dk /dt populates +kx states by emptying out −kx states
near the Fermi surface. Ohmic contacts do not inject carriers
into the wire �no space-charge currents�, therefore the equi-
librium occupation function fk

0=��kF− �kx�� �where �� . . . � is
the Heaviside unit-step function� shifts to the nonequilibrium
position fk=1 for −kL�kx�+kR, while conserving the par-
ticle number inside the wire. Here kL ,kR are the wave vectors
of the highest right-going and the highest left-going electrons
in response to the electric field. This is shown schematically
in Fig. 1.

The density of states can be split equally into the left-
going and right-going states �tot�E�=�L�E�+�R�E�, where

�R,L�E� =
1

2
�

g

��vF
�

E


E2 − �Eg

2
�2

, �1�

and the resulting right- and left-going charge carrier densities

can be then written in the form nR,L=Eg/2
EF

R,L

�R,L�E�dE as

nR,L =
1

2
�

g

��vF
�
�EF

R,L�2 − �Eg

2
�2

, �2�

which defines the quasi-Fermi levels EF
R and EF

L. Before the
application of a bias EF

R=EF
L =EF

0 and the 1D carrier density is
given by

n0 = nR + nL =
g

��vF
�
�EF

0�2 − �Eg

2
�2

. �3�

If the contacts to the s-CNT do not inject excess carriers into
the tube, then to ensure particle number conservation n0

=nR+nL requires that at all bias conditions, the relation

2
�EF
0�2 − �Eg

2
�2

=
�EF
R�2 − �Eg

2
�2

+
�EF
L�2 − �Eg

2
�2

, �4�

must be satisfied for the quasi-Fermi levels.
At a high field, the distribution function reaches a stage

when the difference between the highest filled electronic
state �HFES� and the lowest empty electronic state �LEES�
equals the LO phonon energy to allow for energy relaxation
by the emission of optical phonons. Building upon the theory
in Ref. 1 we make a hypothesis that if the LO phonon emis-
sion process is ultrafast, then the distribution function is
locked in this configuration, and is resistant to any further
increase in applied bias. Depending on the availability of
charge carriers, the LEES may be EF

L or the band edge �E
=Eg /2�. Before we proceed to calculate the net saturation
current, we introduce some critical parameters that serve to
highlight this fact.

B. Critical parameters

A critical Fermi level EF,cr
0 is the equilibrium Fermi en-

ergy such that at a high bias EF
R−EF

L =��LO and EF
L =Eg /2.

From Eq. �4� the critical Fermi energy must be

EF,cr
0 =

1

2
� 
���LO�2 + ��LOEg + Eg

2, �5�

and is dependent only on the bandgap and the LO phonon
energy of the s-CNT, which are fixed by the diameter and the
lattice structure. The corresponding equilibrium 1D critical
carrier density is

ncr =
g

2��vF
� 
��LO���LO + Eg� , �6�

which again is a fundamental quantity for the s-CNT. Physi-
cally, if the carrier density is above this, the LEES is a left-
going state �as depicted in Fig. 1�, and if the carrier density is
lower, then the LEES is a right-going state, as depicted in
Fig. 2.

We define two ratios: 	=Eg /2EF
0 and 
=��LO /2EF

0 . In
addition, we consider only those semiconducting tubes for
which Eg���LO so that no interband optical phonon-
assisted transitions are allowed. This condition implies that

�	�1 when EF

0 �Eg /2, i.e., when the Fermi level is in-
side the band and carriers are available for current conduc-
tion. If EF�Eg /2, no current flows at T→0 K.

Case 1: High carrier density: we first consider the situa-
tion when EF

0 EF,cr
0 , and nncr. Again, by ensuring particle

number conservation and the condition EF
R−EF

L =��LO, the
high-bias quasi-Fermi levels for the right and left going
states are found to be

}

FIG. 1. �Color online� Schematic representation of the mechanism of LO
phonon scattering in s-CNTs. If the Fermi level before the application of a
bias is high in the conduction band, the ultrafast optical phonon scattering
leads to the steady state carrier distribution shown in the middle and right
figures; the saturation current is effectively carried by right-moving elec-
trons spread over an energy bandwidth of ��LO.
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EF
R = EF

0
1 +
	2
2

1 − 	2 − 
2 +
��LO

2
, �7�

and

EF
L = EF

0
1 +
	2
2

1 − 	2 − 
2 −
��LO

2
. �8�

Case 2: Low carrier density: if on the other hand the
equilibrium Fermi level is such that EF

0 �EF,cr
0 , and n�ncr,

then the condition EF
R−EF

L =��LO cannot be satisfied due to
insufficient carriers in the conduction band. However, since
the LEES is now a right-going state, the condition EF

R

−Eg /2=��LO still allows for the emission of LO phonons.
Under this situation, the quasi-Fermi levels are given by

EF
R = Eg/2 + ��LO, �9�

and

EF
L = EF

0
4 − 3	2 + 4
2 + 4	
 − 8


1 − 	2
	 − 
 .

�10�

In this condition, the HFES EF
R gets pinned at the energy

Eg /2+��LO and the LEES is at the bottom of the conduction
band. This case is depicted schematically in Fig. 2.

C. Saturation current

The current flowing through the s-CNT is given in the
T→0 K limit by the relation

Isat = eg
1

L�
k

fkvk = e
g

2�
�

kL

kR

dkvg�k� , �11�

where L is the length of the CNT, and vg�k�=�−1�kE�k�
=vFkx /
kx

2+kn
2 is the projection of the group velocity of the

carriers in the direction of the electric field. The saturation
current for the CNT evaluates to

Isat�kn,kF� = e �
g

2�
� vF � �
kR

2 + kn
2 − 
kL

2 + kn
2� , �12�

which may be reduced the simpler form

Isat = e �
g

2�
�

�EF
R − EF

L�
�

. �13�

This is no different from what has been shown in Ref. 1
for m-CNTs, but it also holds for s-CNTs. The key point here
is that for low fields, corresponding to eVDS���LO, EF

R

−EF
L =eVDS, and one recovers the Landauer relation I

=g�e2 /h�VDS. However, the same relation may be used to
understand saturation currents at high bias conditions as
well. Since the respective quasi-Fermi levels were shown
earlier to depend on the equilibrium Fermi level �or, indi-
rectly, the carrier density�, the saturation current in a s-CNT
depends on EF

0 . This is in stark contrast to m-CNTs, for
which the quasi-Fermi level separation is ��LO leading to a
saturation current of Isat=4efLO�25 �A, no matter where
the equilibrium Fermi level EF

0 .
In a s-CNT, the group velocity of a fraction of carriers

near the band edge is less than or equal to vF, whereas for a
m-CNT is it always equal to vF. Thus, the single subband
saturation current in a s-CNT can never exceed the current in
a m-CNT for the same carrier density. For high 1D carrier
densities in s-CNTs �corresponding to n�ncr or equivalently
EF

0 �EF,cr
0 derived in Eqs. �5� and �6��, the saturation current

is identical to that in a m-CNT, i.e., Isat=4efLO since the
condition EF

R−EF
L =��LO holds. This similarity can be under-

stood by noting that there is a van Hove singularity at the
band edge of s-CNTs. This implies that there are many more
carriers that contribute to the saturation current in a s-CNT
than in a m-CNT, though a fraction of those carriers move
with velocities less than the Fermi velocity. Since the DOS
for a m-CNT is �M�E�=g /��vF, the number of right-going
carriers over a energy bandwidth ��LO is nM =4fLO /vF. The
ratio of effective current-carrying states at saturation in a
high-density s-CNT to that in a m-CNT is therefore greater
than ncr /nM =
1+ �Eg /��LO�.

For carrier densities in s-CNTs less than ncr, the satura-
tion current is given by Eq. �13�, with EF

R ,EF
L from Eqs. �9�

and �10�. This dependence exemplifies how a s-CNT under a
high source-drain bias “switches-off” when the Fermi level is
pulled down toward the band edge and then into the gap, for
example, by electrostatic gating. The dependence of the satu-
ration current on EF

0 is plotted in Fig. 3 for s-CNTs for two
representative bandgaps. The insets show the critical Fermi
level �Fig. 3�a�� and the critical 1D carrier concentration

}

FIG. 2. �Color online� The occupation function of carriers for a s-CNT with
n�ncr at high fields. The emission of optical phonons is possible when the
highest occupied state and the lowest unoccupied state differ by an energy
��LO; the lowest unoccupied state here is the band edge. The group velocity
of carriers as a function of their energy is also shown.
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FIG. 3. �Color online� Saturation current of s-CNTs �Eg=0.3 and 0.4 eV as
a function of EF

0 . The insets show �a� the critical Fermi level EF,cr
0 and �b� the

critical carrier concentration ncr as a function of the bandgap of the s-CNT.
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�Fig. 3�b�� above which the saturation properties of the
s-CNT become indistinguishable from that of a m-CNT.

D. Saturation velocity

Under the assumption that all carriers in the conducting
band contribute to the saturation current equally, the satura-
tion velocity of carriers may be written as vsat= Isat /en0,
which evaluates to

vsat = vF �

1

2
�EF

R − EF
L�


�EF
0�2 − �Eg

2
�2

=
g

2��n0
� �EF

R − EF
L� , �14�

and is strongly dependent on the 1D carrier density in the
band. Figure 4 shows the dependence of the saturation ve-
locity on the density as well as the corresponding equilib-
rium Fermi level for s-CNTs of varying bandgaps. For carrier
densities n�ncr, it increases and approaches vF as n→0 and
Eg decreases. However, from Eq. �14�, the saturation velocity
at carrier densities n�ncr is given by vsat=4fLO /n0, and is
inversely proportional to the 1D carrier density. The theory is
able to explain why the saturation velocity becomes indepen-
dent of the bandgap of the s-CNT, as was found in numerical
simulations of the BTE in Ref. 7.

E. Graphene nanoribbons and semiconductor
nanowires

The results derived here are applicable to gapped 1D
graphene nanoribbons, but with a valley degeneracy of gv
=1, leading to half the saturation current compared to
s-CNTs. Furthermore, the same theory may be applied to 1D
quantum wires with parabolic band structures characterized
by the effective mass m�. For the DOS defined by ��E�
= �g /2���2m� /�2�1/2�E−Ec�−1/2 �Ec is the conduction band
edge�, the critical Fermi level is EF,cr

0 =Ec+��LO /4, and the
1D critical carrier density is n0= �g /2���2m����LO� /�2�1/2.
If the equilibrium Fermi level is located higher than the criti-
cal value, the saturation current in the nanowire is Isat

=egfLO, and the ensemble saturation velocity of carriers is

given by vsat=gfLO /n0, where n0= �g /���2m� /�2�1/2�EF
0

−Ec�1/2 is the 1D carrier density. Thus, in semiconductor
nanowires in ideal 1D conditions, if the electron-LO phonon
interaction is very strong and higher satellite valleys in the
band structures are located at energies larger than ��LO

above the first subband minimum, the same phonon-limited
saturation current limit should apply.

F. Deviations from the theory

Within the limits of the theory presented, the saturation
current in a s-CNT due to single subband conduction in the
diffusive limit can never exceed I0=4efLO. Any experimental
observation of higher saturation currents in s-CNTs must be
therefore attributed to effects that have not been considered.
Five possible factors are listed: �a� nonuniform heating due
to ultrafast LO phonon emission2 and/or hot-phonon
effects,11 �b� ballistic effects �i.e., if the length of the CNT is
shorter than the mean-free path for LO-phonon emission L
�LLO�,12 �c� occupation of multiple subbands, �d� contribu-
tion from band-to-band Zener tunneling13 and/or electron
avalanching,14 and �e� space-charge injection into the s-CNT
by the contacts. These factors can be incorporated into the
analytical framework presented here, but are not specifically
considered in this work. Among the five factors, hot-phonon
effects reduce the current drive, whereas ballistic transport is
possible when electrons traverse the CNT without the emis-
sion of a single phonon. This implies a higher nonsaturating
current—this is experimentally observed for short CNTs. Ze-
ner tunneling and avalanche processes add to the current car-
rying capacity above what is derived in this work, and typi-
cally precede catastrophic breakdown behavior.

II. CONCLUSIONS

In conclusion, a simple analytical theory is presented
that shows that current saturation in s-CNTs and m-CNTs are
indistinguishable if the carrier density in the s-CNT is above
a critical value determined by the bandgap and the LO pho-
non energy of the s-CNT. The ensemble saturation velocity is
found to be independent of the bandgap of the s-CNT for
such carrier densities. It is found that the same theory for the
current-carrying capacity applies to graphene nanoribbons
and semiconducting nanowires. The results derived are valid
in the limit of ultrafast electron-optical phonon interaction
and diffusive transport at high electric fields. Similar results
can be derived for bulk semiconductors and two-dimensional
electron systems such as in heterostructures and graphene.
and be used to quantify the current carrying capacity of semi-
conductors of different dimensionality, and is a subject of
future work.
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