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Relaxing the assumption of an “infinite and homogenous background,” the dielectric response function of
one-dimensional semiconducting nanowires embedded in a dielectric environment is calculated. It is shown that
a high-κ (higher than semiconductor dielectric constant) dielectric environment reduces the screening by the
free carriers inside the nanostructure, whereas a low dielectric constant environment increases the Coulombic
interaction between free carriers and enhances the strength of the screening function. In the long-wavelength
limit, dielectric screening and collective excitations of electron gas are found to be strongly influenced by the
environment. The behavior of the static dielectric function is particularly addressed at a specific wave vector
q = 2kF , a wave vector that ubiquitously appears in charge transport in nanostructures. It is shown that the
exclusion of the dielectric mismatch effect in free-carrier screening results in an erroneous charged impurity
scattering rate, particularly for nanowires embedded in low-κ dielectrics.
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I. INTRODUCTION

Low-dimensional structures such as semiconducting
nanowires [one dimensional (1D)] are being investigated
intensively for their potential applications in high-speed
electronic and optical devices.1 These nanowires can either
be freestanding, or can be coated with different dielectric
environments appropriate to device application. For example,
in nanowire-based field-effect transistors (FETs), they are
usually coated with high-κ dielectrics (HfO2, ZrO2, etc.)2 for
improved charge control and high electron mobility.3 On the
other hand, for exciton-based devices, use of a low-κ (lower
than the semiconductor dielectric constant εs) dielectric is
beneficial as it enhances the excitonic binding energy.4 These
advantages in electronic and optical properties stem from
the fact that the Coulomb interaction between carriers and/or
impurities inside the nanowires can be altered by altering the
environment. This tunability of the carrier-carrier interaction
by dielectric environment is expected to modify many-body
effects such as dielectric screening by a one-dimensional
electron gas (1DEG) inside the nanowire.

Dielectric screening by free carriers plays a crucial role
in the transport quantities (conductivity, mobility, etc.) of a
nanostructure. In a scattering event, the momentum-relaxation
time (τ ) strongly (τ ∼ |ε(q,0)|−2) depends on the free-
electron screening inside the semiconductor. Hence an ac-
curate knowledge of dielectric screening is necessary for a
precise prediction of transport coefficients of a nanowire. The
dielectric function of a semiconductor nanowire is composed
of (i) ionic (εion) and (ii) electronic (εel) contributions. εion

is a inherent property (crystal property) of semiconductors,
while εel (commonly known as the screening function)
depends on the magnitude of the electron-electron interaction
inside a material. As the dielectric environment can alter
the Coulomb potential inside a nanowire, it is expected that
the dielectric environment will have a pronounced effect on the
free-electron screening.5 Previous models6–9 for the dielectric
function of 1DEG assume that the electron gas has a infinite
homogenous background with a dielectric constant (εs) that
is the same as the semiconductor. For a nanowire of few nm

radius, the “infinite background” approximation breaks down
and at the nanowire/environment interface the “homogenous
background” assumption fails. In this paper, assumptions
are relaxed. By incorporating the dielectric mismatch factor
at the nanowire/environment interface, a consistent theory
of dielectric function is presented following the method of
self-consistent field7,10,11 (also known as the random-phase
approximation or RPA).

It is worthwhile to mention that the dielectric mismatch ef-
fect on the static screening is incorporated in recent numerical
approaches (see Ref. 10) for Si/SiO2 nanowires. The main
concern of the work by Jin et al. was to investigate the surface
roughness and the diameter-dependent electron mobility in
nanowires mostly restricted to Si/SiO2 nanowires. The effect
of the dielectric environment on the free-carrier screening was
not analyzed and hence the idea remained dormant so far.
Here, following the general formalism developed in Ref. 10,
and including the dielectric mismatch effect, an analytical
expression of the dynamic dielectric function is evaluated.
Both the static dielectric function and the collective excitations
of 1DEGs in the long-wavelength limit are found to be solely
determined by the dielectric environment. The importance
of the modification of the static electronic screening by the
dielectric environment is illustrated by calculating the screened
ionized impurity scattering rates for nanowires embedded in
both high- and low-κ dielectrics.

II. THEORETICAL FORMALISM

We consider an infinitely long semiconductor wire (di-
electric constant εs) of a radius (R) of few nanometers
embedded in a dielectric (dielectric constant εe) environ-
ment. To investigate the dielectric response of the electron
gas inside the wire, we place an oscillating test charge
at (r0,z0) = (0,0) of density n0(r,t) = eδ(r)e−iωt . This test
charge creates an oscillating potential V0(r,z)e−iωt in the
nanowire and, in response to this perturbation, free electrons
inside the nanowire rearrange themselves to screen the field.
The resultant Hamiltonian of electrons confined in the wire is
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H = H0 + V (r,t), where V (r,t) is the self-consistent poten-
tial in response to the perturbation V0(r,t). The unperturbed
single-particle Hamiltonian H0 = p2/2m� + Vcon(r) satisfies
the Schrödinger equation H0|n,k〉 = En,k|n,k〉. Here m� is the
effective mass of electrons, k is the one-dimensional wave
vector, |n,k〉 and En,k are the eigenvectors and eigenenergy of
the unperturbed Hamiltonian, and Vcon(r) is the confinement
potential for electrons inside the nanowire. Assuming electrons
are confined in a infinite-barrier potential, the eigenenergies
are En,k = En + h̄2k2/2m�, where En is the ground-state energy
of the nth 1D subband and h̄ is the reduced Planck constant.
The corresponding wave function is �n,k(r,z) = 〈r|n,k〉 =
φn(r)[exp(ikz)/

√
L], where φn(r) is the radial part and L is the

length of the nanowire. The dielectric function of an electron
gas is defined by the relation12

Vnn′ =
∑
mm′

ε−1
nn′,mm′ (q,ω)V 0

mm′ , (1)

where ε−1
nn′,mm′ (q,ω) is the four-dimensional dielectric matrix

and Vij (V 0
ij ) = 〈j,k + q|V (V0)|i,k〉 are the transition-matrix

elements between states |i,k〉 and |j,k + q〉. Diagonal el-
ements of the dielectric matrix represent the intrasubband
polarization of the 1DEG, whereas the off-diagonal terms
result from intersubband transitions. In the size quantum limit
(SQL) carriers are confined in the lowest ground state and
intersubband separation is large, and the dielectric function
becomes a scalar quantity.

The self-consistent potential contains both the original
perturbation as well as the screened potential by the mobile
charges, i.e., V (r,t) = V0(r,t) + Vsc(r,t). For the evaluation
of the dielectric response of a 1D electron gas, it is imperative
to calculate the screening potential Vsc [see Eq. (1)]. The self-
consistent potential V (r,t), upon acting on state |n,k〉, mixes
it with other states such that wave function becomes �(r,t) =
|n,k〉 + ∑

n′,q bk+q(t)|n′,k + q〉. The coefficient bk,k+q(t) is
given by time-dependent perturbation theory13

bk,k+q(t) = Vnn′ (q)e−iωt

En′ (k + q) − En(k) − h̄ω
, (2)

where Vnn′ = 〈n′,k + q|V |n,k〉 is the matrix element be-
tween state |n,k〉 and |n′,k + q〉. The perturbation-induced
charge density is nind(r,t,z) = −2e

∑
k,nn′ f 0

n (k)[|�(r,t)|2 −
|�n,k(r,z)|2], where, e is the charge of an electron and f 0

n (k)
denotes the equilibrium Fermi-Dirac occupation probability
of a state |n,k〉 such that 2

∑
n,k f 0

n (k) = n1d , n1d being the
equilibrium homogeneous unperturbed electron gas density.
Assuming that the perturbation is weak enough such that the
response is linear, and neglecting terms b2

n,k+q and higher
orders, the induced charge density can be written as nind(r,t) =
−e

∑
nn′ φn(r)φn′(r)Vnn′Fnn′ (q,ω)eiqzeiωt + c.c., where c.c.

denotes the complex conjugate and Fnn(q,ω) is the polariza-
tion function13 (Lindhard function) obtained by summing the
Feynman diagram of electron-electron interaction containing
a single fermion loop,6,14

Fnn′ (q,ω) = 2

L

∑
k

f 0
n (k) − f 0

n′ (k + q)

En′ (k + q) − En(k) − h̄ω
. (3)

Note that the induced charge density has the same harmonic
dependence as the self-consistent potential. The induced
charge density is related to the screening potential by Poisson’s
equation ∇2Vsc(r) = enind(r)/ε0εs , where ε0 is the free-space
permittivity. Expressing screening potential in Fourier com-
ponents Vsc(r,z) = ∑∞

−∞ vsc(r,q)eiqz, where q = k′ − k, one
obtains the differential equation for the screening potential

1

r

d

dr

(
r
dvsc

dr

)
− q2vsc =

{
enind(r)/ε0εs, r � R,

0, r � R.
(4)

The Green’s function appropriate to the above differential
equation with dielectric mismatch effect is3,10,15

G(r,r ′,q) = 1

π
[I0(q.r<)K0(qr>)︸ ︷︷ ︸

ginhom(r,r ′)

+U(qR)I0(qr)K0(qr ′)︸ ︷︷ ︸
ghom(r,r ′)

],

U(x) = (εs − εe)K0(x)K1(x)

εeI0(x)K1(x) + εsI1(x)K0(x)
(5)

where ghom(inhom)(r,r ′) is the homogenous (inhomogenous)
part of the Green’s function, r<(>) = min(max)[r,r ′], and
In(· · ·) and Kn(· · ·) are the nth-order modified Bessel func-
tions. For large x (x > |n2 − 1|), In(x) ≈ ex/

√
2πx, Kn(x) ≈

ex
√

2π/x, and the function U(qR) → (πγ/2)e−2qR , where
γ = (εs − εe)/(εs + εe) is the dielectric mismatch factor. The
tunability of the strength of the Green’s function arises through
its dependence on γ , which enhances (reduces) the strength for
εs > εe (εs < εe). For an infinite homogeneous environment
(εe = εs), γ = 0, and the Green’s function is independent of
the dielectric environment. Using the above Green’s function,
the induced potential inside the nanowire can be written
as vsc(r,q) = e/4πε0εs

∫ R

0 G(r,r ′,q)nind(r ′)r ′dr .16 In the size
quantum limit (SQL), the nanowire is thin (R < λdB, where
λdB is the de Broglie wavelength of an electron) and only the
lowest subband is populated. Moreover, for a thin nanowire,
the intersubband separation energy is large (En ∝ 1/R2) such
that the intersubband transition can be neglected (n = n′ = 1).
In such a scenario, the dielectric matrix becomes scalar,
i.e., εnn′(q,ω) → ε11(q,ω). Assuming φn=1(r) ≈ 1/

√
πR2,

the dynamic dielectric function of an 1DEG at temperature
T = 0 is17

ε1d (q,ω,EF ) = 1 − e

4πε0εsV11

∫ R

0
φ2

1(r)r

×
∫ R

0
G(r,r ′)nind(r ′)r ′dr ′dr

= 1+ 1

πa�
BR2

F (x)

q3
ln

∣∣∣∣∣∣
(q + 2kF )2 − (

2m�ω
h̄q

)2

(q − 2kF

)2 − (
2m�ω
h̄q

)2

∣∣∣∣∣∣,
(6)

where x = qR is a dimensionless quantity, F (x) = { 1
2 +

I1(x)[U(x)I1(x) − K1(x)]}, a�
B = 4πε0εsh̄

2/m�e2 is the effec-
tive bulk Bohr radius, kF = πn1d/2 is the Fermi wave vector,
and EF = h̄2k2

F /(2m�) is the corresponding Fermi energy.
The logarithmic term in Eq. (6) is results from the Lindhard
function F11(q,ω), which has been evaluated analytically
in the SQL.6 In the context of charge transport inside the
nanowire, the static part of the dielectric function ε1d (q,ω = 0)
is relevant. In the long-wavelength (q � 2kF ) limit, the static
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dielectric function ε1d (q,0) for a thin nanowire (qR → 0)
becomes

ε1d (q,0) = 1 − e2

2πε0εe
[ln (qR)]D1d (EF ), (7)

where D1d (EF ) = (1/πh̄)
√

2m�/EF is the 1D density of states
per unit length at Fermi energy EF . In sharp contrast to
previous models,12 the dielectric constant of the environ-
ment (εe), instead of the semiconductor itself (εs), deter-
mines the long-wavelength behavior of the static dielectric
function.

For a large momentum (q  2kF ), ε1d (q,0) → 1 as the
second term of Eq. (6) falls off rapidly (q−5) with q. For a de-
generate 1DEG in SQL, only backscattering is allowed, which
leads to a momentum transfer q = 2kF in any intrasubband
elastic scattering process. As a result, ε1d (q = 2kF ,0) plays an
important role in momentum relaxation rate calculation. In the
static limit (ω = 0), the dielectric function ε1d (q,0) at T = 0
is singular for q = 2kF . This divergence is related to Peierl’s
instability, which is a characteristic signature of a 1DEG. At
finite temperature, smearing of the Fermi function removes
this singularity. The static dielectric function at T �= 0 is given
by Maldague’s prescription18

εT
1d (q,0) =

∫ ∞

0
dEε1d (q,0,E)

[
4kBT cosh2

[E − EF

2kBT

]]−1

.

(8)

III. RESULTS AND DISCUSSIONS

Figure 1(a) shows the static dielectric function of a GaAs
nanowire at q = 2kF with a nanowire radius R for three
different dielectric media. Note that even negligible smearing
of Fermi distribution at T = 4.2 K is enough to remove the
divergence at q = 2kF . For coated nanowires with εe > εs ,
dielectric screening is strongly reduced as shown in Fig. 2(b).
At large radius (R  1/4kF ), the nanowire tends to the bulk
structure and the dielectric mismatch effect on the screening
function vanishes. With increasing carrier density, dielectric
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FIG. 1. (Color online) Dielectric function of a nanowire (a) with
nanowire radius (R) and (b) as a function of carrier density (n) for
three different dielectric environments of εe = 1 (upper branch), εe =
εs = 13 (middle), and εe = 100 (lower branch).
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FIG. 2. (Color online) (a) Dielectric function of a nanowire with
temperature (T ) and (b) plasma frequency of an 1DEG with wave
vector (q) for three different dielectric environments.

screening inside the nanowire increases [see Fig. 1(b)],
maintaining the effect of the dielectric environment. At higher
carrier densities, more than one subband is populated and
the intersubband contribution to the total dielectric function
should be taken into account for a complete description of
free-electron screening inside the nanowire. With increasing
temperature, thermal fluctuation reduces the free-electron
screening inside the nanowire, and the effect of environmental
dielectric on the screening function is partially washed away
[see Fig. 2(a)].

As the dynamic (ω �= 0) dielectric function ε1d (q,ω)
contains the dielectric mismatch factor, collective excitations
of the 1DEG are also expected to depend on the dielectric
environment. Collective excitation of a electron gas is defined
as the pole of the full dynamic dielectric function, i.e.,
by ε1d (q,ωp) = 0, where ωp is the plasma frequency of
the electron gas. Figure 2(b) shows the plasma dispersion
of intrasubband collective excitation of a thin nanowire
(R = 2 nm) for different dielectric environments. For q <

1/2R, the dielectric environment has a finite effect on the
collective excitation frequency of 1DEG. The softening of
plasma frequency with a high-εe dielectric environment is
the consequence of the reduction of the Coulomb interaction
between electrons and the positive background, which acts as
a restoration force of the collective oscillation of the electron
gas. For small q, the frequency of collective excitations goes to
zero for all of the dielectric environment following the relation
ωp(q) ≈ ω0q

√− ln(qR), where ω0 =
√

n1de2/(4πεoεem�).
Note the explicit appearance of εe in ω0 highlights the role
of the environment in the collective excitation of 1DEG inside
the wire.

A typical example where the static dielectric function
plays a crucial role is the determination of the charged
impurity scattering rate in semiconductor nanostructures.
Figure 3(a) shows the screened Coulomb scattering rates at
low temperature with (solid lines) and without (dashed lines)
accounting for the dielectric mismatch effect in free-carrier
screening for an impurity point charge e located on the axis
of the nanowire. Here, we use the Coulomb potential derived
in Ref. 3. Note that the exclusion of the dielectric mismatch
effect in the screening underestimates (overestimates) the
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FIG. 3. (Color online) Screened Coulomb scattering rate with
(solid) and without (dashed) incorporating the dielectric mismatch in
static screening at (a) low temperature, and at (b) room temperature as
a function of dielectric constant of the environment. Here we assumed
an impurity density nimp = 2.5 × 105/cm.

scattering rate [see Fig. 3(a)] for the low-κ (high-κ) dielectric
medium surrounding the thin (R � 5 nm) nanowires. At room
temperature, weak free-carrier screening results in a higher
scattering rate [see Fig. 3(b) as compared to Fig. 3(a)]. At room
temperature, the dielectric mismatch effect on the free-carrier
screening can be neglected for high-κ dielectric environments,
although for low-κ environments, inclusion of the dielectric
mismatch effect in screening is necessary for an accurate
evaluation [see Fig. 3(b)] of scattering rates.

The length scale at which the dielectric environment plays
an important role can be determined by investigating the
behavior of U(qR). For large qR, U(qR) ∼ e−4kF R . Hence,
for R  1/(4kF ),U(qR) becomes negligible and the dielectric
effect vanishes. For numerical estimates, at a carrier density

n1d = 106 /cm, the dielectric effect vanishes for R  2 nm,
whereas at a lower density (n1d = 105 /cm) the environmental
effect on the quantum screening function persists for a wire
radius of up to R ≈ 20 nm.

We have assumed an infinite confining potential for electron
inside the wire. Relaxing this assumption will result in electron
mass enhancement due to leaking of the wave function into
the barrier. For high-κ oxides the typical barrier height is
∼1 eV, for which a nominal increase in electron mass can
be neglected.19 The assumption of a constant radial part of
the wave function is justified for thin nanowires. Choosing
a different form for the radial part will change the absolute
value of the screening function for thick (for large R the
dielectric-environment effect reduces anyway) wires, keeping
the relative effect of environments unchanged.

IV. CONCLUSION

In conclusion, we have shown that the free-electron
screening inside a nanowire depends on the environment
surrounding it. For a nanowire coated with a high-κ dielectric,
Coulomb perturbation inside the nanowire is poorly screened
as compared to a freestanding nanowire. It is shown that both
the static dielectric function and the plasma dispersion in the
long-wavelength limit gets modified by the environment. The
length scale at which the environment has a substantial effect
on the electron gas inside the nanowire was identified. The
results are analytical and will be useful for accurate predic-
tions of transport coefficients in nanowire-based electronic
devices.
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