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Hydrodynamic instabilities in one-dimensional electron flow in semiconductor and their dependency
with the electron and lattice temperatures are studied here. The driving force for the electrons is
imposed by a voltage difference, and the hydrodynamic and electrostatic equations are linearized
with respect to the steady-flow solution. A two-temperature hydrodynamic model predicts a stable
electron flow through the semiconductor. A one-temperature hydrodynamic model is obtained by
neglecting the electron energy losses due to heat conduction and scattering. This model shows that
the electron flow can become unstable and establishes a criterion for that. Applied voltage and
temperature can play the role of tunable parameters in the stability of the electron flow.
© 2010 American Institute of Physics. #doi:10.1063/1.3326946$

I. INTRODUCTION

The instabilities of electron flow in semiconductors may
be useful as a basis for new technological applications. A
particular example of interest is a compact and portable
source of electromagnetic radiation. This radiation can be
generated through instabilities in the electron density to ac-
celerate or decelerate the electrons. That fact has motivated
the use of theoretical and experimental techniques to study
instabilities in the electron flow in semiconductors. Among
the theoretical approaches, a hydrodynamic model provides a
description of the electron flow in semiconductors through
dependent variables such as voltage, electron density, elec-
tron velocity, electron and lattice temperatures. Due to the
nonlinearities in this model, a linearized analysis is useful for
the study of instabilities.

Electrons in semiconductors scatter as a consequence of
collisions between themselves and with the lattice and impu-
rities. Typically, the linear stability analysis of electron flow
in semiconductors is done by neglecting thermal energy
changes in electrons and the lattice, for which hydrodynamic
models provide an useful description. This perspective has
been useful to explain physical phenomena involved in elec-
tron transport in semiconductors, and several studies have
been made in this direction. In 1993, Dyakonov and Shur1

proposed that the current flow in a two-dimensional electron
gas channel in traditional high electron mobility transistors
can become unstable and fluidlike flow of electrons can gen-
erate plasma waves, much like the formation of waves on the
surface of shallow water. Based on a gradual channel ap-
proximation for the relationship between the gate potential
and the local channel charge, they showed that plasma waves
could be generated using certain bias conditions. Subse-
quently, a close analogy of this hydrodynamic model with
shallow-water equations was obtained.2,3 Crowne4,5 analyzed
the changes that happen in the shallow water instability in

high electron mobility transistors under modifications in the
boundary conditions and channel nonuniformity. A plasma-
wave response was also found for the shallow water instabil-
ity at high frequencies in high electron mobility transistors.6

Current instabilities and plasma waves can be generated in
an ungated two-dimensional electron layer.7,8 A hydrody-
namic model describing a two-dimensional electron plasma
in a field effect transistor showed a nonlinear dynamic re-
sponse and the dependency on the boundary conditions in the
nonlinear effects.9 Electron drift across the high field region
in high electron mobility transistors is related to transit-time
effects in plasma instability.10 Plasma oscillations in both
striped and gated two-dimensional electron layers in high
electron mobility transistors have been recently analyzed.11,12

The presence of instabilities in multilayered semiconductor
structures have been studied numerically and theoretically.13

Recently, drift wave instabilities in semiconductor electron-
hole plasma have been reported.14

In 2007, Calderón-Muñoz et al.15 determined analyti-
cally the spatial and time dependent instabilities in one-
dimensional electron flow in ungated semiconductors by us-
ing a hydrodynamic model. Only the instabilities in the
direction of electron flow were allowed by assuming plane-
wave type of propagation of electrons between the contacts.
Any instability perpendicular to the direction of electron
flow was neglected. Using a complete solution of the one-
dimensional hydrodynamic transport equations, it was shown
that the spectrum of temporal eigenmodes is defined by an
out of phase Lambert W function and can become unstable
depending on operating conditions. Recently, Calderón-
Muñoz et al.16 analyzed the spatial and temporal instabilities
in a confined two-dimensional electron flow. The results
showed that the eigenvalue spectrum includes the modes of
the one-dimensional flow and also a set of modes depending
on physical parameters and operating conditions such as as-
pect ratio and applied voltage. A mathematical model involv-
ing the thermal energy changes in the electron flow and lat-
tice, and its stability analysis would be very useful toa"Electronic mail: wicalder@ing.uchile.cl.
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understand the behavior of the electron flow in semiconduc-
tors. In this paper we perform the linear stability analysis on
two models: two-temperature and one-temperature. The two-
temperature model includes both electron and lattice tem-
peratures and the one-temperature model assumes that they
are the same. This is designed to determine the influence of
heat conduction and energy loss due to scattering of the elec-
trons on the stability of one-dimensional electron flow in
semiconductors.

II. TWO-TEMPERATURE MODEL

There are several semiconductor geometries and operat-
ing conditions that can be modeled and studied based on an
one-dimensional electron transport. In the one-dimensional
problem, the voltage drop, temperature changes, and trans-
port of electrons are just allowed along the x-direction. The
schematic of the one-dimensional configuration is shown in
Fig. 1.

A. Governing equations and steady-state solution

The one-dimensional model equations17–21 are
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where V!!x! , t!" is the voltage, n!!x! , t!" is the electron con-
centration, u!!x! , t!" is the x-component electron drift veloc-
ity, Te

!!x! , t!" is the electron temperature, and TL
!!x! , t!" is the

lattice temperature.

The physical parameters are the electron charge e, the
permittivity of the semiconductor !s, the doping concentra-
tion ND, the effective electron mass me, the Boltzmann con-
stant kB, the electron thermal conductivity ke, the lattice ther-
mal conductivity kL, the momentum relaxation time "p, the
energy relaxation time "E, and the heat capacity for lattice
CL. In this analysis we consider ke, kL, "E, and CL as constant
values. The momentum relaxation time can be expressed as22

"p =
me#no

e

TL
!

Te
! , !2"

where #no is the low field mobility.
The system of Eqs. !1" includes Gauss’ law Eq. !1a", the

continuity equation Eq. !1b", the momentum conservation
equation in the x! direction Eq. !1c", the energy conservation
equation for electrons Eq. !1d", and the energy conservation
equation for the lattice Eq. !1e" that relates the energy loss of
the electrons due to scattering with the heat conduction in the
lattice.

The boundary conditions include an imposed voltage at
both the source, V!!0, t!"=−V0, and the drain, V!!L , t!"=0. A
constant electron density at the source, n!!0, t!"=ND, the
charge neutrality condition through the semiconductor,
!#V! /#x!"!0, t!"= !#V! /#x!"!L , t!", a constant electron tem-
perature at the source, Te

!!0, t!"=T1, and an adiabatic condi-
tion for the electrons at the drain, !#Te

! /#x!"!L , t!"=0. An
imposed lattice temperature at both the source, TL

!!0, t!"=T2,
and the drain TL

!!L , t!"=T3.
For convenience, nondimensional versions of the gov-

erning Eqs. !1" are obtained. By writing V=V! /V0, n
=n! /ND, x=x! /L, u=u!'me /eV0, t= t!'eV0 /meL2, Te= !Te

!

−Troom"kB /eV0, and TL= !TL
! −Troom"kB /eV0. The nondimen-

sional version of Eqs. !1" is
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The nondimensional parametric groups are $=eNDL2 /
V0!s, %=kBTroom /eV0, '= !ke /NDkBL2"'meL2 /eV0, &pn

='me#no
2 ND /!s, &E='"E
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FIG. 1. Schematic of one-dimensional semiconductor material.
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The nondimensional version of the boundary conditions
is

V!0,t" = − 1, V!1,t" = 0, n!0,t" = 1,
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Based on experimental results,23,24 the voltage varies lin-
early with x. Thus we start with V̄!x"=x−1, which on sub-
stituting in Eq. !3a" gives n̄!x"=1. Thus, Eq. !3b" implies that
ū!x" is constant. Based on these, the steady-state version of
Eqs. !3" is reduced to
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We consider the physical properties for GaAs !Refs. 18 and
19" shown in Table I, the system parameters shown in Table
II, and the nondimensional parameters shown in Table III.
We assume that the system is operating at a saturation veloc-
ity ū!!x"=5.44)105 m /s, i.e., ū!x"=1 /3, and the tempera-
ture boundary conditions are T1=2250 K, T2=301 K, and
T3=346 K. This was designed to maintain the lattice tem-
perature above Troom. We solve Eqs. !5" numerically for the
electron and lattice temperatures by using MATHEMATICA.
The solutions for V̄, n̄, ū, T̄e, and T̄L are shown in Fig. 2.

The electron temperature, Te, is always growing in the
direction of the electron flow as shown in Fig. 2. However,
the lattice temperature, TL, reaches its maximum value about
the middle of the right half !drain side" of the semiconductor
as shown in Fig. 2. This is due to the boundary conditions.
The lattice temperature is fixed at both source and drain,
allowing heat flux through the contacts and the cooling at the
drain.

B. Linear stability analysis

We are interested in determining if the steady-state solu-
tion, known in the hydrodynamic stability literature as base
flow, is stable or unstable. To do that, we introduce small
perturbations to the steady-state solution of the form

TABLE I. Physical properties for GaAs !Refs. 18, 19, 28, and 29".

Constant Value

ke 3 W/!m K"
kL 42.61 W/!m K"
ND 5)1023 m−3

me 6.01)10−32 kg
CL 8.73)105 J / !m3 K"
"E 5)1012 s
#no 0.45 m2 / !V s"

TABLE II. System parameters.

Constant Value

L 100 nm
V0 1.0 V
Troom 300 K

TABLE III. Dimensionless parameters for GaAs.

Parameter Value

$ 7.072
&pn 7.331
&E 217.057
% 0.026
' 2.662
(1 2.989)10−4

(2 1.453)10−7
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FIG. 2. Two-temperature model; nondimensional steady-state solution.
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V = V̄!x" + V!!x,t", n = n̄!x" + n!!x,t", u = ū!x" + u!!x,t" ,

Te = T̄e!x" + Te!!x,t", TL = T̄L!x" + TL!!x,t" , !6"

where ! denotes the perturbed variable.
Substituting Eqs. !6" into the system of Eqs. !3" and

linearizing, we get the following perturbed system of equa-
tions
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Since the system !7" has variable coefficients in spatial de-
rivatives, we use normal modes of the form
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where the frequency * and the amplitudes denoted by ˆ are
all complex. Thus, we get a system of differential equations
with variable coefficients. This is
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where the coefficients are defined in the Appendix. The
boundary conditions are
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C. Temporal eigenmodes

The system of Eq. !8" can be rewritten as a system of
first-order differential equations

dY
dx

= J−1PY , !10"

where Y!x"= *V̂ , Ê , n̂ , û , T̂e , q̂e , T̂L , q̂L+T,

J!*,x" = ,
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0 1 0 0 0 0 0 0
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C8!x" 0 C3!x" C7!x" C4!x" 0 0 0

0 0 0 0 1 0 0 0

0 0 0 D5!x" D2!x" D6!x" 0 0

0 0 0 0 0 0 1 0
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- ,

P!*,x" = ,
0 − 1 0 0 0 0 0 0
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0 0 − E3!x" − E4!x" − E1!x" 0 − E2!x" 0

- ,

with q̂e=dT̂e /dx and q̂L=dT̂L /dx. J−1P is a square matrix.
This is a boundary-value problem where the boundary
conditions in Eq. !9" for Eq. !10" are Y!0"
= *0, Ê!0" ,0 , û!0" ,0 , q̂e!0" ,0 , q̂L!0"+T and Y!1"= *0, Ê!0" ,
n̂!1" , û!1" , T̂e!1" ,0 ,0 , q̂L!1"+T. The relation can be defined to
be of the form Y!1"=A!*"Y!0", where A is a transfer ma-
trix. To get the columns of the transfer matrix A !Ref. 25" for
a given value of *, the differential equation !10" can be
integrated from x=0 to x=1 using as Y!0" the orthonormal
vectors *1,0 ,0 ,0 ,0 ,0 ,0 ,0+T, *0,1 ,0 ,0 ,0 ,0 ,0 ,0+T,
*0,0 ,1 ,0 ,0 ,0 ,
0 ,0+T, *0,0 ,0 ,1 ,0 ,0 ,0 ,0+T, *0,0 ,0 ,0 ,1 ,0 ,0 ,0+T, *0,0 ,0 ,
0 ,0 ,1 ,0 ,0+T, *0,0 ,0 ,0 ,0 ,0 ,1 ,0+T, *0,0 ,0 ,0 ,0 ,0 ,0 ,1+T in
turn. A fourth-order Runge–Kutta method with 100 integra-
tion steps was used.

Once we have the transfer matrix A, a nontrivial solution
is required to be satisfied for the system of four algebraic
equations in terms of Ê!0", û!0", q̂e!0", and q̂L!0" that con-
tains the boundary conditions at x=1. Thus

, a12 a14 a16 a18

a22 − 1 a24 a26 a28

a62 a64 a66 a68

a72 a74 a76 a78

-( Ê!0"
û!0"
q̂e!0"
q̂L!0"

) = (
0

0

0

0
) , !11"

where aij are the coefficients !i , j" of the matrix A.
By applying Muller’s method to find the roots of the

determinant of the matrix that contains the boundary condi-
tions, we get the eigenmodes in time * around the origin.
This is an extension of the secant method, where a second-
degree polynomial is used to interpolate three points, instead
of a linear polynomial;26,27 and its order of convergence is
almost quadratic. The purpose of using this method is to find
the closest unstable eigenmode in time to the origin. The first
five eigenfrequencies are shown in Table IV. Unstable com-
plex eigenfrequencies with positive real part were not found
using the procedure described before. Also, oscillatory eigen-
modes with imaginary part were not found, even though os-
cillatory eigenmodes were used to start the iteration process.
It is important to emphasize that the method requires that
starting values be neighbors to the value of interest.

According to the eigenmodes in Table IV, the system is
stable and without an oscillatory component. The main dif-
ference between the mathematical model described here and
the others in earlier works1,2,7,8,15 is the thermal coupling. In
this analysis we are considering conduction effects and scat-

TABLE IV. Temporal eigenmodes of two-temperature model.

*1 +0.002 950 23
*2 +0.011 800 9
*3 +0.026 552 1
*4 +0.047 203 9
*5 +0.073 756 5
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tering in the electron transport in the semiconductor. These
phenomena, which involve energy dissipation, can determine
the stability or instability of the electron flow.

III. ONE-TEMPERATURE APPROXIMATION WITH
COLLISION

The model takes into account several effects that deter-
mine the electron flow in the semiconductor. With the pur-
pose of exploring which effect contributes to the stability of
system, in this section we study a simplified model in which
we assume that Te=TL. The assumption is valid if &E /'$
,1. This condition means that the energy relaxation time,
"E, is much lower than the transit time of the electrons, "tr,
and implies that electrons get sufficient time to cool and
approach TL. We also neglect the heat conduction of the elec-
trons, i.e., ke=0.

A. Governing equations and steady-state solution
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The new energy conservation equation Eq. !12d" considers
only the terms for energy advection, work done by the elec-
tron pressure and a part of the collision term.20 Te=TL im-
plies that Eq. !3e" is uncoupled and does not provide infor-
mation about the dependent variables. The boundary
conditions for Eqs. !12" are Eqs. !4a" and !4b" with T1
=Troom. This last condition imposes that the electron tem-
perature at the source must be constant and equal to the room
temperature Troom. The steady-state solution for Eqs. !12" is

V̄!x" = x − 1, n̄!x" = 1, ū!x" =
1

5
3

'$

&pn
−

1
3

'$

&E

, T̄e!x"

=. 2
3

'$

&pn
−

1
3

'$

&E

5
3

'$

&pn
−

1
3

'$

&E

/x .

The only dependent variable that varies along the semicon-
ductor is T̄e.

B. Linear stability analysis

To do the linear stability analysis of the steady-state so-
lution we introduce small perturbations for V, n, u, and Te of
the form shown in Eq. !6". Substituting the perturbations into
the system !12" and linearizing, we get

#2V!

#x2 − $n! = 0, !13a"

#n!

#t
+ ū

#n!

#x
+

#u!

#x
= 0, !13b"

#u!

#t
+ ū

#u!

#x
−

#V!

#x
+ %

#n!

#x
+

#Te!

#x
+ T̄e

#n!

#x
+

'$

&pn
u! = 0,

!13c"

#Te!

#t
+ ū

#Te!

#x
+

2
3

%
#u!

#x
+

2
3

T̄e
#u!

#x
+

2
3
'$% 1

&E
−

2
&pn

&ūu! = 0.

!13d"
The boundary conditions take the form

V!!0,t" = 0, V!!1,t" = 0, n!!0,t" = 0,
#V!

#x
!0,t"

=
#V!

#x
!1,t", Te!!0,t" = 0. !14"

Since the system !13" has variable coefficients in spatial de-
rivatives we use normal modes of the form

(
V!

n!

u!

Te!
) = ( V̂!x"

n̂!x"
û!x"

T̂e!x"
)e*t.

The system in Eq. !13" can be rewritten as

dY
dx

= Js
−1PsY , !15"

where Y!x"= *V̂ , Ê , n̂ , û , T̂e+T,

Js!*,x" = ,
1 0 0 0 0

0 1 0 0 0

0 0 ū 1 0

0 0 % + T̄e ū 1

0 0 0
2
3

!% + T̄e" ū
- ,
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Ps!*,x" = ,
0 − 1 0 0 0

0 0 − $ 0 0

0 0 − * 0 0

0 − 1 0 − %* +
'$

&pn
& 0

0 0 0 −
2
3
'$% 1

&E
−

2
&pn

&ū − *
- ,

and Js
−1Ps is a square matrix. This is also a boundary-

value problem where the boundary conditions for
Eq. !15" are Y!0"= *0, Ê!0" ,0 , û!0" ,0+T and Y!1"
= *0, Ê!0" , n̂!1" , û!1" , T̂e!1"+T. The same numerical procedure
described before was used to satisfy the boundary conditions
and get the eigenfrequencies *. We take the nondimensional
parameters $=7.072 and %=0.026 from Table III and ex-
plore the necessary condition between &E and &pn to make
the system in Eqs. !12" unstable.

The steady-state electron velocity must be greater than
zero. That implies the condition &pn /&E-5. The closest
eigenfrequencies to the origin when &pn /&E varies are shown
in Fig. 3 for different values of applied voltage V0. The re-
lation is linear and shows that the system is more unstable
when &E decreases with respect to &pn. There is a critical
value &pn /&E=3.5 that defines a transition of the eigenfre-
quency from stable to unstable. Choosing &E=&pn /4, the sys-
tem is unstable and some eigenfrequencies are shown in
Table V. If we impose this critical value, the collision term
#last term in Eq. !12d"$ is rewritten as −'$u2 /2&pn. Physi-
cally, this means that the electrons are losing energy due to
collisions. Also, the critical value implies ū=2&pn /'$ and

T̄e=−x. The magnitude of the collision term also depends on
$. When the applied voltage V0 increases, $ decreases and
the energy loss due to collisions also decreases. In conclu-
sion, the condition

3.5 -
&pn

&E
- 5 !16"

guarantees that the system is unstable. In terms of electron
velocity and temperature Eq. !16" implies that

ū . 2
&pn

'$
,

dT̄e

dx
- − 1.

IV. ONE-TEMPERATURE APPROXIMATION WITHOUT
COLLISION

To understand if the effects of heat conduction of elec-
trons and energy loss due to scattering of electrons are re-
sponsible for the stability of the system, we study the system
when these effects are neglected. We also assume that Te
=TL. The last four terms in the electron energy equation, Eq.
!3d", where the first is the heat conduction term and the last
three are due to collision,20 are neglected.

A. Governing equations and steady-state solution

Under the assumptions described before, the system of
Eq. !3" is rewritten

#2V

#x2 = $!n − 1" , !17a"

#n

#t
+

#!un"
#x

= 0, !17b"

#u

#t
+ u

#u

#x
=

#V

#x
−

%

n

#n

#x
−

#Te

#x
+

Te

n

#n

#x
−

'$

&pn
u , !17c"

#Te

#t
+ u

#Te

#x
= −

2
3

%
#u

#x
−

2
3

Te
#u

#x
. !17d"

The new energy conservation equation, Eq. !17d", considers
just the terms for energy advection and work done by the
electron pressure. As before and due to the assumptions, Eq.
!3e" is uncoupled and does not provide information about the
dependent variables. The boundary conditions for Eqs. !17"
are in Eqs. !4a" and !4b" with T1=Troom. The steady-state
solution for Eqs. !17" is

V̄!x" = x − 1, n̄!x" = 1, ū!x" =
&pn

'$
, T̄e!x" = 0.

B. Linear stability analysis

As before, to do the linear stability analysis of the
steady-state solution we introduce small perturbations for V,
n, u, and Te of the form shown in Eq. !6". Substituting the
perturbations into the system !17" and linearizing, we get

2 2.5 3 3.5 4 4.5 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

γpn/γE

ω

V0 = 0.5 V

1.0 V
1.5 V

FIG. 3. One-temperature approximation with collision; closest eigenfre-
quency to the origin at Troom=300 K.

TABLE V. Temporal eigenmodes of one-temperature approximation with
collision &E=&pn /4.

*1 0.118 627
*2 417.697
*3 940.637
*4 1607.64
*5 1887.8
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#2V!

#x2 − $n! = 0, !18a"

#n!

#t
+ ū

#n!

#x
+

#u!

#x
= 0, !18b"

#u!

#t
+ ū

#u!

#x
−

#V!

#x
+ %

#n!

#x
+

#Te!

#x
+

'$

&pn
u! = 0, !18c"

#Te!

#t
+ ū

#Te!

#x
+

2
3

%
#u!

#x
= 0. !18d"

The boundary conditions take the form

V!!0,t" = 0, V!!1,t" = 0, n!!0,t" = 0,
#V!

#x
!0,t"

=
#V!

#x
!1,t", Te!!0,t" = 0. !19"

The system !18" has constant coefficients in spatial deriva-
tives. This allows us to do the linear stability analysis of the
steady-state solution using the normal modes

(V!

n!

u!

Te

) = ( Ṽ

ñ

ũ

T̃e

)ekx+*t,

where the frequency *, the wave vector k, and the ampli-
tudes denoted by ˜ are all complex and constant. Thus, we
can rewrite the system of Eqs. !18" as the following matrix:

,
k2 − $ 0 0

0 * + kū k 0

− k k% * + kū +
'$

&pn
k

0 0
2
3

k% * + kū
-( Ṽ

ñ

ũ

T̃e

) = (
0

0

0

0
) .

!20"

By imposing a nontrivial solution, we get the characteristic
equation

k5%ū3 −
5ū%

3
& + k4% ū2'$

&pn
+ 3ū2* −

5%*

3
&

+ k3%ū$ +
2ū'$*

&pn
+ 3ū*2&

+ k2%$* +
'$*2

&pn
+ *3& = 0 !21"

whose solutions are

k1 = 0, !22a"

k2 = 0, !22b"

k3 = −
*

ū
, !22c"

k4 =
− 3ū!'$ + 2&pn*" − '9ū2$!1 − 4&pn

2 " + 60%&pn!$&pn + '$* + &pn*2"
2!3ū2 − 5%"&pn

, !22d"

k5 =
− 3ū!'$ + 2&pn*" + '9ū2$!1 − 4&pn

2 " + 60%&pn!$&pn + '$* + &pn*2"
2!3ū2 − 5%"&pn

. !22e"

Therefore, the solutions for V!, n!, u!, and Te! can be written
as

V!!x,t" = !Z1 + Z2x + Z3ek3x + Z4ek4x + Z5ek5x"e*t, !23a"

n!!x,t" =
1
$

!Z3k3
2ek3x + Z4k4

2ek4x + Z5k5ek5x"e*t, !23b"

u!!x,t" =
− 1
$

#Z3k3!k3ū + *"ek3x + Z4k4!k4ū + *"ek4x

+ Z5k5!k5ū + *"ek5x$e*t, !23c"

Te!!x,t" = −
e*t

3$&pn*
#3Z2ū$&pn + Z3ek3xk3

)!k3
2/1 + 3/2 + k3/3"$

−
e*t

3$&pn*
#Z4ek4xk4!k4

2/1 + 3/2 + k4/3"

+ Z5ek5xk5!k5
2/1 + 3/2 + k5/3"$ , !23d"

where #Z1 ,Z2 ,Z3 ,Z4 ,Z5$T is the vector of unknown ampli-
tudes and /1= ū!3ū2−5%"&pn, /2= ū!$&pn+'$*+&pn*2",
and /3=−2%&pn*+3ū2!'$+2&pn*".

By applying the boundary conditions in Eqs. !19" to Eq.
!23", we get
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,
1 0 1 1 1

1 1 ek3 ek4 ek5

0 0
k3

2

$

k4
2

$

k5
2

$

0 0 k3!1 − ek3" k4!1 − ek4" k5!1 − ek5"
0 3ū$&pn k301 k402 k503

-
)(

Z1

Z2

Z3

Z4

Z5

) =(
0

0

0

0

0
) , !24"

where 01=k3
2/1+3/2+k3/3, 02=k4

2/1+3/2+k4/3, and 03
=k5

2/1+3/2+k5/3.

By imposing a nontrivial solution to Eq. !24", we get the
characteristic equation

3!− 1 + ek3"k4k5#!− 1 + ek5"k4 + k5 − ek4k5$ū$&pn + k3*3!

− 1 + ek3"!− 1 + ek4"k5
2ū$&pn + k4k5

2#!− 1 + ek4"01

+ 02 − ek302$+ − k3#k4
2*3!− 1 + ek3"!− 1 + ek5"ū$&pn

+ k5#!− 1 + ek5"01 + 03 − ek303$+$ + k3
2#− 3!− 1 + ek4"

)!− 1 + ek5"k5ū$&pn$ + k3
2#k4*3!− 1 + ek4"!− 1

+ ek5"ū$&pn + k5#!− 1 + ek5"02 + 03 − ek403$+$ = 0.

!25"

C. Temporal eigenmodes

Two of the solutions of Eq. !25" are

*1 =
− 20'$% − '400$%2 − 80%&pn!3&pn + 20$%&pn − 12&pn

3 "
40%&pn

, !26"

*2 =
− 20'$% + '400$%2 − 80%&pn!3&pn + 20$%&pn − 12&pn

3 "
40%&pn

. !27"

We are interested in finding unstable temporal eigenmodes,
i.e., values of * with positive real part. The real part of *1 is
always negative and the real part of *2 can be positive if

&pn .
1
2

, $ -
12&pn

2 − 3

20%
. !28"

Taking &pn=7.331 and %=0.026 from Table III, we need $
-1234.47 to have at least one unstable eigenmode. With $
=7.072 from Table III we get *2=34.8533, which is un-

stable. By using the definitions of the nondimensional groups
$, % and &pn, condition !28" can be rewritten as V0

.L'20NDkBTroom / !12me#no
2 ND−3!s".

The temporal eigenmodes *1 and *2 vary lightly with
the value of $ when % and & take a constant value as shown
in Fig. 4. *1 remains stable and *2 unstable. *1 turns out to
be more stable and *2 more unstable when % decreases, with
$ and &pn constant, as shown in Fig. 5. Besides, *1 turns to
be more stable and *2 more unstable when &pn goes to zero

0 5 10 15 20
−40

−30

−20

−10

0

10

20

30

40

α

ω2

ω1

FIG. 4. One-temperature approximation without collision; *1 and *2 eigen-
modes as a function of $ with &pn=7.331 and %=0.026.

0 0.2 0.4 0.6 0.8 1
−60

−40

−20

0

20

40

60

β

ω1

ω2

FIG. 5. One-temperature approximation without collision; *1 and *2 eigen-
modes as a function of % with $=7.072 and &pn=7.331.
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or gets a high value as shown in Fig. 6. The applied voltage
at the source, V0, and the room temperature Troom are part of
the tunable parameters of the system. They can be specified
locally which makes them easy to impose and vary at the
source and the drain. $ and % cannot vary independently if
just V0 varies. Figure 6 shows the dependency of *1 and *2
with &pn for different applied voltages. *1 is more stable and
*2 more unstable when the applied voltage is higher. The
room temperature can vary by changing the value of %. Fig-
ure 7 shows the dependency of *1 and *2 with the absolute
value of the applied voltage at the source, V0, for different
room temperatures. *1 is more stable and *2 is more un-
stable when Troom is lower and the applied voltage varies.
The value of Troom is the condition for the electron tempera-
ture at the source as shown in Eq. !4b" with T1=Troom.

V. CONCLUSIONS

The analysis shows that heat conduction and energy loss
contribute to the stability of the electron flow in semiconduc-
tors. If thermal equilibrium between the lattice and the elec-
trons is assumed, and the heat conduction and energy loss
due to scattering of the electrons are neglected, it is possible
to have an operating condition to make the system unstable.

The one-temperature model considers the electron tempera-
ture as a variable that can have perturbations. When $ de-
creases, the one-temperature system becomes more unstable
and the two-temperature system tends to be less stable. As a
consequence, a higher applied voltage contributes to make
the electron flow unstable.
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APPENDIX: COEFFICIENTS OF SYSTEM OF
PERTURBED DIFFERENTIAL EQUATIONS

A1!x" = 1, A2!x" = − $ ,

B1!x" = *, B2!x" = ū, B3!x" = n̄ = 1,

C1!x" =
ū'$

&pn
, C2!x" =

'$%

&pn
+ %* +

'$T̄e

&pn
+ *T̄L,

C3!x" = %2 + %T̄e + %T̄L + T̄eT̄L,

C4!x" = % + T̄L, C5!x" = − 1 +
dT̄e

dx
,

C6!x" = − % +
ū'$%

&pn
+

ū'$T̄e

&pn
− T̄L + %

dT̄e

dx
+ T̄L

dT̄e

dx
,

C7!x" = ū% + ūT̄L, C8!x" = − % − T̄L,

D1!x" =
'$%

&E
−

2ū2'$

3&pn
+ %* +

'$T̄L

&E
+ *T̄L,

D2!x" = ū% + ūT̄L,

D3!x" =
2ū'$%

3&E
−

4ū'$%

3&pn
−

4ū'$T̄e

3&pn
+

2ū'$T̄L

3&E
+ %

dT̄e

dx

+ T̄L
dT̄e

dx
,

D4!x" =
ū2'$%

3&E
−

2ū2'$%

3&pn
+

'$%T̄e

&E
−

2ū2'$T̄e

3&pn

+
ū2'$T̄L

3&E
−

'$%T̄L

&E
+

'$T̄eT̄L

&E
−

'$T̄L
2

&E
+ ū%

dT̄e

dx

+ ūT̄L
dT̄e

dx
,

D5!x" =
2
3

%2 +
2
3

%T̄e +
2
3

%T̄L +
2
3

T̄eT̄L,
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0.5 V

FIG. 6. One-temperature approximation without collision; *1 and *2 eigen-
modes as a function of &pn at Troom=300 K.
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FIG. 7. One-temperature approximation without collision; *1 and *2 eigen-
modes as a function of applied voltage V0 with &pn=7.331.
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D6!x" = −
2
3

!%' + 'T̄L" ,

D7!x" =
ū2'$

3&E
−

'$%

&E
+

'$T̄e

&E
−

2'$T̄L

&E
+ ū

dT̄e

dx

−
2
3

'
d2T̄e

dx2 ,

E1!x" = − (2, E2!x" = (2 + * ,

E3!x" = −
ū2(2

3
− (2T̄e + (2T̄L,

E4!x" = −
2
3

ū(2, E5!x" = − (1.
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